
The VLDB Journal (2014) 23:817–841
DOI 10.1007/s00778-014-0353-2

REGULAR PAPER

Processing of extreme moving-object update and query workloads
in main memory

Darius Šidlauskas · Simonas Šaltenis ·
Christian S. Jensen

Received: 12 April 2013 / Revised: 16 October 2013 / Accepted: 24 January 2014 / Published online: 12 March 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract The efficient processing of workloads that inter-
leave moving-object updates and queries is challenging. In
addition to the conflicting needs for update-efficient versus
query-efficient data structures, the increasing parallel capa-
bilities of multi-core processors yield challenges. To pre-
vent concurrency anomalies and to ensure correct system
behavior, conflicting update and query operations must be
serialized. In this setting, it is a key concern to avoid that
operations are blocked, which leaves processing cores idle.
To enable efficient processing, we first examine concurrency
degrees from traditional transaction processing in the con-
text of our target domain and propose new semantics that
enable a high degree of parallelism and ensure up-to-date
query results. We define the new semantics for range and k-
nearest neighbor queries. Then, we present a main-memory
indexing technique called parallel grid that implements the
proposed semantics as well as two other variants supporting
different semantics. This enables us to quantify the effects
that different degrees of consistency have on performance.
We also present an alternative time-partitioning approach.
Empirical studies with the above and three existing propos-

Electronic supplementary material The online version of this
article (doi:10.1007/s00778-014-0353-2) contains supplementary
material, which is available to authorized users.

D. Šidlauskas (B)
Department of Computer Science, Aarhus University,
Aarhus, Denmark
e-mail: dariuss@madalgo.au.dk

S. Šaltenis · C. S. Jensen
Department of Computer Science, Aalborg University,
Aalborg, Denmark
e-mail: simas@cs.aau.dk

C. S. Jensen
e-mail: csj@cs.aau.dk

als conducted on modern processors show that our propos-
als scale near-linearly with the number of hardware threads
and thus are able to benefit from increasing on-chip paral-
lelism.

Keywords Spatio-temporal indexing · Concurrency ·
Thread-level parallelism

1 Introduction

We are witnessing a rapid growth in Internet-worked, geo-
positioned smartphones and other mobile devices. Likewise,
location-related services that target the users of such devices
are rapidly growing. Consequently, cost-effective server-side
infrastructures are needed that are capable of supporting mas-
sive, location-related update and query workloads generated
by very large populations of such users, which we refer to as
moving objects.

For instance, consider a country-wide traffic monitoring
service. Assuming a population of 10M moving objects that
move on average at 10 m/s and assuming that object posi-
tions need to be known with an accuracy of at least 100 m,
this scenario entails up to 1M updates per second. If the pop-
ulation size or required accuracy is increased, so is the server-
side update load. In addition to updates, the server must con-
tend with queries that exploit the object locations in order to
deliver a variety of services. As updates and queries can be
expected to be correlated, so that frequently queried objects
are also updated frequently, the workloads are challenging.

Another, more futuristic application scenario relates to
autonomous vehicles, where an in-vehicle system continu-
ally processes data from sensors, including a GPS, video
cameras, a laser array, and other radars mounted around the

123

http://dx.doi.org/10.1007/s00778-014-0353-2

818 D. Šidlauskas et al.

vehicle. The system monitors surrounding moving objects
(obstacles) and takes appropriate actions, e.g., stopping the
car before it hits a pedestrian. Like in the previous scenario,
the processing loads are massive. Unlike in the previous sce-
nario, there are no humans in the loop and sensitivity to
latency is high.

The workloads we consider cannot be sustained by disk-
based techniques in a centralized setting, but would need
a costly infrastructure with a very large numbers of disks.
Motivated by two observations, we instead investigate main-
memory indexing. First, the size of the raw location data
is relatively small, e.g., 8 bytes [11]. Second, continuously
dropping prices and increasing capacities of RAM chips
enable single-server machines that offer main-memory stor-
age in the TB range. As a result, it is feasible to manage bil-
lions of moving objects in main memory on a single machine.
In case of failures where the data in main memory is lost, we
rely on the high object update rate to quickly populate the
database with an up-to-date state rather than populating the
database from a backed up database.

The main challenge with such update- and query-mixed
workloads is to harness the parallel processing capabilities of
current chip multi-processors (CMPs). When read and write
operations are processed in parallel, an appropriate concur-
rency control scheme is needed to maintain a consistent data-
base state and ensure correct query results. Optimistic con-
currency control methods anticipate that conflicts between
transactions will not occur either because write operations
are rare or because write and read operations access differ-
ent data items. In the application that we target, frequently
queried objects are also updated frequently. On the other
hand, concurrency control based on locking can cause con-
tention. Query threads must wait for update threads holding
exclusive locks to avoid reading inconsistent states. For the
same reason, update threads must wait for query threads hold-
ing shared locks. Long-duration queries have the potential to
slow rapid single-object updates down. Moreover, extra care
must be taken to avoid other concurrency anomalies such
as deadlocks and phantoms [15]. To avoid deadlocks, some
operations are often aborted, while to avoid phantoms, predi-
cate or range locks are often used. All of this combine to ren-
der it challenging to exploit the opportunities for parallelism.

The paper studies parallelism at two levels: semantic and
implementation. At the semantic level, it investigates update
and query isolation requirements applicable to the process-
ing of moving object workloads. It shows how choosing the
right level of relaxed serializability of traditional database
management systems enables more parallelism while pre-
serving the query semantics for the targeted applications.
The paper proposes freshness semantics that yield more up-
to-date query results (relevant for continuously changing da-
ta) and enable a high degree of parallelism. The semantics
are defined for two types of queries—range and k-nearest

neighbor—that are both studied widely in the literature and
used in practice.

At the implementation level, the proposed algorithms are
designed carefully so that locking is done on as little data as
possible and for as short time as possible. The proposed index
structure called parallel grid (PGrid) employs light-weight
locking (e.g., 1-byte latches with the atomic CAS instruc-
tion are used instead of 40-byte pthread mutexes) that is
used only by update threads; query threads are never blocked.
Update locks have small coverage and short duration due
to PGrid’s fixed and uniform grid [1] that avoids expensive
structure modifications, obviating the need to lock entire sub-
trees or grid cells, as in adaptive approaches [24,30,36].

Non-blocking queries are possible in PGrid due to its
multi-version concurrency control (MVCC) scheme that
enables queries to read previous object versions. The pre-
vious versions are kept only for objects that can otherwise
be missed by queries due to object movement in the index
structure. The technique exploits the spatial locality inherent
to position updates to garbage collect previous positions of
moving objects when they are no longer needed.

The paper reports on an extensive empirical study that
encompasses four diverse multi-core platforms. The study
shows that PGrid scales near-linearly with the number of
hardware threads and is capable of outperforming exist-
ing alternatives. This includes outperforming the previous
state-of-the-art snapshot-based approach that trades query
freshness for update and query performance [38]. PGrid
offers three main advantages over snapshot-based tech-
niques: (i) it provides up-to-date query results; (ii) it wastes
no CPU resources on frequent copying; likewise, the “stop-
the-world” problem (interruption of workload processing) is
avoided, and no CPU cache thrashing occurs due to snapshot
building; (iii) the technique’s MVCC scheme treats updates
as atomic operations rather than as combinations of dele-
tions and insertions, guaranteeing query semantics with no
phantom objects.

Additionally, the study compares PGrid with two alter-
natives that enable the same degree of parallelism, but offer
different query semantics. First, PGrid is compared against
a variant that supports serializable query semantics. This
variant has up to 50 % lower throughput than PGrid due to
extra (unrelated to contention) computation. Second, PGrid is
compared against a time-partitioning approach that increases
performance at the cost of both reduced query freshness
and increased latency (or delay time). This approach, called
time-partitioning grid (TP-Grid), achieves up to 25 % higher
throughput, but might delay query processing and generally
returns slightly outdated results.

The paper is an extension of a conference paper [40] that
introduced and evaluated PGrid on four different multi-core
processors. The paper substantially extends the conference
paper with five main contributions. First, it investigates query

123

Processing of extreme moving-object 819

semantics in terms of degrees of consistency from traditional
database management systems. The different semantics are
placed in the context of known concurrency anomalies [16]
to provide guarantees for query result when moving-object
updates and queries are processed in parallel. Second, in
addition to range queries, it proposes freshness semantics
for k-nearest neighbor queries. Doing so is not trivial since
the range to be scanned by a k-nearest neighbor query is
not fixed and depends on the continuously changing posi-
tions of objects around the query point. Third, it presents a
variant of PGrid that supports serializable (timeslice) seman-
tics. This enables us to quantify the costs of serializable exe-
cution (or the costs of a higher degree of consistency) in
PGrid. Fourth, the time-partitioning approach is new. Lastly,
the paper replaces the conference paper’s empirical studies
with studies that utilize newer (more parallel) hardware, tak-
ing into account all the eight indexing techniques considered
in the paper, and it offers new insight into the scalability of
the techniques with continuously increasing parallelism.

The remainder of the paper is organized as follows. Sec-
tion 2 covers preliminaries and the problem setting. Section 3
describes formally the different query semantics supported
by the proposed indexing techniques. The PGrid indexing
technique and the accompanying algorithms are described in
Sect. 4, while alternatives are described in Sect. 5. Empiri-
cal studies of the proposals are covered in Sect. 6. Section 7
covers related work, and Sect. 8 concludes the paper.

2 Problem setting

We consider a setting in which a population of moving
objects, be it mobile phone users or vehicles, are capable
of reporting their positions to a central server that in turn
supports the delivery of a variety of location-based services.
We model the objects as point objects and the space in which
they move as a two-dimensional Euclidean space. To support
workloads consisting of queries as well as updates, the server
employs a spatial index.

An update message includes the object’s id (oid), its
new two-dimensional coordinates (x, y), and an update
timestamp (tu). Albeit the processing of an update from a sin-
gle object can be performed efficiently, the tracking of a large
population of objects with high accuracy subjects the server
to extreme update loads. A rectangular range query is defined
by its lower-left and upper-right corners, (xlow, ylow) and
(xhigh, yhigh). A k-nearest neighbor (kNN) query is defined
by its query point and a number (k) of closest points required.
kNN queries can be derived from range queries [19]. Queries
examine many objects and take much longer to process than
do updates.

The size of the raw location data is relatively small, e.g.,
a moving-object representation including the object’s iden-

Fig. 1 Effects of extending/shrinking query range

tifier, two-dimensional position, and speed vector can be
packed into 8 bytes [12]. In our setting, a moving object is
represented by a 16-byte tuple (oid, x, y, tu), implying that
64M moving objects (more than all registered vehicles in
Germany [25]) require just 1 GB of storage. Therefore, with
current RAM chip capacities up to several TB per server,
single machines can store billions of moving objects in main
memory.

It is nontrivial to provide accuracy guarantees concerning
the known position of a moving object, as the object’s posi-
tion changes continuously. We assume that updates occur
according to the shared-prediction-based protocol [10,45],
which ensures that an object’s position as known by the server
is no further away from its actual (measured) position than
a given distance threshold, δ. At any time, any object is thus
guaranteed to be in the circle with radius δ around its most
recently reported position. Figure 1 illustrates an example
with five moving objects. The black dots are the object posi-
tions stored in the database, while the white dots are the actual
positions. Dashed circles (with radius δ) around the stored
positions indicate the possible object locations. Consider the
range query represented by the solid-line rectangle, which
reports objects A, B, and C. Compared to the actual object
positions, the query has one false positive (C) and one false
negative (D).

Notably, with the assumed tracking protocol, the uncer-
tainty is only around the borders of the query range. To report
all objects that might be in a query range, the range must be
extended by δ1. However, this might increase the number of
false positives. In the example, the δ-extended query, rep-
resented by the dashed rectangle, does not report any false
negatives (D is included), but the number of false positives
increases to two (E is included). If instead we want to cap-
ture all objects that are guaranteed to be in a query range,
the range must be shrunk by δ. This might increase the num-
ber of false negatives. In the example, the δ-shrunk query,
drawn using a dotted line, does not report any false positives
(C is excluded), but the number of false negatives increases
to two (B is excluded). We assume that all incoming queries

1 The Minkowski sum of the query range and the circle with radius δ

must be performed.

123

820 D. Šidlauskas et al.

are already extended, shrunk, or left unmodified according
to user requirements.

Consistent with other studies [11,19,33,43,48], we also
assume that we know (possibly conservatively) the maximum
possible speed of any object, vmax, e.g., 50 m/s [19,33] or
60 m/s [11]. Together with the δ threshold, the minimum time
between consecutive updates of an object then becomes To =
δ/vmax.

Recording the last-update timestamps (tu) of objects in
an index enables more refined query results when combined
with the maximum speed (vmax) assumption . First, the δ-
extended query is performed to ensure that there are no false
negatives. Then, for each reported object, we construct the
possible region in which the object can be. This is the circle
with radius min(vmax × (tq − tu), δ) centered at the query-
observed database position of the object, where tq is the query
time. The objects whose possible region does not intersect
with the query range are filtered out. In the example, the dot-
ted circle around object E indicates its possible region at time
tq . The region does not intersect with the original query rec-
tangle and thus can be eliminated. Moreover, one can calcu-
late intersection probabilities for objects based on the overlap
between such possible regions and the query rectangle, upon
which it is possible to discard objects with probabilities that
do not meet a given probability threshold. Recently updated
objects have especially small circles and can be removed or
left in the result with high certainty. We assume that such
query pruning is done in a post-query phase according to
user requirements.

We aim to exploit the parallelism offered by modern multi-
core and multi-threaded processors for the processing of the
mentioned workloads. Unlike in single-threaded processing,
queries and updates cannot be considered as instantaneous;
rather, their processing occurs during some time interval
[ts, te], and the intervals of operations can overlap.

3 Semantics and parallelism

We proceed to describe in detail the query semantics sup-
ported by the proposed indexing techniques. In a single-
threaded execution, at most a single query or update is
being processed at any point in time. In a multi-threaded
setting, system throughput can be increased by means of
intra-operation and inter-operation parallelism. Since we are
faced with simple single-object update operations, our focus
is on inter-operation parallelism, where different operations
are processed in parallel.

When executing queries and updates in parallel, the ques-
tion of query semantics arises naturally: How is the correct
result of a query defined? We describe correctness proper-
ties of queries in terms of the degrees of consistency known
from conventional database management systems [15]. In the

Fig. 2 Serializable processing: a long-running range query blocks
rapid updates. Numbers indicate arrival order

following subsections, unless noted otherwise, an update is a
transaction consisting of a deletion of an object’s old position
and an insertion of the object’s new position. When objects
enter or leave the system, an update can also be a single inser-
tion or a single deletion. A query is a transaction consisting
of read-only operations.

Serializable execution of operations is a desirable prop-
erty, but query semantics corresponding to lower levels of
isolation among transactions enable more parallelism. In the
following subsections, we discuss different semantics and
argue that slightly relaxed semantics are acceptable for the
applications we consider and increase the potential paral-
lelism significantly. The findings in this section are general
in nature and are not restricted to a particular indexing tech-
nique.

3.1 Serializability (full isolation)

A concurrency control (CC) scheme that ensures complete
isolation among update and query operations can be imple-
mented as follows. An update transaction, operating on a
single object, obtains an exclusive lock on that object. The
lock is released as soon as the update completes. A query
transaction obtains shared lock(s) on the range(s) of the data
space that must be accessed to produce its answer [15]. Such
a range usually includes multiple objects, and the lock on
a range is released as soon as it has been accessed by the
query. When queries and updates operate concurrently on
the same data, the queries must wait for the updates holding
exclusive locks, which prevents them from reading inconsis-
tent states. Similarly, the updates must wait for the queries
holding shared locks. This limits the potential parallelism.
As illustrated in Fig. 2, despite available resources on multi-
core CPUs, rapid updates can be delayed by the time it takes
to process a prior long-running query.

When index structures are used, updates may involve
index structure modifications. Therefore, locks in concur-
rent spatial indexes are usually acquired at a much coarser
granularity than that of single objects. For instance, in tree-
based indexes, an entire sub-tree or individual nodes can be
locked [24,30], and in grid-based approaches, entire cells or
buckets (data pages) can be locked [36]. This results in even

123

Processing of extreme moving-object 821

more update/query interference. Past studies [9,17] suggest
that workloads with both queries and updates do not scale in
such settings: Only few cores are utilized efficiently.

Using the above locking protocol, update and query trans-
actions cover their actions by locks (are well-formed), and
as no unlock precedes a lock, they use two-phase locking.
Thus, based on the fundamental serialization theorem [15],
any parallel execution of the transactions is serializable, i.e.,
is equivalent to some serial execution of the transactions.

In a serial execution, a query result reflects all previously
executed transactions and none of the transactions executed
after the query. We say that this corresponds to timeslice
query semantics because a query result is based on the objects
positions valid at some specific time point in some serial
ordering of the transactions, which is usually similar to the
arrival order of the transactions. With the above scheme, the
specific time point corresponds to the query processing start
time when the necessary locks are acquired and the subse-
quent conflicting updates must wait.

Such lock-based isolation among transactions yields
degree 3 isolation, which is the highest level of consistency in
database management systems [16]. However, as suggested
in Fig. 2, this level of consistency limits concurrency. Con-
sider the traffic monitoring scenario. In a single-threaded
setting, an update takes circa 1 microsecond, while a query
might take up to a few milliseconds depending on the size of
the result [39]. This implies that an update might be delayed
by three orders of magnitude longer than its actual processing
time when it hits a region locked by a query.

3.2 Snapshot isolation

The following MVCC scheme ensures snapshot isolation [4],
where all reads by a transaction see a consistent snapshot of
the database as of transaction start and where this snapshot
remains unaffected by writes of other concurrent transac-
tions. At transaction start, a transaction obtains a timestamp
tx that is larger than any existing timestamp given to a trans-
action. An update transaction, operating on a single object,
obtains a lock on that object. Before releasing the lock,
the update creates a new copy (version) of the object with
its new position and tags it with its timestamp, tx . New
object versions created by other concurrent transactions with
timestamps that exceed tx are invisible to the transaction. A
query transaction operates without locks and can safely read
object versions with timestamps lower than its own. Outdated
object versions are removed when no active transactions exist
that need them. With this scheme, each moving object can
have multiple versions in the system at any time.

However, snapshot isolation is not serializable and is vul-
nerable to several concurrency anomalies because of con-
straint violations, e.g., the write skew anomaly [3] and the
read-only transaction anomaly [14]. For example, if there is

a constraint to maintain the uniqueness of some object posi-
tions, snapshot isolation cannot guarantee this (as concurrent
transactions do not see each others updates). The applications
we target do not have such multi-object constraints: Update
transactions are limited to single data items. The incom-
ing (individual) moving object positions are independent of
each other and are always accepted as reported. Therefore,
moving-object update and query transaction executions sat-
isfying snapshot isolation give queries the same timeslice
semantics as with serializability. Similarly, the TPC-C bench-
mark application executes under snapshot isolation without
serialization anomalies [13].

The major advantage of snapshot isolation is that it elimi-
nates all interference between updates and queries present in
serializable mode (Sect. 3.1). Queries can access the entire
database without being affected by writes made by concur-
rent updates. As a result, much more parallelism is achieved.
In fact, contention-related performance degradation is at the
same level as is degree 0 isolation [3]. Updates still might
interfere with each other, but single-object locks are short.

Performance degradation unrelated to contention is worse
because of the need to maintain multiple object versions:
Updates need to create new versions, while queries need to
decide which version to read. Studies of an existing MVCC
scheme for main-memory indexing show that this cost can
be excessive, rendering the scheme suitable only for query
intensive workloads [35]. This is mainly due to concurrent
memory allocations/de-allocations that cause significant o-
verhead in terms of operating system calls (malloc, free,
etc.). Subsequent work [7] reduces this overhead by creating
a memory pool for each processor in the system.

Note that timeslice query semantics under snapshot isola-
tion guarantees fresh query results (as with serializability).
At any time, there might be several outdated copies of an
object in the system, but a query examines only the most
recent version of an object as of the start of the query.

3.3 Two-snapshot isolation

Another way to reduce the versioning overhead is to limit
the number of versions maintained. Consider an approach
where each object has only two versions: the previous and
the current. Query transactions are directed to the previous
versions that are read-only. Update transactions operate on
the current versions that are write-only. The previous versions
are refreshed regularly based on the current versions so that
query results are reasonably up-to-date. During a refreshing
phase, updates are suspended so that the new read-only ver-
sions correspond to a consistent database state as of some
time point. Since the degree of parallelism is the same as for
snapshot isolation, the approach scales well on multi-core
platforms [11,38].

123

822 D. Šidlauskas et al.

However, as before, this scheme does not yield serial-
izable semantics, and it additionally suffers from outdated
query results. No matter when a query is issued, its result
is based on the database snapshot created during the last
refreshing phase. We thus term the supported query seman-
tics stale-timeslice semantics. To enable a fair comparison
with timeslice query semantics, we introduce the notion of
query staleness:

Definition 1 The staleness of a query is the ratio of update
transactions ignored by the query transaction to the total num-
ber of objects in the system. An update transaction is ignored
if it has a lower timestamp than the query transaction, but is
not taken into account by the query.

The query staleness under stale-timeslice semantics de-
pends on a tuning parameter that controls the snapshot-
ting frequency, Fs . In main-memory indexing, very frequent
snapshotting, on the order of tens of snapshots per second, is
feasible [38]. However, frequent snapshotting implies a sub-
stantial and unattractive waste of computing resources. For
example, if one aims to maintain a maximum query staleness
below 1 %, snapshotting must be made whenever 1 % of all
objects are updated. The versions created for the remaining
99 % of objects are superfluous. Appendix A (ESM) details
the trade-off between query freshness and staleness.

Given the above waste, incremental snapshotting tech-
niques might sound like an attractive approach. However,
recent work [37] shows that incremental snapshotting is often
more expensive than brute-force (all data) snapshotting in
update-intensive applications.

Another drawback of two-snapshot isolation is that it
introduces query latency. If a query is received during
the snapshotting phase, its processing is delayed until the
phase completes. Given that queries already suffer from stale
results, stale-timeslice semantics might limit the target appli-
cations significantly.

3.4 Freshness isolation

We proceed to consider a CC scheme that permits an anom-
aly known as data phantoms [15]. This scheme differs from
the one defined in Sect. 3.1 in the sense that query transac-
tions do not use range locking. That is, update transactions
are allowed in a region of a concurrent query transaction.
Assume that to prevent partial reads and writes of object data,
the CC scheme is modified to ensure the atomicity of updates
(deletion-insertion pairs). We aim to understand which guar-
antees this scheme sacrifices, when compared to timeslice
semantics. Next, we discuss specifics relating to the range
query followed by specifics relating to the kNN query.

Fig. 3 Parallel updating and querying

3.4.1 Range query

Assuming that a query transaction lasts from ts to te, Fig. 3
shows a snapshot at some point in time between t1 and t2
(t1, t2 ∈ [ts, te]) of a range query occurring simultaneously
with several updates. At t1, the query has already inspected
half of its range (the gray region), and processing is in
progress (striped region). The black dots are object positions
at the beginning of the query (at ts), and the white dots are
their updated positions due to updates that occurred during
[t1, t2]. We can identify four inconsistencies in this simple
CC scheme when compared to a scheme offering timeslice
semantics:

(i1) Object A is in the query range at ts . However, it exits
the range before being seen by the query and therefore
is not reported. With timeslice semantics, A is a false
negative. Note that B also exits the range during [t1, t2],
but is captured in both CC schemes.

(i2) Object C is not within the query range at ts . However,
it is reported because it enters the range during [t1, t2].
With timeslice semantics, C is a false positive. Note
that D also enters the range during [t1, t2], but is not
reported in either CC scheme.

(i3) Some of the reported object positions are fresher than
others. For example, objects E and F are both in the
query range before and after being updated. However,
the query reports only F’s updated position.

(i4) Both of object G’s positions are in the range, but the
query fails to capture G because the update moves it
from the yet unscanned to the already scanned query
region.

We argue that cases i1, i2, and i3 can be tolerated easily in
the targeted application domains. In fact, the behavior in these
cases may often be preferred in the context of continuously
changing data because freshness of results is preferred over
returning results that were consistent (according to timeslice
semantics) as of the start of the query.

However, case i4 is unlikely to be acceptable for any appli-
cation domain: The query misses objects although they are
always in its range. This is due to not locking the query range.
To remedy this problem, we make use of the assumption that

123

Processing of extreme moving-object 823

te − ts < To, meaning that the time needed to process a query
is shorter than the time between two consecutive updates of
an object. This assumption is true for most realistic settings
in our application domain. In the traffic monitoring exam-
ple, given a maximum object speed vmax of 216 km/h and
a required high accuracy δ of 10 m then To = 170 ms. This
enables the processing of very long-running queries, given
the main-memory setting. In pathological cases, where a
query does not meet this requirement, a simple timer can
be maintained. Then, if a query does not complete within a
given time, it can be restarted or aborted. We shall later see
that typical queries complete in times that are a few orders
of magnitude shorter than 170 ms.

With the above assumption, any examined object can be
updated at most once during the time [ts, te] when a query is
processed. Therefore, case i4 can be handled by keeping one
previous object position in the index. Doing so guarantees
that a query always encounters at least one object version
and so does not miss any objects. In Fig. 3, the query then
reports G’s previous position (black dot).

We call the level of guarantees that corresponds to allow-
ing cases i1 to i3, but not case i4, freshness semantics: A
query, processed from ts to te returns all objects that have
their last reported positions before ts in the query range, and
it reports some (fresher) objects that have their last reported
positions after ts (and before te) in the query range. Below,
we define the freshness semantics for range query formally.
We use pos• and pos◦ to denote the previous and current
position of an object, respectively, and tu denotes the last
time an object was updated.

Definition 2 Given a range query � with processing time
[ts, te], its result O is said to satisfy freshness semantics if
for any object o, the following hold:

1) if o.tu < ts then o ∈ O if and only if o.pos◦ ∈ �
2) if ts < o.tu < te then

a) if o.pos• ∈ � and o.pos◦ ∈ � then o ∈ O
b) if o.pos• �∈ � and o.pos◦ �∈ � then o �∈ O
c) if o.pos• �∈ � and o.pos◦ ∈ � then o may or may

not belong to O
d) if o.pos• ∈ � and o.pos◦ �∈ � then o may or may

not belong to O

The first part says that if o was only updated before the
query started then whether or not o is in the query result is
determined by its up-to-date position. The second part deals
with objects that are updated during the query processing and
covers the cases discussed already. Observe that cases 2c and
2d imply that if one position is within the query range while
the other is not, the decision to add o to the result is arbitrary.
This is because not necessarily all updates after ts are seen
by the query during [ts, te]. For example, the query might

Fig. 4 Freshness semantics is not serializable

observe only o with pos•; then, o ∈ O if o.pos• ∈ � (while
its current pos◦ might be inside or outside the query range).

Concurrent transaction executions allowed by Definition 2
are not guaranteed to be serializable. For example, assume
that two transactions are about to update objects A and
B, while two queries �1 and �2 are running concurrently.
What happens when both updates are inside the ranges of
both queries? According to Definition 2, �1 might take into
account only the update of A, while �2 might take into
account only the update of B. As a result, such a parallel
execution is generally not serializable. Figure 4 depicts two
possible parallel executions allowed by freshness semantics:
one serializable and one not serializable.

3.4.2 kNN Query

Following the same ideas, we define the freshness semantics
for the kNN query. The key difference between a range query
and a kNN query is that whether a given object qualifies for
the kNN query depends not only on the query and the cur-
rent position of the object, but also on the positions of other
objects. Thus, although the object’s position may be updated
once or not at all during the query processing, the object’s
belonging to the query result may change multiple times.

We define o.pos(t) to be the position of the object o
as recorded in the database at time t . In particular, for
t ∈ [ts, te], o.pos(t) = o.pos• if t < o.tu , and o.pos(t) =
o.pos◦ if t ≥ o.tu . Also, let X(k) denote the kth smallest
value in a set X of values.

Definition 3 Given a set of objects S and a kNN query at
point q with processing time [ts, te], its result O ⊆ S is
said to satisfy freshness semantics if for any object o, the
following hold:

1) if maxt∈[ts ,te] dist (q, o.pos(t))
<

{
mint∈[ts ,te] dist (q, x .pos(t)) | x ∈ S

}
(k)

then o ∈ O
2) if mint∈[ts ,te] dist (q, o.pos(t))

>
{
maxt∈[ts ,te] dist (q, x .pos(t)) | x ∈ S

}
(k)

then o �∈ O
3) otherwise o may or may not belong to O

Case 1 is the core of the definition and corresponds to case
2a, as well as a part of case 1, in Definition 2. The idea is
that for each object from the dataset, at least one position
valid during some part of [ts, te] should be considered when

123

824 D. Šidlauskas et al.

Fig. 5 3NN query with the result {E◦, D•, C◦}, satisfying the fresh-
ness semantics

constructing the answer of a kNN query. In the worst case, the
position of o that is furthest away from q is considered (the
left side of the inequality). The object o should definitely be
in the answer if that position is closer to q than the kth closest
object in the best-case answer where the closest positions of
all objects are considered (the right side of the inequality).

Figure 5 shows the distances of a set of objects from the
query point during the processing of a 3NN query. Solid lines
represent object positions read by the query, while dashed
lines show missed object positions. Object D is covered by
case 1 of the definition and should be always returned. Note
that case 1 also includes objects that did not update during
[ts, te], such as object E in the example.

Case 2 is the opposite of case 1, stating that an object
should definitely be excluded from the answer if the position
of o closest to q is further away than the kth closest object in
the worst-case answer constructed considering the furthest
positions of all objects.

Case 3 states that due to concurrent updates, we cannot
guarantee the accuracy of the result concerning the objects
that are on the border of the “query range,” i.e., not covered
by cases 1 and 2. In contrast to range queries, this also affects
the objects that did not update during [ts, te].

In Fig. 5, object C was never among the three nearest
neighbors of q during [ts, te]. In this example, it is falsely
reported, as there are times (during interval [ts, te]) when
it is the 3rd object of the worst-case answer {E◦, D◦, C◦}.
Note that the distances from q to the best-case kth object (A•
in the example) and to the worst-case kth object (C◦) can
differ by at most δ, the maximum distance between any two
consecutive updates of an object (cf. Sect. 2). This difference
is shown as the gray region in Fig. 5.

Whether C , or any other object crossing the gray region, is
reported or not depends on the order in which object positions
are encountered by a query algorithm. An interesting way to
interpret this uncertainty “on the border” is to compare it
to the indeterminism of reporting only a random subset of
objects whose distance to q is exactly equal (δ = 0) to the
distance from q to the kth nearest neighbor, when there are too
many such objects and exactly k objects have to be reported.
Allowing one (potentially missed) update per object during

Fig. 6 Semantic relationships

[ts, te], the uncertain border of the query is widened from 0
to at most δ.

Finally, observe that case 1 of the definition is always sat-
isfied by strictly less than k objects. Let k′(0 ≤ k′ < k) be
the number of objects satisfying case 1. While not explic-
itly required by the definition, any kNN query algorithm will
choose the remaining k − k′ objects with the smallest dis-
tances to q among the objects that satisfy case 3.

3.5 Summary

Freshness isolation enables queries to report more up-to-date
data items when possible without the risk of missing an item.
In terms of database consistency [3], freshness isolation sit-
uates between degree 2 and snapshot isolation (Fig. 6). It
is strictly less restrictive than snapshot isolation because it
allows some data phantoms (i.e., i1–i3), which snapshot iso-
lation does not. It is strictly more restrictive than degree 2
isolation because degree 2 isolation allows all data phantoms,
while freshness isolation prevents i4.

We shall later see that the degree of parallelism in fresh-
ness isolation is comparable to that in snapshot isolation
(and degree 2 isolation), while computation unrelated to con-
tention is lower than in snapshot isolation. This is because
updates and queries do not interfere with each other, while
only necessary tuples are replicated.

4 Parallel grid

Here, we detail the PGrid indexing technique that imple-
ments freshness semantics for range and kNN queries. First,
we outline the index structure, the operations supported, and
the types of locks used. Next, we cover the update and range
and kNN query algorithms, followed by specifics on how to
implement atomic reads and writes of single-object data.

4.1 Structure

Parallel grid exploits an existing main-memory index struc-
ture that offers high performance for traffic monitoring appli-
cations in single-threaded settings [39]. Queries are serviced
using a uniform grid [1], while updates are facilitated via a

123

Processing of extreme moving-object 825

Fig. 7 Parallel grid structure

secondary index in bottom-up fashion [26]. Figure 7 depicts
PGrid’s components and their structure.

A two-dimensional array represents a uniform grid direc-
tory that statically partitions a predefined region into cells.
Objects with coordinates within the boundaries of a cell
belong to that cell. The grid directory does not store any
data. Rather, the object data that belongs to a cell is stored in
a linked list of buckets, and a grid cell stores just a pointer to
the first bucket of such a list, or the null pointer if no objects
belong to its cell. A bucket is fully described by three meta-
data fields: a pointer to the next bucket (nxt), an integer spec-
ifying the number of currently stored objects (nO), and an
integer specifying the number of readers currently scanning
the bucket (n R). The former two fields are self-explanatory.
The latter is used for reference counting, to be explained later.

The data for an object in the index is stored as a four
tuple with an object identifier, coordinates, and an update
timestamp: (oid, x, y, tu). To comply with freshness seman-
tics, at most two tuples can be associated with the same
object: one representing the previous version and the other
representing the most up-to-date version of the object.

Single-object updates are facilitated via a secondary index
structure (e.g., a hash table) that indexes objects on their oid.
Each secondary index entry provides information about an
object in the primary structure. A cell pointer (cell) indi-
cates the cell an object belongs to. A bucket pointer (bckt)
together with a positional offset (idx) provide direct access to
the actual object data in a bucket. This eliminates the need for
cell or bucket scanning during updates. The same informa-
tion is maintained for determining a tuple with the previous
object location (ldCell, ld Bckt, ld I dx), where the ld prefix
indicates logical deletion, to be explained in the following.

As in the earlier, single-threaded proposal [39], all incom-
ing updates are categorized as local or nonlocal. When an
object’s new position belongs to the same cell as its currently
stored position, the update is local; otherwise, the update is
nonlocal and involves deletion of the object from its current
cell and insertion into a new cell. There is no need for explicit
object deletion and insertion operations during local updates,

and the updater simply overwrites the outdated object data
(the coordinates and the timestamp). Since no structural mod-
ifications or data movements occur during a local update, a
query cannot miss an updated object. It must only be ensured
that single-object reads and single-object writes are atomic
so that partial reads and writes of object data are prevented. In
contrast, nonlocal updates require that previous object posi-
tions are kept, as such updates may move an object from a
cell yet to be scanned by a query to a cell that has already
been scanned (see Fig. 3).

To handle nonlocal updates, PGrid introduces a notion of
logical deletion. A nonlocal update does not actually remove
an object’s old position, but instead sets the update timestamp
of the old position to the current time and marks the posi-
tion with a deletion flag (implemented as the negation of the
update timestamp). A logically deleted position is physically
deleted on the next update of the object. Both logical and
physical object deletion requires an update of the object’s
entry in the secondary index. A logical deletion initializes
the fields ldCell, ld Bckt , and ld I dx to the object’s current
cell, bucket, and offset within the bucket, respectively, while
a physical deletion nullifies them.

With parallel processing, the two data structures—the pri-
mary index (the grid) and the secondary index (the hash
table)—are modified concurrently by multiple updaters. The
changes made in one have to be reflected in the other. To
guarantee consistency between the two, PGrid’s concurren-
cy control includes two types of locking: object locking and
cell locking. The locks are independent of each other in the
sense that cell locking does not block the cell’s objects: The
objects in a locked cell can still be accessed and modified
individually. Both types of locks are stored separately from
the PGrid structure.

The main purpose of object locks is to provide syn-
chronized, single-object updates between the two structures.
After an object lock is acquired, the updater is sure that the
object-related data is not changed in either index by concur-
rent operations of other updaters. Since an object lock blocks
(write) access just to one particular object, it has only a mod-
est effect on the potential parallelism. As mentioned before,
the server rarely, if ever, encounters concurrent updates to
the same object.

The main purpose of a cell lock is to prevent concur-
rent cell modifications, i.e., physical deletion/insertion of
new objects in a cell and, consequently, deletion/insertion
of new buckets in the cell. For example, when a bucket
becomes full, the cell lock guarantees that only one thread
at a time allocates a new bucket and modifies the pointers
so that the new bucket becomes the first. Cell locks are
required only during physical object insertions and dele-
tions. As detailed in the following, both operations (dele-
tion of old and insertion of new positions) are processed
sequentially, implying that an updater can lock only one

123

826 D. Šidlauskas et al.

cell at a time. Therefore, no deadlocks are possible due to
cell locking. Since a cell lock does not block other threads
from accessing the objects in its cell, the objects involved
in the deletion/insertion are locked individually using object
locks.

We proceed to describe the update and query algorithms
in detail. We show that freshness semantics can be supported
without updates and queries being able to block each other.

4.2 Update processing

Algorithm 1 shows the pseudo-code of PGrid’s update algo-
rithm. The algorithm takes as input a new object tuple (new).
Based on its position, a new cell for the object is computed.
Then, an object lock is acquired (Line 2) and held until the
end of the update (Line 18). After a secondary index lookup,
in Line 3, the primary-index-related information is retrieved:
the current cell of the object (oldCell) and the location of
the object tuple (obj). No cell or bucket scanning is required.

Algorithm 1: update(ObjectTuple new)
1 newCell = computeCell(new.x, new.y);
2 lockObj(new.oid);
3 sie = SecondaryIndex.lookup(new.oid);
4 oldCell = sie.cell ;
5 obj = getObj(sie.bckt, sie.idx); // object tuple
6 if hasLD(sie) then
7 if !delete(sie) then // physical deletion
8 unlockObj(new.oid);
9 go to 2 ; // try again

10 if newCell == oldCell then
/* Local update */

11 writeObj(new, obj); // new copied over obj
12 else

/* Nonlocal update */
13 sie.ldCell = sie.cell ;
14 sie.ldBckt = sie.bckt ;
15 sie.ldIdx = sie.idx ;
16 insert(new, newCell, sie); // physical insertion
17 obj.tu = -new.tu; // mark as logically deleted

18 unlockObj(new.oid);

Next, the updater checks whether the object has a tuple
with a previous object location, i.e., whether the object was
previously logically deleted. If this is the case, the fields
ldCell, ld Bckt , and ld I dx in the secondary index entry
(sie) are non-null, and the tuple has to be (physically) deleted
(Line 7). As will be discussed later, to avoid deadlocks, a
deletion might fail. In this case, the object lock is released
and the update is restarted.

The update type is determined by comparing the new and
old cells (Line 10). If the update is local, the outdated object
tuple is overwritten with the new one (Line 11). Note that to
ensure lock-free querying, the object write must be instanta-
neous. Section 4.4 describes how to do that.

If the update is nonlocal, the new tuple is inserted into
the newly computed cell (Line 16) and the outdated tuple
is logically deleted. A logical deletion is carried out in two
parts. First, before the insertion (in Lines 13–15), the fields
in sie referring to the current object tuple (cell, bckt, idx)
are copied over the fields referring to the logically deleted
tuple (ldCell, ld Bckt, ld I dx). Second, after the insertion
(Line 17), the timestamp of the outdated tuple is set to the cur-
rent time (new.tu). Also, to mark that it is a logically deleted
version, the timestamp is negated. This informs the query
threads that the tuple contains a previous object position.

Algorithm 2 contains the pseudo-code for physical object
deletion. The algorithm takes the secondary index entry as
input, and it reports whether or not the deletion was success-
ful. In a nutshell, the deletion algorithm tries to move the last
object of the first bucket into the place of the object to be
deleted. The processing is secured by a cell lock. Again, the
secondary index provides the necessary information on the
logically deleted object without any scanning (Lines 1–4).
After the last occupied entry of the first bucket is determined
(last Obj) and is successfully locked (Line 5), the logically
deleted object is overwritten (Line 6). Note that for a very
short time, until the bucket’s counter is decremented (Line 7),
a query thread can see two identical tuples for last Obj . The
query algorithm takes this into account (see Sect. 4.3).

Algorithm 2: bool delete(SIEntry sie)
1 lockCell(sie.ldCell);
2 ldObj = sie.ldBckt.entries[sie.ldIdx];
3 firstBckt = *sie.ldCell; // cell refers to the 1st bucket
4 lastObj = firstBckt.entries[firstBckt.nO - 1];
5 if tryLockObj(lastObj) then
6 writeObj(lastObj, ldObj); // lastObj copied over ldObj
7 firstBckt.nO- -; // decrement
8 if firstBckt.nO == 0 then // is empty?
9 *sie.ldCell = firstBckt.nxt;

// No more queries can enter firstBckt
waitUntilNoReaders();

10 free(firstBckt);

11 Nullify all ld references in sie ;
12 Lookup for lastObj’s sie and update it;
13 unlockObj(lastObj); unlockCell(sie.ldCell);
14 return true;
15 else
16 unlockCell(sie.ldCell);
17 return false;

If the first bucket becomes empty, it is removed, and the
next bucket becomes the first, or the grid cell becomes empty.
However, since it is possible for concurrent queries to be
scanning the bucket, the deleter “busy” waits until all queries
leave the bucket (Line 9) and only then deallocates its mem-
ory (Line 10).

Then, the secondary index is updated. All pointers to the
logically deleted object are nullified (Line 11). The secondary
index is also searched for last Obj’s entry so that it can be

123

Processing of extreme moving-object 827

updated to store its new position in the grid index (Line 12).
Depending on whether the last Obj tuple contains a logically
deleted position or an up-to-date object position, the fields
bckt and idx or ld Bckt and ld I dx are modified accordingly.
Eventually, the acquired locks are released, and the deleter
returns successfully.

A failure to lock last Obj in Line 5 means that it is already
locked by another thread. Instead of waiting until a lock
can be obtained, the deleter unlocks the previously locked
cell and returns with a failure indication (Lines 16–17). The
unsuccessful return forces the update algorithm to restart its
processing (Algorithm 1). This costly decision eliminates a
potential deadlock. The deadlock would happen if the fol-
lowing two circumstances were to co-occur while running
delete. First, another concurrent updater has to be updating
the same last Obj object, implying that it is already locked
in Line 2 of Algorithm 1. Second, the last Obj tuple must be
a logically deleted object so that the concurrent updater also
needs to enter the deletion routine and thus needs to obtain a
lock on the same cell. The two updaters end up waiting for
each other. Restarting one of the updaters solves the prob-
lem. Situations such as this are unlikely to occur, and our
empirical study confirms that restarts are very rare.

Object insertion is relatively simple (Algorithm 3). A new
object is always inserted at the end of the first bucket, which is
pointed to by the cell (Line 2). In case the bucket is full, a new
bucket is allocated, and the necessary pointers are updated so
that the new bucket becomes the first (Line 4). The first free
position at the end of the first bucket is determined (Line 5),
and the new tuple is written (Line 6). The fields cell, bckt ,
and idx in sie are also updated accordingly (Lines 7–9).
As the processing is secured by the target cell lock, other
inserters cannot write to the same position.

Algorithm 3: insert(ObjectTuple new, Cell cell,
SIEntry sie)
1 lockCell(cell);
2 firstBckt = *cell ; // cell refers to the 1st bucket
3 if isFull(firstBckt) then
4 Allocate new bucket and make it first;

5 freePos = firstBckt.entries[firstBckt.nO];
6 writeObj(new, freePos); // new copied over freePos
7 sie.cell = cell ;
8 sie.bckt = firstBckt ;
9 sie.idx = firstBckt.nO ;

10 firstBckt.nO++; // increment
11 unlockCell(cell);

4.3 Query processing

Parallel grid naturally supports object-id queries using its sec-
ondary index on object oid. We proceed to describe range and
k-nearest neighbor queries processing that satisfies freshness
semantics.

4.3.1 Range query

The range query algorithm partitions the cells overlapping the
query range into two sets: the fully and the partially covered
cells. Only the objects in partially covered cells need to be
checked to see whether they are in the range. Both types of
cells are scanned without object locks, although each cell
is locked briefly before entering its first bucket. An object’s
timestamp is used to distinguish between the two copies of the
object. Algorithm 4 provides the details, which we proceed
to describe.

Algorithm 4: rangeQuery(Rect q, int ts)

1 res = ∅; // container for storing the result3

2 cells = computeCoveredCells(q);
3 foreach cell ∈ cells do
4 objects = pCellScan(cell); // Algorithm 5
5 foreach obj ∈ objects do
6 if obj.tu > 0 then
7 res.addAndOverwrite(obj);

8 else if abs(obj.tu) > ts then
9 res.addIfNoSuch(obj);

10 Similar processing is performed for partially covered cells;
11 return res ;

The algorithm takes two inputs: a two-dimensional rec-
tangle specifying the query range (q) and an integer value
specifying the query’s timestamp (ts). The algorithm returns
the objects covered by the query range. For simplicity, Algo-
rithm 4 shows only the processing of fully covered cells (com-
puted in Line 2). Thus, the extra check (whether an object
is within the range) done for partially covered cells does not
appear in the algorithm.

Objects from each overlapping cell are retrieved by scan-
ning the cell (Line 4). The cell scanning is done in parallel
with update processing, to be covered in more detail shortly.
PGrid uses the update timestamp to distinguish between mul-
tiple copies of the same object. A positive timestamp signals
that the tuple contains the most up-to-date object location;
thus, it is taken into account (Line 7). If an object with the
same oid already has been added, it can be replaced with the
up-to-date position (add-and-overwrite).

A negative timestamp signals that the tuple contains the
previous object location. Such a tuple is added to the result if
two conditions hold. First, the absolute value of its timestamp
exceeds that of the query’s (Line 8). This implies that the
object was updated after the query started and so can be
missed (see case i4 in Sect. 3.4). Second, the query has not yet
seen the object’s new (updated) position. The latter condition
is realized via the container (Line 9): The tuple is added
only if the result contains no object with the same oid. This

123

828 D. Šidlauskas et al.

as well as add-and-overwrite functionality can be efficiently
supported using an associative container2.

The crucial routine for parallel (w.r.t. updates) cell scan-
ning is given in Algorithm 5. To prevent concurrent updaters
from deleting a bucket that is about to be scanned by a query
thread, query threads increment the reader counter (n R) of
a bucket before entering it and decrement it as soon as the
bucket has been scanned. However, the first bucket can have
been deleted by the time the query actually increments its
counter (Line 7). Therefore, a cell lock is acquired briefly
(Lines 2 and 8). For the subsequent buckets, the counter
can be accessed safely, as the next bucket cannot be freed
before the first one (Lines 13–16). Atomic operations are
used because the counters can be accessed by concurrent
query threads3.

Algorithm 5: pCellScan(Cell cell)
1 objects = ∅; // container for storing the result
2 lockCell(cell);
3 if isEmpty(cell) then
4 unlockCell(cell);
5 return objects ;

6 bckt = *cell; // cell refers to the 1st bucket
7 aInc(bckt.nR); // atomic increment
8 unlockCell(cell);
9 while bckt ! = null do

10 for idx = bckt.nO - 1 downto 0 do
11 obj = readObj(bckt.entries[idx]);
12 objects.add(obj);

13 if bckt.nxt ! = null then
14 aInc(bckt.nxt→nR); // atomic increment

15 aDec(bckt.nR); // atomic decrement
16 bckt = bckt.nxt ;

17 return objects ;

Recall that an updater can move the last object of the
first bucket to its beginning (to overwrite an object to be
deleted). If a query scans a bucket from its beginning, the
moved object could be missed because it is moved from the
as-yet-unscanned part of the bucket to the already scanned
part. To eliminate this problem, objects within a bucket are
examined starting from the last entry in the bucket (Line 10).

The following theorem states the correctness of the pre-
sented range query and update algorithms. It guarantees that
range query results in PGrid always satisfy freshness seman-
tics.

2 We use unordered_map from the Standard C++ library.
3 The cell locking in the scanning algorithm is related to safe mem-
ory reclamation that can be implemented completely lock-free using
advanced techniques such as atomic double compare-and-swap (DCAS)
operations (that are, however, not supported by commodity hardware) or
by multi-threaded memory allocators (which are implemented as com-
plex libraries). Since we did not observe any contention or performance
penalty due to this brief cell locking, we do not consider such techniques.

Theorem 1 The rangeQuery algorithm (Algorithms 4–
5), performed in the presence of concurrent update opera-
tions (Algorithms 1–3), returns results that satisfy freshness
semantics.

We prove the theorem by examining all cases of Defini-
tion 2, where the most important part is to show that case i4
is avoided. The proof is given in Appendix B of ESM.

Note that Definition 2 does not require a specific object
position (pos• or pos◦) to be returned by the range query.
Therefore, in Line 7 of Algorithm 4, PGrid can also call add-
if-no-such and still comply with freshness semantics. The
position of an object that is added depends on the (arbitrary)
order the object versions are encountered by the query thread.
This is useful in kNN query processing, described next.

4.3.2 kNN query

Given a query point q at timestamp ts , the kNN query has
to retrieve k closest objects to q based on ts according to
freshness semantics (Definition 3). Algorithm 6 provides the
details, which we proceed to describe.

Algorithm 6: kNNQuery(Point q, int k, int ts)
1 res = ∅; // container for storing the result
2 cd = +∞; // critical distance
3 cell = nextCell(q); // following [46]
4 repeat
5 objects = pCellScan(cell); // Algorithm 5
6 foreach o ∈ objects do
7 if o.tu > 0 or abs(o.tu) > ts then
8 if dist(q, o) < cd then
9 res.addIfNoSuch(o);

10 if res.size() > k then
11 remove furthest object from res ;
12 cd = max{ dist(q, o) | o ∈ res };

13 cell = nextCell(q); // following [46]
14 until res.size() == k and cd <= dist(q, cell);
15 return res;

The underlying idea is to repeatedly read grid cells in best-
first order until k objects are obtained and the distance from
the query point to the next closest cell is no smaller than the
critical distance (Line 14). The critical distance, denoted as
cd, is the distance between q and the current kth object (com-
puted in Line 12). Also, given a cell cell and a query point
q, dist (q, cell) is the minimum possible distance between q
and any object o ∈ cell. It can be computed in constant time.

To compute the next-best (closest) cell in Lines 3 and 13,
we employ state-of-the-art techniques that partition the cells
based on their position relative to the query point. Specifi-
cally, we follow Wu and Tan [46] (that improve on [29]) and
divide the cells into levels and then divide the cells at each
level into groups. The initial cell where the query point is
located belongs to level 0. The neighboring cells around the

123

Processing of extreme moving-object 829

Fig. 8 Grid cell partitioning

initial cell form level 1, and the neighboring cells around the
level l form level l+1. The cells at level l are divided into l+1
groups as illustrated in Fig. 8. This enables us to access cells
from closest to farthest by increasing level and group number.

In the loop, the next cell is scanned in parallel with updates
using the same algorithm as in range querying (Line 5). To be
considered for the result, in addition to passing the freshness
conditions (Line 7), each object has to be closer to q than
the current critical distance (Line 8). If the result exceeds
k objects, the farthest (k + 1st) object is removed, and the
critical distance is updated (Lines 10–12).

As in range querying, PGrid uses an associative con-
tainer to efficiently support add-if-no-such (oid) function-
ality. In kNN querying, PGrid needs to additionally main-
tain the k candidates (partially) sorted based on their mini-
mum distance to q. Otherwise, res has to be scanned each
time a new (old) candidate is added (deleted) and the crit-
ical distance updated. Therefore, PGrid employs a priority
queue to enable constant-time access to the farthest candidate
and logarithmic-time insertion/deletion. This functionality is
implemented in container res (not shown).

Unlike for the range query algorithm, PGrid does not have
a branch to add an object using add-and-overwrite. This is to
avoid situations when the object’s new position is no longer
within the critical distance, and a replacement has to be found.
This implies that all candidates would have to be maintained
at all times (not only k). Moreover, whenever we needed to
compute cd, we would have to sort res. The experimental
study shows that this becomes very expensive. Therefore,
we do not have the add-and-overwrite branch and maintain
at most k + 1 candidates.

According to the following theorem, kNN query process-
ing in PGrid satisfies freshness semantics.

Theorem 2 The kNNQuery algorithm (Algorithms 5–6),
performed in the presence of concurrent update opera-
tions (Algorithms 1–3), returns results that satisfy freshness
semantics.

We prove the theorem by examining all cases of Defini-
tion 3, where the most important part is to show that objects
falling under case 1 (case 2) are always included (excluded)
from the result set O . The proof is given in Appendix C of

Table 1 Read and write in OLFIT

Read Write

R1: copy the value of version W1: latch

R2: read the content W2: write the content

R3: if latched, go to R1 W3: increment version

R4: if current version differs
from the copied, go to R1

W4: unlatch

ESM. Similar to range querying, the algorithm correctness
relies on the parallel update and cell scan operations (Algo-
rithms 1–3 and 5).

4.4 Parallel object data reads and writes

So far, we have assumed that single-object reads (readObj)
and writes (writeObj) are performed in an atomic manner.
This section shows how this is achieved.

On 64-bit architectures, the reading and writing of 8-byte
aligned quad-word values are guaranteed to be atomic. How-
ever, moving-object data occupies more bits per object (id,
coordinates, timestamp). One approach is to pack the data
to fit into a 64-bit value, but this occurs at the expense of
extra computation during update [22] and lower accuracy
[11] during retrieval. Another approach is to secure two 64-
bit reads/writes using a lock, but such fine-grained locking
incurs a significant overhead. In the following, we present
two lock-free methods that are used for parallel reads and
writes of moving-object data in PGrid.

4.4.1 OLFIT

Optimistic lock-free index traversal (OLFIT) was designed
as a cache-conscious concurrency control scheme for main-
memory index structures on shared-memory multiprocessor
platforms [7]. This approach maintains a latch and a version
number for each object. Table 1 depicts the read and write
algorithms. The OLFIT approach guarantees consistent reads
and writes as follows. An updater always obtains a latch first,
so no multiple writes can occur on the same data item. In
addition, before a latch is released, an updater increments
the version number. A reader starts by copying the version
number and optimistically reads the data without latching.
Then, if the latch is free and the current version number is
equal to the copied one, the read is consistent; otherwise, the
reader starts over.

Optimistic reads are especially favorable in multi-core
architectures because they avoid the memory write required
by latching. Thus, with latching, even if the actual object data
does not change during parallel query processing, the entire
cache block containing the latch is invalidated. This implies
that other cores, with the same cache line cached in their local
memory, are subject to coherence cache misses.

123

830 D. Šidlauskas et al.

4.4.2 SIMD

Current commodity processors support the so-called single
instruction multiple data (SIMD) technology. This makes it
possible to achieve data-level parallelism via vector opera-
tions on multiple data items. For example, with the 256-bit
wide SIMD registers on the Ivy Bridge processor, one can
add eight pairs of 32-bit integers simultaneously [18].

The instruction sets of such processors come with instruc-
tions for loading and storing data into SIMD registers. Thus,
we can employ the SIMD technology in PGrid for parallel
object data reads and writes. Our micro-benchmarks con-
firm that loading/storing a double quad-word (128-bit value)
into/from SIMD registers (xmm) from/to a memory location
aligned on a 16-byte boundary is atomic4 [18]. Therefore, no
explicit latching or locking is required.

To quantify the overheads of the above methods, we con-
duct a micro-benchmark, which leads us to employ the two
lock-free methods for parallel object data reads and writes.
The results and other findings are detailed in Appendix D of
ESM.

5 Other grid-based variants

We present three other parallel alternatives based on PGrid
that support different query semantics as covered in Sect. 3.
In all the variants, update messages are facilitated via the
secondary index (hash table), and queries are processed
via the grid directory. In the last subsection, we summa-
rize all the indexes considered in the subsequent empirical
study.

5.1 Serializable u-Grid

As a baseline approach to multi-threaded processing, we
extend u-Grid [39] with the concurrency control scheme
defined in Sect. 3.1 that ensures serializable execution and
delivers timeslice query semantics. We term it Serial. It iso-
lates updates and queries by using two-phase locking [5] and
uses only cell locks. That is, unlike in PGrid, no object-level
locking is performed by updaters.

Update threads obtain cell locks in exclusive mode. Before
any object modification, each updater acquires a lock on the
current object’s cell. If the update is local, the object’s posi-
tion is modified, and the lock is released. If the update is
nonlocal, the updater tries to lock the new (destination) cell
as well. In case the lock is obtained successfully, the object
is deleted from the old cell and inserted into the new cell,
and both cell locks are released. If the lock on the new cell

4 Note that we achieved this atomicity only with 128-bit values. That
is, our experiments break once we use 256-bit values and ymm registers.

is not acquired, the update is aborted and restarted to avoid
deadlocks.

Query threads obtain cell locks in shared mode. In range
query, after all cells overlapping a query range are locked, the
growing phase is completed, and the query enters the shrink-
ing phase where it examines each cell in turn and releases
locks one by one. The locks can be released safely before all
the cells are inspected because range queries are read-only
and never aborted.

In the kNN query, Serial partitions the cells only into levels
(no groups, see Sect. 4.3.2). The growing phase incrementally
locks an enlarged search region level by level until the locked
cells cover at least k objects. In this phase, only counters of
buckets are read (no actual cell scanning). In the shrinking
phase, the query scans each cell, maintaining the k-closest
candidates and releasing locks one by one. After the com-
pletion of this phase, if the minimum distance between the
query point and the next level cell is less than the critical dis-
tance, the kNN query is repeated, but this time locking one
level more. We found that this approach works best. Finer
cell partitioning (into groups) makes the expensive repeti-
tions more likely, while holding cell locks till the end (strict
two-phase locking) does not scale at all with multi-threading
(although it eliminates repetitions).

We expect exclusive locks to be held for very short dura-
tions of time because the fixed and static grid design does not
suffer from long-running structural modifications (no grid
refinement or re-balancing). At most two cells are locked
during an update. Also, shared locks are not held till the end
of the query (non-strict two-phase locking). This implies that
Serial should perform well with a small number of threads or
when updates and queries write and read objects in different
cells, i.e., when hot spots are unlikely.

5.2 Serializable PGrid

An alternative way to achieve the same serializable timeslice
semantics as implemented by Serial is to augment PGrid to
support MVCC. In contrast to the traditional MVCC, where
multiple versions of each data record are maintained, only
two versions are necessary due to the assumption te − ts <

To. As discussed in Sect. 3.2, such processing runs under
snapshot isolation and results in serializable executions with
the given update and query operations. We thus term this
extension SerialPGrid.

SerialPGrid reuses most of the code in PGrid. The same
locking mechanism is employed (using one-byte latches) to
isolate updates, while not blocking queries. Object data is
also written using OLFIT/SIMD techniques. The update pro-
cedure reuses the deletion and insertion given in Algorithms 2
and 3. The update algorithm is modified so that when an
object is inserted for the first time, two tuples are allocated in
a bucket. As discussed next, the algorithm tries to reuse the

123

Processing of extreme moving-object 831

allocated tuples by continuously storing current and previ-
ous object positions in a round-robin manner. The range and
kNN query algorithms are modified to take into account only
tuples with timestamps smaller than the query timestamp.

Algorithm 7 shows the pseudo-code of the modified
update algorithm. The first lines (Lines 1–5) are the same
as in PGrid. Then, the algorithm checks whether the previ-
ous logically deleted copy of an object can be reused. This is
done by comparing the new cell with the cell that the logically
deleted object belongs to (Line 6). If the cells are the same,
the previous LD tuple is reused by writing the new object
data over it (Line 8). The corresponding references in the sec-
ondary index entry are swapped (Lines 9–11), and the current
position is now marked as logically deleted (Line 12). This
way, the roles of the two tuples are switched: The logically
deleted one becomes the current, and the current becomes
the logically deleted one.

Algorithm 7: update(ObjectTuple new)
1 newCell = computeCell(new.x, new.y);
2 lockObj(new.oid);
3 sie = SecondaryIndex.lookup(new.oid);
4 oldCell = sie.cell ;
5 obj = getObj(sie.bckt, sie.idx); // object tuple
6 if sie.ldCell == newCell then

/* Can reuse LD object, so write to it */
7 ldObj = getObj(sie.ldBckt, sie.ldIdx); // object tuple
8 writeObj(new, ldObj); // new copied over LD obj

/* Swap references */
9 swap(sie.cell, sie.ldCell);

10 swap(sie.bckt, sie.ldBckt);
11 swap(sie.idx, sie.ldIdx);
12 obj.tu = -new.tu; // mark as logically deleted

13 else
/* Can’t reuse LD object, so delete it */

14 if !delete(sie) then // physical deletion
15 unlockObj(new.oid);
16 go to 2 ; // try again

/* Up-to-date position becomes LD */
17 sie.ldCell = sie.cell ;
18 sie.ldBckt = sie.bckt ;
19 sie.ldIdx = sie.idx ;

/* And new up-to-date is inserted */
20 insert(new, newCell, sie); // physical insertion
21 obj.tu = -new.tu; // mark as logically deleted

22 unlockObj(new.oid);

Algorithm 8: Modified lines in Algorithm 4

6 if obj.tu > 0 and obj.tu < ts then
7 res.add(obj);

8 else if obj.tu < 0 and abs(obj.tu) > ts then
9 res.add(obj);

In case the object’s new position belongs to a different
cell than its logically deleted position belongs to, the tuple
cannot be reused and thus is physically deleted (Line 14).

Fig. 9 Two-phase switching in TP-Grid

For the same reasons as in PGrid, the update is restarted
if the deletion fails. Otherwise, the current position becomes
logically deleted (Lines 17–19, and 21), and the new position
is inserted into the new cell (Line 20).

Algorithm 8 shows the lines of Algorithm 4 that need to
be modified to support serializable range query semantics.
Specifically, now the query reports obj in the following two
cases. Object obj is added to the result (i) if it contains
the up-to-date position and the position was updated before
the query start (Lines 6–7), and (ii) if it contains the pre-
vious object position and the up-to-date position is recorded
after the query start (Lines 8–9). Similarly, in the kNN query,
Line 7 of Algorithm 6 is modified accordingly. Note that Seri-
alPGrid does not require an associative container, as only one
version of the object can be added to the result.

We expect SerialPGrid to achieve the same level of con-
currency as PGrid, as updates and queries never block each
other. However, the performance not related to contention
suffers. Each updater now does extra work in maintaining the
previous object position for each moving object rather than
just for nonlocally updated objects. Consequently, queries
must inspect twice as many tuples on average. As a result,
memory consumption doubles and becomes the same as in
the full snapshot-based approaches (e.g., TwinGrid [38]).

5.3 Time-partitioning grid (TP-Grid)

We proceed to consider a time-based approach to isolate
update and query operations. Specifically, we partition the
processing into two phases: an update phase (with dura-
tion Pu) and a query phase (with duration Pq). We call this
approach TP-Grid.

Figure 9 illustrates how processing is done by switch-
ing between the two phases. Once the desired number of
threads is spawned, progress is made by switching threads
between different processing modes. Synchronization barri-
ers are used to ensure that no thread starts in the next phase
before all other threads have suspended their processing in
the current phase.

During the update phase, only updates are applied to
the index structure. This includes newly incoming updates
and updates buffered in the previous phase. All incoming
queries are buffered. During the query phase, only read-only

123

832 D. Šidlauskas et al.

queries are processed, including previously buffered queries
and incoming queries. All incoming updates are buffered for
processing in the subsequent update phase. This switching
continues until the entire workload is processed.

This approach results in the stale-timeslice query seman-
tics described in Sect. 3.3, and it suffers from query staleness
and latency. The query staleness depends on the value cho-
sen for duration Pq . Since all updates are buffered during the
query phase, parameter Pq defines the maximum query stale-
ness in TP-Grid. This is similar to the discussed snapshotting
frequency (Fs).

Similarly, the query latency depends on the value chosen
for duration Pu . The processing of queries that arrive dur-
ing the update phase is delayed until the next phase. Thus,
the maximum query latency is defined by Pu . Note that the
processing of updates is delayed similarly. However, since
an update does not create any visible output, it can be per-
ceived as having been processed without any delay, e.g., the
system can respond with a confirmation message as soon as
the update is received.

Given that update and query rates are not uniformly dis-
tributed across time [44], it might be very challenging to
choose the durations for each phase optimally. In the follow-
ing, we list several possible policies:

1. Based on time, e.g., Pu = 1 s, Pq = 0.5 s.
2. Based on the number of operations processed, e.g., Pu =

100 updates, Pq = 10 queries.
3. Hybrid (1), e.g., Pu = 100 updates or at most 1 s, Pq = 10

queries or at most 0.5 s.
4. Hybrid (2), e.g., Pu = 100 updates or idle at most 0.5 s,

Pq = 10 queries or idle at most 0.1 s.
5. Based on quality of service, e.g., Pu = to the maximum

query latency allowed, Pq = to the maximum query stal-
eness allowed.

The last policy adapts to the incoming workload, and we
use it in our empirical study (see Sect. 6.4). Pu is set as a time-
based parameter equal to the maximum query latency. The
maximum query latency might not be guaranteed completely
as it takes some time to process all the buffered queries at
the start of the query phase. Pq , on the other hand, should
not be set to a specific value, but should be based on the
query staleness. More specifically, the query phase should
stop when the number of updates accumulated in the buffer
in relation to the total number of tracked objects reaches the
query staleness.

On the negative side, TP-Grid provides stale and delayed
query results and relies on two parameters that are potentially
hard to set. On the positive side, we expect that TP-Grid can
achieve very high throughput. It achieves the same level of
parallelism as PGrid and SerialPGrid, while the performance
not related to contention is at the level of Serial. Updates do

Fig. 10 Index classification

not need to maintain extra object copies, while queries do
not need to scan them. Also, during each phase, all threads
(and other CPU resources) are dedicated to the type of oper-
ation performed in the phase. During the update phase, it is
more likely that the most frequently updated objects can be
found in the CPU data caches (and are not flushed by parallel
queries). During the query phase, the cached objects are not
invalided by parallel updates. Instruction caches are also used
more effectively because TP-Grid issues fewer instructions
per phase.

5.4 Summary of approaches

The list below summarizes the eight grid-based implementa-
tions that we study experimentally in the subsequent section.

u-Grid: a single-threaded, update-efficient index that was
shown to outperform update-optimized R-tree index vari-
ant [39].
Serial: a multi-threaded u-Grid variant supporting seri-
alizable semantics (described in Sect. 5.1).
TwinGrid: a multi-threaded, snapshot-based index that
was shown [38] to outperform the previous state-of-the-art
snapshot-based approach called MOVIES [11].
TP-Grid: a multi-threaded, time-partitioning index, where
processing is done by switching between update and query
phases (described in Sect. 5.3).
PGridsimd: a PGrid variant supporting freshness seman-
tics and exploiting SIMD technology for reads and writes
[40].
PGridolfit: a PGrid variant supporting freshness seman-
tics and exploiting the OLFIT [7] approach for reads and
writes [40].
SerialPGridsimd: a PGrid variant supporting serializ-
able semantics and exploiting SIMD technology for reads
and writes (described in Sect. 5.2).
SerialPGridolfit: a PGrid variant supporting serializ-
able semantics and exploiting the OLFIT [7] approach for
reads and writes (described in Sect. 5.2).

Enabling a higher degree of parallelism involves differ-
ent indexing trade-offs. Figure 10 categorizes the indexes in
terms of query semantics and query result freshness. The fig-

123

Processing of extreme moving-object 833

Table 2 Workload configuration

Parameter Values

Objects (×106) 5, 10, 20, 40, 80

Updates (×106) 300

Monitored region (km2) Germany, 641 × 864

road network segments 32,750,494

road network nodes 28,933,679

Speedi (km/h) 20, 30, 40, 50, 60, 90

Update/query ratio 250:1, …1000:1, …16000:1

Time between updates (To) (s) 10, 20, 40, 80, 160

Range query size (km2) 0.25, 1, 4, 16

k in nearest neighbor query (×103) 0.5, 1, 2, 4, 8, 16, 32

ure shows that two techniques achieve better throughput at
the expense of returning results that are stale or at the expense
of returning results late. TwinGrid (immediately) processes
queries against a (slightly) stale copy of the data, while TP-
Grid (slightly) delays the processing of queries that arrive in
the index’s update phase and (immediately) processes queries
that arrive in the query phase against a (slightly) stale copy
of the data. Serializable executions in u-Grid, Serial, and
SerialPGrid guarantee up-to-date timeslice semantics. PGrid
implements freshness semantics that guarantee as fresh query
results as possible.

6 Performance study

We investigate the performance of the four PGrid variants and
the additional four indexing techniques outlined in Sect. 5.4.
Before reporting the findings, we describe the experimen-
tal setting, explore how to set the snapshotting period for
TwinGrid [38] so as to achieve a fair comparison, and con-
sider the setting of the durations of the update and query
phases in TP-Grid.

6.1 Experimental setup

We study the performance on diverse multi-core platforms:
a 12-core AMD Opteron 6176 (Magny-Cours), a dual 6-core
Intel X5650 (Westmere) with 12 hardware threads, a dual 8-
core Intel E5-2670 (Sandy Bridge) with 32 hardware threads,
and a quad-core Intel Core i7-3770 (Ivy Bridge) with eight
hardware threads. All machines have enough main memory
to store both the entire workload and the populated index.
More details are given in Appendix E of ESM.

The indexes are studied in a range of experiments under
massive workloads. The workloads are produced using an
open-source moving object trace generator, MOTO5 [11] that

5 Available at http://moto.sourceforge.net.

is based on Brinkhoff’s moving-object generator [6]. MOTO
follows a network-based object placement approach, where
objects are placed and navigate (to a random destination) in
a given road network. Table 2 shows the workload generator
parameters and their values; the values in bold are default
values. To obtain realistic skew and to stress test the indexing
techniques, the generator was slightly modified so that half of
the objects are placed in five major German cities according
to the number of inhabitants in those cities. The queries are
also distributed in those cities accordingly. This ensures that
the most update-intensive regions are also the most queried
ones. Since kNN queries involve range scanning, the default
workloads consist of range queries only.

6.2 Single-threaded performance

We start by providing an overview of the performance unre-
lated to contention, where each index processes the default
workload using just one thread. Figure 11 shows the aver-
age CPU time of individual update, range, and kNN query
operations spent in each index.

In update processing (Fig. 11a), TP-Grid spends the least
time and outperforms even the lockless u-Grid. This is
because updates are not intermixed with queries during the
update phase, causing less data and instruction cache misses
in TP-Grid. Serial and TwinGrid perform slightly worse
than u-Grid. This implies that the one-byte latching over-
head is minor (circa 15 %). Overhead due to maintenance
of previous object versions for nonlocally updated objects
in PGrid is also negligible. However, the maintenance of
previous object versions for all moving objects in SerialP-
Grid requires almost double the CPU time when compared to
u-Grid.

In range query processing (Fig. 11b), three major cate-
gories can be distinguished. First, Serial, TwinGrid, and TP-
Grid perform very similar as u-Grid. This is as expected in
the zero-contention case. Second, the need to inspect extra
copies during cell scanning causes the two PGrid variants to
perform twice as bad as u-Grid. Third, for the same reason,
the two SerialPGrid variants suffer from four times as bad
performance as u-Grid.

In kNN query processing (Fig. 11c), we choose the default
k value (2000) so that a kNN query completes in a time
similar to that of the default range query. Given that the kNN
query is much more expensive (computing dist (q, o) for
each object, maintaining cd, etc), the actually scanned range
is much smaller than in the above range query. Therefore, the
overhead due to reading multiple object copies becomes less
significant. As a result, SerialPGrid is not outperformed by
the same margin as in range querying. Serial performs clearly
worse due to a less granular cell partitioning (more cells
are scanned than necessary) and a penalty of occasionally
repeating the scan.

123

http://moto.sourceforge.net

834 D. Šidlauskas et al.

0 0.2 0.4 0.6 0.8

Avg. update, μsec
0 0.2 0.4 0.6 0.8 1

Range query, msec
0 0.2 0.4 0.6 0.8 1

kNN query, msec

(a) (b) (c)

Fig. 11 Single-threaded performance. a Average CPU time per update. b Average CPU time per range query. c Average CPU time per kNN query

1 2 4 8 16 32 64
0

2

4

6

8

10

12

Query staleness, % (log scale)

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

processing
snapshotting

Fig. 12 Effects of varying the query staleness in TwinGrid on Ivy
Bridge

There is no clear winner among the SIMDized and OL-
FITized PGrid variants. Unlike in the previous micro-bench-
mark (see Table 4 in “Appendix”), we do not observe any sig-
nificant savings. This implies that a bigger fraction of cycles
is consumed elsewhere. Since the OLFIT variant does not
depend on atomic 128-bit loads and stores, use of it makes
PGrid the most architecture-friendly (portable).

In all indexes, the processing of an update completes
within one microsecond, while the processing of a range
query completes within 1 ms. This is a difference in three
orders of magnitude. Therefore, if updates are blocked by
queries during parallel processing, system throughput can
decrease sharply.

6.3 Setting the snapshotting frequency in TwinGrid

Serializable and freshness semantics enable indexes with
zero query staleness, whereas stale-timeslice semantics suf-
fer from outdated and delayed query results (see Sect. 3). In
two-snapshot isolation based approaches like TwinGrid, the
query staleness depends on how frequently a new snapshot is
built. In the worst case, when a query is processed just before
a new snapshot is created, the query ignores all updates that
occur during the time between the creation of consecutive
snapshots (the cloning period, Tc p, in TwinGrid). In the fol-
lowing, we explore experimentally how to tune TwinGrid so

that it returns sufficiently fresh query results to achieve a fair
performance comparison.

To maintain the desired query staleness in TwinG erform
snapshotting based on the number of processed u pdate mes-
sages. For example, if we want to guarantee that the query
staleness never exceeds 1 % under the default workload, we
perform snapshotting every time 100K updates (1 % of 10M)
are being processed.

Figure 12 depicts effects of maintaining different query
staleness values (the x-axis) in TwinGrid. The effects on
throughput are shown on the y-axis, while the bars break the
CPU cycles into cycles spent on actual computation (process-
ing) and cycles wasted on cloning (snapshotting). The exper-
iments confirm that keeping the query staleness below 1 %
is indeed feasible, but also very expensive: Circa 60 % of
the CPU time is spent on snapshotting. This is a huge waste
of computation resources, as the CPU needlessly copies the
99 % of the data that is unchanged. For example, relaxing the
query staleness from 1 to 8 % results in a twofold throughput
improvement.

It is not trivial to choose the desired query staleness in
TwinGrid for the sake of fair comparison with the other index
structures, as they report up-to-date query results. Neverthe-
less, in the following experiments, we fix TwinGrid’s query
staleness to 2 % so that a larger fraction of CPU resources are
used on actual processing (choosing a lower query staleness
would be fairer w.r.t. other indexes, though).

6.4 Setting the update/query phase durations in TP-Grid

Similar to the snapshotting frequency in TwinGrid, we need
to set how frequently to switch between the update and query
phases in TP-Grid. If we choose values for Pu/Pq based
on the number of updates/queries processed, we can con-
trol the quality of service parameters (policy 5 in Sect. 5.3)
as follows. For example, to maintain the query staleness
below 1 % under the default workload, we set Pq = 100K
updates (1 % of 10M). When the number of buffered updates
reaches 100K, TP-Grid switches to the update phase. We
set Pu also to 100K, as all of the buffered updates have to be

123

Processing of extreme moving-object 835

0.5 1 2 4 8 16 32
0

2

4

6

8

10

12

Query staleness, % (log scale)

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

update phase
query phase

1

2

4

8

16

32

52
64

128

256

#s
w

it
ch

es
/s

ec
 (

lo
g

 s
ca

le
)

phase switches

Fig. 13 Effects of varying the query staleness in TP-Grid on Ivy Bridge

processed. This is the minimum query latency TP-Grid has to
pay.

Figure 13 shows the results. Different values for query
staleness are depicted on the x-axis, and its effect on through-
put is projected on the left y-axis. The bars split the CPU time
spent in each phase. The number of phase switches per sec-
ond is projected on the right y-axis (gray bars).

The cost of frequent phase switching is relatively minor.
A throughput of more than 9M update/query messages per
second is sustained while keeping the query staleness as
low as 0.5 %. Relaxing the query staleness up to 32 % (64
times) improves the throughput only by some 20 %. This is
despite the fact that the number of phase switches per sec-
ond decreases significantly, from 186 to <4. The update and
query phases are of a similar duration: on average 46 % of the
CPU time go to the update phase, and 54 % go to the query
phase.

As discussed in Sect. 5.3, TP-Grid also suffers from oper-
ational latency. Updates and queries might not be processed
as soon as they are received. The latency depends on the
phase change frequency. For example, a 2 % query stale-
ness yields 52 phase switches per second (Fig. 13). This
implies an average phase duration of 1

52 of a second.
Since update and query phases are of similar duration (46
vs. 54 %), the expected maximum latency is circa 19 ms,
respectively.

For a fair comparison, we use the same query staleness
(2 %) in TP-Grid as in TwinGrid in the following experi-
ments. This choice is also justified by the following obser-
vation. In TwinGrid, to make a 10M-object snapshot takes
20–27 ms on our experimental platforms. If an update or
query arrives during this snapshotting, it suffers from the
latency of the snapshotting duration. This is a very sim-
ilar duration to the expected maximum latency discussed
above when TP-Grid is configured with a 2 % query stal-
eness.

Note that to choose Pu and Pq values based on the num-
ber of processed operations is straightforward in our setting

u−Grid Serial TwinGrid TP−Grid PGridsimd

PGridolfit SerialPGridsimd SerialPGridolfit

250 500 1000 2000 4000 8000
0

1

2

3

4

5

6

Grid cell size, m

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

best throughput

250 500 1000 2000 4000 8000
0

5

10

15

Grid cell size, m
T

h
ro

u
g

h
p

u
t,

 ×
 1

06

best throughput

250 500 1000 2000 4000 8000
0

5

10

15

20

25

30

Grid cell size, m

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

best throughput

250 500 1000 2000 4000 8000
0

2

4

6

8

10

12

Grid cell size, m

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

best throughput

(a)

(b)

(c)

(d)

Fig. 14 Optimal grid cell size. a 12-core Magny-Cours, b 12-core
Westmere, c 16-core Sandy Bridge, d 4-core Ivy Bridge

because we know the workload parameters. This serves the
purpose of measuring the peak performance of the indexes
very well. In real-world applications, the values are likely to
be based on time or hybrid options (see Sect. 5.3).

123

836 D. Šidlauskas et al.

6.5 Experimental findings

6.5.1 Varying the grid cell size and the bucket size

Two important parameters affect the performance of all the
indexes: the grid cell size and the bucket size. To set the
values of these parameters according to our workloads, we
deploy all indexes on each processor while trying different
configurations. For example, we vary the grid cell size from
250 to 8,000 m (side length). The results from the all proces-
sors are shown in Fig. 14. Grid cell sizes are on the x-axis,
and the throughput for both updates and queries is plotted on
the y-axis.

In the single-threaded case, updates favor larger grid cell
sizes (more updates are local), while queries favor grid cell
sizes that approximate the average size of a query range. In
the multi-threaded case, as the cell size increases so does
the update–update interference and the update–query inter-
ference. TwinGrid favors cell sizes that are at least twice the
size of those favored by the other indexes because its updates
and queries operate on separate index structures. In contrast,
Serial suffers from conflicts due to extensive cell locking.
It thus favors cells that are four times smaller. The PGrid
variants and TP-Grid fall between the two and achieve the
best throughput with TP-Grid on top. The optimal grid cell
sizes for each index are chosen as indicated by their best
performance (circles in Fig. 14).

The bucket size has a relatively smaller impact on perfor-
mance, but it was tuned in a similar manner. We found that
the optimal bucket size is around 1,024 bytes on all platforms
(not shown).

6.5.2 Multi-threaded scalability

Figure 15 shows how the indexes scale with increasing num-
bers of hardware threads on the different platforms. The num-
ber of threads is on the x-axis, while the throughput of both
updates and queries is plotted on the y-axis.

The more threads that are running on the same index
structure, the more likely interference between read and
write operations becomes. Therefore, with each additional
thread, the performance gain tends to decrease. The studied
multi-threaded indexes are subjected to different amounts of
interference, but all outperform the single-threaded u-Grid
approach with 2–4 threads. This implies that the overhead
due to added thread-level synchronization pays off already
on a quad-core platform. Another common trend is that one
must be careful not to exceed the available hardware threads
on a given platform, as performance can quickly become
worse than that of the single-threaded u-Grid. We intention-
ally do this on Ivy Bridge machine (Fig. 15d), but the same

u−Grid Serial TwinGrid TP−Grid PGridsimd

PGridolfit SerialPGridsimd SerialPGridolfit

1 2 3 4 6 8 10 12
0

1

2

3

4

5

6

Threads

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

2 4 6 8 10 12
0

5

10

15

Threads
T

h
ro

u
g

h
p

u
t,

 ×
 1

06

1 2 3 4 6 8 10 12 14 16 20 24 28 32
0

5

10

15

20

25

Threads

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

← exceeding cores

1 2 3 4 6 8 10 12 14 16
0

2

4

6

8

10

12

Threads

T
h

ro
u

g
h

p
u

t,
 ×

 1
06

← exceeding cores ← exceeding hardware threads

(a)

(b)

(c)

(d)

Fig. 15 Multi-threaded scalability. a 12-core Magny-Cours, b 12-core
Westmere, c 16-core Sandy Bridge, d 4-core Ivy Bridge

trend holds on all platforms. The decreased performance
occurs because as soon as the hardware threads are exhausted,
a latch-holding thread has the potential to be “parked” by
the scheduler, forcing other threads to busy-wait without
progress. This adds many “busy” waiting times during the
processing.

123

Processing of extreme moving-object 837

Serial is quite competitive with a small number of
threads. Thus, for processing with up to four threads, Ser-
ial is a reasonable choice. However, with more threads,
the gap increases, and Serial falls behind. This is due to
increased interference between update–update and update–
query operations. Serial’s sensitivity to the thread-level
contention is especially visible once the hardware threads
are exhausted, as its performance decreases the sharpest
(Fig. 15d).

TwinGrid suffers from relatively rare update–update inter-
ference. However, due to frequent cloning, TwinGrid often
has to suspend and resume worker threads so that a consis-
tent data snapshot can be made. During cloning, all CPU
caches are flushed, which prevents processing threads from
enjoying warm caches. Also, the more threads that are run-
ning, the more costly it is to synchronize them. This frequent
and continuous interruption of the actual processing limits
TwinGrid’s throughput on all platforms.

The PGrid variants are also prone to the relatively rare con-
tention between update operations, but updates do not inter-
fere with queries. Therefore, the performance of the PGrid
variants increases with each additional thread. For SerialP-
Grid, however, updating and querying are more expensive:
Each update has to maintain previous object versions, and
each query has to inspect twice as many object tuples on
average. As a result, the overall throughput in SerialPGrid is
low.

Parallel grid creates extra object copies only during nonlo-
cal updates, which also causes less work for querying. Con-
sequently, PGrid scales near-linearly on all platforms and
utilizes all hardware threads much more efficiently. As in the
single-threaded experiment (Sect. 6.2), there is no signifi-
cant difference among the SIMDized and OLFITized vari-
ants.

The time-partitioning approach in TP-Grid scales best
with an increasing number of threads. The synchroniza-
tion cost due to frequent phase switching is not visible
even when running all 32 hardware threads on the Sandy
Bridge machine. TP-Grid reports the best throughput on
all the platforms. The biggest performance gap compared
to other indexes is achieved on the Ivy Bridge machine,
where relatively a small number of threads operate at
the highest frequency (3.4 GHz) and thus can synchronize
between the phases with the least overhead. TP-Grid does
not guarantee fresh query results (the query staleness is 2 %),
though. Also, for the same reasons as Serial, its performance
degrades sharply once the available hardware threads are
exhausted.

In the following experiments, the number of threads is
fixed at the number of available hardware threads. Also,
since the same performance trends were observed on all of
the processors, we show the results on the best performing
platform—the 16-core Intel E5-2670 (Sandy Bridge) with

a total of 32 hardware threads. The SIMDized and OLFI-
Tized PGrid variants perform very similarly, and we there-
fore exclude the OLFIT variants from the following graphs.
We also exclude the single-threaded variant u-Grid, as it is
not competitive with the multi-threaded indexes.

6.5.3 Varying To

The target applications exhibit update locality—the next
location reported by an object is likely to be close to the
previously reported one. This property is exploited by the
indexes, as local updates are simply processed by overwrit-
ing the outdated coordinates. Nonlocal updates require more
processing. Serial, TwinGrid, and TP-Grid require extra lock-
ing while an object is being deleted from its old cell and
inserted into its new cell. PGrid creates a logically deleted
copy of the object for each nonlocal update, and it deletes it
at the next update. SerialPGrid also has to physically delete
the previous object position once it belongs to a new cell and
cannot be reused.

To measure this effect, we vary the average time between
two consecutive updates of an object (To). The larger this
time, the greater the likely deviation of an object’s new posi-
tion from its previous position becomes. Figure 16a shows the
results. All indexes are affected negatively, but with differ-
ent impact. Remember that the indexes are configured with
different grid cell sizes for optimal performance (Fig. 14),
so they are subjected to different amounts of local updates.
In Fig. 17, we measure how the percentage of local updates
varies with different grid cell size and To values. For instance,
TwinGrid, configured with the largest cells (≥2,000 m), has at
least 60 % local updates even when To = 160 s. Therefore, its
throughput is affected the least. On the opposite side, Serial
is configured with the smallest cells (500 m) and is affected
the most—its performance drops sharply. The PGrid vari-
ants and TP-Grid are configured with in-between cell size
and perform the best, with TP-Grid on top.

6.5.4 Varying the update/query ratio

Figure 16b depicts the results when the update/query ratio is
varied from 250:1 to 16,000:1. The throughput of all indexes
tends to increase as the number of long-running queries in
the workloads decreases. The increasing update/query ratio
causes TwinGrid and TP-Grid to switch between the phases
more frequently, as the desired (2 %) query staleness has to
be maintained. Therefore, their performance gain is lower.
Also, Serial benefits more from the increasing update/query
ratio because infrequent queries cause less interference with
updates. In this experiment, the PGrid therefore is more
robust and eventually achieves the best performance.

123

838 D. Šidlauskas et al.

Serial TwinGrid TP−Grid PGrid SerialPGrid

10 20 40 80 160
4

8

16

28

Time between updates, sec.

O
ve

ra
ll

th
ro

u
g

h
p

u
t,

 ×
 1

06

250 .5K 1K 2K 4K 8K 16K
4

8

16

32

64

Update/query ratio, x/1

0.25 1 4 16 64

2

4

8

16

32

48

Range query size, km2

0.5 1 2 4 8 16 32

1

2

4

8

16

32

k, × 103
5 10 20 40 80

4

8

16

32

Objects, × 106

(a) (b) (c) (d) (e)

Fig. 16 Serial versus TwinGrid versus TP-Grid versus PGrid versus SerialPGrid on a 16-core Sandy Bridge machine. a Varying To.
b Varying update/query ratio. c Varying range query. d Varying kNN query. e Varying #objects

250 500 1000 2000 4000 8000
0

20

40

60

80

100

Grid cell size, m (log scale)

L
o

ca
l u

p
d

at
es

, %

Serial →
PGrid → ←TP−Grid

TwinGrid →

T
0
 = 10 sec.

T
0
 = 20 sec

T
0
 = 40 sec

T
0
 = 80 sec

T
0
 = 160 sec

Fig. 17 Varying grid cell size and To

6.5.5 Varying the range query size

The impact of varying the range query size is shown in
Fig. 16c. Larger queries need to inspect more cells, buckets,
and objects, causing decreasing performance for all indexes.
Serial is affected the most, as the larger the queried regions,
the more likely it is that parallel updates hit the query range
and form hotspots. Since TwinGrid operates on two separate
data copies, it is affected the least and should be considered
under workloads with very large queries (more than 64 km2).
The performance of PGrid and SerialPGrid decreases in a
similar fashion with PGrid on top. With query sizes different
from the default workload, the fixed durations for update and
query phases in TP-Grid become suboptimal and require re-
calibration. As a result, the throughput is just slightly better
than that of PGrid with much smaller or larger queries.

6.5.6 Varying k in k NN query

In this experiment, all range queries are substituted with kNN
queries. Figure 16d shows the impact of varying k—the num-
ber of nearest neighbors required. Similar to range querying,

increasing k decreases the performance of all indexes, as a
larger range has to be scanned, which also increases the inter-
ference between update and query threads in Serial. The main
difference is that PGrid and SerialPGrid are very competitive.
This is because the overhead due to reading multiple object
copies is less significant in kNN querying. Serial remains
competitive until relatively large k (4000), but eventually
drops behind.

6.5.7 Varying the number of objects

In this experiment, we check how the index variants scale
with an increasing number of indexed objects. Since the mon-
itored region does not change (the road network of Germany),
increasing the number of objects increases object density.
This implies that a query needs to inspect more objects per
square unit on average. Therefore, in this experiment, we
halve the range query size when doubling the number of
objects. (The effects of increasing query costs are already
explained by the previous experiment in Fig. 16c.)

As the number of objects increases, the updates and
queries operate on an increasingly large dataset, which
eventually adversely affects performance for all indexes
(Fig. 16e). TwinGrid suffers the most because with increas-
ing data size, it needs to copy more data and the snapshotting
phase becomes longer. In the case of Serial, the main bottle-
neck is the interference between update and query operations.
Thus, we observe that Serial benefits much more from halv-
ing the query range than it suffers from doubling the number
of objects. The throughput of Serial increases up to a load
of 40M objects, where it becomes very competitive. There-
fore, as with low numbers of threads, if interference between
updates and queries is unlikely, Serial can be a good choice.
Otherwise, PGrid performs better and should be considered

123

Processing of extreme moving-object 839

if fresh query results are required. The performance of Seri-
alPGrid follows the same trend as that of PGrid, but is lower
due to extra computations. At the cost of a 2 % query stale-
ness, TP-Grid performs the best and outperforms PGrid by
up to 18 %.

6.6 Summary

All the indexes we study exhibit increased performance with
increasing numbers of threads/cores. This is mainly due to
the careful implementation of the update-efficient, static, and
uniform grid. However, the gain from each additional thread
varies significantly across indexes because they support dif-
ferent query semantics and have varying overhead unrelated
to contention.

The best throughput is achieved by the time-partitioning
approach. Under the default workload, more than 23M mes-
sages per second are processed on the 16-core platform.
However, TP-Grid offers stale-timeslice semantics, and its
query results are generally not up-to-date. On top of that, the
query processing can be delayed by a few orders of mag-
nitude longer than the time taken by the query processing
itself. This might not be acceptable in application scenarios
where there is no human in the loop. Another drawback is
the difficult-to-set parameters. The durations of the update
and query phases may be difficult to set. Since no fixed val-
ues may offer robust performance when the workloads vary
across time, adaptive techniques are called for. However, we
find that the TP-Grid approach is superior to the snapshot-
based approaches such as TwinGrid. Therefore, we recom-
mend TP-Grid over TwinGrid in applications where stale-
timeslice semantics are applicable.

Parallel grid achieves the second best throughput. Under
the default workload, some 20M messages per second are
processed on the 16-core platform. With the other workloads,
PGrid exhibits up to 25 % lower throughput when compared
to TP-Grid. Nevertheless, it provides the most robust per-
formance and guarantees as fresh query results as possible.
All queries are executed as soon as they are received and
operate on the most up-to-date state of the data. Moreover,
it does not suffer from the difficult-to-set parameters. There-
fore, we believe this approach is applicable in all the target
applications.

The extension of PGrid with time-slice query semantics,
SerialPGrid, performs at 50 % of PGrid. This is due to the
versioning overhead for each moving object. In fact, it per-
forms very similar to the serializable approach Serial (except
in cases with very high update/query interference, e.g., with
very large range queries). Since Serial is straightforward to
implement, we recommend it over SerialPGrid.

We recommend using the OLFIT technique over the SIMD
technique for two main reasons. First, the SIMD savings are
overwhelmed by other operations, and we do not observe any

performance gain. Second, the OLFIT technique is architec-
ture independent and thus more portable. Similarly, we rec-
ommend using 1-byte latches (or spin locks) using the atomic
CAS instruction.

7 Related work

Much work has been done on the indexing of moving objects.
We focus on the recent memory-resident indexes that support
parallel processing. An extensive survey of spatio-temporal
access methods proposed over the last decade can be found
elsewhere [31]. We also focus on the indexing of current
object positions.

Existing concurrency control (CC) protocols for multi-
dimensional indexes [8,23,24,30,35,41] consider only three
index operations: search, insert, and delete. In our setting,
it is necessary to also take into account an update opera-
tion that consists of the combination of a deletion and an
insertion. This represents an additional complication for CC
protocols. To increase concurrency, CC protocols often relax
their search semantics. An example is to not consider phan-
tom problems as critical [17,41] and then to allow con-
current insertions and deletions in the search region. Sev-
eral phantom-protecting CC schemes for multi-dimensional
indexes have been proposed [8,24]. However, they target
disk-based indexes. Before multi-core CPUs, the key rea-
son to support concurrent operations was to let some threads
progress while others were blocked on I/O operations. With
memory-resident data structures and multi-core CPUs, such
opportunities no longer exist, and any complexity in CC
transforms into overhead. To our knowledge, no efficient
means of handling phantom problems exist for the setting
we consider.

Hwang et al. [17] compare six main-memory R-tree vari-
ants, including their concurrent performance. They find that
conventional latch-based CC using the link technique [24]
(originally proposed for the B-tree [27]) does not scale: An
8-CPU platform is exhausted with just six threads under a
simple update-only workload. Other benchmarks also sug-
gest that lock-based approaches are inefficient [9]. Further,
a study [17] shows that lock-based R-tree variants are out-
performed by counterparts that utilize optimistic latch-free
index traversal (OLFIT) [7]. We make use of the OLFIT
technique and describe it in detail in Sect. 4.4.1. Since R-
trees inherently suffer from CPU-intensive update algorithms
(splitting/merging of nodes, propagating minimum bound-
ing rectangle changes, etc.), we choose to use a grid-based
index. While we are aware that adaptive approaches like R-
trees can deal better with highly skewed workloads, the data
skew in the target applications is limited by the underly-
ing road network. Previously proposed uniform grid-based

123

840 D. Šidlauskas et al.

approaches have proven to be superior for update-intensive
moving object applications [21,38,39,46,47].

One way to avoid interference between parallel queries
and updates is to let queries and updates operate on differ-
ent data structures [11,38]. The query structure is read-only
and so does not require locking. Single-object updates can
be parallelized using atomic operations6, by partitioning the
data into disjoint sets and allowing only one update thread per
set (shared-nothing [42]) or by using a simple concurrency
control scheme [38]. This approach is capable of high per-
formance and scalability on multi-core architectures, but as
descried earlier, it has two drawbacks: (i) Queries are based
on stale data in the query data structure, and (ii) frequent
copying of unchanged values when rebuilding the query data
structure, resulting in a substantial waste of CPU cycles.

Based on a copy-on-write mechanism, a granular rebuild-
ing technique has been proposed [35]. When updates are
about to alter parts of the (query) data structure (the T-tree),
new copies of those parts are created and modified offline.
This enables both updates and queries to traverse the data
structure without latches. The integration of fresh parts into
the structure is relatively cheap as only pointers have to be
swapped. However, the high cost of creating versions (mem-
ory allocation/deallocation, data copying) renders this tech-
nique useful only for relatively modest update rates.

Support for location-based applications has recently been
studied in a cloud computing setting [20,32]. There, the
processing is parallelized and distributed across a multi-node
cluster with the main goal to minimize inter-node commu-
nication. This is achieved by shared-nothing [32] or update
shedding [20] approaches. However, such systems often suf-
fer from poor per-node efficiency, e.g., data-intensive tasks
in such systems utilize only 5–10 % of each individual node’s
capabilities [2]. Therefore, if well optimized, a single (multi-
socket) platform can replace a cluster with several nodes. Our
work focuses on efficient parallel processing within a single
node.

This paper substantially extends a previously published
conference paper [40]. In that paper, we define freshness
semantics that ensure fresh query results as well as enable
a high degree of parallelism, and we propose PGrid that
supports the defined semantics. This paper reinvestigates
the possible query semantics in the context of conventional
transaction processing within database management systems
(Sect. 3). In addition to range queries, it investigates what
guarantees are provided for k-nearest neighbor query results
when moving-object updates and queries are processed in
parallel. Next, this paper in addition considers two alter-
native approaches. In Sect. 5.2, the first approach extends

6 For instance, at the expense of accuracy, object data can be packed
into 64-bit values. Then, object reads and writes are atomic on a 64-bit
architecture.

PGrid to support serializable semantics via snapshot isola-
tion (described in Sect. 3.2). This is done by keeping track of
previous object positions for all indexed objects. In Sect. 5.3,
the second approach uses time for the partitioning of updates
from queries, thus having separate phases for updates and
queries. In this way, performance is increased at the cost
of higher latency and outdated query results (stale-timeslice
semantics, described in Sect. 3.3). Lastly, the entire empirical
study is carried out on newer and more parallel multi-core
platforms (Sect. 6). This includes an analysis of how to set
the snapshotting frequency in TwinGrid (Sect. 6.3) and the
phase switching frequency in TP-Grid (Sect. 6.4) optimally.
The study takes into account all the eight indexing techniques
considered in the paper and offers new insights into the scal-
ability of the techniques with continuously increasing paral-
lelism.

8 Conclusions

Increased onchip parallelism is a key means of improving
processor performance. This development calls for software
techniques that are capable of scaling near-linearly with the
available hardware threads. Moving-object workloads with
queries and massive numbers of updates render it particu-
larly challenging to avoid inter-thread interference and thus
achieve scalability.

We investigate different levels of update and query iso-
lation, including fully serializable isolation, snapshot-based
isolation, and isolation via the time-partitioning approach,
where only updates or only queries are processed during a
time phase. The different levels of isolation result in differ-
ent query semantics and enable different degrees of paral-
lelism. Consequently, we define freshness query semantics
that enable a high degree of parallelism and ensure the most
up-to-date query results.

All investigated semantics are implemented using a sta-
tic grid-based index structure and enacted with different
workloads on four diverse multi-core platforms. Key advan-
tages of our main proposal, called PGrid, include up-to-
date query results and the ability to make efficient use of
thread-level parallelism. Compared to the snapshot-based
approach (TwinGrid), PGrid creates multiple copies of data
on demand and at object granularity (i.e., only for nonlo-
cally updated objects) so does not suffer from wasted CPU
resources on frequent snapshotting. Compared to the time-
partitioning approach (TP-Grid), PGrid achieves up to 25 %
lower throughput, but does not suffer from stale and delayed
query results and from difficult-to-set tuning parameters.

Acknowledgments We thank the reviewers for their helpful com-
ments. The research was supported in part by the Danish National
Research Foundation grant DNRF84 through Center for Massive Data
Algorithmics (MADALGO) and by a grant from the Obel Family Foun-
dation.

123

Processing of extreme moving-object 841

References

1. Akman, V., Franklin, W.R., Kankanhalli, M., Narayanaswami, C.:
Geometric computing and the uniform grid data technique. CAD
21(7), 410–420 (1989)

2. Anderson, E., Tucek, J.: Efficiency matters!. SIGOPS Oper. Syst.
Rev. 44(1), 40–45 (2010)

3. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil,
P.: A critique of ANSI SQL isolation levels. In: SIGMOD, pp. 1–10
(1995)

4. Bernstein, P.A., Goodman, N.: Multiversion concurrency control—
theory and algorithms. ACM TODS 8(4), 465–483 (1983)

5. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley, Boston
(1987)

6. Brinkhoff, T.: A framework for generating network-based moving
objects. GeoInformatica 6(2), 153–180 (2002)

7. Cha, S.K., Hwang, S., Kim, K., Kwon, K.: Cache-conscious con-
currency control of main-memory indexes on shared-memory mul-
tiprocessor systems. In: VLDB, pp. 181–190 (2001)

8. Chakrabarti, K., Mehrotra, S.: Efficient concurrency control in mul-
tidimensional access methods. In: SIGMOD, pp. 25–36 (1999)

9. Chen, S., Jensen, C.S., Lin, D.: A benchmark for evaluating moving
object indexes. PVLDB 1(2), 1574–1585 (2008)

10. Civilis, A., Jensen, C.S., Pakalnis, S.: Techniques for efficient road-
network-based tracking of moving objects. IEEE TKDE 17(5),
698–712 (2005)

11. Dittrich, J., Blunschi, L., Salles, M.A.V.: Indexing moving objects
using short-lived throwaway indexes. In: SSTD, pp. 189–207
(2009)

12. Dittrich, J., Blunschi, L., Vas Salles, M.: Movies: indexing moving
objects by shooting index images. GeoInformatica 15(4), 727–767
(2011)

13. Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., Shasha, D.: Mak-
ing snapshot isolation serializable. ACM TODS 30(2), 492–528
(2005)

14. Fekete, A., O’Neil, E., O’Neil, P.: A read-only transaction anomaly
under snapshot isolation. SIGMOD Rec. 33(3), 12–14 (2004)

15. Gray, J., Reuter, A.: Transaction processing: concepts and tech-
niques. Morgan Kaufmann Publishers, Burlington, MA (1993)

16. Gray, J.N., Lorie, R.A., Putzolu, G.R.: Granularity of locks and
degrees of consistency in a shared data base. In: VLDB, pp. 428–
451 (1975)

17. Hwang, S., Kwon, K., Cha, S., Lee, B.: Performance evaluation of
main-memory R-tree variants. In: SSTD, pp. 10–27 (2003)

18. Intel 64 and IA-32 Architectures Software Developers Manual,
Volume 3A: System Programming Guide, Part 1 (2011)

19. Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient B+-tree
based indexing of moving objects. In: VLDB, pp. 768–779 (2004)

20. Jiang, J., Bao, H., Chang, E.Y., Li, Y.: MOIST: a scalable and
parallel moving object indexer with school tracking. PVLDB 5(12),
1838–1849 (2012)

21. Kalashnikov, D., Prabhakar, S., Hambrusch, S.: Main memory eval-
uation of monitoring queries over moving objects. Distrib. Parallel
Databases 15(2), 117–135 (2004)

22. Kim, K., Cha, S.K., Kwon, K.: Optimizing multidimensional index
trees for main memory access. In: SIGMOD, pp. 139–150 (2001)

23. Kornacker, M., Banks, D.: High-concurrency locking in R-trees.
In: VLDB, pp. 134–145 (1995)

24. Kornacker, M., Mohan, C., Hellerstein, J.M.: Concurrency and
recovery in generalized search trees. In: SIGMOD, pp. 62–72
(1997)

25. Kraftfahrt-Bundesamt (Federal Motor Transport Authority):
Annual Report. Kraftfahrt-Bundesamt, Germany (2009)

26. Lee, M.L., Hsu, W., Jensen, C.S., Cui, B., Teo, K.L.: Supporting
frequent updates in R-trees: a bottom-up approach. In: VLDB, pp.
608–619 (2003)

27. Lehman, P.L., Yao, S.B.: Efficient locking for concurrent opera-
tions on B-trees. ACM TODS 6, 650–670 (1981)

28. Molka, D., Hackenberg, D., Schone, R., Muller, M.S.: Memory
performance and cache coherency effects on an intel nehalem mul-
tiprocessor system. In: PACT, pp. 261–270 (2009)

29. Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual par-
titioning: an efficient method for continuous nearest neighbor mon-
itoring. In: SIGMOD, pp. 634–645 (2005)

30. Ng, V., Kameda, T.: Concurrent access to R-trees. In: SSD, pp.
142–161 (1993)

31. Nguyen-Dinh, L.-V., Aref, W.G., Mokbel, M.F.: Spatio-temporal
access methods: part 2 (2003–2010). IEEE Data Eng. Bull. 33(2),
46–55 (2010)

32. Nishimura, S., Das, S., Agrawal, D., Abbadi, A.E.: MD-HBase: a
scalable multi-dimensional data infrastructure for location aware
services. In: MDM, pp. 7–16 (2011)

33. Patel, J.M., Chen, Y., Chakka, V.P.: Stripes: an efficient index for
predicted trajectories. In: SIGMOD, pp. 635–646 (2004)

34. POSIX.1-2008. The open group base specifications (2008)
35. Rastogi, R., Seshadri, S., Bohannon, P., Leinbaugh, D.W., Silber-

schatz, A., Sudarshan, S.: Logical and physical versioning in main
memory databases. In: VLDB, pp. 86–95 (1997)

36. Salzberg, B.: Grid file concurrency. Inf. Syst. 11(3), 235–244
(1986)

37. Šidlauskas, D., Jensen, C. S., Šaltenis, S.: A comparison of the use
of virtual versus physical snapshots for supporting update-intensive
workloads. In: DaMoN, pp. 1–8 (2012)

38. Šidlauskas, D., Ross, K.A., Jensen, C.S., Šaltenis, S.: Thread-level
parallel indexing of update intensive moving-object workloads. In:
SSTD, pp. 186–204 (2011)

39. Šidlauskas, D., Šaltenis, S., Christiansen, C.W., Johansen, J.M.,
Šaulys, D.: Trees or grids?: indexing moving objects in main mem-
ory. In: GIS, pp. 236–245 (2009)

40. Šidlauskas, D., Šaltenis, S., Jensen, C.S.: Parallel main-memory
indexing for moving-object query and update workloads. In: SIG-
MOD, pp. 37–48 (2012)

41. Song, S.I., Kim, Y.H., Yoo, J.S.: An enhanced concurrency control
scheme for multidimensional index structures. IEEE TKDE 16(1),
97–111 (2004)

42. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S.,
Hachem, N., Helland, P.: The end of an architectural era: (it’s time
for a complete rewrite). In: VLDB, pp. 1150–1160 (2007)

43. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-
temporal access method for predictive queries. In: VLDB, pp. 790–
801 (2003)

44. Tzoumas, K., Yiu, M.L., Jensen, C.S.: Workload-aware indexing
of continuously moving objects. PVLDB 1(2), 1186–1197 (2009)

45. Wolfson, O., Yin, H.: Accuracy and resource consumption in track-
ing and location prediction. In: SSTD, pp. 325–343 (2003)

46. Wu, W., Tan, K.-L.: iSEE: Efficient continuous k-nearest-neighbor
monitoring over moving objects. In SSDBM, p. 36 (2007)

47. Xiong, X., Mokbel, M., Aref, W.: SEA-CNN: Scalable process-
ing of continuous k-nearest neighbor queries in spatio-temporal
databases. In: ICDE, pp. 643–654 (2005)

48. Yiu, M., Tao, Y., Mamoulis, N.: The Bdual -tree: indexing moving
objects by space filling curves in the dual space. PVLDB 17(3),
379–400 (2008)

123

	Processing of extreme moving-object update and query workloads in main memory
	Abstract
	1 Introduction
	2 Problem setting
	3 Semantics and parallelism
	3.1 Serializability (full isolation)
	3.2 Snapshot isolation
	3.3 Two-snapshot isolation
	3.4 Freshness isolation
	3.4.1 Range query
	3.4.2 kNN Query

	3.5 Summary

	4 Parallel grid
	4.1 Structure
	4.2 Update processing
	4.3 Query processing
	4.3.1 Range query
	4.3.2 kNN query

	4.4 Parallel object data reads and writes
	4.4.1 OLFIT
	4.4.2 SIMD

	5 Other grid-based variants
	5.1 Serializable u-Grid
	5.2 Serializable PGrid
	5.3 Time-partitioning grid (TP-Grid)
	5.4 Summary of approaches

	6 Performance study
	6.1 Experimental setup
	6.2 Single-threaded performance
	6.3 Setting the snapshotting frequency in TwinGrid
	6.4 Setting the update/query phase durations in TP-Grid
	6.5 Experimental findings
	6.5.1 Varying the grid cell size and the bucket size
	6.5.2 Multi-threaded scalability
	6.5.3 Varying To
	6.5.4 Varying the update/query ratio
	6.5.5 Varying the range query size
	6.5.6 Varying k in k NN query
	6.5.7 Varying the number of objects

	6.6 Summary

	7 Related work
	8 Conclusions
	Acknowledgments
	References

