
The VLDB Journal (2014) 23:517–539
DOI 10.1007/s00778-013-0335-9

REGULAR PAPER

Partitioning functions for stateful data parallelism
in stream processing

Buğra Gedik

Received: 1 January 2013 / Revised: 1 June 2013 / Accepted: 13 August 2013 / Published online: 31 August 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract In this paper, we study partitioning functions for
stream processing systems that employ stateful data paral-
lelism to improve application throughput. In particular, we
develop partitioning functions that are effective under work-
loads where the domain of the partitioning key is large and
its value distribution is skewed. We define various desirable
properties for partitioning functions, ranging from balance
properties such as memory, processing, and communication
balance, structural properties such as compactness and fast
lookup, and adaptation properties such as fast computation
and minimal migration. We introduce a partitioning func-
tion structure that is compact and develop several associated
heuristic construction techniques that exhibit good balance
and low migration cost under skewed workloads. We provide
experimental results that compare our partitioning functions
to more traditional approaches such as uniform and consistent
hashing, under different workload and application character-
istics, and show superior performance.

Keywords Stream processing · Load balance ·
Partitioning functions

1 Introduction

In today’s highly instrumented and interconnected world,
there is a deluge of data coming from various software and
hardware sensors. This data are often in the form of continu-
ous streams. Examples can be found in several domains, such
as financial markets, telecommunications, surveillance, man-
ufacturing, and healthcare. Accordingly, there is an increas-

B. Gedik (B)
Computer Science Department, Bilkent University,
Bilkent, 06800 Ankara, Turkey
e-mail: bgedik@cs.bilkent.edu.tr

ing need to gather and analyze data streams in near realtime
to extract insights and detect emerging patterns and outliers.
Stream processing systems [1,3,10,22,27,28] enable carry-
ing out these tasks in an efficient and scalable manner, by
taking data streams through a network of operators placed
on a set of distributed hosts.

Handling large volumes of live data in short periods of
time is a major characteristic of stream processing appli-
cations. Thus, supporting high throughput processing is a
critical requirement for streaming systems. It necessitates
taking advantage of multiple cores and/or host machines to
achieve scale. This requirement becomes even more promi-
nent with the ever increasing amount of live data available
for processing. The increased affordability of distributed
and parallel computing, thanks to advances in cloud com-
puting and multi-core chip design, has made this problem
tractable. This requires language and system level techniques
that can effectively locate and efficiently exploit data paral-
lelism opportunities in stream processing applications. This
latter aspect, which we call auto-fission, has been studied
recently [9,23,24].

Auto-fission is an operator graph transformation tech-
nique that creates replicas, called parallel channels, from
a sub-topology, called the parallel region. It then distributes
the incoming tuples over the parallel channels so that the
logic encapsulated by the parallel region can be executed by
more than one core or host, over different data. The results
are then usually merged back into a single stream to reestab-
lish the original order. More advanced transformations, such
as shuffles, are also possible. The automatic aspect of the
fission optimization deals with making this transformation
transparent as well as making it safe (at compile-time [24])
and adaptive (at runtime [9]). For instance, the number of par-
allel channels can be elastically set based on the workload
and resource availability at runtime.

123

518 B. Gedik

In this paper, we are interested in the work distribution
across the parallel channels, especially when the system has
adaptation properties, such as changing the number of paral-
lel channels used at runtime. This adaptation is an important
capability, since it is needed both when the workload and
resource availability show variability, as well as when it does
not. As an example for the former, vehicle traffic and phone
call data typically have peak times during the day. Further-
more, various online services need scalability as they become
successful, due to increasing user base and usage amount. It
is often helpful to scale stream processing applications by
adapting the number of channels without downtime. In the
latter case (no workload or resource variability), the adapta-
tion is needed to provide transparent fission, as the system
needs to find an effective operating point before it settles
down on the number of parallel channels to use. This relieves
the developer from specifying the number of parallel chan-
nels explicitly (typically done through hints [27]).

The work distribution often takes place inside a split oper-
ator, which determines the parallel channel a tuple is to be
routed for processing. For parallel regions that are stateless,
this routing can be accomplished in a round-robin fashion. In
this paper, we are interested in stateful operators, in particu-
lar, the partitioned stateful operators that are amenable to data
parallelism. Such operators keep state on a sub-stream basis,
where each sub-stream is identified by a partitioning key.
Examples of such operators include streaming aggregation,
progressive sort, one-way join, as well as user-defined opera-
tors [13]. Note that stateless operators can be combined with
the partitioned stateful ones to create larger parallel regions,
which behave similar to partitioned stateful operators. Even
multiple partitioned stateful operators can be combined if
their partitioning keys are compatible (there is a common
subset).

Importantly, for partitioned stateful operators, the parti-
tioning cannot be performed by simply routing tuples using
a round-robin policy. Instead, a hash function is used, which
always routes the tuples with the same partitioning key value
to the same parallel channel. This way state can be main-
tained on a sub-stream basis, thus preserving the application
semantics. Typically, a uniform hash function is used for this
purpose. This works well unless the system supports adjust-
ing the number of parallel channels at runtime. Uniform hash
functions are not suitable for adaptation, because the number-
of-channel adaptation in the presence of stateful operators
requires state migration and uniform hash functions perform
poorly under this requirement. For instance, when a new
channel is added, the state associated with the sub-streams
that will execute on that channel should be moved over from
their current channels (possibly on a different host).

With uniform hash functions, the number of items that
migrate when a new channel is added/removed is far from
the ideal that can be achieved. A common solution to this

problem is to use a consistent hash [15] in place of a uni-
form hash. Consistent hashing is a technique that can both
balance the load and minimize the migration. In particular,
when a new channel is added, the amount of migration that
is introduced by consistent hashing is equal to the size of the
new channel’s fair share of state, and this migration only hap-
pens between the new channel and the existing ones, never
between the existing channels.

However, in the presence of skew in the distribution of the
partitioning key, the balance properties cannot be maintained
by the consistent hash. As an example, consider a financial
stream that contains trade and quote information. There are
many financial computations that can be performed on this
stream, including those that require computation of certain
metrics such as VWAP (volume-weighted average price) on
a per sub-stream basis. In this case, each sub-stream is iden-
tified by a stock ticker. However, the distribution of stock
tickers is highly skewed—a few high volume tickets consti-
tute a large portion of the total volume. Such skew in the
workload creates several problems:

– The memory usage across parallel channels may become
imbalanced.

– The computation cost across parallel channels may
become imbalanced.

– The communication cost across parallel channels may
become imbalanced.

Any one of these can result in a bottleneck, limiting applica-
tion scalability in terms of throughput. Furthermore, several
of these metrics are dependent on the application character-
istics. For instance, if the computation cost for a tuple from a
given sub-stream is dependent on that sub-stream’s volume
(i.e., the frequency of the partitioning key value), then the
computation balance will be more difficult to accomplish in
the presence of skew. This is because, not all sub-streams
will be equal in terms of their computation cost.

We assume a general purpose stream processing system, in
which a parallel channel can be arbitrarily costly in terms of
time and/or space. This is because in such systems there is no
limit to the number of streaming operators that can appear
in a parallel region, as well as no limit on the complexity
of these operators. If a partitioning function associated with
a parallel region does not do a good job in balancing the
load, the channel that becomes overloaded will slow down
the entire flow, limiting the scalability of fission.

Coming up with a partitioning function that preserves bal-
ance in the presence of workload skew brings several chal-
lenges. First, the system needs to track the frequencies of
the partitioning key values. When the partitioning key comes
from a large domain (e.g., the domain of IP addresses), this
has to be performed without keeping a frequency for each
possible partitioning key value. Second, while achieving bal-

123

Stateful data parallelism in stream processing 519

ance, the system should also maintain low migration cost.
Often these two metrics are conflicting, as migrating items
provides additional flexibility in terms of achieving good bal-
ance, at the cost of a higher migration cost. Third, the par-
titioning function should be computable in short time, so as
not to disturb the adaptation process. The number-of-channel
adaptation often requires suspending the stream briefly to
perform the migrations, introducing a migration delay. The
creation of the partitioning function should not become the
bottleneck for the migration delay.

In this paper, we propose a partitioning function and asso-
ciated construction algorithms that address these challenges.
Concretely, we introduce a partitioning function structure
that is a hybrid between a consistent hash and an explicit
mapping. This results in a compact hash function that is flex-
ible enough to provide good balance in the presence of high
skew. We use the lossy counting algorithm [18] in a sliding
window setting to keep track of the high frequency items. We
determine the frequency threshold automatically. We develop
heuristic algorithms that use the last partitioning function and
the current frequencies to construct a new partitioning func-
tion, with the aim of keeping the migration cost low and
the various forms of balance high. The heuristic nature of
the algorithms ensures fast computation time. We propose
and evaluate alternative metrics that drive the partition func-
tion construction algorithms. These metrics help us improve
the balance and migration characteristics of the algorithms.
Our results show that the new partitioning functions exhibit
desirable properties across a wide range of workload and
application characteristics and outperform alternatives such
as uniform and consistent hashing.

In summary, this paper makes the following contributions:

– Formalizes the characteristics expected from partitioning
functions to be used for auto-fission in stream processing
systems.

– Introduces a partitioning function structure that is amena-
ble to time and memory efficient mapping of tuples to
parallel channels.

– Develops construction algorithms and associated metrics
that can be used to build partitioning functions with good
balance and cheap migration.

– Presents an evaluation of the proposed techniques, show-
casing the superior behavior of the partitioning functions
under different workload and application characteristics.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of the problem, followed by
a detailed formalization in Sect. 3. The solution approach,
which includes the partitioning function and associated con-
struction algorithms with their heuristic metrics, is given in
Sect. 4. Experimental results are presented in Sect. 5. The

related work is discussed in Sect. 6, and the conclusions are
given in Sect. 7.

2 Overview

In this section, we overview the partitioning problem and
exemplify it with a toy scenario.

Let S be a stream of tuples and τ ∈ S a tuple. For each
tuple τ , let ι(τ) denote the value of the partitioning key. We
represent the domain of the partitioning key by D. Thus, we
have ι(τ) ∈ D. For each value of the partitioning key d ∈ D,
we denote its relative frequency as f (d) ∈ [0, 1]. We assume
that the frequencies of items can change in the long term.

We define a partitioning function p : D→ [1..N], where
this function maps the partitioning key value ι(τ) of a tuple
τ to an index in the range [1..N]. The index represents the
parallel channel the tuple is assigned to. The number of chan-
nels, that is N , can change as well (for instance, as a result
of changes in the workload or resource availability).

Let p(t) be the partitioning function used during time
period t . Our goal is to update this function for use during
time period t+1 as p(t+1), such that load balance properties,
structural properties, and adaptation properties are satisfied.
As the time progresses, two kinds of changes could happen.
The number of channels can change from N (t) to N (t+1). This
could be an increase in the number of channels or a decrease.
Similarly, the frequencies of items, that is the function f , can
change.

We summarize the desired properties of the partitioning
function as follows:

1. Load balance properties: These properties deal with
the ability of the partitioning function to balance mem-
ory, processing, and bandwidth consumptions of different
parallel channels.

2. Structural properties: These properties deal with the
computational and size complexity of performing lookups
on the partitioning function.

3. Adaptation properties: These properties deal with
the computational complexity and the migration cost
associated with updating the partitioning function in the
presence of changes in the number of channels or in the
frequencies of the data items.

We look at these properties more formally in the next sec-
tion. For now, consider the toy scenario depicted in Fig. 1.
In this scenario, we have at time t , N (t) = 2 and at time
t + 1, N (t+1) = 3. There are 8 unique partitioning key val-
ues in this example, thus D = {X, Z, V, R, U, Y, W, L}, with
frequencies {5, 3, 2, 1, 4, 3, 3, 1}, respectively.

Assume that both the communication and the computa-
tion across the channels needs to be balanced (i.e., both are

123

520 B. Gedik

Fig. 1 A toy example showcasing different trade-offs in construction
of the partitioning function

bottlenecks). Further assume that the processing cost for an
item is quadratic in its frequency. We will look at examples
of such applications in the next section. In the figure, we see
3 alternative ways of constructing the partitioning function.

In the first setup, shown at the top of the figure, we see
that the initial partitioning is optimized for communication,
where for N = 2 we have a perfect communication balance
(balancen in the figure): The ratio of the maximum commu-
nication cost for a channel divided by the minimum is simply
1 (the communication costs are given by [11, 11]). Inciden-
tally, the balance of the computation cost (balancec in the
figure) is also good, since the max-to-min ratio is 1.1 (the
communication costs are given by [39, 35]). As we move to
N = 3, the communication load is kept balanced (1.14), but
since we are not optimizing for processing, the computation
balance suffers (2.26). Also note that, the move from N = 2
to N = 3 results in a migration cost of 7 (items U and Y with
costs 4 and 3 has moved).

In the middle of the figure, we see a different setup where
the partitioning is optimized for computation. We can see
that the initial setup with N = 2 has great computation bal-
ance (1.05) and good communication balance (1.2). But as
we move to N = 3, the computation is kept balanced (1.04),
but the communication suffers (2). Also note that, keeping
the computation balanced resulted in a higher migration cost

of 10, compared to keeping the communication balanced
(a quadratic function versus a linear function).

Finally, at the bottom of the figure, we see a setup where
the partitioning is optimized for both communication and
computation. We see that for both N = 2 and N = 3, we
have good communication (1.2 and 1.14, respectively) and
computation (1.05 and 1.23, respectively) balance. It is inter-
esting to note that this requires migrations between the exist-
ing channels, as well as from existing channels to the new
channel.

3 Problem definition

In this section, we formalize the desired properties of the
partitioning function.

3.1 Load balance properties

Load balance becomes a problem when there is skew in the
distribution of the partitioning key. Skew can result in sub-
optimal performance, as a data parallel stream processing
flow is limited by its slowest parallel channel. The bottleneck
could be due to memory imbalance (resulting in thrashing),
processing imbalance (resulting in overload), and bandwidth
imbalance (resulting in backpressure [10]).

The load balance problem is non-trivial in the presence
of partitioned stateful parallelism, since a round-robin dis-
tribution of tuples is not possible under this model. A uni-
form or consistent hash-based distribution of the partition-
ing keys, while maintaining semantic correctness, can result
in imbalance when the value frequencies follow a skewed
distribution.

Memory load balance. The partitioning should ensure that
the load imposed on each channel in terms of the state they
need to maintain is close to each other. For this purpose, we
define a resource function βs : [0, 1] → R that maps a given
frequency to a value proportional to the amount of state that
has to be kept on a channel for tuples having a partitioning
key value with that frequency. Let us denote the state that
needs to be maintained for d ∈ D as S(d), then we have
|S(d)| ∝ βs(f (d)).

As an example, consider a channel that contains an oper-
ator keeping a time-based window of size T . We have
|S(d)| ∝ T · f (d) and since T is constant, βs(x) = x .
If the operator is keeping a count-based window of size C ,
then we have |S(d)| ∝ C and thus βs(x) = 1.

Let Ls(i) denote the memory load of a host i ∈ [1..N].
We have:

Ls(i) =
∑

d∈D s.t. p(d)=i

βs(f (d)) (1)

123

Stateful data parallelism in stream processing 521

We express the memory load balance requirement as:

rs = maxi∈[1..N]Ls(i)

mini∈[1..N]Ls(i)
≤ αs (2)

Here, αs ≥ 1 represents the level of memory imbalance (rs)
tolerated.

Computation load balance. The partitioning should ensure
that the load imposed on each channel in terms of the com-
putation they handle is close to each other.

For this purpose, we define a resource function βc :
[0, 1] → R that maps a given frequency to a value propor-
tional to the amount of computation that has to be performed
on a channel to process tuples having a partitioning key value
with that frequency. Let us denote the cost of computation
that needs to be performed for d ∈ D as C(d), then we have
C(d) ∝ βc(f (d)).

As an example, again consider a channel that contains an
operator keeping a time-based window of size T . Further
assume that each new tuple needs to be compared against
all existing tuples in the window (a join-like operator). This
means that we have C(d) ∝ f (d) ·βs(f (d)) ∝ (f (d))2, and
thus βc(x) = x2. Various different βc functions are possible
based on the nature of the processing, especially the size of
the portion of the kept state that needs to be involved in the
computation.

Let Lc(i) denote the computation load of a channel i ∈
[1..N]. We have

Lc(i) =
∑

d∈D s.t. p(d)=i

f (d) · βc(f (d)) (3)

We express the computation load balance requirement as
follows:

rc = maxi∈[1..N]Lc(i)

mini∈[1..N]Lc(i)
≤ αc (4)

Here, αc ≥ 1 represents the level of computation load imbal-
ance (rc) tolerated.

Communication load balance. The communication load
captures the flow of traffic from the splitter to each one of
the channels. Let Ln(i) denote the communication load of a
node i ∈ [1..N]. We have

Ln(i) =
∑

d∈D s.t. p(d)=i

f (d) (5)

This is same as having βn(x) = x as a fixed, linear
resource function for the communication load. We express
the communication load balance requirement as follows:

rn = maxi∈[1..N]L(i)

mini∈[1..N]L(i)
≤ αn (6)

Here, αn ≥ 1 represents the level of communication load
imbalance (rn) tolerated.

Discussion. When one of the channels become the bot-
tleneck for a particular resource k, then the utilization of
resources for other channels is lower-bounded by α−1

k . For
instance, if we do not want any channel to be utilized less
than 90 % when one of the channels hits 100 %, then we can
set αc = 1/0.9 = 1.11.

Another way to look at this is to consider the capacities of
different kind of resources. For instance, if the total memory
requirement is x = 10GB and if each channel (N = 4) has
a capacity for y = 3GB amount of state (y > x/N), then
αs can be set as (N−1)·y

x−y = 3·3
10−3 = 1.28 to avoid hitting the

memory bottleneck.

3.2 Structural properties

Structural properties deal with the size of the partitioning
function and its lookup cost. In summary, compactness and
fast lookup are desirable properties.

Compactness. Let |p| be the size of the partitioning function
in terms of the space required to implement the routing, and
let |D| be the domain size for the partitioning key, that is
the number of unique values for it. The partitioning function
should be compact so that it can be stored at the splitter and
also at the parallel channels (for migration [9]). As an exam-
ple, uniform hashing requires O(1) space, whereas consistent
hashing requires O(N) space, both of which are acceptable
(since N << |D|). However, such partitioning schemes can-
not meet the balance requirements we have outlined, as they
do not differentiate between items with varying frequencies
and do not consider the relationship between frequencies and
the amount of memory, computation, and communication
incurred.

To address this, our partitioning function has to keep
around mappings for different partitioning key values. How-
ever, this is problematic, since |D| could be very large, such
as the list of all IP addresses. As a result, we have the fol-
lowing desideratum:

|p| = O(log |D|) (7)

The goal is to keep the partitioning function small in terms
of its space requirement, so that it can be stored in memory
even if the domain of the partitioning key is very large. This
way the partitioning can be implemented at streaming speeds
and does not consume memory resources that are better uti-
lized by the streaming analytics.

Fast lookup. Since a lookup is going to be performed for
each tuple τ to be routed, this operation should be fast. In
particular, we are interested in O(1) lookup time.

123

522 B. Gedik

3.3 Adaptation properties

Adaptation properties deal with updating the partitioning
function. The partitioning function needs to be updated when
the number of parallel channels changes or when the item
frequencies change.

Fast computation. The reconstruction of the partitioning
function should take reasonable amount of time so as not
to interrupt the continuous nature of the processing. Given
the logarithmic size requirement for the partitioning func-
tion, we want the computation time of p, denoted by C(p),
to be polynomial in terms of the function size:

C(p) = poly(|p|) (8)

Minimal migration. One of the most critical aspects of adap-
tation is the migration cost. Migration happens when the bal-
ance constraints are violated due to changes in the frequen-
cies of the items or when the number of nodes in the system
(N) is increased/decreased in order to cope with the work-
load dynamics. Changing the partitioning results in migrat-
ing state for those partitioning key values whose mapping
has changed.

The amount of state to be migrated is given by

M(p(t), p(t+1)) =
∑

d∈D
βs(f (d)) · 1(p(t)(d) �= p(t+1)(d))

(9)

Here, 1 is the indicator function.

3.4 Overall goal

The goal of the partitioning function creation can be stated
in alternative ways. We first look at a few ways that are not
flexible enough for our purposes.

One approach is to minimize the migration cost M(p(t),

p(t+1)), while treating the balance conditions as hard con-
straints. However, when the skew in the distribution of the
partitioning key is high and the number of channels is large,
we will end up with infeasible solutions. Ideally, we should
have a formulation that could provide a best effort solution
when the constraints cannot be met exactly.

Another approach is to turn the migration cost into a con-
straint, such as M(p(t), p(t+1)) ≤ γ · Ls . Here, Ls is the
ideal migration cost with respect to adding a new channel,
given as follows:

Ls =
∑

d∈D

βs(f (d))

N
(10)

We can then set the goal as minimizing the load imbalance.
In this alternative, we treat migration as the hard constraint.
The problem with this formulation is that it is hard to guess a

good threshold (γ) for the migration constraint. For skewed
datasets, one might sacrifice more with respect to migration
(higher γ) in order to achieve good balance.

In this paper, we use a more flexible approach where both
the balance and the migration are treated as part of the objec-
tive function. We first define relative load imbalance, denoted
as b, as follows:

b =
⎛

⎝
∏

k∈{s,c,n}
bk

⎞

⎠

1
3

, where bk = rk

αk
(11)

Here, bk is the relative imbalance for resource k. A value
of 1 for bk means that the imbalance for resource k, that is
rk, is equal to the acceptable limit αk. Values greater than 1
imply increased imbalance beyond the acceptable limit. The
overall relative load imbalance b is defined as the geometric
mean of the per-resource relative imbalances.

We define the relative migration cost, denoted as m, as
follows:

m = M(p(t), p(t+1))

Ls
(12)

A value of 1 for it means that the migration cost is equal
to the ideal value (what consistent hashing guarantees, for
non-skewed datasets). Larger values imply increased migra-
tion cost beyond the ideal. An objective function can then
be defined as a combination of relative load imbalance b and
relative migration cost m, such as

b · (1+ m) (13)

In the next section, as part of our solution, we introduce
several metrics that consider different trade-offs regarding
migration and balance.

4 Solution

In this section, we look at our solution, which consists of a
partitioning function structure and a set of heuristic algo-
rithms to construct partitioning functions that follow this
structure.

4.1 Partitioning function structure

We structure the partitioning function as a hash pair, denoted
as p = 〈Hp,Hc〉. The first hash function Hp is an explicit
hash. It keeps a subset of the partitioning key values, denoted
as Dp ⊂ D. For each value, its mapping to the index of the
parallel channel that will host the state associated with the
value is kept in the explicit hash. We define Dp = {d ∈ D |
f (d) ≥ δ}. In other words, the partitioning key values whose
frequencies are beyond a threshold δ are stored explicitly.
We investigate how δ can be set automatically later in this

123

Stateful data parallelism in stream processing 523

section. The second hash function, Hc, is a consistent hash
function for N channels. The size of the partitioning function
is proportional to the size of the set Dp, that is |p| ∝ |Dp|.

Algorithm 1: Lookup(p, τ)

Param : p = 〈Hp, Hc〉, the partitioning function
Param : τ ∈ S, a tuple in stream S
d ← ι(τ) � Extract the partition by attribute
if Hp(d) �= nil then � Lookup from the explicit hash

return Hp(d) � Return the mapping if found
return Hc(d) � Otherwise, fall back to consistent hash

4.1.1 Performing lookups

The lookup operation, that is p(d) for d ∈ D, is carried out
by first performing a lookup Hp(d). If an index is found
from the explicit hash, then it is returned as the mapping.
Otherwise, a second lookup is performed using the consistent
hash, that is Hc(d), and the result is returned. This is shown
in Algorithm 1. It is easy to see that lookup takes O(1) time
as long as the consistent hash is implemented in O(1) time.
We give a brief overview of consistent hashing next. Details
can be found in [15].

Consistent hashing. A consistent hash is constructed by
mapping each node (parallel channel in our context) to mul-
tiple representative points, called replicas, in the unit circle,
using a uniform hash function. Using a 128-bit ring for repre-
senting the unit circle is a typical implementation technique,
which relies on 2128 equi-spaced discrete locations to repre-
sent the range [0, 1). The resulting ring with multiple replicas
for each node forms the consistent hash. To perform a lookup
on the consistent hash, a given data item is mapped to a point
on the same ring using a uniform hash function. Then, the
node that has the closest replica (in clockwise direction) to
the data point is returned as the mapping. Consistent hashing
has several desirable features. Two are particularly important
for us. First, it balances the number of items assigned to each
node, that is, each node gets around 1/N th of all the items.
Second, when a node is inserted/removed, it minimizes the
number of items that move. For instance, the newly added
node, say the N th one, gets 1/N th of all the items.1 These
properties hold when the number of replicas is sufficiently
large. Consistent hashing can be implemented in O(log (N))

time using a binary search tree over the replicas. Bucketing
the ring is an implementation technique that can reduce the
search cost to O(1) time [16], meeting our lookup require-
ments.

1 Consistent hash only migrates items from the existing nodes to the
newly added node. No migrations happen between existing nodes.

4.1.2 Keeping track of frequencies

Another important problem to solve is to keep track of items
with frequency larger than δ. This is needed for constructing
the explicit hash Hp. The trivial solution is to simply count
the number of appearances of each value for the partitioning
key. However, this would require O(|D|) space, violating the
compactness requirement of the partitioning function.

For this purpose, we use the lossy counting technique,
which can track items with frequency greater than δ − ε by
using logarithmic space in the order of O (1

ε
· log (ε · M)

)
,

where M is the size of the history over which the lossy count-
ing is applied. A typical value for ε is 0.1 [18]. We can take M
as a constant factor of the domain size |D|, which would give
us a space complexity of O (1

δ
· log (δ · |D|)). We briefly out-

line how lossy counting works next. The details can be found
in [18].

Lossy counting. This is a sketch-based [5] technique that
only keeps around logarithmic state in the stream size to
locate frequent items. The approach is lossy in the sense
that it returns items whose frequencies may be less than the
desired level δ, where ε is used as a bound on the error. That
is, the items with frequencies greater than δ are guaranteed to
be returned, where additional items with frequencies in the
range (δ−ε, δ]may be returned as well. The algorithm oper-
ates by adding newly seen items into memory, and evicting
some items when a window boundary is reached. The win-
dow size is set as w = 1/ε. Two values are kept in memory
for each item: an appearance count, ca , and an error count
ce. When an item that is not currently in memory is encoun-
tered, it is inserted into memory with ca = 1 and ce = i − 1,
where i is the current window index (starts from 1). When the
i th window closes, items whose count sums c f + ce are less
than or equal to i are evicted (these are items whose frequen-
cies are less than ε). When frequent items are requested, all
items in memory whose appearance counts ca are greater or
equal to δ− ε times the number of items so far are returned.
This simple method guarantees the error bounds and space
requirements outlined earlier.

Handling changes. The lossy counting algorithm works on
the entire history of the stream. However, typically we are
interested in the more recent history. This helps us capture
changes in the frequency distribution. There are extensions of
the lossy counting algorithm that can handle this via sliding
windows [2]. However, these algorithms have more complex
processing logic and more involved error bounds and space
complexities. We employ a pragmatic approach to support
tracking the more recent data items. We achieve this by emu-
lating a sliding window using 3 lossy counters built over
tumbling windows as shown in Fig. 2. In the figure, we show
the time frame during which a lossy counter is used in dark

123

524 B. Gedik

Fig. 2 Using three lossy
counters over tumbling windows
to emulate a sliding window

color and the time frame during which it is built in light
color. Let W be the tumbling window size. This approach
makes sure that the lossy counter we use at any given time
always has between W and 3

2 · W items in it.2 In general, if
we use x lossy counters, this technique can achieve an upper

range value of
(

1+ 1
x−1

)
·W , getting closer to a true sliding

window of size W as x increases.

4.1.3 Setting δ

To set δ, we first look at how much the load on a channel can
deviate from the ideal load, given the imbalance threshold.
For a resource k ∈ {s, c, n}, the balance constraint implies
the following:

∀i∈[1..N], |Lk(i)− Lk| ≤ θk · Lk, (14)

where

θk = (αk − 1) ·
(

1+ αk

N − 1

)−1

(15)

Here, Lk =
∑N

i=1 Lk(i)/N is the average load per channel.
The gap between the min and max loads is maximized when
one channel has the max load αk · x , and all other channels
has the min load x . Thus, we have x · (αk+N −1) = N · Lk.
Solving for x gives x = (N · Lk)/(αk + N − 1). Setting
θk = (αk ·x−Lk)/Lk leads to θk = (αk ·N)/(αk+N−1)−1,
which simplifies to Eq. 15.

Since we do not want to be tracking items with frequencies
less than δ and rely on the consistent hash to distribute those
items, in the worst case, we can have a single item with
frequency δ, resulting in βk(δ) amount of load to be assigned
to one channel. We set delta such that the imbalanced load
βk(δ) that can be created due to not tracking some items is
σ ∈ (0, 1] fraction of the maximum allowed imbalanced load
θk · Lk. This leads to the following definition:

∀k, βk(δk) ≤ σ · θk · Lk (16)

Then, the δ can be computed as the minimum of δk values
for different resources, that is δ = mink∈{s,c,n} δk. Consider-
ing different β functions, we have

δk =

⎧
⎪⎨

⎪⎩

1 if βk(x) = 1
σ ·θk

N if βk(x) = x√
σ ·θk|D|·N if βk(x) = x2

(17)

2 The lower bound does not hold during system initialization, as there
is not enough history to use.

For βk(x) = 1, the result from Eq. 17 follows, since we
have βk(δk) = 1 and Lk = |D|, thus δk = 1. This is the ideal
case, as we do not need to track any items, in which case our
partitioning function reduces to the consistent hash.

For βk(x) = x , we have Lk = 1/N (since the frequencies
sum up to 1) and thus δk = σ · θk/N .

For βk(x) = x2, Lk is upper bounded by 1/|D| and thus
δk = √(σ · θk)/(|D| · N). However, the upper bound on Lk
is reached when all the items have the same frequency of
1/|D|, in which case there is no need to track the items,
as consistent hashing would do a perfect job at balancing
items with minimal migration cost when all items have the
same frequency. Using Eq. 17 for the case of quadratic beta
functions results in a low δ value and thus large number of
items to be tracked. This creates a problem in terms of the
time it takes to construct the partitioning function, especially
for polynomial construction algorithms that are superlinear
in the number of items used (discussed in Sect. 4.2).

To address this issue, we use a post-processing step for
the case of quadratic beta functions. After we collect the list
of items with frequency at least δ, say I , we predict Lk as∑

d∈I βk(f (d))+ (|D|− |I |) ·βk(
1−∑

d∈I f (d)

|D|−|I |). The second
part of the summation is a worst case assumption about the
untracked items, which maximizes the load. Using the new
approximation for Lk, we compute an updated δ′, which is
higher than the original δ, and use it to filter the data items
to be used for constructing the partitioning function.

4.1.4 Setting σ

σ is the only configuration parameter of our solution for cre-
ating partitioning functions, which is not part of the problem
formulation. We study its sensitivity as part of the experi-
mental study in Sect. 5. A value of σ = 0.1, which is a
sensible setting, would allocate one-tenth of the allowable
load imbalance to the untracked items, leaving the explicit
hash construction algorithm enough room for imbalance in
the mapping. The extreme setting of σ = 1 would leave the
explicit hash no flexibility and should be avoided, since in
a skewed setting, the explicit hash cannot achieve perfect
balance.

4.2 Construction algorithms

We now look at algorithms for constructing the partition-
ing function. In summary, the goal is to use the partitioning
function created for time period t , that is p(t) = 〈H(t)

p ,H(t)
c 〉,

and recent item frequencies f , to create a new partitioning

123

Stateful data parallelism in stream processing 525

function to use during time period t + 1, that is p(t+1) =
〈H(t+1)

p ,H(t+1)
c 〉, given the number of parallel channels has

changed from N (t) to N (t+1).
We first define some helper notation that will be used in

all algorithms. Recall that D(t)
p and D(t+1)

p denote the items
with explicit mappings in p(t) and p(t+1), respectively. We
define the following additional notation:

– The set of items not tracked for time period t + 1 but
tracked for time period t is denoted as D(t+1)

o = D(t)
p \

D(t+1)
p .

– The set of items tracked for time period t + 1 but not
tracked for time period t is denoted as D(t+1)

n = D(t+1)
p \

D(t)
p .

– The set of items tracked for both time period t and t + 1
are denoted as D(t+1)

e = D(t+1)
p ∩ D(t)

p .
– The set of items tracked for time period t or t + 1 are

denoted as D(t1)
a = D(t)

p ∪ D(t+1)
p .

We develop three heuristic algorithms, namely the scan,
the redist, and the readj algorithms. They all operate on the
basic principle of assigning tracked items to parallel chan-
nels considering a utility function that combines two metrics:
the relative imbalance and the relative migration cost. The
algorithms are heuristic in the sense that at each step, they
compute the utility function on the partially constructed par-
titioning function with different candidate mappings applied
and, at the end of the step add, the candidate mapping that
maximizes the utility function. The three algorithms differ in
how they define and explore the candidate mappings. Before
looking at each algorithm in detail, we first detail the metrics
used as the basis for the utility function.

4.2.1 Metrics

We use a slightly modified version of the relative migra-
tion cost m given by Eq. 12 in our utility function, called
the migration penalty and denoted as γ . In particular, the
migration cost is computed for the items that are currently in
the partially constructed partitioning function, and this value
is normalized using the ideal migration cost considering all
items tracked for time periods t and t + 1. Formally, for a
partially constructed explicit hash H(t+1)

p , we define

γ (H(t+1)
p)=

∑
d∈D(t+1)

o
βs(f (d))·1(p(t)(d) �= H(t+1)

c (d))

+∑
d∈H(t+1)

p
βs(f (d))·1(p(t)(d) �=H(t+1)

p (d))
∑

d∈D(t+1)
a

βs(f (d))/N (t+1)

(18)

Here, the first part in the numerator is the migration cost
due to items not being tracked anymore (D(t+1)

o). Such items
cause migration if the old partitioning function (p(t)) and

the new consistent has (H(t+1)
c) map the items to different

parallel channels. The second part in the numerator is due
to the items that are currently in the partially constructed
explicit hash (H(t+1)

p), but map to a different parallel channel
than before (based on p(t)). The denominator is the ideal
migration cost, considering items tracked for time periods t
and t + 1 (D(t+1)

a).
Similarly, we use a modified version of the relative imbal-

ance b given in Eq. 11 in our utility function, called the
balance penalty and denoted as ρ. This is because a par-
tially constructed partitioning function yields a b value of
∞ when one of the parallel channels does not yet have
any assignments. Instead, we use a very similar definition,
which captures the imbalance as the ratio of the difference
between the max and min loads to the maximum load differ-
ence allowed. Formally, for a partially constructed explicit
hash H(t+1)

p , we have

ρk(H(t+1)
p) =

maxi∈[1..N (t+1)] Lk(i,H(t+1)
p)

−mini∈[1..N (t+1)] Lk(i,H(t+1)
p)

θk · Lk(H(t+1)
p)

(19)

ρ(H(t+1)
p) =

⎛

⎝
∏

k∈{s,c,n}
ρk(H(t+1)

p)

⎞

⎠

1
3

(20)

In Eq. 19, Lk(i,H(t+1)
p) values represent the total load on

channel i for resource k, considering only the items that are in
H(t+1)

p . Similarly, Lk(H(t+1)
p) is the average load for resource

k, considering only the items that are in H(t+1)
p .

Given the ρ and γ values for a partially constructed parti-
tioning function, our heuristic algorithms pick a mapping to
add into the partitioning function, considering a set of can-
didate mappings. A utility function U (ρ, γ) is used to rank
the potential mappings. We investigate such utility functions
at the end of this section.

Construction algorithms start from an empty explicit hash,
and thus with a low γ value. As they progress, γ typically
increases and thus mappings that require migrations become
less and less likely. This provides flexibility in achieving bal-
ance early on, by allowing more migrations early. On the
other hand, ρ is kept low throughput the progress of the algo-
rithms; as otherwise, in the presence of skew, fixing imbal-
ance introduced early on may be difficult to fix later.

We now look at the construction algorithms.

4.2.2 The scan algorithm

The scan algorithm, shown in Algorithm 2, first performs
a few steps that are common to all three algorithms: Cre-
ates a new consistent hash for N (t+1) parallel channels as
H(t+1)

c , computes the migration cost (variable m in the algo-
rithm) due to items not tracked anymore, as well as the ideal

123

526 B. Gedik

Algorithm 2: Scan(p(t), D(t)
p , D(t+1)

p , N (t+1), f)

Param : p(t) = 〈H(t)
p , H(t)

c 〉, Current partitioning function

Param : D(t)
p , D(t+1)

p , Items tracked during period t , t + 1
Param : N (t+1), New number of parallel channels
Param : f , Item frequencies
Let p(t+1) = 〈H(t+1)

p , H(t+1)
c 〉 � Next partitioning function

H(t+1)
c ← createConsistentHash(N (t+1))

�Migration cost due to items not being tracked anymore

m ←∑
d∈D(t+1)

o
βs(f (d)) · 1(p(t) �= H(t+1)

c (d))

m ←∑
d∈D(t+1)

a
βs(f (d))/N (t+1) � Ideal migration cost

H(t+1)
p ← {} � The mapping is initially empty

Dc ← Sort(D(t+1)
p , f) � Items to place, in decr. freq. order

for each d ∈ Dc do � For each item to place
j ←−1 � Best placement, initially invalid
u ←∞ � Best utility value, lower is better
h ← p(t)(d) � Old location
for each l ∈ [1..N (t+1)] do � For each placement

a← ρ(H(t+1)
p ∪ {d ⇒ l}) � Balance penalty

γ ← m+βs (f (d))·1(l �=h)
m �Migration penalty

if U (a, γ) < u then � A better placement
j, u ← l, U (a, γ) � Update best

m ← m + βs(f (d)) · 1(j �= h) � New migration cost

H(t+1)
p ← H(t+1)

p ∪ {d ⇒ j} � Add the mapping

migration cost (variable m in the algorithm) considering all
items tracked for time periods t and t+1. Then, the algorithm
moves on to perform the scan-specific operations. The first
of these is to sort the items in decreasing order of frequency.
Then, it scans the sorted items and inserts a mapping into
the explicit hash for each item, based on the placement that
provides the best utility function value (lower is better). As a
result, for each item, starting with the one that has the high-
est frequency, it considers all possible N (t+1) placements.
For each placement, it computes the balance and migration
penalties to feed the utility function.

Note that, the migration penalty can be updated incremen-
tally in constant time (shown in the algorithm). The balance
penalty can be updated in O(log(N)) time using balanced
trees, as it requires maintaining the min and max loads. How-
ever, for small N , explicit computation as shown in the algo-
rithm is faster. The complexity of the algorithm is O(R · N ·
log N), where R = |D(t+1)

p | is the number of items tracked.
The scan algorithm considers the items in decreasing order

of frequency, since items with higher frequencies are harder
to compensate for unless they are placed early on during the
construction process.

4.2.3 The redist algorithm

The redist algorithm, shown in Algorithm 3, works in a sim-
ilar manner to the scan algorithm, that is, it distributes the
items over the parallel channels. However, unlike the scan

Algorithm 3: Redist(p(t), D(t)
p , D(t+1)

p , N (t+1), f)

Param : p(t) = 〈H(t)
p , H(t)

c 〉, Current partitioning function

Param : D(t)
p , D(t+1)

p , Items tracked during period t , t + 1
Param : N (t+1), New number of parallel channels
Param : f , Item frequencies
Let p(t+1) = 〈H(t+1)

p , H(t+1)
c 〉 � Next partitioning function

H(t+1)
c ← createConsistentHash(N (t+1))

�Migration cost due to items not being tracked anymore

m ←∑
d∈D(t+1)

o
βs(f (d)) · 1(p(t) �= H(t+1)

c (d))

m ←∑
d∈D(t+1)

a
βs(f (d))/N (t+1) � Ideal migration cost

H(t+1)
p ← {} � The mapping is initially empty

while |Dc| > 0 do �While not all placed
j ←−1 � Best placement
d ← ∅ � Best item to place
u ←∞ � Best utility value
for each c ∈ Dc do � For each candidate

h← p(t)(c) � Old location
for each l ∈ [1..N (t+1)] do � For each placement

a← ρ(H(t+1)
p ∪ {c⇒ l}) � Balance penalty

γ ← m+1(l �=h)·βs (f (c))
m �Migration penalty

u′ ← U (a, γ)/ f (c) � Placement utility
if u′ < u then � Better placement

j, d, u ← l, c, u′ � Update best

m ← m + 1(j �= h) · βs(f (d)) � New migration cost

H(t+1)
p ← H(t+1)

p ∪ {d ⇒ j} � Add the mapping

algorithm, it does not pick the items to place in a pre-defined
order. Instead, at each step, it considers all unplaced items and
for each item all possible placements. For each placement, it
computes the utility function and picks the placement with
the best utility (u′ in the algorithm). The redist algorithm
uses the inverse frequency of the item to scale the utility
function, so that we pick the item that brings the best utility
per volume moved. This results in placing items with higher
frequencies early. While this is similar to the scan algorithm,
in the redist algorithm, we have additional flexibility, as an
item with a lower frequency can be placed earlier than one
with a higher frequency, if the former’s utility value (U (a, γ)

in the algorithm) is sufficiently lower.
The additional flexibility provided by the redist algorithm

comes at the cost of increased computational complexity,
which is given by O(R2 · N · log N) (again, R is the number
of items tracked). This follows as there are R steps (the outer
while loop), where at the i th step placement of R − i items
(first for loop) over N possible parallel channels (second for
loop) are considered, with log N being the cost of computing
the utility for each placement (not shown in the algorithm,
due to ρ maintenance as discussed earlier).

4.2.4 The readj algorithm

The readj algorithm is based on the idea of readjusting the
item placements rather than making brand new placements.

123

Stateful data parallelism in stream processing 527

It removes the items that are not tracked anymore (D(t+1)
o)

from the explicit hash and adds the ones that are now tracked
(D(t+1)

n) based on their old mappings (using H(t)
c). This

results in a partial explicit hash that only uses N (t) parallel
channels. Here, it is assumed that N (t) ≤ N (t+1). Otherwise,
the items from channels that are not existing anymore can be
assigned to exiting parallel channels using Ht+1

c . The readj
algorithm then starts making readjustments to improve the
partitioning. The readjustment continues until there are no
readjustments that improve the utility.

The readjustments that are attempted by the readj algo-
rithm are divided into two kinds: moves and swaps. We rep-
resent a readjustment as 〈i, d1, j, d2〉. If d2 = ∅, then this
represents a move, where item d1 is moved from the i th par-
allel channel to the j th parallel channel. Otherwise, (d2 �= ∅)
represents a swap, where item d1 from the i th parallel channel
is swapped with item d2 from the j th parallel channel. Given
a readjustment 〈i, d1, j, d2〉 and the explicit hash H(t+1)

p , the
readjustment is applied as follows:

A(H(t+1)
p , 〈i, d1, j, d2〉) =

{
H(t+1)

p \{d1 ⇒ i}∪ {d1 ⇒ j} ifd2=∅
H(t+1)

p \{d1 ⇒ i,d2 ⇒ j} ∪ {d1 ⇒ j, d2⇒ i} otherwise

(21)

Given a readjustment and the old partitioning function
p(t), the migration cost incurred by the readjustment is given
as follows:

M(p(t), 〈i, d1, j, d2〉) =
βs(f (d1)) · 1(p(t)(d1) = i)− βs(f (d1)) · 1(p(t)(d1) = j)

βs(f (d2)) · 1(p(t)(d2) = j)− βs(f (d2)) · 1(p(t)(d2) = i)

(22)

Note that, Eq. 22 could yield a negative value when an
item is placed to its old channel as part of a move or swap.

The details of the readj algorithm are given in Algorithm 4.
The algorithm considers all pairs of parallel channels, and for
each pair, it considers all moves and all swaps that reduce the
imbalance penalty. The readjustment that results in the best
gain in the utility value is applied, unless none can be found.
In the latter case, the search terminates. The gain is the reduc-
tion in the utility function value per frequency moved. Since
the total number of items in the explicit hash is constant for
the readj algorithm, the utility values from different steps can
be compared, and thus, the difference can be used to com-
pute the gain. Unlike the other algorithms, the readj algo-
rithm has a strong bias toward reducing the load imbalance,
as it only considers readjustments that reduce the imbalance,
and only uses the utility function for picking the best among
those.

There are O(N 2) pairs of parallel channels and for each
pair O((R/N)2) possible readjustments. Again assuming

Algorithm 4: Readj(p(t), D(t)
p , D(t+1)

p , N (t+1), f)

Param : p(t) = 〈H(t)
p , H(t)

c 〉, Current partitioning function

Param : D(t)
p , D(t+1)

p , Items tracked during period t , t + 1
Param : N (t+1), New number of parallel channels
Param : f , Item frequencies
Let p(t+1) = 〈H(t+1)

p , H(t+1)
c 〉 � Next partitioning function

H(t+1)
c ← createConsistentHash(N (t+1))

�Migration cost due to items not being tracked anymore

m ←∑
d∈D(t+1)

o
βs(f (d)) · 1(p(t) �= H(t+1)

c (d))

m ←∑
d∈D(t+1)

a
βs(f (d))/N (t+1) � Ideal migration cost

� Tracked items stay put initially (assume N went up)

H(t+1)
p ← {d ⇒ p(t)(d) : d ∈ D(t+1)

p }
u ← 0 � Last utility value
while true do � Improvement possible

v← ∅ � Best readjustment
g←−∞ � Best gain value
for each i, j ∈ [1..N (t+1)] s.t. i �= j do

for each d1, d2 s.t. H(t+1)
p (d1) = i ∧

(H(t+1)
p (d2) = j ∨ d2 = ∅) do

w← 〈i, d1, j, d2〉 � Candidate readjustment

a← ρ(A(H(t+1)
p , w)) � Balance penalty

if a ≥ ρ(H(t+1)
p) then �Worse balance

break �Move on to next option

γ ← m+M(p(t),w)
m �Migration penalty

u′ ← U (a, γ) � Placement utility
g′ ← (u − u′)/| f (d1)− f (d2)| � Placm. gain
if g′ > g then � Better placement

v, g, u ← w, g′, u′ � Update best

if v = ∅ then � No readjustments with gain
break � Terminate the search

m ← m + M(p(t), v) � New migration cost

H(t+1)
p ← A(H(t+1)

p , v) � Update the mappings

that for each readjustment the utility can be computed in
log N time, the complexity of the code within the main loop
of the algorithm is given by O(R2 · log N). The number of
times the main loop runs can be bounded by limiting the
number of times an item can move, say by c, resulting in an
overall complexity of O(R3 · log N). This limiting of moves
is not shown in Algorithm 4. In our experiments, with a c
value of 5, the limited and unlimited versions did not result
in any difference, suggesting that the termination condition
is reached before the explicit limits put on the number of
readjustments allowed per item are hit.

4.3 Utility functions

For the utility function, we consider a number of different
ways of combining the imbalance penalty with the migra-
tion penalty. The alternatives we consider either give good
balance preference over low cost migration or treat them
equal. We do not consider alternatives that give migration
more importance relative to load balance; as with skewed

123

528 B. Gedik

workloads, it is a bigger challenge to achieve good balance.
The various utility functions we consider are listed below:

U A(ρ, γ) = ρ

U APM(ρ, γ) = ρ + γ

U APLM(ρ, γ) = ρ + log (1+ γ)

U ATM(ρ, γ) = ρ · (1+ γ)

U ATLM(ρ, γ) = ρ · (1+ log (1+ γ))

We consider only using the imbalance penalty (U A), sum-
mation and multiplication of imbalance and migration penal-
ties (U APM and U ATM, respectively), and variations of the
latter two where the migration penalty’s impact is logarith-
mic (U APLM and U ATLM, respectively).

4.4 A note on resource functions

In this paper, we considered three resource functions, that
is, constant, linear, and quadratic. These three functions are
quite common in windowed operators, as we outlined ear-
lier. For other functions, additional cases need to be added
to the Eq. 17. Constant resource functions are special in the
sense that they can be balanced without using the explicit
hash. Given that a majority of the items are not tracked, load
balance comes free for a resource with a constant resource
function. As such we do not consider a resource with a con-
stant function in our overall imbalance penalty, so as to give
additional flexibility to the construction algorithms.

4.5 Use of partitioning functions

We briefly describe the way partitioning functions are used
and updated as part of auto-fission. A stream processing sys-
tem that supports dynamic adaptation typically employs an
adaptivity loop [6], which involves the steps of measure,
analyze, plan, and activate. As part of the measure step,
various performance metrics are computed, such as through-
put and congestion [9]. The updating of the lossy counter
is piggybacked on the measurement step. Concretely, when
a new tuple reaches the splitter, its partitioning key value
is extracted and the value is run through the sliding lossy
counter. This operation takes O(1) time. The value of the
partitioning key is then provided to the partitioning function
to locate the parallel channel to use for processing the tuple.
This lookup takes O(1) time as well.

As part of the analysis step, the auto-fission controller
decides whether a change in the number of channels is
required, typically based on examining the throughput and
congestion metrics. If such a change is required, then the
planning phase starts, which includes determining the new
number of parallel channels to use as well as constructing
the new partitioning function, with the aim of maintain-
ing balance and minimizing the migration cost. The final

step, activation, involves the mechanics of adding/remov-
ing parallel channels and performing the migration of state
maintained in partitioned stateful operators that are part
of the parallel region whose number of channels is being
updated.

4.6 Parameter discussion

Finally, we provide a brief summary of the parameters used
in our system, and how they are configured.

N is a system parameter that specifies the number of chan-
nels in the parallel region. It is not an exposed parameter and
is set automatically by the stream processing runtime, as part
of the adaptivity loop.

βk parameters are application parameters that capture the
memory/network/processing characteristics of the parallel
region. They are not exposed parameters and are set based on
the nature of operators that form the parallel region served
by the partitioning function.

αk parameters are user parameters that capture the toler-
ance to memory/network/processing load imbalance. These
are exposed to system developers. Optionally, a sensible
default (e.g., in [1.1, 1.2]) can be provided as described at
the end of Sect. 3.1.

σ is an algorithmic parameter that adjusts the trade-off
between space used by the partitioning function and its effec-
tiveness in terms of load balance. While it is exposed to the
system developers, a default value of 0.1 is considered a
robust setting as described in Sect. 4.1.4 and later studied in
Sect. 5.

5 Experimental results

In this section, we present our experimental evaluation. We
use four main metrics as part of our evaluation. The first is
the relative load imbalance, b, as given in Eq. 11. We also use
the per-resource load imbalances, bk, for k ∈ {s, c, n}. The
second is the relative migration cost, m, as given in Eq. 12.
The third is the space requirement of the partitioning func-
tion. We divide this into two: the number of items kept in
the lossy counter and the number of mappings used by the
explicit hash. The fourth and the last metric is the time it
takes to build the partitioning function.

As part of the experiments, we investigate the impact of
various workload and algorithmic parameters on the afore-
mentioned metrics. The workload parameters we investigate
include resource functions (βk), data skew (z), domain size
(|D|), number of nodes (N), and the imbalance thresholds
(αk).

The algorithmic parameters we investigate include the fre-
quency threshold scaler (σ) and the utility function used (U).
These parameters apply to all three algorithms we introduced:

123

Stateful data parallelism in stream processing 529

Table 1 Experimental params.:
default values, ranges

aLetters Q, L, and C represent
Quadratic, Linear, and Constant
functions, respectively. XYZ is
used to mean βs =X,
βc = Y, βn = Z, where X, Y, Z
are one of Q, L, or C

Description Default Range

of channels, N 10 [1, 100]
Imbalance tol., α 1.2 [1, 4]
Resource functions,

βs , βc, βn

Linear, Constant,
Linear (LCL)a

{CCL,LCL, LLL,LQL}

Domain size, |D| 106 [104, 108]
Zipf skew, z = 1 1.0 [0.1, 1]
Freq. thres. scaler, σ 0.1 [0.01, 1]
Utility function, U U AP M

{
U A, U AP M , U AP L MU AT M , U AT L M

}

scan, redist, and readj. We also compare these three algo-
rithms to the uniform and consistent hash approaches.

5.1 Experimental setup

The default values of the parameters we use and their ranges
are given in Table 1. To experiment with the skew in the par-
titioning key values, we use a Zipf distribution. The default
skew used is z = 1, where the kth most frequent item dk has
frequency ∝ 1/kz . The default number of parallel channels
is set to 10. This value is set based on our previous study [24],
where we used several real-world streaming applications to
show scalability of parallel regions. The average number of
parallel channels that gave the best throughput over different
applications was around 10. As such, we do not change the
load. We start with a single channel and keep increasing the
number of channels until all the load can be handled.

To test a particular approach for N (t) parallel channels, we
start from N (0) = 1 and successively apply the partitioning
function construction algorithm until we reach N (t), increas-
ing the number of channels by one at each adaptation period,
that is, N (t+1) − N (t) = 1. We do this because the result
of partitioning function at time period t + 1 depends on the
partitioning function from time period t . As such, the perfor-
mance of a particular algorithm for a particular number of
channels also depends on its performance for lower number
of channels.

We set the default imbalance threshold to 1.2. The default
resource functions are set as linear, constant, and linear for
the state (βs), computation (βc), and communication (βn)
resources, respectively. βn is always fixed as linear (see
Sect. 3.1). For the state, the default setting assumes a time-
based sliding window (thus βs(x) = x). For computation,
we assume an aggregation computation that is incremental
(thus βc(x) = 1). We investigate various other configura-
tions, listed in Table 1. The default utility function is set as
U AP M , as it gives the best results, as we will report later
in this section. Finally, the default domain size is a million
items, but we try larger and smaller domain sizes as well.

All the results reported are averages of 5 runs.

5.2 Implementation notes

The partitioning function is implemented as a module that
performs three main tasks: frequency maintenance, lookup,
and construction. Both the frequency maintenance and the
lookup are implemented in a streaming fashion. When a new
tuple is received, the lossy counters are updated, and if needed
the active lossy counter is changed. Then, lookup is per-
formed to decide which parallel channel should be used for
routing the tuple. The construction functionality is triggered
independently, when adaptation is to be performed. The con-
struction step runs one of the algorithms we have introduced,
namely one of scan, redist, or readj.

Our particular implementation is in C++ and is designed
as a drop-in replacement for the consistent hash used by
a fission-based auto-parallelizer [24] built on top of Sys-
tem S [14]. The consistent hashing implementation we use
provides O(1) lookup performance by using the bucketing
technique [16]. More concretely, we divide the 128-bit ring
into buckets and use a sorted tree within each bucket to locate
the appropriate mapping. We rely on MurMurHash3 [19] for
hashing. Our experiments were performed on machines with
2× 3GHz Intel Xeon processors containing 4 cores (total of 8
cores) and 64GB of memory. However, partitioning function
construction does not take advantage of multiple cores.

5.3 Load balance and migration

We evaluate the impact of algorithm and workload parame-
ters on the load balance and migration.

Impact of resource functions. Figure 3 plots relative migra-
tion cost (in log), relative load imbalance, and the individual
relative load imbalances for different resources, using radar
charts. We have 4 charts, each one for a different resource
function combination. The black line marks the ideal area for
the imbalance and migration cost (relative values ≤ 1). We
make a number of observations from the figure.

First, we comment on the relative performance of differ-
ent algorithms. As expected, the uniform hash results in very

123

530 B. Gedik

Fig. 3 Impact of resource
functions on migration and
imbalance, for different
algorithms

high migration cost, reaching up to more than 8 times the
ideal. Consistent hash, on the other hand, has the best migra-
tion cost. The relative migration cost for consistent hash is
below 1 in some cases. This happens due to skew. When
the top few most frequent items do not migrate, the overall
migration cost ends up being lower than the ideal. However,
consistent hash has the worse balance among all other alter-
natives. For instance, its balance reaches 1.75 for the case of
LLL, compared to 1.55 of uniform hash.

We observe that the readj algorithm provides the lowest
relative imbalance, consistently across all resource function
settings. The LLL case illustrates this, where relative imbal-
ance is around 1.2 for readj and 1.32 for redist and scan
(around 10 % higher). However, readj has a slightly higher
relative migration cost, reaching around 1.34 times the ideal
for LLL, compared to 1.23 for redist and scan (around 8 %
lower). Redist and scan are indistinguishable form each other
(in the figure, redist marker shadows the scan marker).

We attribute the good balance properties of the readj algo-
rithm to the large set of combinations it tries out compared
with the other algorithms, including swaps of items between
channels. The readj algorithm continues as long as an adjust-

ment that improves the placement gain is found. As such it
generally achieves better balance. Since balance and migra-
tion are at odds, the slight increase in the migration cost with
the readj algorithm is expected.

Looking at different combinations of resource functions, it
is easy to see that linear and quadratic resource functions are
more difficult to balance. In the case of LQL, clearly the com-
putation imbalance cannot be kept under control for the case
of consistent hash. Even for the rest of the approaches, the
relative computation imbalance is too high (in 30 s). Recall
that the Zipf skew is 1 by default. Later in this section, we
will look at less skewed scenarios, where good balance can
be achieved.

Impact of data skew. The charts in Fig. 4 plot relative migra-
tion cost and relative load imbalance as a function of data
skew for different algorithms and for different resource func-
tion combinations. Each resource function combination is
plotted in a separate sub-figure. For the LQL resource com-
bination, the skew range is restricted to [0.25, 0.5], as the
imbalances jump up to high numbers as we try higher skews.

123

Stateful data parallelism in stream processing 531

(c)

(b)

(a)

Fig. 4 Impact of skew on migration and balance a For resource functions LCL b For resource functions LLL c For resource functions LQL

123

532 B. Gedik

The most striking observation from the figures is that the
uniform hash has a very high migration cost, more than
8 times the ideal. Other approaches have close to ideal
migration cost. The migration cost for our algorithms start
increasing after the skew reaches z = 0.8. Scan has the worst
migration cost, readj, and redist following it.

Another observation is that the consistent hash is the first
one to start violating the balance requirements (going over
the line y = 1), as the skew increases. Its relative imbalance
is up to 50 % higher compared to the best alternative, for
instance, for the LLL resource combination compared to the
readj algorithm at skew z = 1.

The violations of the balance requirement start earliest
for the LQL resource combination and latest for the LCL
combination, as the skew is increased. This is expected, as
quadratic functions are more difficult to balance compared
to linear ones, and linear ones are more difficult compared to
constant ones.

For very low skews, all approaches perform acceptably,
that is below the ideal line. Relative to others, uniform hash
performs the best in terms of the imbalance, when the skew
is low. Interestingly, uniform hash starts performing worse
compared to our algorithms, either before (in Fig. 4a) for
LCL resource combination) or at the point (in Fig. 4b) where
the relative imbalance goes above the ideal line.

Among the different algorithms we provided, the readj
algorithm performs best for LCL and LLL resource combi-
nations (up to 8 % lower, for instance compared to redist and
scan for the LLL case with skew z = 1). For the LQL resource
combination, all approaches are close, readj having slightly
higher imbalance (around 1–2 %). The imbalance values for
scan and redist are almost identical.

Impact of frequency threshold scaler. Recall that we employ
a frequency threshold scaler, σ ∈ [0, 1], which is used to set
δ as shown in Eq. 17. We use a default value of 0.1 for this
parameter. Figure 5 plots relative migration cost (on the left)
and the relative load imbalance (on the right), as a function
of σ . The results are shown for the resource combinations
LCL and LQL (LLL results were similar to LCL results).

We observe that lower σ values bring lower imbalance, but
higher migration cost. This is expected, as a lower σ value
results in more mappings to be kept in the explicit hash,
providing additional flexibility for achieving good balance.
As discussed before, improved balance comes at the cost of
increased migration cost.

In terms of migration cost, the redist algorithm provides
the best results and the scan algorithm the worse results, con-
sidering only our algorithms. As with other results, consistent
hash has the best migration cost and uniform hash the worst.

In terms of the load balance, our three algorithms pro-
vide similar performance. In the midrange of the frequency
threshold for the LCL resource combination, readj algorithm

shows slightly lower imbalance. However, for very low val-
ues of σ , the readj algorithm is unable to continue keeping
the load imbalance lower. For the LQL resource combination,
the different heuristic approaches perform closely. Interest-
ingly, the improvement provided by lower σ values in terms
of load balance is not as pronounced compared to the LCL
case. Also, there is a significant jump in the imbalance around
the range [0.25, 0.5].

The default setting of σ = 0.1 strikes a good balance
between keeping the migration cost low and the load rela-
tively well balanced. Even though smaller values seem to
provide really good balance, this not only comes at high
migration cost, but also—as we will see later see in this
section—at a very high cost with respect to partitioning func-
tion construction time as well.

Impact of the number of parallel channels. Figure 6 plots
the relative migration cost and the relative load imbalance
as a function of the number of parallel channels (N) for dif-
ferent algorithms. As usual, uniform hashing has very high
migration cost. It reaches around 22 times the ideal migra-
tion cost for 32 channels. Consistent hashing has the low-
est migration cost, and our algorithms are in between. As
the number of channels increase, the redist algorithm shows
almost flat relative migration cost around 1.15 times the ideal.
Both the scan and readj algorithms have increasing migration
cost with increasing number of channels, the former having
slightly higher cost. For 32 channels, the relative migration
cost reaches above 3 for the scan algorithm.

Looking at load balance, again we see that consistent hash
has the highest imbalance, which increases with increasing
number of channels, reaching above 2 for 32 channels. All
other approaches have lower imbalance. When the number
of parallel channels is in the range [2−20], uniform hashing
has a clearly higher relative imbalance—up to 36 % higher
compared to readj. In this range, readj algorithm performs the
best. However, after 20 channels, the imbalance of readj goes
above those of redist and scan. Considering both migration
and the imbalance, the redist algorithm is the most robust
one.

Impact of utility function. Figure 7a plots the relative migra-
tion cost (left chart) and relative imbalance (right chart) for
the readj algorithm, using different utility functions. Look-
ing at the migration cost, it is easy to see that U A performs
poorly with respect to relative migration cost, as it ignores
the migration penalty. In general, U AP M provides the low-
est relative migration cost, with the exception of LCL case,
where U AP L M performs better. Looking at the imbalance
values, we see almost no difference between different util-
ity functions, except for the case of LQL. In the latter case,
U AP M provides the lowest imbalance.

123

Stateful data parallelism in stream processing 533

(a)

(b)

Fig. 5 Impact of frequency threshold scaler on migration and balance a For resource functions LCL b For resource functions LQL

Fig. 6 Impact of number of channels on migration and load imbalance

123

534 B. Gedik

(a)

(b)

Fig. 7 Impact of utility functions on readj algorithm a For readj algorithm b For redist algorithm

The results for the redist algorithm are shown in Fig. 7b.
In terms of load balance, U AP M and U AP L M are per-
forming the best. For the LQL resource combination, the
improvement in relative imbalance is significant: up to 3
times lower. In terms of migration cost, the default util-
ity function (U AP M) provides mediocre performance: The
worst performing alternative (U AP L M) has 30–35 % higher
migration cost, and the best performing ones (U AT M and
U AT M) have 35–40 % lower migration cost. Considering
both migration cost and relative imbalance, U AP M is the
best choice. This is why we pick it as the default utility
function.

Impact of domain size. Figure 8 plots the relative load imbal-
ance as well as migration cost as a function of the domain
size, for different algorithms. With respect to load imbal-

ance, the relative performance of different algorithms is in
line with our observations so far. Our algorithms perform
better than both consistent hash and uniform hash, the for-
mer having the highest imbalance. Our three approaches have
similar performance, with redist providing up to 3 % higher
imbalance compared to readj, scan being almost same as the
former. As the domain size increases, given the fixed Zipf
skew, it becomes easier to balance the load. However, the
relative imbalance shows a flattening trend as the domain
size further increases. None of the approaches are able to
reach the ideal balance for the default skew of z = 1.

When we look at the relative migration cost, we see that
uniform hash has unacceptably high migration cost (6.5 ×
−7.5× of the ideal), which gets worse with higher domain
sizes. Consistent hash, on the other hand, performs the best.
Its relative migration cost is below the ideal. This is due

123

Stateful data parallelism in stream processing 535

Fig. 8 Impact of domain size on load imbalance and migration

to the skew in the dataset. As the consistent hash tends to
not migrate items, not moving items of high frequency can
result in relative migration costs below a single channel’s
worth of migration. Our algorithms achieve a migration cost
between 2.2 × −1.25× of the ideal, with reducing costs as
the domain size increases. Among our algorithms, redist is
the most effective and scan is the least effective.

5.4 Partitioning function size

We evaluate the impact of algorithm and workload parame-
ters on the size of the partitioning function. In particular, we
look at the number of items kept in the lossy counter and the
number of mappings kept in the explicit hash. Recall that, the
lossy counter keeps two counters per item, and the explicit
hash keeps a single channel index per item.

Impact of frequency threshold scaler. Figure 9 plots the num-
ber of items in the lossy counter (using left y-axis and the
solid lines) and the number of items in the explicit hash (using
right y-axis and dashed lines) as a function of the frequency
threshold scaler, σ , for different resource combinations.

The lossy counter size increases as the frequency thresh-
old becomes smaller. For the LCL and the LQL resource
combinations, the lines overlap as the highest order function
determines the δ and thus the number of items kept in the
lossy counter. For the default setting of σ = 0.1, the num-
ber of items kept is around 2500—quite low compared to
the 106, which is the total. For the case of LQL, this number
reaches 50K, still acceptable as an absolute value, but only
1/20th of the total. This is not too surprising, as the domain
size shows up as an inverse term in Eq. 17. As a result, the
worst case assumption used to compute δ results in a very
low value. This could be improved if an estimate of the data

Fig. 9 Impact of freq. threshold scaler on the part. function size

item distribution is known or sampling could be used to get
an estimate of it.

The size of the explicit hash is much lower, rang-
ing between 1 and 500. For the default setting of σ =
0.1, it is around 50. Surprisingly, for all resource func-
tions, the number of items kept in the explicit hash is
the same (all three lines overlap). This is because for
the quadratic resources, we use the items collected in the
lossy counter to readjust our estimate of δ and perform
an additional filter step. This was described at the end of
Sect. 4.1.3.

Figure 10 plots number of items in the lossy counter (using
left y-axis and the solid lines) and the number of items in
the explicit hash (using right y-axis and dashed lines) as a
function of the data skew, z, for different resource combina-
tions. Since the imbalances reach unacceptable levels with
the LQL setting under skew higher than z = 0.5, we plot
the results for the LQL resource combination for a lower

123

536 B. Gedik

Fig. 10 Impact of skew on partitioning function size

Fig. 11 Impact of # of channels on partitioning function size

range of the skew. The lines for LCL and LLL completely
overlap.

The number of items kept in the lossy counter is not signif-
icantly impacted by the skew. For the case of non-quadratic
resource functions, it stays mostly flat and slightly reduces
for very high skew. For the quadratic case, it shows an ini-
tial increase, followed by a slight decrease. Interestingly,
the number of items kept in the explicit map grows with
an increasing rate as the skew increases. This is shown by
the dashed lines having a super-linear trend.

Figure 11 plots the number of items in the lossy counter
(using left y-axis and the solid lines) and the number of items
in the explicit hash (using right y-axis and dashed lines) as
a function of the number of channels. Recall that according
to Eq. 17, the larger the number of channels N , the smaller
the δ, and thus the higher the number of items tracked. We
observe that the size increases linearly with the number of
channels.

Fig. 12 Impact of frequency threshold scaler on partitioning function
construction time

5.5 Partitioning function construction time

We evaluate the impact of algorithm and workload parame-
ters on the time it takes to construct the partitioning function.

Figure 12 plots the partitioning function construction time
(in seconds), as a function of the frequency threshold scaler.
Recall from Fig. 5 that reduced relative imbalance is possi-
ble with values smaller than the default setting of σ = 0.1,
albeit at the cost of increased migration cost. Figure 12
shows that the partitioning function construction time also
increases with lower values of σ . For instance, the recon-
struction cost for readj algorithm reaches around 10 s for
σ = 0.008, whereas it is below 0.05 s for the default set-
ting. Recall that, readj algorithm’s computational complex-
ity is cubic in the number of items, whereas for redist, it is
quadratic. For σ = 0.008, the reconstruction time for the
redist algorithm is slightly above 0.5 s, still acceptable con-
sidering adaptation pauses in the order of seconds [9]. The
scan algorithm has good construction time performance as
expected. In general, if higher migration costs are accept-
able, the scan algorithm can be a good choice with low σ

settings.

Figure 13 plots the partitioning function construction time
(in seconds), as a function of the number of parallel chan-
nels. Recall that, we provided time complexities in Sect. 4.2,
using R and N , where the former is the number of items in the
explicit hash. As we have seen in Fig. 11, R scales linearly
with the number of channels N . Thus, all our algorithms are
superlinear in the number of channels. Scan is the cheapest
algorithm with complexity O(R · N · log N). For the consis-
tent hash, we use 1000 replicas and 100 buckets. For these

123

Stateful data parallelism in stream processing 537

Fig. 13 Impact of number of channels on partitioning function con-
struction time

Fig. 14 Impact of data skew on partitioning function construction time

settings, the cost of constructing the consistent hash and the
explicit hash is about the same for the scan algorithm. For
other algorithms, the construction time for the explicit hash
is significantly higher and the rate of increase for the overall
construction time is higher.

Figure 14 plots the partitioning function construction time
(in seconds), as a function of the data skew z, for differ-
ent algorithms. In summary, the construction time is mostly
insensitive to the data skew for the scan algorithm. For the
redist and readj algorithms, the construction time stays flat
until the data skew goes beyond 0.8, after which the con-
struction time increases. The rate of increase is faster for
readj compared to the redist algorithm.

6 Related work

Impact of data skew on query processing performance has
been studied extensively in the context of parallel data base
systems [7,8,21,26,29,30]. Most of this work has focused
on parallel join processing.

A taxonomy of skew effects in join processing is given
in [29]. The skew found in the attribute values of the source
data is named as intrinsic skew. This is the same kind of skew
we are addressing in this paper. The skew that results from
the work not being balanced among the nodes that are partic-
ipating in the parallel computation is named partition skew.
This is what we call the imbalance problem. In this work, we
consider computation, communication, as well as memory
imbalance, with different resource functions (constant, lin-
ear, and quadratic). Since our work is on stream processing,
there is no I/O involved.

In [7], multiple algorithms, each specialized for a different
degree of skew, are used to handle skew in join processing.
To decide on the specific algorithm to apply, data sampling
is used. Since in our context the data is streaming, we rely on
sketches to detect the data characteristics (which may change
over time as well). Other examples of work addressing join
processing under skewed workloads include handling skew
found in join query results [21] and handling skew in outer
joins [30].

Parallel aggregate processing over skewed data is another
relevant area, perhaps more closely related to our work, since
an aggregation operator can be considered as a partitioned
parallel region with a single operator in it. However, the
traditional parallel aggregation computation problem does
not consider streaming data. There are two fundamental
approaches to parallelizing aggregate operators [26]. The first
is to compute the aggregation on different parts of the data and
then to merge the results. The second is to perform the aggre-
gation independently on different partitions, where each par-
tition is assigned to one of the nodes. Our work resembles
this latter approach. The first approach requires commutative
and associative functions, and also is difficult to apply in a
streaming setting as the operators are not allowed to block.
In [26], a hybrid scheme that relies on variations of the two
fundamental approaches to parallel aggregation computation
is described, which can also adapt to the data characteristics,
such as skew, by changing the algorithm being used at run-
time.

Streaming aggregation computation using data paral-
lelism has been studied in the literature as well [4]. For
streaming aggregations, data partitioning is performed by
taking into account the window boundaries. The basic idea
is to distribute windows of data over nodes, but when the
successive windows are highly overlapping (e.g., for slid-
ing windows), this approach does not scale. Additional tech-
niques are developed, which divide the windows into panes

123

538 B. Gedik

and distribute the pains across nodes, in order to minimize
the amount of repeated work and improve scalability. Our
work is orthogonal to this, as we focus on partitioned state-
ful data parallelism. Our partitioning functions do not work
for operators that are not partitioned on a key. Yet, when one
or more operators are partitioned on a key, our approach can
be applied irrespective of the kinds of the operators being
used.

Map/Reduce systems is another area where the existence
of data skew, and its impact on query performance has been
noted [8]. A solution to this problem addressing skew that
arises due to uneven assignment of data to processing nodes
as well as due to varying processing costs of different data
items is given in [17]. The idea is to detect skew, stop the
straggling tasks, and to apply repartitioning. A related tech-
nique that can be used to handle skew in Map/Reduce systems
is scalable cardinality estimation [11,12].

Another relevant area is adaptive query processing (AQP)
[6], in particular the Flux operator [25]. This operator applies
partitioned parallel processing in the context of stateful con-
tinuous queries. The focus is on dynamic load balancing, but
the level of parallelism is not dynamically adjusted. Compar-
ison of several different approaches for query parallelization
under this assumption can be found in the literature [20].

None of the previous approaches consider skew in the con-
text of stateful stream processing operators. Furthermore,
adaptation that involves adjusting the number of parallel
channels at runtime is not considered in these works. As a
direct consequence of the latter, none of the previous works
consider migration cost in their load balancing approach.
Our recent work on auto-parallelizing stateful operators [24]
gives a detailed overview of partitioned parallel processing
in stream processing systems.

7 Conclusion

In this paper, we studied partitioning functions that can be
used to distribute load among parallel channels in a data par-
allel region within a stream processing application. The func-
tions provide good computation, communication, and mem-
ory load balance, while at the same time keeping the overhead
of migration low, all in the presence of data skew. The migra-
tion is a critical aspect for stateful parallel regions that support
elastic scalability—changing the number of parallel channels
at runtime based on the resource and workload availability.
The partitioning function structure we proposed is compact
and provides constant time lookup. We introduced several
algorithms that rely on a greedy procedure based on a util-
ity function to quickly construct partitioning functions. Our
evaluation shows that the proposed functions provide better
load balance compared with uniform and consistent hashing
and migration cost close to that of consistent hashing.

Acknowledgments We thank IBM Thomas J. Watson Research Cen-
ter for providing access to compute and software resources that made
this research possible.

References

1. Abadi, D., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack,
M., Hwang, J.H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E.,
Tatbul, N., Xing, Y., Zdonik, S.: The design of the Borealis stream
processing engine. In: Proceedings of the Innovative Data Systems
Research Conference (CIDR), pp. 277–289 (2005)

2. Arasu, A., Manku, G.S.: Approximate counts and quantiles over
sliding windows. In: Proceedings of the Symposium on Principles
of Database Systems (ACM PODS) (2004)

3. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R.,
Nishizawa, I., Srivastava, U., Thomas, D., Varma, R., Widom, J.:
STREAM: the stanford stream data manager. IEEE Data Eng. Bull.
26(1), 665 (2003)

4. Balkesen, C., Tatbul, N.: Scalable data partitioning techniques for
parallel sliding window processing over data streams. In: Inter-
national Workshop on Data Management for Sensor Networks
(DMSN) (2011)

5. Cormode, G., Garofalakis, M., Haas, P., Jermaine, C.: Synopses
for Massive Data: Samples, Histograms, Wavelets, Sketches. Now
Publishing, Foundations and Trends in Databases Series (2011)

6. Deshpande, A., Ives, Z.G., Raman, V.: Adaptive query processing.
Found. Trends Databases 1(1) (2007)

7. DeWitt, D., Naughton, J., Schneider, D., Seshadri, S.S.: Practical
skew handling in parallel joins. In: Proceedings of the Very Large
Data Bases Conference (VLDB) (1992)

8. Gates, A.F., Natkovich, O., Chopra, S., Kamath, P., Narayana-
murthy, S.M., Olston, C., Reed, B., Srinivasan, S., Srivastava, U.:
Building a high-level data flow system on top of map-reduce: The
PIG experience. In: Proceedings of the Very Large Data Bases
Conference (VLDB) (2009)

9. Gedik, B., Schneider, S., Hirzel, M., Wu, K.L.: Elastic scaling for
data stream processing. IBM Research Technical Report, RC25401
(2013)

10. Gedik, B., Andrade, H.: A model-based framework for building
extensible, high performance stream processing middleware and
programming language for IBM InfoSphere streams. Softw. Pract.
Exp. 42(11), 1363–1391 (2012)

11. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Handling data skew
in mapreduce. In: Proceedings of the International Conference of
Cloud Computing and Services Science (2011)

12. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Load balancing in
mapreduce based on scalable cardinality estimates. In: Proceedings
of the International Conference on Data Engineering (IEEE ICDE)
(2012)

13. Hirzel, M., Andrade, H., Gedik, B., Kumar, V., Losa, G., Mendell,
M., Nasgaard, H., Soulé, R., Wu, K.L.: SPL language spec. Tech.
Rep. RC24897, IBM (2009)

14. Jain, N., Amini, L., Andrade, H., King, R., Park, Y., Selo, P., Venka-
tramani, C.: Design, implementation, and evaluation of the linear
road benchmark on the stream processing core. In: Proceedings
of the International Conference on Management of Data (ACM
SIGMOD) (2006)

15. Karger, D.R., Lehman, E., Leighton, T., Panigrahy, R., Levine,
M., Lewin, D.: Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the world wide web. In:
Proceedings of the International Symposium on Theory of Com-
puting (ACM STOC), pp. 654–663 (1997)

16. Karger, D.R., Sherman, A., Berkheimer, A., Bogstad, B., Dhanid-
ina, R., Iwamoto, K., Kim, B., Matkins, L., Yerushalmi, Y.: Web

123

Stateful data parallelism in stream processing 539

caching with consistent hashing. Comput. Netw. 31(11–16), 1203–
1213 (1999)

17. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.A.: SkewTune: miti-
gating skew in mapreduce applications. In: Proceedings of the Inter-
national Conference on Management of Data (ACM SIGMOD)
(2012)

18. Manku, G.S., Motwani, R.: Approximate frequency counts over
data streams. In: Proceedings of the International Conference on
Very Large Databases (VLDB) (2002)

19. MurMurHash3. http://code.google.com/p/smhasher/wiki/Murmur
Hash3 (2013). Retrieved May 2013

20. Paton, N.W., Chavez, J.B., Chen, M., Raman, V., Swart, G., Narang,
I., Yellin, D.M., Fernandes, A.A.A.: Autonomic query paralleliza-
tion using non-dedicated computers: An evaluation of adaptivity
options. In: Proceedings of the Very Large Data Bases Conference
(VLDB) (2009)

21. Poosala, V., Ioannidis, Y.E.: Estimation of query-result distribution
and its application in parallel-join load balancing. In: Proceedings
of the Very Large Data Bases Conference (VLDB) (1996)

22. S4 distributed stream computing platform. http://www.s4.io/
(2012). Retrieved May 2012

23. Schneider, S., Andrade, H., Gedik, B., Biem, A., Wu, K.L.: Elastic
scaling of data parallel operators in stream processing. In: Pro-
ceedings of the International Parallel and Distributed Processing
Symposium (IEEE IPDPS) (2009)

24. Schneider, S., Hirzel, M., Gedik, B., Wu, K.L.: Auto-parallelizing
stateful distributed streaming application. In: Proceedigns of the
International Conference on Parallel Architectures and Compila-
tion Techniques (PACT), pp. 53–64 (2012)

25. Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., Franklin, M.J.:
Flux: An adaptive partitioning operator for continuous query sys-
tems. In: Proceedings of the International Conference on Data Engi-
neering (IEEE ICDE) (2003)

26. Shatdal, A., Naughton, J.: Adaptive parallel aggregation algo-
rithms. In: Proceedings of the International Conference on Man-
agement of Data (ACM SIGMOD) (1995)

27. Storm project. http://storm-project.net/ (2012). Retrieved May
2012

28. StreamBase Systems. http://www.streambase.com (2012). Retr-
ieved May 2012

29. Walton, C., Dale, A., Jenevein, R.: A taxonomy and performance
model of data skew effects in parallel joins. In: Proceedings of the
Very Large Data Bases Conference (VLDB) (1991)

30. Xu, Y., Kostamaa, P.: Efficient outer join data skew handling in
parallel dbms. In: Proceedings of the Very Large Data Bases Con-
ference (VLDB) (2009)

123

http://code.google.com/p/smhasher/wiki/MurmurHash3
http://code.google.com/p/smhasher/wiki/MurmurHash3
http://www.s4.io/
http://storm-project.net/
http://www.streambase.com

	Partitioning functions for stateful data parallelism in stream processing
	Abstract
	1 Introduction
	2 Overview
	3 Problem definition
	3.1 Load balance properties
	3.2 Structural properties
	3.3 Adaptation properties
	3.4 Overall goal

	4 Solution
	4.1 Partitioning function structure
	4.1.1 Performing lookups
	4.1.2 Keeping track of frequencies
	4.1.3 Setting δ
	4.1.4 Setting σ

	4.2 Construction algorithms
	4.2.1 Metrics
	4.2.2 The scan algorithm
	4.2.3 The redist algorithm
	4.2.4 The readj algorithm

	4.3 Utility functions
	4.4 A note on resource functions
	4.5 Use of partitioning functions
	4.6 Parameter discussion

	5 Experimental results
	5.1 Experimental setup
	5.2 Implementation notes
	5.3 Load balance and migration
	5.4 Partitioning function size
	5.5 Partitioning function construction time

	6 Related work
	7 Conclusion
	Acknowledgments
	References

