
The VLDB Journal (2014) 23:427–448
DOI 10.1007/s00778-013-0329-7

REGULAR PAPER

Approximate similarity search for online multimedia services
on distributed CPU–GPU platforms

George Teodoro · Eduardo Valle ·
Nathan Mariano · Ricardo Torres ·
Wagner Meira Jr · Joel H. Saltz

Received: 30 August 2012 / Revised: 31 May 2013 / Accepted: 3 July 2013 / Published online: 27 July 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Similarity search in high-dimensional spaces is a
pivotal operation for several database applications, including
online content-based multimedia services. With the increas-
ing popularity of multimedia applications, these services
are facing new challenges regarding (1) the very large and
growing volumes of data to be indexed/searched and (2) the
necessity of reducing the response times as observed by end-
users. In addition, the nature of the interactions between
users and online services creates fluctuating query request
rates throughout execution, which requires a similarity search
engine to adapt to better use the computation platform and
minimize response times. In this work, we address these chal-
lenges with Hypercurves, a flexible framework for answer-
ing approximate k-nearest neighbor (kNN) queries for very

Electronic supplementary material The online version of this
article (doi:10.1007/s00778-013-0329-7) contains supplementary
material, which is available to authorized users.

G. Teodoro (B)· J. H. Saltz
Center for Comprehensive Informatics, Emory University,
Atlanta, GA, USA
e-mail: glmteodoro@gmail.com; gteodor@emory.edu

J. H. Saltz
e-mail: jhsaltz@emory.edu

E. Valle
Recod Lab/DCA/FEEC, State University of Campinas,
Campinas, SP, Brazil
e-mail: dovalle@dca.fee.unicamp.br

N. Mariano ·W. Meira Jr
Department of Computer Science, Universidade Federal
de Minas Gerais, Belo Horizonte, MG, Brazil
e-mail: nathanr@dcc.ufmg.br
e-mail: meira@dcc.ufmg.br

R. Torres
Recod Lab/DSI/IC, State University of Campinas, Campinas,
SP, Brazil
e-mail: rtorres@ic.unicamp.br

large multimedia databases. Hypercurves executes in hybrid
CPU–GPU environments and is able to attain massive query-
processing rates through the cooperative use of these devices.
Hypercurves also changes its CPU–GPU task partitioning
dynamically according to the observed load, aiming for opti-
mal response times. In our empirical evaluation, dynamic
task partitioning reduced query response times by approxi-
mately 50 % compared to the best static task partition. Due
to a probabilistic proof of equivalence to the sequential
kNN algorithm, the CPU–GPU execution of Hypercurves in
distributed (multi-node) environments can be aggressively
optimized, attaining superlinear scalability while still guar-
anteeing, with high probability, results at least as good as
those from the sequential algorithm.

Keywords Descriptor indexing · Multimedia databases ·
Information retrieval ·Hypercurves · Filter-stream ·GPGPU

1 Introduction

A Similarity search is the process of finding the most similar
objects, in a reference database, to a given query object. For
multimedia retrieval, both the query and the database objects
are represented by feature vectors in a high-dimensional
space, and similarity search can be abstracted as the process
of finding, in that space of features, the closest vectors
to the query vector, according to some notion of distance
(e.g., Euclidean distance). Similarity search is a fundamen-
tal operation for several applications in content-based mul-
timedia retrieval (CBMR), including search engines for web
images [52], image recognition on mobile devices [30], real-
time song identification [17], photo tagging in social net-
works [61], recognition of copyrighted material [71] and
many others.

123

http://dx.doi.org/10.1007/s00778-013-0329-7

428 G. Teodoro et al.

The feature vectors give multimedia documents a mean-
ingful geometry in terms of perceptual characteristics (color,
texture, motion, etc.), helping to bridge the so-called “seman-
tic gap”: the disparity between the amorphous low-level mul-
timedia coding (e.g., image pixels or audio samples) and the
complex high-level tasks (e.g., classification or document
retrieval) performed by CBMR engines. Searching for sim-
ilar documents becomes equivalent to finding similar fea-
ture vectors. Query processing may consist of several phases
and may be complex, but searching by similarity will often
remain the first step and, because of the (in-)famous “curse
of dimensionality”, one of the most expensive.

The success of current CBMR services depends on their
capacity to handle very large (and increasing) volumes of data
and to keep low response times as observed by the end-user.
The size of a database representing even a very small frac-
tion of the images available on the Web exceeds the storage
capacity of most commodity desktop machines. However,
most indexing methods for similarity searching are designed
to execute sequentially and are unable to take advantage of
the aggregate power of distributed environments. The col-
lection size and the consequent necessity of using distributed
environments are not the only challenges in keeping response
times low. The nature of user interaction with CBMR services
creates large fluctuations in request rates throughout service
execution, requiring these services to adapt dynamically at
runtime to better use the computational resources available.

Motivated by these challenges, we propose Hypercurves, a
distributed memory parallelization of the multi-dimensional
sequential index Multicurves [72,73]. The parallelization
is based on the filter-stream programming paradigm [10]
implemented in Anthill [64,65]. Hypercurves’ paralleliza-
tion strategy for distributed memory machines splits the data-
base, without need of replication, among computing nodes.
The partitions are then accessed independently before a final
reduction phase is employed to merge the partial results, in
order to provide the final answer. The efficiency of the Hyper-
curves parallelization strategy is based upon the “sorted list-
like” behavior of Multicurves’ indexes, which allows a prob-
abilistic equivalence (Sect. 4.2) between the distributed and
the sequential version of the indexes. Thus, Hypercurves can
reduce the number of elements retrieved from each partition
as the number of nodes used increase, achieving superlin-
ear scalability while still guaranteeing, with high probability,
results at least as good as those obtained by the sequential
algorithm.

Hypercurves executes on hybrid machines equipped with
both CPUs and graphics processing units (GPUs). GPUs are
massively parallel and power-efficient processors, which are
widely used in high-performance computing. These devices
are throughput-oriented processors equipped with a large
number of lower-frequency computing cores, which are
designed to execute a large number of tasks in parallel at

the cost of longer computation times for individual tasks.
Therefore, the use of GPUs by Hypercurves is challenging
because the main goal of an online application is to minimize
the response time for each of the user’s individual queries
(tasks). However, as the query rate increases and exceeds
the CPUs’ computing capabilities, the time a query spends
waiting to be processed (queue time) quickly dominates its
overall execution time, and under this circumstance, the use
of GPUs becomes favorable as it improves system throughput
and reduces or eliminates queueing times. To keep response
times optimal in both situations of high and low request loads,
we propose a dynamic CPU–GPU task scheduling strategy
that takes into account the processors’ characteristics and
the instantaneous system load to continually retune the task
partition throughout execution.

This paper addresses these challenges and significantly
improves upon the CPU-only preliminary version of Hyper-
curves [69]. The main contributions of this work include the
following:

– A GPU-enabled version of Hypercurves that uses mul-
tiple accelerators concurrently and is able to answer a
massive number of requests in very large databases.

– A new dynamic scheduler for hybrid environments that
adapts the CPU–GPU task partition under fluctuating
request rates to optimize request response times. Com-
pared to the best static task partition, the dynamic sched-
uler has obtained query response times that are up to
2.77× smaller.

– A set of optimizations for hybrid CPU–GPU environ-
ments that include cooperative execution in CPUs and
GPUs (Sect. 5);

– Performance improvements (superlinear scale-up) that
rest upon the ability of Hypercurves to partition the data-
base without overlap, such that each data partition can
be accessed independently, and we can safely reduce the
number of elements (objects) to be accessed from each
partition. We demonstrate the feasibility of this partition-
ing while maintaining results from the parallel Hyper-
curves at least as good as those from the sequential Mul-
ticurves with high probability (Sect. 4.2);

The remainder of the text is organized as follows. The next
section discusses CBMR services and related GPU-enabled
similarity search systems. Section 3 presents the sequential
index Multicurves and the parallel framework Anthill that
were used to build the parallel index Hypercurves. Hyper-
curves parallelization is detailed in Sect. 4 along with an ana-
lytical proof of the probabilistic equivalence between Multic-
urves and Hypercurves. In Sect. 5, we introduce Hypercurves
on heterogeneous CPU–GPU environments. Section 6 dis-
cusses scheduling under fluctuating request rates. Section 7

123

Approximate similarity search for online multimedia services 429

presents an experimental evaluation, and we conclude in
Sect. 8.

2 Related work

In textual data, low-level representations are strongly coupled
to semantic meaning because the correlation between textual
words and high-level concepts is strong. In multimedia, how-
ever, low-level coding (pixels, samples and frames) is distant
from the high-level semantic concepts needed to answer user
queries, which creates the much discussed “semantic gap”.
This problem is addressed by embedding multimedia doc-
uments in a space using descriptors and by using distances
between descriptors to represent perceptual dissimilarities
between documents.

Multimedia descriptors are diverse and include a wide
choice of representations for perceptual properties. These
properties include shape, color and texture for visual docu-
ments; tone, pitch and timbre for audio documents; flow and
rhythm of movement for moving pictures; and many others.
The descriptor gives these perceptual properties a precise rep-
resentation by encoding them into a feature vector. The fea-
ture vector space induces a geometric organization where per-
ceptually similar documents are given vectors close to each
other, while perceptually dissimilar documents are given vec-
tors that are further apart. Distances are usually established
using simple metrics such as Euclidean and Manhattan dis-
tances, but more complex metrics may be chosen [52].

For images and videos, the last decade witnessed the
ascent of descriptors inspired by Computer Vision, especially
the local descriptors [44,70], with the remarkable success of
the SIFT [39] descriptors. Local descriptors represent the
properties of small areas of images or videos, as opposed to
the traditional global descriptors that attempt to represent an
entire document in a single feature vector. The success of
local descriptors was followed by the use of compact rep-
resentations based on their quantization using codebooks in
the “bag-of-visual-words” model, which became one of the
primary tools in the literature [14].

Regardless of the specific choice of descriptor, the retrieval
of similar feature vectors is a core operation in almost all sys-
tems. Similar feature retrieval may be used directly, as in early
content-based image-retrieval systems [60], or indirectly, as
in cases where similarity search is part of a kNN classifier
that retrieves a preliminary set of candidates to be refined by
a more compute-intensive classifier. In one form or another,
similar feature retrieval is a critical component of systems
that handle real-world, large-scale databases [38].

In the framework of Böhm et al. [12], a multimedia
description algorithm corresponds to an extractor of fea-
ture vectors, which is represented as a function F that maps
a space of multimedia objects Obj into d-dimensional real

vectors: F : Obj → R
d . The dissimilarity between two

objects obji and obj j ∈ Obj is established by their feature
vectors distance (e.g., Euclidean distance): �(obji , obj j) =
‖F(obji), F(obj j)‖.

Objects’ dissimilarity is used to establish various types
of similarity queries [12]: range, nearest neighbor, k nearest
neighbors (kNN), inverse k-nearest neighbors, etc. This work
focuses on kNN queries. Given a database B ⊆ Obj and a
query q ∈ Obj, the k-nearest neighbors to q in B are the
indexed set of the k objects in B closest to q:

kNN(B, q, k) =
{

b1, . . . , bk ∈ B
∣∣ ∀i ≤ k

∀b ∈ B\{b1 . . . , bi },�(q, bi) ≤ �(q, b)
}

(1)

For large-scale multimedia services, however, the exact kNN
is prohibitively time-consuming and its definition must be
relaxed to account for approximate similarity search as dis-
cussed in next section.

2.1 Multimedia similarity search

Efficient query processing for multi-dimensional data has
been pursued for at least four decades with myriad appli-
cations. These applications include satisfying multi-criteria
searches, and searches with spatial and spatio-temporal con-
straints [21,23,51,77].

An exhaustive review would be overwhelming and beyond
the scope of this article. One of the most comprehensive ref-
erences to the subject is the textbook of Samet [55]. The
book chapters of Castelli [16] and Faloutsos [25] provide
a less daunting introduction, which is focused on CBMR
for images. Another comprehensive reference is the survey
of Böhm et al. [12], which provides an excellent introduc-
tion with a formalization of similarity queries, the principles
involved in their indexing process and their cost models. A
book edited by Shakhnarovich et al. [57] focuses on com-
puter vision and machine-learning applications. In the topic
of metric methods, which are able to process non-vector fea-
tures as long as they are embedded in a metric space, the
essential reference is the textbook of Zezula et al. [79]. The
survey of Chávez et al. [18] is also an excellent introduction
to similarity search in metric spaces.

Despite the diversity of methods available, those of prac-
tical interest in the context of large-scale content-based mul-
timedia services are surprisingly few. Because of the “curse
of dimensionality” (explained below), methods that insist
on exact solutions are only adequate for low-dimensional
spaces, but multimedia feature vectors often have hundreds of
dimensions. Most methods assume that they may use shared
main memory, which cannot be the case in very large data-
bases. Other methods, such as those based on clustering,
have prohibitively high index building times, with forced

123

430 G. Teodoro et al.

rebuilding if the index changes too drastically, and are, there-
fore, adequate only for static databases of moderate size.

Since performing exact kNN search on high-dimensional
datasets of multimedia descriptors is not viable, several scal-
able methods to approximate the search have been proposed.
The approximation may imply different compromises: some-
times the compromise is finding elements that are not too far
from the exact answers, i.e., guaranteeing that the distance
to the elements returned will be up to a factor from the dis-
tance to the correct elements; sometimes the compromise is
a bounded probability of missing the correct elements. The
guarantee may also be more complex, for example: it may be
a bounded probability of finding the correct answer, provided
it is sufficiently closer to the query than the closest incorrect
answer [32].

Approximation on a bounded factor is formalized as fol-
lows: given a database B ⊆ Obj and a query q ∈ Obj, the
(1 + ε) k-nearest neighbors to q in B are an indexed set of
objects in B whose distance to the true kNN is at most a
(1+ ε) factor higher:

ε-kNN (B, q, k) =
{

b1, . . . , bk ∈ B
∣∣∣

∀i ≤ k,
[
∀b ∈ B\{b1, . . . , bi }, (2)

�(q, bi) ≤ (1+ ε)�(q, b)
]}

Even if perfect accuracy can be sacrificed, the efficiency
requirements of kNN search remain very challenging: the
method should perform well for high-dimensional data (up
to hundreds of dimensions) in very large databases (at least
millions of records); and it should be dynamic, i.e., it should
allow data insertion and deletion without performance degra-
dation.

A common strategy found in methods useful for large-
scale multimedia is to project the data onto different sub-
spaces and to create subindexes for each of the subspaces.
These subindexes can typically be independently queried,
and their results are aggregated to find the final answer.

Locality-sensitive hashing (LSH) uses locality-aware
hashing functions, organized in several “hash tables”, to
index data [32]. LSH is supported by a theoretical back-
ground, which allows the prediction of the approximation
bounds for the index for a given set of parameters. The well-
succeeded family of pStable locality-sensitive hash func-
tions [19] allowed LSH to directly index Euclidean spaces,
and its geometric foundation is also strongly based on the
idea of projection onto random straight lines. LSH works
very well when the goal is to minimize the number of dis-
tances to be evaluated, and can rely upon uniform random
data access cost. However, in situations where the cost of
accessing the data dominates the cost of computation, the
efficiency of LSH is compromised. The parameterization of
LSH tends to favor the use of a large number of hash func-

tions (and thus subindexes), which also poses a challenge for
scalability.

MEDRANK is also based on the use of multiple sub
indexes. It projects data onto several random straight lines.
The data are indexed by their one-dimensional positions in
the line [22]. This method has an interesting theoretical analy-
sis that establishes, under certain hypotheses, the bounds
on approximation error. The techniques used by the algo-
rithm succeeded in moderately dimensional multi-criteria
databases, in which it is still feasible to search for exact
solutions. In those cases, many of the choices are provably
optimal [23]. For high-dimensional multimedia information,
however, MEDRANK fails, primarily due to the lack of cor-
relation between distances in straight lines and distances in
high-dimensional space [71].

Multicurves [72,73] uses fractal space-filing curves to
map a multi-dimensional vector onto an one-dimensional
key representing a position in the curve (which is referred to
here as extended-key). The position is then used to perform
a search by similarity. One important characteristic of Mul-
ticurves is its use of multiple curves where each curve maps
a projection of vectors onto a moderate-dimensional sub-
space. That dimensionality reduction results in an efficient
implementation, reducing the effects of the “curse of dimen-
sionality”. Because of the exponential nature of the “curse”,
it is more efficient to process several low- or moderate-
dimensional indexes than a single high-dimensional one.
This result is explained by the fact that we not only gain the
intrinsic advantages of using multiple curves (i.e., elements
that are incorrectly separated in one curve may be close in
another), but we also mitigate the boundary effects in each
curve. Because Multicurves is the foundation for the distrib-
uted algorithm proposed in this work, it is described in detail
in Sect. 3.1.

2.2 Scheduling and similarity search in systems
with accelerators

The use of hybrid accelerated computing systems is quickly
growing in the field of high-performance computing [74].
However, maximizing the use of these systems is a complex
task, which requires the use of elaborated software instru-
ments to handle the peculiar aspects of each type of processor
available in a machine. The benefits and challenges brought
by accelerators motivated several projects in two fields that
are particularly related to our work (1) Multi-/Many-core
scheduling techniques and (2) GPU accelerated similarity
search.

2.2.1 Scheduling in multi-/many-core systems

Mars [29] and Merge [37] have evaluated the cooperative
use of CPUs and GPUs to increase the speed of MapReduce

123

Approximate similarity search for online multimedia services 431

computations. Mars has performed an initial evaluation on
the benefits of partitioning Map and Reduce tasks stati-
cally between CPUs and GPUs. Merge has extended that
approach with the dynamic distribution of work at runtime.
The Qilin [40] system has further included an automated
methodology to map computation tasks to CPUs and GPUs.
The Qilin strategy was based on an early profiling phase,
which is used for building a performance model that esti-
mates the best division of work. These solutions (Mars,
Merge, and Qilin), however, are unable to take advantage
of distributed systems.

Other projects have focused on execution in distributed
CPU–GPU equipped platforms [13,31,53,65,67]. Ravi et
al. [31,53] have proposed techniques for the automatic
translation of generalized reductions to CPU–GPU environ-
ments via compiling techniques, which are coupled with run-
time support that coordinates execution. DAGuE [13] and
StarPU [5] are frameworks that focus on the execution of
regular linear algebra applications on CPU–GPU machines.
These systems represent the application as a directed acyclic
graph (DAG) of operations and ensure that dependencies are
respected. They offer different scheduling policies, includ-
ing those that prioritize the computation of critical paths
in the application dependency graph in order to maximize
parallelism. The work of Disher et al. [20] also accelerates
LU factorization, from linear algebra, in hybrid machines
equipped with multi-/many-core processors. Differing from
DaGuE and StarPU, Disher et al. have investigated the use of
the new intel many integrated core (MIC) architecture, and
have implemented dynamic task partitioning to improve load
balancing among MIC and multi-core CPUs.

These previous studies have focused on minimizing the
execution time of an entire application run by partitioning
the application’s internal subtasks among available devices.
In Hypercurves, however, we are interested in minimizing the
execution time of each application’s internal subtask (query),
as the execution time of each query directly impacts the
waiting times observed by the end-users. In addition, Hyper-
curves is an interactive online service and, consequently, it
is affected by fluctuating workloads. The different levels of
load observed during an execution require the CPU–GPU
task partition to be retuned dynamically to provide better use
of the hardware and minimize query response times. To the
best of our knowledge, Hypercurves is the first system to
propose scheduling techniques for minimizing query execu-
tion times for online services in hybrid CPU–GPU equipped
machines. The proposed techniques are applicable to other
online applications.

2.2.2 GPU accelerated similarity search

In the last few years, a number of studies have used many-
core processors to accelerate the typically computationally-

intensive process of similarity searching in high-dimensional
spaces. Most of these studies have focused on accelerating
the exact (brute force) kNN search [4,27,33,35,59], while
a few have used GPUs to speed up efficient approximate
similarity search algorithms [34,49,50].

The existing GPU-based exact (brute force) kNN paral-
lelizations follow a common two-stage strategy. The first
phase consists of computing similarity/distance between
the query and the reference dataset. The second stage,
which is the main difference between the methods, selects
the k-nearest neighbors using the similarity metric previ-
ously calculated. The work of Garcia et al. [27] was sem-
inal in GPU-based exact kNN; Garcia’s work evaluated
the use of CUDA and CUDA basic linear algebra subrou-
tines (CUBLAS) [47] to perform distance computations in
the first phase, showing favorable results in the CUBLAS
version. In the second stage, a parallel version of inser-
tion sort that was modified to select only the k nearest
elements was used. Kuang et al. [35] have further iden-
tified that the insertion sort performance degrades as k
increases, and thus, they improved that phase with the use
of a GPU accelerated radix-sort [56]. Additionally, Sis-
manis et al. [59] have presented a study on the perfor-
mance of various sorting algorithms for selecting kNN ele-
ments.

Other projects have introduced approaches to the multi-
GPU parallelization of kNN in shared [33] and distrib-
uted [62] memory machines. For example, in the work of
Sun et al. [62], a dataset is partitioned into disjoint data
chunks that are assigned to multiple GPU-enable machines.
These machines compute kNN in the chunks to which they
are assigned, and a reduction is employed among the nodes
to merge the results and generate the global kNN answer.

A GPU-enabled variant of the locality-sensitive hashing
(LSH) nearest neighbors search was proposed by Pan et
al. [34,49,50]. This implementation includes parallelization
for both the index building and the query-processing phases.
The authors have reported performance improvements of
approximately 40× on top of the single-core CPU version.
Unfortunately, the datasets their parallelization is able to han-
dle are limited by the size of the GPU on-chip memory, which
is a significant barrier for use in large multimedia datasets. In
Hypercurves, we achieve comparable increases in speed, but
we are additionally capable of (1) scaling to multiple GPUs
in a node and (2) using multiple machines to increase the
speed of a search, attaining superlinear scalability in multin-
ode executions.

Finally, the recent work of Kruliš et al. [34] has employed
CPUs and GPUs cooperatively to accelerate the sophisticated
and computationally-intensive signature quadratic form dis-
tance (SQFD) [6–8] similarity search method. The perfor-
mance attained by their parallelization, which carefully con-
siders the balance of the workload between CPUs and GPUs,

123

432 G. Teodoro et al.

outperforms the increases in speed of a 48-core server. Their
work, however, is limited to execution on a single node and
does not investigate scheduling under variable workloads.

3 Background

This section presents the sequential index Multicurves, par-
allelized in this work, and the Anthill framework used in the
parallelization.

3.1 The sequential index Multicurves

Multicurves [72,73] is an index for accelerating kNN queries
based on space-filling curves. One of the main challenges in
the use of space-filling curves in similarity search regards
the boundary effects that are a result of the existence of
regions that violate the curves’ neighborhood-relation pre-
serving property (i.e., the property that points that are close
in the space should be mapped to points that are close in the
curve). To overcome this problem, Multicurves uses mul-
tiple curves, expecting that in at least one of the curves
the neighborhood-relations will be preserved. Each of the
curves, however, is responsible for a subset of the dimensions,
rather than all of the dimensions as is seen in other meth-
ods [3,24,26,36,41,58]. Because of the exponential nature
of the “curse”, it is more effective to process several low-
dimensional queries than a single high-dimensional query.

Algorithm 1 Multicurves index construction
input:

B: the database elements to be indexed
curves: number of curves or subindexes
dims[i]: dimensionality of the i th curve
a[i, j]: the coordinate in the feature vector to be assigned to the j th

dimension of subindex i
C−1(): the space-filling curve projection
F(): Computes/returns a feature vector

output: an array of curves sorted lists, which composes the index
(each element is a subindex)
1: subindexes[] ← new array with curves empty sorted lists;
2: for all b ∈ B do
3: v← F(b);
4: for c← 1 to curves do
5: proj[] ← new array with dims[c] empty elements;
6: for d ← 1 to dims[c] do
7: proj[d] ← v[a[c, d]];
8: key← C−1(proj);
9: Insert < key, b > into subindexes[c];
10: return subindexes[];

Multicurves index construction is presented in Algo-
rithm 1. The feature vector for each database element is
obtained in Line 3 (it is usually precomputed). Each curve
projects the data onto a corresponding subspace and then

computes the key (short name for extended-key), which is
the one-dimensional position in the curve. The tuples 〈key, b〉
are stored in lists sorted by key, with one list per curve. Geo-
metrically, the algorithm is projecting the feature vector in
a subspace and mapping it using a curve that fills the sub-
space. For simplicity, the algorithm is presented as a “batch”
operation, but the index may be built incrementally.

Algorithm 2 Multicurves search phase
input : (in addition to curves, dims[], a[], C−1() and F() explained in
Algorithm 1)

k: the number of desired nearest neighbors
depth: the probe-depth, i.e., the number of elements to examine per

subindex
q: the data element to be queried
subindexes[]: array of sorted lists composing the index, generated in

Algorithm 1

output : a list with the k approximate nearest neighbors

1: v← F(q);
2: candidates← ∅;
3: for c← 1 to curves do
4: proj[] ← new array with dims[c] empty elements;
5: for d ← 1 to dims[c] do
6: proj[d] ← v[a[c, d]];
7: key← C−1(proj);
8: candidates← candidates ∪ {depth closest vectors to key in

subindex[c]};
9: knn← {k closest vectors to q in candidates};
10: return knn ;

The search phase (Algorithm 2) is conceptually similar:
the query is decomposed into projections, using the same
subspaces as in the index construction, and each projection
has its key computed. The algorithm then obtains a number of
candidate elements (probe-depth) from each subindex. The
elements returned are those nearest to the key in each curve.
Finally, the distances between the candidate elements and the
query are calculated, and the k nearest elements are selected
as the results. The index creation and search processes are
illustrated in Fig. 1.

For simplicity, in the scheme above, both the query and
the database elements are associated with a single feature
vector by the description function F(). The extension for
using multiple descriptors per multimedia object, as used by
local descriptors, is trivial. In the latter case, each descriptor
vector is indexed and queried independently. For example, if
a query object generates 10 feature vectors, the kNN search
will produce 10 sets of k nearest neighbors, one for each
query vector. The task of taking a final decision (classification
result, retrieval ranking) from those multiple answers is very
application-dependent and is beyond the scope of this article,
which is concerned with the basic infra-structure of the search
engine.

123

Approximate similarity search for online multimedia services 433

Fig. 1 Multicurves execution workflow. In black The index is cre-
ated by projecting the database feature vectors (small dots) onto differ-
ent subspaces and mapping each projection onto a space-filling curve
to obtain the extended-keys. Each subspace induces an independent
subindex where the vectors are stored, sorted by extended-keys. In
red Searching is performed by projecting the query feature vector (red

star) onto the same subspaces and computing the extended-keys of the
projections. A number (probe-depth) of candidates closest to the query’s
extended-key are retrieved from each subindex. Finally, the true distance
of the candidates to the query is evaluated and the k closest candidates
are returned

3.2 The parallel environment anthill

Anthill [64,65,68] is a runtime system based on the filter–
stream programming model [10]. As such, applications
developed in this paradigm are decomposed into process-
ing stages, called filters, which communicate with each
other using unidirectional streams. Additionally, at runtime,
Anthill is able to create multiple copies (instances) of each of
the application filters on the nodes of a distributed memory
machine. The streams are then responsible for providing a
set of high-level communication policies (e.g., round-robin,
broadcast, labeled stream, etc.), which abstract message rout-
ing complexities among filter instances (Fig. 2).

Fig. 2 The deployment of an Anthill application. Filters (columns)
cooperate to process the data. The filters copies (circles) are created
by Anthill’s runtime environment, and communication is mediated by
unidirectional streams (arrows)

The development of applications in the filter-stream
programming model naturally leads to pipeline and data
parallelism. Pipeline parallelism is attained with the decom-
position of the application into a set of filters that are exe-
cuted concurrently in a pipeline fashion. Data parallelism is
achieved with the creation of multiple copies of each filter,
which may process different partitions of the input data.

The filter programming abstraction in Anthill is multi-
threaded and event-oriented, deriving from the message-
oriented programming model [11,48,75]. Anthill runtime is
responsible for controlling the non-blocking I/O flow through
streams, and messages arriving at a filter instance create asso-
ciated computing events. The developer then writes the appli-
cation as a set of event-processing handlers that perform the
application-specific transformations in events and may, con-
sequently, output messages to the next stage in the pipeline.
Each filter copy is implemented as a multithreaded program
that concurrently computes events. This allows a single copy
of each filter to fully utilize a multi-core machine, reducing
the number of filters created in a distributed environment.
This feature is especially important for the construction of
Hypercurves, because it allows a dataset to be divided into
smaller number of partitions (one per machine instead of one
per CPU core or GPU), which reduces the total number of
elements to be evaluated in a distributed execution.

The multithreaded event-oriented filter interface also
enables events to be computed by heterogeneous devices
(e.g., CPUs and GPUs). This is accomplished by allowing
the programmer to provide, for the same event type, han-
dler functions targeting different processors, which are then
invoked to use the appropriate processor. Figure 3 illustrates
the architecture of a typical filter. The Filter receives data

123

434 G. Teodoro et al.

Fig. 3 The architecture of a single filter. Input streams (top blocks)
generate events that must be handled by the filter. Different handler
functions (dashed round boxes) can be provided by the programmer for
each type of event and processing unit. The event scheduler coordinates
the filter operation, selecting events to be processed by worker threads
(WTs) that invoke the handling functions according to the available
processing units (round boxes). As processing progresses, data are sent
to the output streams (bottom blocks), generating events on the next
filter (not shown)

from multiple input streams (In1, In2 and In3), each of which
has an associated event queue and handler functions. As
depicted in the figure, handlers may be implemented for dif-
ferent types of processors.

The filter Event Scheduler runs independently for each
filter instance and is responsible for selecting events to be
executed. In our implementation, one worker thread (WT) is
created for each CPU core, and when GPUs are available,
one WT is assigned to manage each GPU. When an event is
created as the result of a received message, it is not imme-
diately assigned to a WT. Instead, the event is queued in
a list of events ready for execution, and the assignment of
events to WTs occurs on-demand as WTs become idle and
request work from the scheduler. In the current implemen-
tation, a demand-driven, first-come, first-served (DDFCFS)
task assignment policy is used as the default strategy, but
other policies are available [65].

All filters run concurrently, typically on different machines,
and communication between them is managed by the run-
time system. Anthill has two implementations for the com-
munication layer, responsible for transferring data between
machines, which are built on top of message passing inter-
face (MPI) [1] and parallel virtual machine (PVM) [63]. The
choice of the implementation does not affect the application
code, as the same filter interface is provided in both cases.

4 The distributed index Hypercurves

Hypercurves is a parallel version of the sequential Multic-
urves (Sect. 3.1) that is built on top of the filter-stream pro-

gramming paradigm implemented by Anthill. This section
provides details on the Hypercurves parallelization strategy,
which was supported by a probabilistic proof of equivalence
between Multicurves and Hypercurves (Sect. 4.2).

In Hypercurves, the database is partitioned without repli-
cation among the nodes in the execution environment.
Searching is performed locally in the subindexes managed
by each node, and a reduction stage merges the results. The
cost of the algorithm is dominated by the local subindexes
searches, which are further dependent on the probe-depth
used (the number of candidates to retrieve from each
subindex). When using the same probe-depth as the sequen-
tial algorithm for each local index of the distributed environ-
ment, the answer provided by Hypercurves is guaranteed to
be at least as good as that provided by the sequential algo-
rithm. However, this is an extremely pessimistic and costly
choice for the distributed probe-depth. We have shown that
the quality of Hypercurves is equivalent to that of Multic-
urves with very high probability when dividing the original
probe-depth (that used in the sequential execution) by the
number of nodes used and adding a small “slack”. The user
can also modify the probe-depth of the parallel algorithm
(Hypercurves) according to Eq. 6 (Sect. 4.2) to guarantee
that the quality of Hypercurves is equivalent to that of Mul-
ticurves with any required probability.

This section focuses on a description of the CPU-only
Hypercurves, and the GPU accelerated approach is presented
in Sect. 5.

4.1 Hypercurves parallelization strategy

The parallelization strategy used in Hypercurves consists of
partitioning the database without any replication among the
nodes (filter instances or copies). The queries are broadcast
to all filter copies, each of which finds a local answer in its
database subsets. The local answers are then merged into a
global answer in a later reduction step. To better exploit the
Anthill execution environment, Hypercurves is created by
decomposing Multicurves into four types of filters, organized
in two parallel computation pipelines (Fig. 4).

The first pipeline is conceptually an index builder/updater
with the filters input reader (IRR) and index holder/local
searcher (IHLS). IRR reads the feature vectors from the input
database and partitions them in a round-robin fashion among
the copies of IHLS, which store the vectors received in their
local index according to Algorithm 1. The filters may exe-
cute concurrently and after the input is exhausted they may
interact to update the index, for instance, in the case that the
database is mutable.

The second pipeline, which is conceptually the query
processor, contains three filters: (1) Query Receiver (QR);
(2) IHLS (shared with the first pipeline); and (3) Aggre-
gator. QR is the entry point to the search server, receiving

123

Approximate similarity search for online multimedia services 435

Fig. 4 Hypercurves parallelization design. Four filter types are
involved: IRR, which reads data elements from the database and divides
them in a round-robin fashion among the IHLS filters to be indexed; QR,
which reads queries from the user and dispatches them to the IHLS to
be processed; IHLS, which provides a “local” index and query process-
ing for a subset of the data; and Aggregator, which collects local kNN
answers to the queries and aggregates them into a global kNN answer.

Transparent copies of those filters are instantiated as needed by Anthill’s
runtime. Several types of streams are used in communications between
those copies: for example, during a search, a query is broadcast from
QR to all copies of IHLS; then, all local answers relative to that query
are sent to the same Aggregator filter, using the “labeled-stream” facil-
ity. Each filter is multithreaded and a single instance of each filter can
concurrently use all the cores that are available in a node

and broadcasting the queries to all IHLS copies. For each
query, IHLS instances independently perform a search on
their local index partitions, retrieving local k nearest feature
vectors, similar to the sequential Multicurves (Algorithm 2).
The final answer is obtained by the Aggregator filter, which
reduces the IHLS local answers into global k nearest vec-
tors. As several Aggregator filter copies may exist, it is cru-
cial that the messages related to a particular query (with the
same query-id) are sent to the same Aggregator instance. This
correlation is guaranteed using the Anthill Labeled-Stream
communication policy, which computes the particular copy
of the Aggregator filter that will receive a given message
sent from IHLS based on a hash calculated on the query-id.
In this context, the query-id corresponds to the label of the
message. The computation pattern performed between IHLS
and Aggregator is very similar to a generalized parallel data
reduction [78].

Hypercurves exploits four dimensions of parallelism: task,
data, pipeline, and intra-filter. Task parallelism occurs as the
two pipelines are executed in parallel (e.g., index updates
and searches). Data parallelism is achieved as the database
is partitioned among the IHLS filter copies. Pipeline par-
allelism results from Anthill”s ability to execute filters of a
single computational pipeline (e.g., IRR and IHLS for updat-
ing the index) in parallel. Intra-filter parallelism refers to the
ability of a single filter copy to process events in parallel as
a multithreaded process, thereby efficiently exploiting mod-
ern multi- and many-core computers. Intra-filter parallelism
is important in Hypercurves, as it allows the creation of a sin-
gle copy of IHLS per node, instead of one per CPU core as in
typical MPI-only implementations. The creation of a single
copy of IHLS per node reduces the total number of data-

base partitions and, as a consequence, improves the system’s
scalability and efficiency.

The broadcast from QR to IHLS has little impact on per-
formance because the cost of the algorithm is dominated by
the local searches. Therefore, communication latency is off-
set by the increases in computation speed. The cost of local
searches depends heavily on the probe-depth used (the num-
ber of candidates to retrieve from each subindex). As dis-
cussed, Hypercurves can be made equivalent to Multicurves
by employing on each parallel node a probe-depth at least
as large as the one used in the sequential algorithm. How-
ever, this over-pessimistic choice is unnecessarily costly, as
is presented in the next section.

4.2 Probabilistic equivalence Multicurves–Hypercurves

Multicurves is based upon the ability of space-filling curves
to give a total order to data. This ability means that each
subindex is a sorted list from which a number of candidates
can be retrieved and then verified against the query to obtain
the k nearest candidates (Algorithm 2).

In Hypercurves, the index is partitioned and each IHLS
filter stores a subset of the database. Therefore, a single fil-
ter cannot guarantee the equivalent approximate k-nearest
neighbors, and the Aggregator filter collects the local best
answers to return a final solution. In terms of an equiva-
lence between Multi- and Hypercurves, it matters little how
the candidates are distributed among the IHLS instances
because the reduction steps performed after the candidates
are selected are conservative: they will never discard one
of the “good” answers after it is retrieved. Both Multi- and
Hypercurves will only miss a correct answer if they fail

123

436 G. Teodoro et al.

Fig. 5 The probabilistic equivalence between Multi- and Hypercurves
corresponds to the following model. In a sorted list, for a query q,
we retrieve � elements < q and � elements ≥ q. If we distribute
the elements of that list randomly into � sorted lists, how many 2ϕ

elements must we retrieve in each of those new lists, in order to ensure
that we miss none of the original elements? Because the elements < q
and ≥ q cannot exchange positions, each “half-list” can be analyzed
independently. In the example shown, the equivalence is not guaranteed,
because some elements “spill over” the ϕ limit in two of the half-lists

to retrieve it from the subindexes. Therefore, Hypercurves
can be guaranteed to be at least as good as Multicurves by
employing on each IHLS filter copy the same probe-depth as
used in the sequential Multicurves. However, this choice is
costly and over-pessimistic.

Consider the same database, either in one of Multicurves’
subindexes (sequential) with probe-depth = 2�, or parti-
tioned among � of Hypercurves’ IHLS filter instances, each
with probe-depth = 2ϕ (even probe-depths make the analy-
ses more symmetric, although the argument is essentially
the same for odd values). For any query, the candidates that
would be in a single sorted list in Multicurves are now dis-
tributed among � sorted lists in Hypercurves. In more general
terms, we start with a single sorted list and retrieve the 2�

elements closest to a query vector. If we randomly distribute
that single sorted list into � sorted lists, how many elements
must we retrieve from each of the new lists (i.e., which value
for 2ϕ must we employ) to ensure that none of the origi-
nally retrieved elements is missed? Note that: (1) due to the
sorted nature of the list, the elements before the query can-
not exchange positions with the elements after the query;
(2) no element of the original list can be lost if all those 2�

“half-lists” are shorter than ϕ. These observations, which are
essential to understand the equivalence proof, are illustrated
in Fig. 5.

Due to (1), we can analyze each half of the list indepen-
dently. The distribution of the elements among the � lists is
given by a Multinomial distribution with � trials and with
all probabilities equal to �−1. The exact probability of any
list being longer than ϕ involves computing a truncated part
of the distribution, but the exact formulas are exceedingly

Fig. 6 Equivalence between sequential Multicurves and parallel
Hypercurves with distributed probe-depth of 2ϕ, with ϕ =
(1+ σ) ��/�� and number of IHLS filter copies � = 50. The prob-
ability of missing any of the candidate vectors drops sharply close to
zero for values of σ that are still small in every configuration

complex and not much elucidative. We can, however, bound
that probability. First, an upper bound for the probability of a
single list having more than ϕ elements can be derived using
Chernoff bounds. Note that Listi ∼ Binomial(�; �−1), i.e.,
that Listi = ∑�

j=1 X j is a sum of � independent Bernoulli

trials X j with probability �−1. The Chernoff upper bounds
for Listi are then given by:

Pr [Listi > (1+ δ)μ] <

(
eδ

(1+ δ)(1+δ)

)μ

(3)

where μ = E [Listi] = �/�. Making (1+ δ)μ = ϕ we have
the desired formulation:

p = Pr [Listi > ϕ] <

⎛
⎝e

�ϕ
�
−1

(
�ϕ

�

)− �ϕ
�

⎞
⎠

�/�

(4)

Because the covariance between any two different multino-
mial components is negative, we can assume independence
and still bound the error from above. Therefore, the prob-
ability of any missed element in any of the 2� half-lists is
bounded by:

P = Pr [Listi > ϕ,∀ 1 ≤ i ≤ �] < 1− (1− p)2� (5)

This probability tends to zero for very reasonable values of
ϕ, which are still much lower than �. The idea of ”11over-
flowing” or “spilling over” can be made more explicit by
taking ϕ = (1+ σ) ��/��, i.e., if we “distribute” the probe-
depth among the filters, adding a “safety” or ”slack” factor
of (1+ σ):

P < 1−
(

1−
(

eσ (σ + 1)−σ−1
)�/�

)2�

(6)

For all reasonable scenarios, this probability tends to zero
very quickly, even for small positive σ (Fig. 6).

123

Approximate similarity search for online multimedia services 437

Fig. 7 The three progressively sophisticated parallelization strategies of the IHLS filter on CPU–GPU machines. a Grouping queries in batches
(group-size) to better utilize the GPU. b Employing multi-buffer to avoid idle phases in the GPU. c Using the CPU to perform kNN when it is idle

5 Hypercurves on CPU–GPU machines

This section presents the design and implementation of
Hypercurves on hybrid machines, equipped with CPUs and
GPUs, starting with a brief introduction to the GPU compu-
tation model. The advanced scheduling, targeting the mini-
mization of response times under fluctuating request loads,
will be addressed in Sect. 6.

5.1 Graphics processing units (GPUs)

The use of GPUs as general-purpose processors represents a
major paradigm shift toward massively parallel and power-
efficient systems, and is a growing trend in high-performance
computing. Contemporary NVIDIA GPUs, such as Fermi or
Kepler, have higher peak performances than most multi-core
CPUs. At a high level, the GPU hardware is a collection of
multiprocessors, each of which consists of a group of scalar
processors. For example, the NVIDIA Tesla M2090 used in
this study has 16 multiprocessors, each of which has 32 scalar
processors, and a total of 512 processing units. The execution
model of GPUs differs in some ways from the execution
model of multi-core CPUs: GPUs have (1) a hierarchical
memory managed by the programmer; and (2) an execution
model in which all processors in the same multiprocessor
execute the same instructions.

Developers of GPU accelerated applications may employ
programming abstractions and frameworks, such as NVIDIA
CUDA1 and OpenCL.2 CUDA organizes computation into
multiple thread blocks, which may be mapped for paral-
lel execution in the available multiprocessors. Each of the
thread blocks consists of several threads organized in thread
warps. A warp of threads executes in lock-step, and diver-
gent branching must be avoided in order to maximize per-
formance. Threads in a thread block execute on the same
multiprocessor and may communicate using shared or global

1 http://nvidia.com/cuda.
2 http://www.khronos.org/opencl/.

memory. The code that is launched by an application for exe-
cution in a GPU is named kernel. We have used CUDA in
our GPU-enabled implementations.

5.2 GPU-enabled Hypercurves

This section first presents the baseline GPU parallelization
strategy for Hypercurves (Sect. 5.2.1). The implementation
of kNN, which is used in our parallelization, on GPUs is dis-
cussed in Sect. 5.2.2. Finally, a set of optimizations is pro-
posed to improve the performance of the basic GPU-enabled
Hypercurves in Sect. 5.2.3.

5.2.1 Parallelization strategy

The IHLS filter is the most compute-intensive stage of the
Hypercurves pipeline, and therefore, it is our target for GPU
acceleration. The most expensive computation performed by
IHLS is the kNN search in the candidates returned from
the subindexes (probe-depth× curves candidates per query).
However, the execution of a single query is usually not suf-
ficient to fully utilize the parallelism of a GPU. Thus, to
efficiently use GPUs with IHLS, the IHLS filter must aggre-
gate a batch of queries (group-size queries) and dispatch
them as a group for the parallel computation of the kNN
search on a GPU. The CPU is further used to execute the less
compute-intensive operations of IHLS such as searching the
subindexes and aggregating the batches of queries in a buffer.

The baseline implementation of the GPU-enabled IHLS
filter is divided into three main stages, as presented in Fig. 7a.
The first is Retrieve Candidates, which will retrieve probe-
depth candidates for each query from each of the subindexes
(Lines 3 to 8 in Algorithm 2) and copy the candidates to a
buffer in the CPU memory. While the buffer of queries is
still not full, the first stage is repeated. When the buffer is
full, or when candidates for group-size queries are copied
to the buffer, the kNN search stage computes the k-nearest
neighbors for that batch of queries using a GPU. Finally, after

123

http://nvidia.com/cuda
http://www.khronos.org/opencl/

438 G. Teodoro et al.

Fig. 8 kNN execution workflow in a GPU. In the first phase, Calcu-
late Distances, the distance for the query objects (N) to their respective
reference dataset of objects (R) is calculated using a total of N × R
threads. Further, in the Find Top-k phase, the k nearest objects to each
of the queries are selected. This phase uses multiple threads (Z) for
selecting nearest elements of each query. Each of the Z threads uses

an independent heap to select the nearest objects in a partition of the
R distances to that query, calculated in the previous phase. Further, the
Z heaps with local answers are merged in parallel to find the global k
nearest neighbors for that query. A total of Z × N threads are used by
this kernel

the kNN search is executed, the results are sent downstream
to the Aggregator filter.

5.2.2 Efficient kNN on a GPU

This section presents the GPU-enabled kNN that was imple-
mented using CUDA. The kNN used in Hypercurves is
a variant of the traditional kNN, which has been ported
to accelerators in several works [27,33,35,59]. The tradi-
tional kNN compares the same reference dataset to a set
of queries. However, in the kNN used by IHLS each one
of N queries in the set of queries is compared to a dif-
ferent reference dataset retrieved from the indexing curves.
The size of the reference dataset for each query is defined
as R = probe-depth × curves, where probe-depth is the
number of candidates retrieved from each curve and curves
refers to the number of indexing curves used. The computa-
tion workflow of our kNN, presented in Fig. 8, is organized
into two phases, each of which is implemented as a differ-
ent kernel. The first phase, Calculate Distances, computes
the distances between each query and its R candidates. In
this stage, one GPU thread is assigned to each candidate,
accounting for a total of R × N threads in that GPU kernel.
In addition, the GPU shared memory is employed to store
the queries, as each query is reused in R distance calcula-
tions.

The second phase of the kNN, Find Top-k, selects the k
nearest points’ to each query using the distances to the R can-
didates. In this stage, a set of Z threads cooperate in the top-k
calculation of each query; thus, a total of Z × N threads are
used by this kernel. The bottom-right area of Fig. 8 presents
the top-k computation for a single query. Initially, the can-
didates associated with a query are partitioned among the Z

threads, which use a thread local heap to calculate the k near-
est points to the query in their partitions. Roughly, each thread
will evaluate R/Z points in this phase. A parallel reduction
is employed to reduce the Z heaps into a single heap, which
will contain the global k nearest points to the query. This
reduction is organized in the form of a loop, similar to a par-
allel prefix sum [28], where each active thread merges two
heaps per iteration. As a consequence, the number of active
threads and heaps will be cut in half after each iteration. This
process continues until a single heap exists.

In our parallelization, the heaps are stored in shared
memory for fast access, unless their size (k) is so large
that it no longer fits in that memory. Insertions in a heap
are data-dependent and may lead to divergent branching
among threads in a warp. However, in practice, we have
observed that the probability of inserting elements in a
heap decreases quickly as candidates are evaluated, mini-
mizing the number of divergent branches. The Find Top-k
phase distinguishes our work from most of the previous
GPU-enabled kNN searches, which employ a coarse-grained
parallelization of this phase by assigning a single thread
per query. However, the use of one thread per query is
a strong limiting factor to the full utilization of GPUs
when the number of queries to be computed is not very
large.

In addition to optimizing the computation, our method
also reduces the impact of data transfer costs by overlapping
computation with data movements. In our implementation,
the group-size queries dispatched for execution by the IHLS
filter are divided into multiple partitions and the communi-
cation and kNN computation processes for those partitions
are dispatched for parallel execution using multiple CUDA
streams.

123

Approximate similarity search for online multimedia services 439

5.2.3 IHLS optimizations

This section presents optimizations to the basic IHLS
implementation (Sect. 5.2.1), which include techniques to
maximize the use of a GPU, the utilization of CPUs in
computationally-intensive kNN operations in cases where
the CPUs would otherwise remain idle, and the use of mul-
tiple GPUs in a node.

1) Minimizing GPU idle phases: In the basic IHLS par-
allelization, the Retrieve Candidates and the kNN search
phases are computed sequentially. This strategy creates idle
periods in the GPU after a batch of queries is processed, as
the GPU idly waits for the CPU to fill up the buffer with the
next batch of queries. To minimize these GPU idle periods,
the IHLS filter was modified to (1) use multiple CPU threads
in the execution of CPU phases, while retrieving candidates,
and while copying to the buffer; and (2) employ a multi-
buffer scheme that allows CPU threads to fill up a buffer
of queries while a second buffer is processed by the GPU-
enabled kNN. With this strategy, a batch of queries will be
ready for GPU computation after the accelerator has finished
the current kNN search (Fig. 7b).

2) Cooperative CPU–GPU kNN execution: Due to the
large number of computing cores available in current CPUs
and the low computational costs involved in retrieving and
buffering candidates for kNN computation, the use of CPUs
only in these phases may not be sufficient to fully utilize
all CPU cores in a machine. Therefore, whenever the CPUs
complete the process of filling up all available buffers, they
are used to perform kNN computations instead of remaining
idle (Fig. 7c). We have noticed that using two buffers per
GPU is sufficient.

3) Execution on multi-GPU nodes: The ability to effi-
ciently use multiple GPUs in a single node is another impor-
tant feature of Hypercurves. To employ multiple GPUs, we
allow the IHLS filter to dispatch batches of queries (buffers)
concurrently for execution with the available accelerators,
assigning one batch of queries to each GPU. The pipeline for
the multi-GPU IHLS filter remains similar to that shown in
Fig.7c, except that threads will check whether at least one
of the GPUs is available for computation when deciding
whether the GPU should be used. Machines with multiple
multi-core CPUs and multiple GPUs may also have heteroge-
neous configurations of data paths between CPUs and GPUs
to reduce bottlenecks in data transfer between these devices.
The multi-GPU node used in our evaluation is built with three
GPUs and two multi-core CPUs that are connected to each
other through a nonuniform memory architecture (NUMA)
configuration. Multiple I/O hubs exist in this configuration,
and the number of links traversed to access a GPU varies
based on the CPU used by the calling process (see Fig. 9 in
Sect. 7) [66].

Fig. 9 Multi-GPU node architecture

Therefore, the efficient use of these multiple I/O hubs
requires that CPU threads using the GPUs are mapped to
appropriate CPU cores. In Hypercurves’ implementation, the
placement of CPU threads is performed so as to minimize the
number of links traversed to access the GPU. In other words,
in our example multi-GPU machine, the CPU thread using
GPU 1 is bind to CPU 1, and threads using GPU 2 and GPU 3
execute in CPU 2.

6 Response-time aware task partition

This section addresses the problem of using CPU–GPU
equipped machines to accelerate online services. GPUs are
throughput-oriented devices that typically deliver their best
performances in scenarios of high parallelism. In Hyper-
curves, however, the computation of a single user request
is not sufficient to completely utilize a GPU and, as previ-
ously discussed, multiple queries must be grouped and con-
currently processed to maximize GPU utilization. Although
the GPU throughput increases when a batch of queries is
processed in parallel, this performance gain is attained at the
cost of longer execution times for that group of queries as
compared to the execution time of a single query. Thus, the
grouping of queries required to maximize the utilization of
GPUs may contradict the primary goal of online applications:
minimizing the response time of each individual query.

The response time observed by a query (Tresp(t)), sub-
mitted to the system at timestamp t , consists of two main
components. The first component is the query execution time
(Texec.(proc)) that refers to the time a processor spends exe-
cuting a query. This time varies according to the device used,
e.g., CPU or GPU. The second component is the query queue
time, which is the interval in which a query remains queued
in the system waiting to start its execution. The queue time is
derived from the system load (load(t): the number of events
waiting for execution) at the query submission time t and
the system throughput (the number of events processed per
second).

Tresp.(t) = Texec.(proc)+ load(t)

throughput
(7)

123

440 G. Teodoro et al.

An analysis of the response-time components (presented in
Eq. 7) allows us to systematically evaluate configurations in
which the use of GPUs is pertinent. First, if the system load is
low, the execution time will be the most costly component of
the request response time. Thus, the selection of a processor
with a shorter execution time for a single query or a small
number of queries will minimize the response times. For
fine-grained tasks (queries) as computed in Hypercurves, the
execution of a single query in either of the processors would
lead to very low response times. The CPU would achieve
execution times comparable to those of a GPU because of
the costly overheads to start a computation in the latter (e.g.,
the cost of calling a GPU kernel and of data transfers from
devices). Therefore, regardless of the processor used, the
response times observed by the users are low in these cir-
cumstances and there is little room for improvement with
scheduling.

During periods in which the load of the system (load(t)) is
higher than the throughput, the system is saturated and queue
time tends to quickly dominate the query response times, as
observed in queuing theory [2,43]. This is the system condi-
tion that would presumably lead to the highest response times
and negatively affect the application quality of the service.
Therefore, in setups in which the CPUs are not sufficient for
the prompt execution of the incoming requests, and conges-
tion exists in the queue of events waiting for execution, the
use of GPUs would be beneficial as a mechanism to increase
the system throughput and, as a consequence, reduce or elim-
inate the expensive queue time component.

In summary, the use of GPUs is advantageous under cer-
tain load conditions. Because the load of the system varies
throughout execution, the appropriate use of GPUs by online
applications requires a dynamic CPU–GPU task scheduling
that should take into account the processors’ characteristics
and the instantaneous system load to retune task partitioning
dynamically.

The CPU–GPU task scheduling algorithm for online
applications that we propose, presented in Algorithm 3, is
named the Dynamic Task Assigner for Heterogeneous Envi-
ronments (DTAHE). This algorithm runs independently in
each instance of the IHLS filter and is executed concurrently
by the multiple WTs created in an IHLS instance. The main
role of the DTAHE is to decide (1) the processor that should
be used to compute each event (query) retrieved from the
waiting queue by the WTs and (2) when a batch of queries
should be dispatched for GPU computation.

Each WT in a filter executes until there remain no addi-
tional work or tasks to be processed (EndOfWork is received).
When an event is returned for computation (Line 1), the WT
will execute that event using the CPU if the load of the sys-
tem is low and the number of events waiting for execution is
smaller than or equal to the number of idle CPU threads, or
if all buffers used to aggregate queries’ candidates for GPU

Algorithm 3 DTAHE
IdleCPUs(): number of CPU cores idle
GetEvent(): pop event from the waiting queues
Buffers: set of buffers used to store query candidates
BufferEvent(e, b): store candidates to event(query) e in one of the

buffers in b
AnyGPUIdle(): true if any GPU is idle
AllFull(b): true if all buffers in b are full
AnyFull(b): true if any buffer in b is full
NotEmpty(b): true if a buffer in b is not empty
ProcessInCPU(e): execute event e in the CPU
ProcessInGPU(b): execute buffer(batch) b of queries in the GPU
1: while ((e← Get Event ()) �= EndOfWork) do
2: if load(now) ≤ I dleC PUs() or

All Full(Bu f f ers) then
3: Process I nC PU (e)
4: else
5: Bu f f er Event (e, Bu f f ers)
6: if AnyGPUIdle() then
7: if (load(now) < I dleC PUs() and

Not Empty(Bu f f er)) or AnyFull(Bu f f ers) then
8: Process I nG PU (Bu f f ers)

execution are already full (Line 2–3). If these conditions are
not met, the query will be routed for GPU execution. In that
case, query candidates are retrieved from the indexes and
copied to the buffer of queries (Line 5).

Finally, before trying to retrieve another event for com-
putation from the waiting queues, the WTs verify whether a
buffer of queries should be dispatched for GPU execution.
GPU execution occurs when at least one GPU is idle and
either (1) the load in the system is low and there are queries
buffered for GPU execution or (2) there exists a full buffer
in the set Buffers.

Notice that the optimization of the group sizes is implicit.
By dispatching the GPU buffers for execution before they
are full, the system is matching the instantaneous incoming
request rates to the processing rates and, as a consequence,
is greedily selecting the optimal number of queries to be
grouped for GPU execution under the instantaneous system
load.

7 Experimental results

In this section, we evaluate the performance of Hypercurves
in CPU–GPU equipped machines. Experiments were exe-
cuted in three configurations of machines with different gen-
erations of GPUs. The first setup is a node with two quad-
core AMD Opteron 2.0 GHz 2350 processors, 16 GB of main
memory, and a NVIDIA GeForce GTX260 GPU. The second
setup is an eight-node cluster connected with Gigabit Eth-
ernet in which each node is equipped with two quad-core
Intel Xeon E5520 processors, 24 GB of main memory, and
one NVIDIA GeForce GTX470. The third setup is a machine
equipped with a dual socket Intel X5660 2.8 GHz Westmere

123

Approximate similarity search for online multimedia services 441

processor, three NVIDIA Tesla M2090 (Fermi) GPUs, and
24 GB of DDR3 RAM (See Fig. 9). All machines used
Linux.

The main database used in the evaluation contains 130,463,
526 SIFT local feature vectors [39] with 128 dimensions. The
SIFT vectors were extracted from 233,852 background Web
images and 225 foreground images from our personal collec-
tions. The foreground images were used to compute sets of
feature vectors that must be matched, while the background
images have generated the feature vectors used to confound
the method. The foreground images, after strong transfor-
mations (rotations, changes in scale, nonlinear photometric
transformations, noise addition, etc.), were also used to cre-
ate 187,839 query feature vectors.

The experiments concentrate on issues of efficiency
because, as demonstrated in Sect. 4.2, Hypercurves returns
the same results as Multicurves with very high probability.
Thus, by construction, Hypercurves inherits the good trade-
off between precision and speed of Multicurves [73]. We also
provide a brief comparison between Multicurves and other
popular method as supplementary material in the Appen-
dix A.3.

7.1 Elementary kNN performance in a GPU

This section evaluates the performance of our kNN paral-
lelization for GPUs (detailed in Sect. 5.2.2). We first present
a performance comparison of the Find Top-k phase used in
our implementation to other GPU-enabled kNNs, as this is
the stage that distinguishes most of the available kNN GPU
implementations (Sect. 2.2.2). Our evaluation is compared
to the Vector- [4] and Heap- [50] based implementations,
which employ a coarse-grained parallelization in which a
single thread calculates the top-k answers to a query using,
respectively, an unordered vector and a heap to maintain the k
nearest points during the search. The Heap-Reduce version,
which was proposed and implemented in this work, employs
a fine-grained parallelization in which multiple threads coop-
erate in the top-k calculation of a single query (See Fig. 8
in Sect. 5.2.2). The fourth approach, named Sort [50], uses
a GPU-based sorting algorithm (our implementation uses
Thrust [9]) to sort the distances from all queries and their
reference datasets together. To avoid mixing distances to ref-
erence points relative to different queries during the sorting
phase, the query-ids are attached to the most significative bits
of the distances. After sorting, the nearest elements are the
first k elements in the batch of distances belonging to each
query.

The execution times for the top-k strategies are presented
in Fig. 10. This set of experiments used a single M2090 GPU,
400 queries, a probe-depth of 250, and eight curves. As pre-
sented, the execution times of the Vector and Heap coarse-
grained parallelizations increase as the value of k grows and,

Fig. 10 A study of the find top-k strategies

as expected, the behavior of the Heap is better than that of
the Vector. Further, the performance of our Heap-Reduce
implementation attained better results than did Vector and
Heap for all values of k. In our experimental evaluation,
the value Z used by the Heap-Reduce has been set to be
the size of a CUDA warp of threads, since it empirically
attained the best performance. The Heap-Reduce implemen-
tation additionally achieved the best performance among all
methods for values of k up to 80. For larger k values, the
performance of the Sort strategy became competitive, but
such large values are uncommon in multimedia applications.
Values of interest in such applications are approximately 10–
20.

It is worth mentioning that the top-k phase is a challeng-
ing operation for GPU parallelization, and one could consider
copying the distances to the system memory and using the
CPU for this computation. We have observed, however, that
this strategy is not worthwhile in our case because the effi-
cient GPU-based top-k calculation is still faster than the cost
of copying the distances to the CPU (which requires 3.4 ms)
for most k values of interest.

In Fig. 11, we present the kNN execution times (including
data transfers) for different numbers of queries. These results
show, as expected, that the overall execution time increases
as group-size increases (Fig. 11a). However, the amortized
cost of computing a query decreases as group-size increases,
as a consequence of the higher parallelism that leads to a
better GPU use (Fig. 11b).

7.2 Hypercurves in hybrid machines

In this section, we evaluate the performance of Hypercurves
implementation on GPUs. We first present the baseline ver-
sion of Hypercurves using query grouping that is detailed in
Sect. 7.2.1. Optimizations for minimizing the GPU idle time,
for using CPUs in kNN computations, and for executing on
multi-GPU nodes are presented, respectively, in Sects. 7.2.2,
7.2.3, and 7.2.4. This set of experiments employs a subset
of the main database containing 1,000,000 feature vectors

123

442 G. Teodoro et al.

Fig. 11 kNN execution as group-size varies (k = 10)

and 30,000 queries. A smaller database was selected with the
intention of reducing the overall execution time of our experi-
ments. Moreover, a single machine is used in each experiment
and all queries are dispatched for computation at the begin-
ning of the execution. In the CPU-only version of the appli-
cation, the queries are processed in the same order that they
are received by the filters, without aggregation of the queries
in batches. Essentially, the CPU-only Hypercurves scheduler
consists of Lines 1 and 3 of Algorithm 3 (Sect. 6). We empha-
size that a large dataset with approximately 130 million fea-
ture vectors is used in our multi-node scalability evaluation
(Sect. 7.4).

7.2.1 Effect of group-size on performance

The throughput (queries executed per second) of the GPU-
enabled Hypercurves for a typical value of probe-depth is
presented in Fig. 12. The execution scheme evaluated in
this section refers to the strategy shown in Fig. 7a, labeled
“Group-only” in the results, which is the baseline version
of the application. The results show that a small number of
queries is not sufficient to fully use a GPU and that perfor-
mance improves as group-size increases. Additionally, the
value of group-size differentially affects the GPUs used. A
larger number of queries is necessary for achieving peak
performance with the GTX260 GPU, compared to the other
GPUs used. This is a result of the lower data transfer rates
and higher communication latency of the GTX260, which
requires larger chunks of data to maximize performance.

A comparison of the throughputs achieved by the GPUs
show different levels of performance, which are derived from
the improvements in data transfer rates and computing capa-
bilities among these generations of GPUs. The following
sections evaluate optimizations on top of this baseline paral-
lelization.

7.2.2 Impact of minimizing GPU idle times

This section evaluates our strategy to reduce the idle periods
of GPUs (depicted in Fig. 7b in Sect. 5.2.3). The throughput
of Hypercurves for this optimization is presented in Fig. 12,
using the curve labeled “Multi-buffer”. As shown, the per-
formance of this version of Hypercurves nearly doubles the
throughput of the baseline version (“Group-only”) presented
in the previous section. These improvements are the result
of a better use of GPUs as batches of queries for GPU com-
putation are filled up by the CPUs in parallel with the GPU
execution and, as a consequence, the GPUs do not experi-
ence idle periods waiting for the CPU to prepare a group of
queries for execution. Moreover, speedups of about 26×were
attained over the single CPU core version of the application,

Fig. 12 Hypercurves performance as group-size varies on both machine configurations (AMD/GTX260 and Intel/GTX470). Dynamic scheduling
is not employed in these experiments: the parameters used are fixed for each execution (each data point)

123

Approximate similarity search for online multimedia services 443

Fig. 13 kNN partitioning between CPU and GPU as group-size varies

for probe-depth values of 250, 350, and 450 (probe-depths of
350 and 450 are not presented in Fig. 12). Additionally, the
GPU accelerated version of Hypercurves attained speedups
of approximately 3.4× that of the parallel CPU version of
the application using the eight cores available in either the
AMD or Intel equipped machines.

In these experiments, the CPU cores were able to fill up the
candidate buffers faster than the GPUs were able to consume
them, and as a consequence the CPU cores experienced idle
periods after the buffers were full. The ability to use these
idle CPU cycles to improve the performance is discussed in
the next section.

7.2.3 Gains due CPU–GPU kNN execution

The improvements in the kNN phase execution on CPUs dur-
ing periods in which otherwise the CPUs would remain idle
are evaluated in this section. This execution strategy is pre-
sented in Fig. 7c and discussed in Sect. 5.2.3. The throughput
of this version of Hypercurves is shown in Fig. 12, using the
“CPU-GPU kNN” label. As presented, the use of the CPU to
compute the kNN phase significantly improved the through-
put of Hypercurves, achieving an increase of performance
of approximately 1.23× that of the Multi-buffer version. In
addition, this version is 4.2× faster than the CPU-only mul-
ticore parallel version of Hypercurves.

The gains from the use of CPUs to compute the kNN
phase are higher for smaller values of group-size. This result
is explained by the lower efficiency of the GPU for small
group sizes, which consequently require fewer candidates to
be buffered per unit of time and increase the CPU idle periods
that are used in kNN computations. Fig. 13 illustrates that the
percentage of kNN tasks processed by the GPU increases as
group-size grows, which is a result of better GPU efficiency
for higher group-size values.

7.2.4 Multi-GPU execution

This section assesses the scalability of Hypercurves in a
machine equipped with multiple GPUs. We use two strate-

Fig. 14 Single node Multi-GPU scalability

gies for the placement of CPU threads that are managing
the GPUs: (1) OS: threads are not bound to any specific CPU
core: the Operating System chooses the placement of threads;
and (2) Architecture Aware: threads that manage a GPU are
bound to the CPU that is “closest” to that GPU (regarding the
number of links traversed to access the GPU) (Sect. 5.2.3).

The results of single node multi-GPU execution are pre-
sented in Fig. 14. The performance of both placement strate-
gies increases with the number of GPUs used. In addition,
for the configuration with 3 GPUs, the architecture-aware
placement attains a throughput that is 1.24× higher than the
one delivered by the OS placement. The improved scalability
of the architecture-aware placement is a result of its ability
to efficiently use CPU-GPU communication channels. For
example, the cost of transferring data increases 56 and 74 %
in comparison with the single GPU execution, respectively,
when two and three GPUs are used with the OS placement.
Architecture-aware placement is able to reduce the data trans-
fer cost increments to only 16 and 34 %, respectively, for two
and three GPUs.

7.3 Evaluating query response times

In this section, we analyze Hypercurves’ query response
times in CPU–GPU equipped machines. First, the impact of
the group-size values on query response times is evaluated in
Sect. 7.3.1. In Sect. 7.3.2, we assess the performance of the
CPU-GPU dynamic scheduling algorithm (DTAHE) under
scenarios of runtime variable workloads.

7.3.1 Effects of group-size on response times

This section evaluates the effects of the group-size on the
query response times under different query rates. We vary
both the number of queries submitted per second and the
group-size value used by Hypercurves across experiments,
but we keep them fixed within each run. Workloads varying
the query rates throughout a single execution are analyzed in
the next section.

123

444 G. Teodoro et al.

Fig. 15 Average query response times as query rates (% of the maxi-
mum) and group sizes vary, for a probe-depth of 350. The parameters
are kept fixed for each execution (each data point)

The average response times of Hypercurves using only the
GPU to compute kNN operations are presented in Fig. 15a
as the group-size values and the query rates (% of maxi-
mum delivered by the application) are varied. It is impor-
tant to note that (1) a single value for group-size would
not minimize the response times under different query rates;
(2) the response-time function to be optimized is complex;
and (3) the response-time function also depends on other
aspects such as the application parameters and the configu-
ration of the hardware used.

The Hypercurves response times in the CPU–GPU coop-
erative execution of kNN operations are presented in Fig. 15b.
The average response times for the CPU–GPU executions are
smaller for all configurations of query rates (load) and group
sizes. The average reduction in response times across all
experiments with the use of CPU–GPU was approximately
58 % compared to the version of the application that uses only
GPUs in kNN computations. This improvement is a conse-
quence of the fact that queries computed by the CPU have a

shorter execution times compared to batches of queries com-
puted in a GPU.

7.3.2 Response times with variable workloads

The ability of the DTAHE dynamic scheduler (Sect. 6) to
adapt the Hypercurves CPU–GPU work partition under sce-
narios with stochastic, variable workloads is assessed in this
section. In this evaluation, the load/request rate submitted to
Hypercurves varied during the execution following a Poisson
distribution with an expected average rate (λ) varying from
20 to 100 % of the maximum throughput of the application.
That maximum throughput was computed in a preliminary
run in which all the queries were sent for computation at the
beginning of the execution.

These experiments also included a static scheduler, named
best static, as a baseline for the evaluation of DTAHE. The
static scheduler uses a fixed value of group-size throughout
the entire execution and is therefore not able to change the
task partitioning dynamically according to the instantaneous
system load, as is performed by DTAHE. The fixed group-
size value used by the best static scheduler for each query
rate configuration is the value that minimizes the average
response times. Therefore, for each average load level (λ),
we performed an exhaustive search for the value of group-
size that minimized the average response times in preliminary
executions of the application.

Finally, the average response times for multiple request
rate levels using the best static and the dynamic DTAHE
schedulers are presented in Table 1. The queries’ aver-
age response times were significantly reduced with the
use of DTAHE compared to the best static scheduler. The
response times attained with the use of DTAHE are up to
2.77×, 1.66×, and 1.55× smaller than the response times
of the best static scheduler, respectively, for nodes equipped
with the GTX260, GTX470, and M2090 GPUs.

The evaluation with a Poisson request rate (λ) equal to
100 % of the application maximum throughput is the only
case in which DTAHE does not deliver better results than a
static scheduler. However, in this configuration a dynamic
scheduler was not expected to beat the static scheduler
because the load of the systems is very high during the entire
execution and the static best value of group-size coincides
with the best instantaneous choice. Even in this extreme case,
however, the performance penalty of the dynamic scheduling
is small and the dynamic scheduling leads to better perfor-
mance in all other configurations.

7.4 Evaluating the scalability of Hypercurves

In this section, we analyze the performance of Hypercurves
in distributed memory machines. This set of experiments
was executed using the eight-node Intel cluster with the

123

Approximate similarity search for online multimedia services 445

Table 1 Avg. query response times (in s) for static and DTAHE schedulers under stochastic loads

Scheduling Poisson λ (% of max. throughput)

20 40 60 80 100

(a) First setup (GTX260 node)

Best static 0.11 0.4 0.42 0.61 0.98

DTAHE 0.06 0.13 0.14 0.22 1.02

(b) Second setup (GTX470 8-node cluster)

Best static 0.054 0.098 0.12 0.25 0.65

DTAHE 0.034 0.089 0.10 0.16 0.68

(c) Third setup (3 GPUs M2090 node)

Best static 0.046 0.075 0.10 0.20 0.52

DTAHE 0.030 0.061 0.08 0.12 0.53

Table 2 Throughput as database size and number of nodes increase proportionally (probe-depth = 350)

Number of nodes 1 2 3 4 5 6 7 8
of cores / GPUs 16 / 1 32 / 2 48 / 3 64 / 4 70 / 5 86 / 6 102 / 7 118 / 8

Optimist (queries/s) 964 1904 2649 3598 4490 5397 6297 7483

Pessimist (queries/s) 964 1683 2197 2849 3416 3968 4498 5135

Network traffic (MB/s) 0.51 2.03 4.24 7.68 11.98 17.29 23.54 31.97

CPU–GPU cooperative version of the application that uses
all CPU cores and GPUs available on the nodes. The main
database with 130, 463, 526 feature vectors was used in this
evaluation. This evaluation focuses on scale-up experiments
in which the database is increased proportionally to the num-
ber of nodes in each run. Therefore, n/8 of the database is
used for the experiment, where n is the number of nodes.
The database is partitioned among IHLS filters in a round-
robin fashion without any replication. The communication
between filters is managed by the Anthill framework and
can use either MPI or PVM. We have evaluated the Anthill
implementations using MPI and PVM, but no significant per-
formance difference between the two was observed.

We consider the compromise between the performance of
parallelism vs. precision equivalence to the sequential algo-
rithm. A scale-up evaluation is appropriate in our application
scenario because we expect to obtain an abundant volume of
data for indexing. Therefore, a speed-up evaluation starting
with a single node holding the entire database may not be
realistic.

The query rate delivered by the algorithm considers two
parameterization scenarios named Optimist and Pessimist
(Table 2), which differ in their guarantees of equivalence
(in terms of the precision of the kNN search) to the sequen-
tial Multicurves algorithm. The Optimist parameterization
divides the probe-depth equally among the nodes, without
any slack: it will only be equivalent to Multicurves in the
unlikely case that all candidates of that query are equally dis-
tributed on the nodes. The Pessimist parameterization uses

a slack that guarantees a probability smaller than 2 % that
a candidate vector selected by the sequential algorithm will
be missing from the distributed version (See Sect. 4.2 for
details). Note that this choice is extremely conservative; to
effectively affect the answer, the missed feature vectors from
the candidate set must be among the actual top-k set, and k
is much smaller than the probe-depth.

The query-processing rates attained by Hypercurves on
the scale-up evaluations are presented in Table 2. As shown,
the scalability of the algorithm is impressive for both Opti-
mist and Pessimist configurations, achieving superlinear
scale-ups in all setups. This strong performance of Hyper-
curves is a result of (1) the fact that the retrieve candidates
from indexes phase grows logarithmically with the size of the
dataset and (2) the costly phase involving the computation
of the distances from the query to the retrieved candidates
can, as a result of the probabilistic equivalence (Sect. 4.2),
be efficiently distributed among the nodes with a relatively
small overhead.

Table 2 also presents the network traffic (MB/s) generated
among all filters of the application as the number of nodes
used increases. As shown, the amount of data exchanged is
relatively small and, as a consequence, the application would
be able to scale to a large number of machines. The intra-filter
parallelism, the ability to use all CPU cores and GPUs in a
node with a single filter instance, is an important feature of
Hypercurves (a single IHLS instance is used per machine)
that reduces its communication demands compared to using
a single instance per CPU core or GPU.

123

446 G. Teodoro et al.

Alongside the very good scalability achieved by the algo-
rithm, the raw query-processing rates (queries/s) are also very
high. For example, the numbers of queries that Hypercurves
would be able to answer per day are: 646 and 443 mil-
lion, respectively, for the Optimist and the Pessimist config-
urations. These query-processing capabilities indicate that,
by employing the technology proposed, a large-scale image
search system could be built at reasonably low hardware and
power costs per request, as GPU accelerators are very com-
putationally efficient and power-efficient platforms.

8 Conclusions and future work

In this work, we have proposed, implemented, and evalu-
ated Hypercurves, an online similarity search engine for very
large high-dimensional multimedia databases. Hypercurves
executes on CPU–GPU equipped machines and is able to
fully utilize these systems. Hypercurves has attained speed
increases of approximately 80× the speeds of the single-
core CPU version, by using a multi-GPU node. In addition,
Hypercurves has achieved superlinear scale-ups in all multi-
node distributed memory experiments while maintaining a
high probability guarantee of equivalence with the sequen-
tial Multicurves algorithm, as asserted by the proof of prob-
abilistic equivalence.

We have also investigated the problem of request response
times under scenarios with stochastically variable workloads
and proposed a dynamic scheduling (DTAHE) that is able
to adapt the CPU–GPU task partitioning during execution
according to the instantaneous system load to minimize
request response times. DTAHE reduced request response
times by up to 2.77×, in comparison with the best static
scheduling results.

We are currently interested in the complex interactions
between algorithmic design and parallel implementation for
services such as Hypercurves. We are also investigating how
a complete system for content-based image retrieval can
be built upon our indexing services and optimized using
our techniques and scheduling algorithms. We consider this
approach a promising future direction, since Hypercurves
implementations in heterogeneous environments offer very
good reply rates.

Acknowledgments We would like to express our gratitude to the
reviewers for their valuable comments, which helped us to improve our
work both in terms of content and presentation. E. Valle thanks CNPq
and FAPESP for the financial support of this work. R. Torres thanks
CAPES, CNPq (grants 306580/2012-8, 484254/2012-0), and FAPESP
for the financial support. W. Meira Jr. thanks CNPq, FAPEMIG and
InWeb for financial support of this work. E. Valle and G. Teodoro
thank the CENAPAD/UNICAMP for making available the computa-
tional resources required by the expensive experiments of this work.
This research also used resources of the Keeneland Computing Facil-
ity at the Georgia Institute of Technology, which is supported by the
National Science Foundation under Contract OCI-0910735.

References

1. The message passing interface (MPI). http://www-unix.mcs.anl.
gov/mpi/

2. Adan, I., Resing, J.: Queueing theory. Eindhoven University of
Technology, Department of Mathematics and Computing Science,
Eindhoven, The Netherlands, Lecture notes (2001)

3. Akune, F., Valle, E., Torres, R.: MONORAIL: a disk-friendly index
for huge descriptor databases. In: 20th international conference on
pattern recognition (ICPR) (2010)

4. Arefin, A.S., Riveros, C., Berretta, R., Moscato, P.: GPU-FS-kNN:
a software tool for fast and scalable kNN computation using GPUs.
PLoS ONE 7(8), e44000 (2012)

5. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU:
a unified platform for task scheduling on heterogeneous multi-
core architectures. In: International Euro-Par conference on par-
allel processing, pp. 863–874 (2009)

6. Beecks, C., Seidl, T.: On stability of adaptive similarity measures
for content-based image retrieval. In: Schoeffmann, K., Mérialdo,
B., Hauptmann, A.G., Ngo, C.W., Andreopoulos, Y., Breiteneder,
C. (eds) MMM, Lecture Notes in Computer Science, vol. 7131.
Springer (2012)

7. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form dis-
tances for content-based similarity. In: Proceedings of the 17th
ACM international conference on multimedia, MM ’09, pp. 697–
700. ACM (2009)

8. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form dis-
tance. In: Proceedings of the ACM international conference on
image and video retrieval, CIVR ’10, pp. 438–445. ACM (2010)

9. Bell, N., Hoberock, J.: Thrust: a productivity-oriented library for
CUDA. In: Mei, W., Hwu, W. (ed.) GPU Gems. Jade Edition (2011)

10. Beynon, M., Ferreira, R., Kurc, T.M., Sussman, A., Saltz, J.H.:
DataCutter: Middleware for filtering very large scientific datasets
on archival storage systems. In: IEEE symposium on mass storage
systems, pp. 119–134 (2000)

11. Bhatti, N.T., Hiltunen, M.A., Schlichting, R.D., Chiu, W.: Coyote:
a system for constructing fine-grain configurable communication
service. ACM Trans. Comput. Syst. 16(4), 321–366 (1998)

12. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-
dimensional spaces: index structures for improving the perfor-
mance of multimedia databases. ACM Comput. Surv. 33(3), 322–
373 (2001)

13. Bosilca, G., Bouteiller, A., Herault, T., Lemarinier, P., Saengpatsa,
N., Tomov, S., Dongarra, J.: Performance portability of a GPU
enabled factorization with the DAGuE framework. In: IEEE inter-
national conference on cluster computing (CLUSTER) (2011)

14. Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level
features for recognition, pp. 2559–2566. IEEE conference on com-
puter vision and pattern recognition (2010)

15. Butz, A.R.: Alternative algorithm for Hilbert’s space-filling curve.
IEEE Trans. Comput. 100(4), 424–426 (1971)

16. Castelli, V.: Multidimensional indexing structures for content-
based retrieval, pp. 373–433. Wiley, New York (2002)

17. Chandrasekhar, V., Sharifi, M., Ross, D.A.: Survey and evalua-
tion of audio fingerprinting schemes for mobile query-by-example
applications. In: Klapuri, A., Leider, C. (eds.) ISMIR, pp. 801–806.
University of Miami, Miami (2011)

18. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Search-
ing in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

19. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-
sensitive hashing scheme based on p-stable distributions. In: Pro-
ceedings of the twentieth annual symposium on computational
geometry, SCG ’04. ACM (2004)

20. Deisher, M., Smelyanskiy, M., Nickerson, B., Lee, V.W., Chuvelev,
M., Dubey, P.: Designing and dynamically load balancing hybrid

123

http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/

Approximate similarity search for online multimedia services 447

LU for multi/many-core. Comput Sci Res Dev 26(3–4), 211–220
(2011)

21. Du Mouza, C., Litwin, W., Rigaux, P.: Large-scale indexing of
spatial data in distributed repositories: the SD-Rtree. VLDB J. 18,
933–958 (2009)

22. Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search
and classification via rank aggregation. In: Proceedings of the 2003
ACM SIGMOD international conference on management of data,
SIGMOD ’03. ACM (2003)

23. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for
middleware. In: Proceedings of the 20th ACM SIGMOD-SIGACT-
SIGART symposium on principles of database systems, PODS ’01,
pp. 102–113. ACM (2001)

24. Faloutsos, C.: Gray codes for partial match and range queries. IEEE
Trans. Softw. Eng. 14, 1381–1393 (1988)

25. Faloutsos, C.: Multimedia Indexing, pp. 435–464. Wiley, New York
(2002)

26. Faloutsos, C., Roseman, S.: Fractals for secondary key retrieval.
In: Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART,
PODS ’89, pp. 247–252. ACM (1989)

27. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor
search using GPU. In: CVPR workshop on computer vision on
GPU (CVGPU). Anchorage, Alaska, USA (2008)

28. Harris, M., Sengupta, S., Owens, J.D.: Parallel Prefix Sum (Scan)
with CUDA. In: Nguyen, H. (ed.) GPU Gems 3, chap. 39, pp. 851–
876. Addison Wesley, Reading (2007)

29. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: A
mapreduce framework on graphics processors. In: Parallel archi-
tectures and compilation techniques (2008)

30. Hua, G., Fu, Y., Turk, M., Pollefeys, M., Zhang, Z.: Introduction to
the special issue on mobile vision. Int. J. Comput. Vis. 96, 277–279
(2012)

31. Huo, X., Ravi, V., Agrawal, G.: Porting irregular reductions on het-
erogeneous CPU–GPU configurations. In: 18th international con-
ference on high performance computing (HiPC) (2011)

32. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards
removing the curse of dimensionality. In: STOC, pp. 604–613
(1998)

33. Kato, K., Hosino, T.: Solving k-Nearest neighbor problem on
multiple graphics processors. In: Proceedings of the 2010 10th
IEEE/ACM international conference on cluster, cloud and grid
computing, CCGRID ’10 (2010)

34. Krulis̆, M., Skopal, T., Lokoc̆, J., Beecks, C.: Combining CPU
and GPU architectures for fast similarity search. Distrib. Parallel
Databases 30, 179–207 (2012)

35. Kuang, Q., Zhao, L.: A practical GPU based kNN algorithm. In:
International symposium on computer science and computational
technology (ISCSCT), pp. 151–155 (2009)

36. Liao, S., Lopez, M.A., Leutenegger, S.T.: High dimensional simi-
larity search with space filling curves. In: Proceedings of the 17th
international conference on data, engineering, pp. 615–622 (2001)

37. Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.: Merge: a
programming model for heterogeneous multi-core systems. SIG-
PLAN Not. 43(3), 287–296 (2008)

38. Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey of content-based
image retrieval with high-level semantics. Pattern Recogn. 40(1),
262–282 (2007)

39. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 60, 91–110 (2004)

40. Luk, C.K., Hong, S., Kim, H.: Qilin: Exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping. In: 42nd
international symposium on microarchitecture (MICRO) (2009)

41. Mainar-Ruiz, G., Perez-Cortes, J.C.: Approximate nearest neigh-
bor search using a single space-filling curve and multiple represen-
tations of the data points. In: Proceedings of the 18th international
conference on pattern recognition, pp. 502–505 (2006)

42. Megiddo, N., Shaft, U.: Efficient nearest neighbor indexing based
on a collection of space filling curves. Technical Report IBM
Research Report RJ 10093 (91909), IBM Almaden Research Cen-
ter, San Jose California (1997)

43. Menascé, D., Almeida, V.: Capacity planning for web services:
metrics, models and methods. Prentice Hall, Englewood (2002)

44. Mikolajczyk, K., Schmid, C.: A performance evaluation of local
descriptors. IEEE Trans. Pattern Anal Mach Intel 27, 1615–1630
(2005)

45. Morton, G.M.: A computer oriented geodetic data base and a new
technique in file sequencing. Technical Report, IBM Ltd., Ottawa,
Ontario, Canada (1966)

46. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with
automatic algorithm configuration. In: In VISAPP international
conference on computer vision theory and applications, pp. 331–
340 (2009)

47. nVidia corporation: CUDA CUBLAS library (2010). http://
developer.nvidia.com/

48. O’Malley, S.W., Peterson, L.L.: A dynamic network architecture.
ACM Trans. Comput. Syst. 10(2), 110–113 (1992)

49. Pan, J., Lauterbach, C., Manocha, D.: Efficient nearest-neighbor
computation for GPU-based motion planning. In: 2010 IEEE/RSJ
international conference on intelligent robots and systems (IROS),
p. 2243–2248. IEEE (2010)

50. Pan, J., Manocha, D.: Fast GPU-based locality sensitive hashing
for k-nearest neighbor computation. In: 19th ACM SIGSPATIAL
international conference on advances in geographic information
systems, GIS ’11. ACM (2011)

51. Pang, H., Ding, X., Zheng, B.: Efficient processing of exact top-k
queries over disk-resident sorted lists. VLDB J. 19, 437–456 (2010)

52. Penatti, O.A.B., Valle, E., Torres, RdS: Comparative study of global
color and texture descriptors for web image retrieval. J. Vis. Comun.
Image Rep. 23(2), 359–380 (2012)

53. Ravi, V., Ma, W., Chiu, D., Agrawal, G.: Compiler and runtime
support for enabling generalized reduction computations on hetero-
geneous parallel configurations. In: Proceedings of the 24th ACM
international conference on supercomputing, pp. 137–146. ACM
(2010)

54. Sagan, H.: Space-filling curves. Springer, New York (1994)
55. Samet, H.: Foundations of Multidimensional and Metric Data

Structures (The Morgan Kaufmann Series in Computer Graphics
and Geometric Modeling). Morgan Kaufmann Publishers Inc, San
Francisco (2005)

56. Satish, N., Harris, M., Garland, M.: Designing efficient sorting
algorithms for manycore GPUs. In: IEEE international parallel and
distributed processing symposium (IPDPS) (2009)

57. Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Meth-
ods in Learning and Vision: Theory and Practice (Neural Informa-
tion Processing). The MIT Press, Cambridge (2006)

58. Shepherd, J., Zhu, X., Megiddo, N.: A fast indexing method for
multidimensional nearest neighbor search. In: SPIE conference on
storage and retrieval for image and video databases VII, pp. 350–
355 (1999)

59. Sismanis, N., Pitsianis, N., Sun, X.: Parallel search of k-nearest
neighbors with synchronous operations (2012)

60. Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.:
Content-based image retrieval at the end of the early years. IEEE
Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

61. Stone, Z., Zickler, T., Darrell, T.: Autotagging facebook: social
network context improves photo annotation. In: IEEE computer
vision and pattern recognition workshops (2008)

62. Sun, L., Stoller, C., Newhall, T.: Hybrid MPI and GPU approach
to efficiently solving large kNN problems. Tera Grid Poster. URL
http://www.isgtw.org/pdfs/kNNposter.pdf (2010)

63. Sunderam, V.S.: PVM: a framework for parallel distributed com-
puting. Concurr. Pract. Exp. 2(4), 315–340 (1990)

123

http://developer.nvidia.com/
http://developer.nvidia.com/
http://www.isgtw.org/pdfs/kNNposter.pdf

448 G. Teodoro et al.

64. Teodoro, G., Fireman, D., Guedes, D., Jr., W.M., Ferreira, R.:
Achieving multi-level parallelism in filter-labeled stream program-
ming model. In: The 37th international conference on parallel
processing (ICPP) (2008)

65. Teodoro, G., Hartley, T.D.R., Catalyurek, U., Ferreira, R.: Run-time
optimizations for replicated dataflows on heterogeneous environ-
ments. In: Proceedings of the 19th ACM international symposium
on high performance distributed computing (HPDC) (2010)

66. Teodoro, G., Kurç, T.M., Pan, T., Cooper, L.A.D., Kong, J.,
Widener, P.M., Saltz, J.H.: Accelerating large scale image analyses
on parallel, CPU-GPU equipped systems. In: IPDPS, pp. 1093–
1104 (2012)

67. Teodoro, G., Pan, T., Kurc, T.M., Kong, J., Cooper, L.A., Pod-
horszki, N., Klasky, S., Saltz, J.H.: High-throughput analysis of
large microscopy image datasets on CPU-GPU cluster platforms.
In: IPDPS ’13 (2013)

68. Teodoro, G., Sachetto, R., Sertel, O., Gurcan, M., Jr., W.M.,
Catalyurek, U., Ferreira, R.: Coordinating the use of GPU and CPU
for improving performance of compute intensive applications. In:
IEEE cluster (2009)

69. Teodoro, G., Valle, E., Mariano, N., Torres, R., Meira Jr., W.: Adap-
tive parallel approximate similarity search for responsive multime-
dia retrieval. In: Proceedings of the 20th ACM international con-
ference on information and knowledge management, CIKM ’11.
ACM (2011)

70. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors:
a survey. Found. Trends. Comput. Graph. Vis. 3, 177–280 (2008)

71. Valle, E., Cord, M., Philipp-Foliguet, S.: Fast identification of
visual documents using local descriptors. In: Proceeding of the
eighth ACM symposium on document engineering, DocEng ’08.
ACM (2008)

72. Valle, E., Cord, M., Philipp-Foliguet, S.: High-dimensional
descriptor indexing for large multimedia databases. In: Proceed-
ing of the 17th ACM conference on information and knowledge
management, CIKM ’08. ACM (2008)

73. Valle, E., Cord, M., Phillip-Folliguet, S., Gorisse, D.: Indexing per-
sonal image collections: a flexible, scalable solution. IEEE Trans.
Consum. Elect. 56, 1167–1175 (2010)

74. Vetter, J.S., Glassbrook, R., Dongarra, J., Schwan, K., Loftis, B.,
McNally, S., Meredith, J., Roth, P., Spafford, K., Yalamanchili, S.:
Keeneland: bringing heterogeneous GPU computing to the com-
putational science community. Comput. Sci. Eng. 13(5), 90–95
(2011)

75. Welsh, M., Culler, D., Brewer, E.: SEDA: an architecture for well-
conditioned, scalable internet services. SIGOPS Oper. Syst. Rev.
35(5) (2001)

76. Winder, S.A.J., Brown, M.: Learning local image descriptors. In:
CVPR (2007)

77. Yiu, M.L., Mamoulis, N.: Multi-dimensional top-k dominating
queries. VLDB J. 18, 695–718 (2009)

78. Yu, H., Rauchwerger, L.: Adaptive reduction parallelization tech-
niques. In: Proceedings of the 14th international conference on
supercomputing, ICS ’00 (2000)

79. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity search:
the metric space approach, 1st edn. Springer Publishing Company,
Springer (2010)

123

	Approximate similarity search for online multimedia services on distributed CPU--GPU platforms
	Abstract
	1 Introduction
	2 Related work
	2.1 Multimedia similarity search
	2.2 Scheduling and similarity search in systems with accelerators
	2.2.1 Scheduling in multi-/many-core systems
	2.2.2 GPU accelerated similarity search

	3 Background
	3.1 The sequential index Multicurves
	3.2 The parallel environment anthill

	4 The distributed index Hypercurves
	4.1 Hypercurves parallelization strategy
	4.2 Probabilistic equivalence Multicurves--Hypercurves

	5 Hypercurves on CPU--GPU machines
	5.1 Graphics processing units (GPUs)
	5.2 GPU-enabled Hypercurves
	5.2.1 Parallelization strategy
	5.2.2 Efficient kNN on a GPU
	5.2.3 IHLS optimizations

	6 Response-time aware task partition
	7 Experimental results
	7.1 Elementary kNN performance in a GPU
	7.2 Hypercurves in hybrid machines
	7.2.1 Effect of group-size on performance
	7.2.2 Impact of minimizing GPU idle times
	7.2.3 Gains due CPU--GPU kNN execution
	7.2.4 Multi-GPU execution

	7.3 Evaluating query response times
	7.3.1 Effects of group-size on response times
	7.3.2 Response times with variable workloads

	7.4 Evaluating the scalability of Hypercurves

	8 Conclusions and future work
	Acknowledgments
	References

