
The VLDB Journal (2013) 22:641–663
DOI 10.1007/s00778-013-0326-x

SPECIAL ISSUE PAPER

Exploratory search framework for Web data sources

Alessandro Bozzon · Marco Brambilla ·
Stefano Ceri · Davide Mazza

Received: 24 September 2012 / Revised: 20 June 2013 / Accepted: 25 June 2013 / Published online: 31 July 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Exploratory search is an information seeking
behavior where users progressively learn about one or more
topics of interest; it departs quite radically from traditional
keyword-based query paradigms, as it combines query-
ing and browsing of resources, and covers activities such
as investigating, evaluating, comparing, and synthesizing
retrieved information. In most cases, such activities are
enabled by a conceptual description of information in terms
of entities and their semantic relationships. Customized Web
applications, where few applicative entities and their rela-
tionships are embedded within the application logics, typ-
ically provide some support to exploratory search, which
is, however, specific for a given domain. In this paper, we
describe a general-purpose exploratory search framework,
i.e., a framework which is neutral to the application logic. Our
contribution consists of the formalization of the exploratory
search paradigm over Web data sources, accessed by means
of services; extracted information is described by means
of an entity-relationship schema, which masks the service
implementations. Exploratory interaction is supported by a
general-purpose user interface including a set of widgets for

This work has been done in the context of the Search Computing
(SeCo) research project funded by the European Research Council
(ERC) IDEAS Advanced Grants.

A. Bozzon · M. Brambilla (B) · S. Ceri · D. Mazza
Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, via Ponzio 34/5, 20133 Milan, Italy
e-mail: mbrambil@elet.polimi.it

A. Bozzon
e-mail: bozzon@elet.polimi.it

S. Ceri
e-mail: ceri@elet.polimi.it

D. Mazza
e-mail: davide.mazza@polimi.it

data exploration, from big tables to atomic tables, visual dia-
grams, and geographic maps; the user interaction is translated
to queries defined in SeCoQL, a SQL-like language and pro-
tocol specifically designed for supporting exploratory search
over data sources. We illustrate the software architecture of
our prototype, which uses the interplay of a query and result
management system with an orchestrator, capable of incre-
mentally building queries and of walking through the past
navigation history. The distinctive feature of the framework
is the ability to extract top solutions, which combine top-
ranked entity instances. We evaluate exploratory search from
the end-user perspective in the context of a cognitive model
for search, by studying the user’s behavior and the effec-
tiveness of exploratory search in terms of quality of results
produced by the search process; we also compare the effec-
tiveness of interaction in using our multi-domain search sys-
tem with the use of various replicas of the system, each acting
upon a single domain, and with the use of conventional search
engines.

Keywords User interfaces · Search ·
Exploratory search · Structured Web data · Design ·
Experimentation · Performance

1 Introduction

Internet search is primarily performed by search engines,
which route users toward the Web pages that provide the
best answer to their information needs, expressed as a list of
keywords. However, not all information needs can be satis-
fied by general-purpose search systems. In many cases, Web
access occurs through special-purpose vertical applications,
dedicated to satisfying well-defined goals, where the search
activity occurs within the scope of a given domain of interest.

123

642 A. Bozzon et al.

An important trend is to support a search process, which
goes beyond one-time interactions and allows Web users to
progressively seek for information; such trend was recog-
nized by Marchionini [34] and White and Roth [52], who
introduced the notion of exploratory search, defined as the
situation in which the user starts from a not-so-well-defined
information need and progressively discovers more on his
need and on the available information to address it, with a mix
of lookup, browsing, analysis, and exploration. Exploratory
search is not supported by general-purpose search engines1

and is partially supported by a few vertical applications,
where users can explore the resources relative to the specific
vertical domain, but cannot explore beyond the application’s
boundaries.

Thus, users routinely perform explorations by progres-
sively invoking general-purpose search engines and/or spe-
cialized verticals, and then do “data integration in their
brain”, i.e., use their brain (or suitable annotations) for
remembering the search results to be used in the following
searches.

In this paper, we describe a general-purpose framework for
exploratory search. The ambition is to replicate the quality of
search experience that can be met by a vertical, tailored appli-
cation while allowing but without binding the exploration
within a given domain and without providing a user interface
specifically tailored to that domain. The proposed framework
extends the work of Bozzon et al. [8], also focused upon
exploratory search in the context of multi-domain queries.
Exploration consists of dynamically selecting a new search
dimension and adding one search step to the current query
(move forward) or in dropping the last step from the cur-
rent query (move backward); the number of retrieved data
items can either be increased or decreased as effect of the
user interaction; a decrease occurs by selecting some results
and excluding the others, an increase occurs by asking more
results from the data sources.

In our exploratory search framework, users are aware of
the conceptual structure of information that is internally rep-
resented as an entity-relationships model. Therefore, users
express their queries directly upon entities, such as hotels,
restaurants, or movie shows; moreover, users are aware of
the relationships between the concepts—that are presented
to them as possible exploration directions from given entities.
Therefore they can, e.g., select a show and then relate it to the
performing artist, the close-by restaurants, the transportation
and parking facilities, other shows being played in the same
night in town, and so on. Technically, this means that data
sources describing the underlying entities must be precisely
described to the system, that is then capable of composing

1 Although some recent versions of such engines recognize the impor-
tance of entity-based search exploration, e.g., see Google Knowledge
Graph.

their data access methods. In our environment, data sources
are wrapped as Web services, and services are progressively
added to a service repository.

The framework provides users with ranked solutions,
which take into account the various domains, by providing
at all times during interactions the short list of the “cur-
rent best” solutions and their global ranking. Technically,
this means dealing with a query protocol, i.e., a sequence
of queries which progressively extend the “current result”
step by step, where the extension occurs both structurally
(the new solution includes more features) and at the instance
level (the new solution includes more data items). Since items
are globally ranked, it is possible to present only a top subset
of them. We provide a formalization of exploratory search
sessions through a SQL-like query language and protocol,
namely SeCoQL , and we describe a reference architecture
supporting the protocol. We also introduce several visualiza-
tion options and show their interplay.

An evaluation of our approach has been performed
through a user study, with the purpose of understanding to
what extent users benefit from this new way of conducting
the search process. More precisely, the evaluation had the
following objectives:

• Developing a methodology for the comparative evalua-
tion of exploratory search interfaces, and investigating
how users behave during exploratory search. We mapped
the exploratory actions to a cognitive model for informa-
tion seeking [30], which defines a well-identified set of
search phases; log analysis allows us to understand the
most time-critical steps of the search process.

• Comparing the results produced by our multi-domain
application framework against several single-domain
applications, also delivered by the framework, which are
independently used. Such test is aimed at showing that
results are qualitatively different in the two cases and
that exploratory search presents solutions which are most
diversified in terms of contributing elements from the ini-
tial interactions.

• Identifying strength and weakness of an exploratory user
interface with multiple visualizations, and specifically
test which of the data representations is most effective
and if their combination improves over the use of a single
data representation.

• Showing the different behavioral patterns that users
exhibit when performing exploration with our approach
with respect to using search tools currently available and
widely used, such as general-purpose search engines and
domain-specific sites.

Contributions. The contributions of this work consist
of: (i) the design of a general-purpose exploratory interface
implemented through a set of widgets that can support data

123

Exploratory search framework 643

exploration, from big tables to atomic tables, visual diagrams,
and geographic maps; (ii) the formalization of the exploratory
search paradigm over Web data sources through SeCoQL (a
SQL-like language and query protocol specifically designed
for Web searches); (iii) a multi-tier software architecture and
a prototype implementation, which uses the interplay of a
data-driven search engine system with a simple orchestrator,
capable of incrementally building queries and of walking
through the past navigation history; (iv) a mapping of con-
crete exploration actions to the cognitive model for online
search proposed by Kuhlthau [30]; and (v) the evaluation of
the proposed exploratory search approach from the end-user
perspective, based on the chosen cognitive model for search.

Outline. The paper is structured as follows: Sect. 2
describes the related work; Sect. 3 provides the background
on service registration; Sect. 4 presents our exploratory user
interface; Sect. 5 describes the formalization and query lan-
guage underlying our exploratory search paradigm; Sect. 6
presents the architecture of our implementation prototype;
Sect. 7 discusses the mapping of the exploratory paradigm
to cognitive behavioral models; Sect. 8 describes the evalua-
tion of our approach and discusses the obtained results; and
finally, Sect. 9 provides our conclusions.

2 Related work

Exploratory search is a specific class of information seeking
behavior where the user’s intent is primarily to learn more on
a topic of interest [32,34,52], and it is characterized by: (i)
multiple searches, possibly over multiple sessions and span-
ning multiple sources of information; (ii) a combination of
exploration and more directed information finding activities;
and (iii) the variation or refinement of the search goal during
the search process.

Exploratory search challenges the user interfaces of state-
of-the-art search engines because it requires support to all
the stages of information acquisition, from the initial formu-
lation of the area of interest, to the discovery of the most
relevant and authoritative sources, to the establishment of
relationships among the relevant information elements. All
these steps can be performed in an iterative way and should
support the navigation of information along semantic con-
nections between data. Some connections could lead to dead
ends, and thus require to rollback the navigation history and
take other paths toward the information need fulfillment.

2.1 Models of exploratory search

A very general view on the tasks and objectives of the user
when exploring information is provided by the information
seeking funnel model proposed in Rose [42]; the model is
inspired by the “buying funnel” or “sales funnel” in the com-

mercial world, depicting the changing attitude of people at
different stages of the buying process, from all those who
might possibly be interested in a product or service to those
who actually purchase it. Similarly, users are driven to the
bottom of the funnel toward information consumption. The
first steps of the process include wandering (in which the
user does not have an information seeking goal in mind) and
exploring (in which the user has a general goal but not a plan
for how to achieve it). Subsequently, in the seeking phase, the
user clarifies the open-ended information needs that must be
satisfied, and finally in the asking phase, the user identifies an
information need that corresponds to a closed-class question.

A different characterization of the exploratory process
is given by the information foraging theory [35], which
assumes that information seekers behave like animals forag-
ing on patches. In this case, patches are information nuggets
spread all over the Web and users move among patches by
considering patch size and patch transfer effort: they try to
intake as much resources as they can, but there is an optimal
time limit to be spent on a single patch for maximizing the
information ingestion.

For the objectives of this work, search process models can
be classified into the two following categories:

• operative models, considering the different actions or
steps performed by the user during the search activity,
at different levels of granularity and specification. This
is the case of the models [2,44], and [4], described in the
next paragraph.

• cognitive models, trying to describe the sequence of feel-
ing and states of mind the user encounters during the
search. This is the case of the Kuhlthau model [30] that
will be described in detail in Sect. 7.1.

In Bates [3], Bates proposed a strategic model, where she
defines the different strategies and tactics a user employs in a
search process (e.g., refining a search, returning to the begin-
ning stages, beginning a new one). The proposed berrypick-
ing model assumes that users jump from source to source and
from search technique to search technique as a means to build
a satisfactory answer to a query. Saracevic [44] describes a
stratified interaction model that characterizes levels of inter-
actions from both the user and system side, and their inter-
play; the model embodies a cognitive level, where the inter-
play takes place between the cognitive structure of users and
the document texts. Belkin et al. [4] propose an episodic
model to define the typical steps of interaction between a
user and an information system; in this model, the user’s
goal and the undertaken tasks are the driving force of the
information seeking process, whereas representation, com-
parison, navigation, presentation, and visualization are the
tools that facilitate users’ interaction with texts.

123

644 A. Bozzon et al.

2.2 Exploratory search systems

A number of tools and systems have been proposed to support
exploratory search. Capra and Marchionini [14] describes the
“The Relation Browser,” a tool for understanding relation-
ships between items in a collection and for exploring an infor-
mation space (e.g., a set of documents or Web pages). More
recently, Golovchinsky et al. [24] presented “Querium,” a
search system for multi-session exploratory search tasks that
features a search history interface that helps people make
sense of their search activity over time. Yogev et al. [55]
describes an exploratory approach over ER data, which com-
bines an OCL-like query language, faceted search, and ER
graph navigation. An interesting aspect of Yogev et al. [55]
is the possibility for users to express their initial informa-
tion need using several query modalities, including free-text
questions and structured constraints. Our exploration model
is also based on ER graphs and hence similar to the model
of Yogev et al. [55], but our data sources are Web search
services and not relational tables.

With respect to our previous works, Bozzon et al. [8] pre-
sented a first characterization of exploratory approach for
multi-domain search processes, featuring a tabular visual-
ization of results. In a follow-up paper [7], we introduced
different visualization modalities, including the ones avail-
able in the current version of the system; the semantic ser-
vice registration methodology presented in Quarteroni et al.
[39] is summarized in Sect. 3 for the sake of completeness.
The original contribution of this paper is the formalization of
exploratory search processes through the SeCoQL language
in Sect. 5, a complete description of the search interaction
using the Khulthau model in Sect. 7, a complete description
of a reference exploratory search system in Sect. 6, and the
evaluation of the proposed framework in Sect. 8.

2.3 Exploratory search evaluation

The design of novel search systems and interfaces is backed
by several studies aimed at understanding how users behave
when satisfying their information needs on the Web [49,50].
After the seminal work of Broder [12], other studies have
investigated search behaviors by analyzing search engine
logs. These first studies, where queries were identified and
classified manually by inspecting the logs, have been fol-
lowed by several attempts to automate the classification
process and to cater for larger-scale inference of the intent
behind user’s searches (examples are [29,31], and [51]). A
review of approaches to search log data mining and Web
search investigation is contained in [1,43], and [47].

Despite the increasing recognition of the relevance of
exploratory search as information retrieval approach, few
methodologies for exploratory search interface evaluation
exist. A noteworthy example is represented by Wilson and

Schraefel [53], which proposed a usability evaluation method
intended as a sort of a lightweight framework to assess both
designed- and fully implemented search systems. The frame-
work, called search interface inspection (Sii) [54], provides
three types of analyses:

• an analysis of the different features provided by a search
system;

• an analysis of the support provided by a search system
to the implementation of a set of well-known and used
search tactics;

• an analysis of the support provided to a set of differ-
ent profiles of users performing searches w.r.t. the main
activity one tends to do while performing search (e.g.,
finding, browsing, exploring, learning).

The Sii model consists of the comparative evaluation of
multiple advanced search interfaces during the stages of the
UI design activity. In particular, the Sii method provides four
steps:

• identification of the features offered by a search system,
along with the possible user interactions in each part of
the UI;

• definition of user actions, such as the counting of how
many moves have been taken to perform a specific tactic
and the features used;

• processing of the result data;
• visual analysis of the results.

Our evaluation method is inspired by the Sii model, as we
focused on determining the actions performed by users with
respect to the cognitive models.

2.4 Integration of data sources

Our work on exploratory search assumes to work upon regis-
tered Web data sources or service providers that are seman-
tically described and connected in an integrated schema.
Therefore, we exploit past works on schema mapping and
matching.

Automatic schema matching [5,40] has been addressed by
several studies, which approached the problem by providing
the definition of appropriate logical views upon the physical
sources [48]. The problem has been addressed both at the the-
oretical level [33] and through practical mapping tools and
methods; for example, MOMIS [6] is a framework to perform
information extraction and integration from both structured
and semi-structured data sources. An excellent summary of
the state of the field in semantic schema matching and data
matching is provided in Doan and Halevy [20]. A related field
is that of ontology matching and alignment, described exten-
sively in Granitzer et al. [25] and Choi et al. [16], where the

123

Exploratory search framework 645

problem shifts to the mapping between concepts of different
ontologies.

Recent research has also addressed the (semi-) auto-
matic creation of information from partially structured Web
resources, e.g., Suchanek et al. [45]; this has promoted the
notion of semantic search, referring to a loose set of tech-
niques that address and exploit the Web of data for Web
search [22,36]. Ciglan et al. [17] proposed an approach
based on groups of semantically related entities which are
identified through automatic or semi-automatic process with
comparable quality in terms of results obtained for complex
queries. Alternative approaches, directly focusing on Web
service resources, work with clustering techniques to aggre-
gate similar data sources [21]. Finally, some approaches pro-
gressively moved the data integration activity toward query
time, with the purpose of avoiding upfront data integration
effort while incorporating the data structure advantage [27].
Some approaches enrich existing RDF knowledge bases with
information automatically gathered from registered services,
through efficient queries over these services [37].

The data exploration paradigm presented in this paper
leverages upon service description and integration as pre-
sented in Brambilla et al. [11] that proposes a conceptual, a
logical, and a physical layer, extended with automatic map-
ping to a reference knowledge base. Our exploration par-
adigm can be considered as a navigation of schemas pro-
duced with classical data integration approaches, based on
the global as view (GAV) or local as view (LAV) mappings
[19]. We trust each resource to be self-consistent and we
bring in the notion of unified consistency by mapping these
services to a reference knowledge base, which we take as the
non-modifiable resolution point of any possible mismatch. In
particular, we use data services as mechanisms for accessing
data sources, and we exploit the results of research on depen-
dencies and reachability issues among service calls [13,23]
in order to guarantee that exploratory queries as produced by
users can be supported by the underlying services; a simi-
lar approach is used by Rajaraman et al. [41], which defines
the concept of binding pattern as a meaningful integration of
services, aware of the API limitations, in terms of expected
parameters and allowed invocations. Our approach is in line
with [18] that describes the increasingly popular idea of a
Web of concepts that goes beyond the unstructured organi-
zation of Web pages.

3 Background on service registration

In order to enable exploratory search, we build a con-
ceptual description of the available information using an
entity-relationship diagram and a mapping of entities and
relationships to underlying data sources and services. Such
description that we call domain diagram (DD) is agnostic

w.r.t. the adopted data integration method; in our framework,
we rely on a lightweight semantic service registration and
annotation method, described in Suchanek et al. [46] and
Quarteroni et al. [39], which uses an external knowledge
base providing a common ground terminology; we adopted
Yago 2 [28], which integrates Geonames and Wikipedia.
Registered services provide access to data sources; each
access causes the retrieval of many result items, typically
returned in ranking order. Ranked services described in this
paper support the access to geolocalized resources in dis-
tance order from a given position (e.g., geolocalized restau-
rants, theaters, museums) or to arbitrary resources ordered
by scoring attributes (e.g., movies and restaurants ranked by
”stars”).

In our framework, data are represented at three levels
of abstraction, as depicted in Fig. 1. At the highest level,
the domain diagram provides an integrated view of infor-
mation; at the intermediate level, entities are mapped to
underlying data sources by access patterns (AP), describ-
ing the parameters which must be submitted as input or are
returned as output by specific services. Normally each ser-
vice returns several instances of a given entity of the DD,
but in some cases, a service is mapped to a subschema of the
DD, which includes several related entities, as further dis-
cussed in Suchanek et al. [46]. Finally, each access pattern
can be mapped to several data sources through a different
service interface; data sources denote the actual providers of
information.

The access pattern description contains enough informa-
tion to understand when two related entities can be queried;
given two access patterns AP1 and AP2, their pipe join
requires that for all input parameters of AP2, there is one type-
compatible output parameter in AP1 and their parallel join
requires that services AP1 and AP2 have one or more pairs
of type-compatible output parameters [10]. In these cases,
an exploratory search step can move from one entity to the
related one.

An example of DD is shown in Fig. 1 (top part); for ease
of reading, we show just entities and relationships. The DD
is obtained as a result of the registration of services about
movies, restaurants, hotels, concerts, recommendations, and
metro stations. In the example of Fig. 1, the entity Movie is
mapped to an access pattern, which makes accesses to movies
by their genre, which in turn is mapped to two data sources
such as IMDB and GoogleMovie; the access pattern receives
the movie genre as input and produces triples of movie titles,
stars, and director name, ranked by stars.

The domain diagram abstracts away from the complexity
of mapping service interfaces to data sources and of inte-
grating the different names and formats used by each source
to represent its properties, and focuses on a simple, semantic
view, which simplifies the exploration of information and the
definition of search queries by non-expert users.

123

646 A. Bozzon et al.

Fig. 1 Service registration
framework exemplified on the
Movie service mart

Legend

IMDB Google
Movie

GetMovieByGenre Artist.Name

Genre.Name
Movie.Title

Movie.Stars

A
C

C
E

S
S

P

A
T

T
E

R
N

S
E

R
V

IC
E

IN

T
E

R
F

A
C

E
S

 T
O

W
E

B
 D

A
T

A
 S

O
U

R
C

E
S

Input Field
Output Field

D
O

M
A

IN
 D

IA
G

R
A

M

Movie Artist Concert

Hotel

Location

Recome-
ndation

Resta-
urant

Metro
Station

Theatre

Access Pattern
Entity

Ranking Field

IMDB APIGoogle API

4 Exploratory search interaction

In this section, we describe our exploratory search paradigm,
which supports a search process over multiple data sources.
Exploration steps build object combinations, i.e., composite
answers produced by joins over data sources; each object in a
combination can be used as start point for further explorations
toward other objects.

We consider the following use case: “Organize a night out
in Milan, by finding a good recent movie in a theater close
to the city center and an high-quality restaurant nearby”.
This need can be satisfied by several search processes, which
should eventually produce a combination of movies, theaters,
and restaurants; in one such process, the user will first choose
movies of given year and genre and select few of them;
then, she will look for theaters featuring those movies, and
finally, she will locate good restaurants in the surroundings.
The combinations matching the query steps are progressively
built.

An exploratory search session can be roughly decomposed
in three main interaction steps, as depicted in Fig. 2b. Thanks
to the domain diagram described in Sect. 3, users express their
queries directly upon the concepts that are known to the sys-
tem, such as hotels, restaurants, or movie shows; moreover,
users are aware of the connections between the concepts,
and therefore, they can, e.g., select a show and then relate it
to several other concepts, such as the performing artist, the
close-by restaurants, the transportation and parking facilities,
other shows being played in the same night in town, and so
on. Then, the query is executed, and results are produced; the
user browses and manipulates results so as to fulfill her needs,

and then she may either iterate the process or terminate the
query session.

Note that each query can be focused just upon the known
domains, corresponding to the registered data sources; this is
a major limitation of our exploratory paradigm, as it restricts
legal queries to the entities and relationships of the DD, but
such limitation eases query expression and the exploration
of the search space.

A process that leads a user to the explicit selection of
service interfaces is shown in Fig. 2a. The user starts by
selecting one of the available entities in the domain diagram.
Upon selection, the system provides the set of access patterns
conforming to the selected entity; for instance, the movie
entity may be selected by providing either the title, or the
genre and the year, or the name of the director. Finally, the
user specifies the concrete service to use for object retrieval
(e.g., the IMDB movie service). Different processes are also
possible, where the user is unaware of either access patterns
or service interfaces, which are autonomously selected by
the system, or guessed by the type of the input parameters
provided by users.

Figure 3a provides an example of the first search ser-
vice selection process for the considered case study. After
the selection of Movie, the user decides to look for movies
according to their genre and to get Action movies from the
IMDB service, providing the required input parameter. After
query execution, resulting movies are presented in a table
which shows movies in ranking order (Fig. 3b).

At this point, she deems the first two movies as promising,
and she continues the exploration by looking for nearby the-
aters that play the movies (Fig. 4b), using the Google movie

123

Exploratory search framework 647

Entity Selection

Access Pattern
Selection

Service
Interface
Selection

(a)

Concept
selection

Query
Execution

Results
Browsing and
Manipulation

start

end

(b)

Fig. 2 Exploration paradigm: a service selection process; b exploratory query cycle

Fig. 3 Exploratory process:
selection of the entity Movie
from the list of available objects,
with submission of relevant
search parameters (a); and
tabular visualization of Movie
results produced by the system
(b)

123

648 A. Bozzon et al.

Fig. 4 Exploratory process:
map visualization of theaters
(a), and selection of a new entity
for defining the next exploration
step (in the example,
Restaurant) with definition of
search parameters (b)

service. Note that the interaction does not require additional
inputs, as the join between the services is managed by the
system, while the user’s geographical coordinates are auto-
matically inferred; in addition, the exploration of geolocated
information enables a presentation on the Map View, a wid-
get that allows putting georeferenced objects on geographical
maps.

At this point, the user decides to rollback the exploration,
to ask for more action movies, and to select three movies
among the newly retrieved ones. She also decides to turn

to the Mr.MovieTimes service, which offers a good pool of
candidate theaters. She selects three of them, and then decides
to add an additional exploration step for Restaurants nearby
such theaters.

Figure 5 shows the retrieved combinations of Theaters and
Restaurants on a map, where each object type is described by
a different color, and pairs of objects are connected by seg-
ments. A holistic overview of the relevance of each joined
result is given by a widget (on the left side), where combina-
tions of objects are ordered by their global ranking score.

123

Exploratory search framework 649

Fig. 5 Exploratory process: combinations of Movies, Theaters, and Restaurants visualized with the Map View

A re-rank functionality allows the user to customize the
importance given to each entity in the calculation of the
global ranking score.

The same results can be viewed in the table view shown
in Fig. 6, which highlights all the attributes of the underly-
ing data sources. Note that a tabular representation may look
rather cumbersome in this use case, but it can be very useful
in other scenarios as it enables a complete analysis of each
combination. The user interface provides additional func-
tionalities for table manipulation, for instance, the grouping
and sorting of combinations according to its attribute val-
ues.

The user can also switch the result visualization modal-
ity by selecting, for instance, the atom view, a widget that
presents a small table for each data source (Fig. 7). The
order of tables reflects the order of exploration, with the
table produced by the first step at the left, followed by
the other tables produced at subsequent steps. The advan-
tage of this view is the good simultaneous visibility of the
items extracted, of their combinations, and of the global rank-
ing. Combinations are shown by dynamically highlighting
the entity items, which are part of a combination through-
out the different atoms, when the user performs a mouse-
over action on any data item comprised in the combina-
tion.

5 Exploratory query language and protocol

The exploratory process described in the previous section is
supported by SeCoQL, a SQL-like language and protocol.
SeCoQL sessions consist of consecutive query steps, where
each step builds upon the previous one; queries operate on
access patterns, logical data representation which are equiv-
alent to relational tables; each access pattern is mapped to a
specific service interface, providing a physical service imple-
mentation. Each step can be associated with input parame-
ters, which are acquired in the client environment and used
by the query. During the step-by-step execution, the result of
the last executed step is associated with the session’s name
(which logically acts as a view over data sources) and can be
joined with data extracted from new data sources, by means
of service calls. Specific aspects of the language include the
relative rankings given to each source and the limitations on
the number of results and of allowed service calls.

The SeCoQL 10-step session in Listing 1 applies to the
use case described in the previous section.

a. Step 1 is the initial SQL query applied to the Movie
access pattern, mapped to the IMDB_MOVIES service
interface (through the USING clause); the query has
two parameters, which are, respectively, mapped to the

123

650 A. Bozzon et al.

Fig. 6 Exploratory process: combinations of Movies, Theaters, and Restaurants visualized in the table view

Fig. 7 Exploratory process: combinations of Movies, Theaters, and
Restaurants visualized with the atom view. A mouse-over event on an
item (e.g., “Punjabi Grocery & Deli”) highlights the corresponding enti-

ties of the other types and also the position of the combination in the
global ranking (bar chart on the left hand side)

two input parameters of Movie (the movie’s genre and
year). The query extracts five movies (clauseLIMIT 5);
movies are extracted by the IMDB_MOVIES service in
ranked order (by star count).

b. Steps 2 and 7 are TAKE operations, which select specific
instances of the current result, denoted by their position in

the result and selected by the GET clause; in the example,
instances 1 and 2 are retained, and the other instances are
discarded. This step is activated by specific user choices,
reported by the client.

c. Steps 3, 8, and 9 are AUGMENT operations, which
add one service to the current session by joining the

123

Exploratory search framework 651

data extracted from a new data source with the current
session’s result. A join predicate in the FROM clause
connects the session’s current result with a new access
pattern, which in turn is mapped to a service interface;
join conditions impose the equality of pairs of parame-
ters, one of the current result and one of the new access
pattern, and are constructed by the query exploration sys-
tem in correspondence with the relationships supported
by the DD.
The query of Step 3 has three parameters, which are,
respectively, mapped to the three input parameters of
the Theater access pattern, which outputs the theaters
in increasing distance from the given address, city, and
country, starting with the closest ones. The query extracts
ten combinations (clause LIMIT 10) constructed by
joining the two movies selected at step 2 with theaters
from the new service; the composite ranking function
gives an equal weight to the two services (clause RANK
BY (T = 0.50). Steps 8 and 9 are similar.

d. Steps 4 and 5 are BACKTRACK operations, they allow
users to conceptually undo the last action that was per-
formed in the sequence. Thus, step 4 backtracks the aug-
mentation of step 3, and step 5 backtracks the selection
of step 2, yielding to the five movies that were selected
by Step 1.

e. Step 6 is a MORE operation consists of asking more
results for one or more services. The MORE operation
adds more combinations to the current result by issuing
more service calls to all the services involved and then
adding the combinations resulting by joins involving the
current results and the call results. A MORE ONE oper-
ation selectively issues a new call to just one of the ser-
vices. Step 6 selects the Movie service for a MORE ONE
operation, which in this case is equivalent to the MORE
operation. In this case, there is no explicit LIMIT clause
(the system uses a default limit).

f. Finally, Step 10 is a RERANK operation that changes
the relative weight of the independent rankings of the
involved search services in the calculation of the global
ranking (which is also represented by sorting combina-
tions in ranking order.) Weights must be specified for all
services, identified by their aliases, and must sum up to 1.

Listing 1 Example of exploratory interaction in SeCoQL

1 . DEFINE QUERY NightPlan($X: S t r i n g ,
$Y: I n t e g e r) AS

SELECT M.*
FROM Movie (iGenre: $X, iYear: $Y) AS M

USING IMDB_MOVIES,
LIMIT 5

2 . TAKE NightPlan GET 1,2

3 . AUGMENT QUERY NightPlan($U: S t r i n g ,

$V: S t r i n g , $W: S t r i n g) AS
SELECT M.*, T.*
FROM (NightPlan JOIN Theatre (iAddress: $U,

iCity: $V, iCountry: $W) AS T
USING GOOGLE \ _DISPLAYING ON M.Title=

T.Title)
RANK BY (T 0.5)
LIMIT 10

4 . BACKTRACK NightPlan

5 . BACKTRACK NightPlan

6 . MORE_ONE NightPlan ON M

7 . TAKE NightPlan GET 6,7,9

8 . AUGMENT QUERY NightPlan($U: S t r i n g ,
$V: S t r i n g , $W: S t r i n g) AS

SELECT M.*, T.*
FROM (NightPlan JOIN Theatre (iAddress: $U,

iCity: $V, iCountry: $W) AS T
USING MRMOVIETIMES ON M.Title=

T.Title)
RANK BY (T=0.5)
LIMIT 20

9 . AUGMENT QUERY NightPlan($W:String) AS
SELECT M.*, T.*, R.*, TotalPrice=

T.Price + R.AvgPrice
FROM (NightPlan JOIN Restaurant (

iCountry: $W,
iCategory: “Vietnamese”) AS R

USING YQL_LOCAL ON T.Address=R.Address AND
T.City=R.City)

WHERE R.Rating>4
RANK BY (R=0.2)
LIMIT 40 TUPLES

1 0 . RERANK NightPlan (M=0.3, T=0.2, R=0.5)

6 Architecture

The exploratory search framework is deployed as part of the
Search Computing system, which supports also a conven-
tional query interface for SeCoQL and an interpreter of nat-
ural language queries. The system includes a number of soft-
ware components whose detailed description is outside of the
scope of this paper [15]; in this section, we briefly describe
the software architecture with the aim of giving an overview
on the implementation activity related to this research.2

2 The software described in this section is available for download
at www.search-computing.org, both as executable code and as open-
source code.

123

http://www.search-computing.org

652 A. Bozzon et al.

Fig. 8 SeCo exploratory search framework architecture

The framework has been designed as a distributed rich
Internet application (RIA); the software modules in Fig. 8
are organized as a two-tier, three-layer infrastructure, with
the client tier dedicated to user interaction and the server tier
further divided into a control layer and execution layer; the
client–server separation occurs between processing layers
and repositories, and communications are performed using
Web-enabled channels.

6.1 Server-side components

The service repository described in Sect. 3 is included in the
Service Invocation Framework, which contains the set of
components and data storages used by the system to per-
sist the artifacts (service interfaces, access pattern, domain
diagrams) required for its functioning. The framework sup-
ports several type of sources and includes built-in wrap-
pers for search engine APIs, products, events, and people
databases (e.g., Amazon, Eventful, LinkedIn), scientific data
sources (e.g., DBPL, PubMed), and community curated data
sources (e.g., YQL Open Data Tables, DBpedia). The reposi-
tory also contains reference to previously planned and stored
SeCoQL queries, which can be used within exploratory ses-
sions as composite data sources.

The execution layer includes the Execution Engine, a
data- and control-driven query engine specifically designed
to handle multi-domain queries [9], which takes in input a
SeCoQL query and executes it, by interacting with the Ser-
vice Invocation Framework. The engine includes a Cache
and a Persistency Manager module, devoted to in-session
and cross-session caching of results.

The control layer is designed to handle exploratory query
sessions, and therefore focuses on session management and
query planning; it embodies the Query Analyzer and the
Query Orchestrator. The Query Analyzer is a component
devoted to the parsing, planning, and optimization of explo-

ration queries expressed in SeCoQL producing query plans.
The Query Orchestrator is the core component of the
exploratory engine, as it acts as a controller that governs
the flow of query executions and result storage and reuse. In
such a context, the cache manager controls the distributed
cache system exploited by the query orchestrator to maintain
the current stateful objects for all the active user sessions; the
query manager manages the current state of interaction for
each active user session, keeping track of each user actions’
history.

The rationale of this architecture is a clear separation of
modules by functions. Thus, the lower components separate
the service interaction logics from the service composition
logics; the separation between the orchestrator and the engine
guarantees that the former is focused on session management
while the latter is focused on efficient query execution.

6.2 Client-side components

The user interface (GUI) on the client has been designed as
a single-page Web application running inside a Web browser
as a JavaScript application written according to the Model–
View–Controller design pattern and exploiting the function-
alities (e.g., client-side processing, local data storage and
manipulation, off-line functioning, and asynchronous server
communications) offered by the upcoming HTML5 stan-
dards.

The controller is composed of a Communication mod-
ule, handling the synchronous and asynchronous commu-
nications with the server side of the architecture; an Inter-
action Controller module devoted to the orchestration of the
client-side components upon application initialization or user
interaction; an UI Builder module, responsible for the assem-
bling of the client presentation widgets; and a State Man-
ager, which keeps track of the exploration operations, thus

123

Exploratory search framework 653

enabling the navigation of the exploration history (backtrack
operation).

The model consists of a data manager component, which
modifies client data after each interaction, performing opera-
tions such as local filtering and sorting, aggregation of com-
binations, synchronization with the client’s persistent storage
to enable off-line usage.

The view comprises the graphical objects and presenta-
tion properties required to enable the interaction with results
presentation widgets, service selection widgets, and history
management widgets.

7 Behavioral model of exploration

The main purpose of exploratory search system is to empower
the user in his information retrieval tasks. For achieving that,
it is crucial to capture and understand the user’s behavior [26],
so as to provide the proper support to his cognitive processes.
In this section, we map the exploratory approach described
so far to the cognitive model proposed by Kuhlthau [30].
In particular, we summarize the core aspects of the model,
composed by cognitive phases, and we describe how our
exploratory operations let the user move between the phases.

7.1 Kuhlthau model

The Kuhlthau model classifies the different mental phases the
user moves through during a search process; it emphasizes
the role of exploration, which is crucial to our approach. The
model identifies five phases, shortly described as follows:

• Initialization: the user sets up the search system for the
search, although still thinking to needs;

• Selection: the user clears his/her mind and starts doing
the actual search, by providing the setup parameters for
querying the search system;

• Exploration: the user obtains the first results and reads
them carefully in order to identify those of major interest;

• Formulation: the user performs some transformation of
the obtained results, such as filtering them according to
criteria relevant for his/her search needs, grouping the
results, or other similar operations;

• Collection: the user selects a subset of results for reten-
tion, elected as the final outcome of the search process.

We represent the Kuhlthau model as a finite-state automaton
(FSA), where cognitive phases correspond to states, and user
actions within the exploratory UI correspond to transitions
between states.

7.2 Exploration activities in the user interface

In the user interface, we support the exploratory actions spec-
ified in SeCoQL in Sect. 5 as well as a set of UI-specific nav-
igation and visualization primitives for exploring the current
result. The whole list of actions is reported in Table 1, which
also shows the mapping to the SeCoQL operations, when
relevant.

Notice that some UI-specific actions can only be applied
upon some data visualization widgets and not others. We
classify exploratory actions in two categories:

• instantaneous actions or events (tagged as E), requiring
a simple user interaction, e.g., a mouse click on a button,
the move of the focus on a text field and

• long lived or interval actions (tagged as I), requiring a
more complex or time-demanding interaction by the user,
e.g., scrolling and reading of results, selecting interesting
items from a list, defining complex conditions.

7.3 Mapping of exploration activities to the Kuhlthau model

Figure 9 reports the FSA describing the Kuhlthau model
(with phases represented as nodes) and the mapping of our
exploratory actions to that model. Actions represented as
dashed arrows allow users to change the domain of explo-
ration, e.g., searching for restaurants after having selected a
movie.

The mapping choices are motivated as follows: the
newQuery action starts the exploration and puts the user
in the Initialization cognitive phase, where he can choose
where to start with the exploration (i.e., he can look for the
needed search services in the list of the available ones).

Once the selectService action is performed, the user
moves to the Selection phase, where he can enter the search
criteria and then perform thesubmit action, which executes
the query and moves the user to the Exploration cognitive
phase.

The user is now able to explore the retrieved data by per-
forming a wide set of non-transitional actions (moreOne,
moreAll, newVis, switchQuery, winScroll,
mapZoomIn, mapZoomOut, and mapPan). In all these
cases, the user is still in the attitude of exploring the results
presented, and therefore, the cognitive phase remains Explo-
ration.

Alternatively, she can opt to filter, rank, or sort
the results according to new criteria. In this case, the relevant
cognitive phase is Formulation as long as the user spends time
for specifying the new criteria. Once he applies the operation,
she is back to the Exploration phase because she can now
continue exploring the results.

Two other options are as follows: expand to a new
domain and thus select a service and formulate a new piece

123

654 A. Bozzon et al.

Table 1 List of exploratory actions and their descriptions

Action ID Action Name Type User interaction
performed on
the UI

Search operation
(UI or
SeCoQL)

Widgets support

selectService Select data
sources and
service

Event Click on the Select
source button for
selecting the service to
be used as source for
the first query

SELECT All

histLink Select history step Interv. Selection of a previous
step done during the
search activity, to get
back to a previous
phase of the search
process

BACKTRACK All

Expand Expand search to
new domain

Event Selection of a new
domain for expanding
the current query

AUGMENT All

moreOne More one Event Click on the
More one
button, to show
more elements
related to a
selected service

MORE ONE All

moreAll More all Event Click on the More all
button, to show more
combinations in the
result set by querying
all the involved
services

MORE All

rank Rank the
combinations

Event Apply the ranking
function defined by
the specRank action

RANK, RERANK All

specRank Specify ranking Interv. Specify the
ranking
function
settings

RANK, RERANK All

tupleSelection Select tuple Event Select a tuple of the
result set as an
interesting result (for
final selection or
further exploration)

TAKE All

newQuery New query session Event Click on the New Query
Session button for the
start of a completely
new search session

DEFINE QUERY All

filter Filter Event Click on Filter button
and thus perform a
local filtering on the
visualized result set

WHERE All

specFilter Specify filter Interv. Specify the parameters
values used for the
local filtering

WHERE All

sort Sort Event Click on the attribute to
be used for sorting the
visualized result set

ORDER BY Table, Atom

specSort Specify sorting
clause

Interv. Specify the list and
order of fields to be
used for sorting

ORDER BY Table, Atom

123

Exploratory search framework 655

Table 1 continued

Action ID Action Name Type User interaction
performed on
the UI

Search operation
(UI or
SeCoQL)

Widgets support

histPlanLink History Event Click on the button to
access the history of
the current search. The
list of previous steps is
shown

UI Only All

submit Submit Event Click on the Submit
button to run the query
with the previously
specified information

UI Only All

winScroll Scroll table Interv. Scroll the results table UI Only Table, Atom
newVis Select

visualization
Event Select a different

visualization
UI Only All

mapZoomIn
mapZoomOut
mapPan

Map zoom / pan Interv. Zoom or pan over the
map view displaying
the results

UI Only Map

switchQuery Switch among
queries

Event Click on a query tab,
thus moving from a
query to another

UI Only All

endTask End task Event Declare the search
process as ended

UI Only All

Fig. 9 Modeling of the
exploratory search process with
the Kuhlthau model

of the query (in the Selection phase); or navigate the past
history by browsing the list of past states (and thus move
to the Selection phase through the histPlanLink action)
and then select a past state of the query (histLink) where
to continue the navigation (and thus move back to the Explo-
ration phase). Notice that the user can perform the expand
action also when in Formulation and Collection states.

With the tupleSelection and endTask actions, the
user moves to the Collection phase, because she is identifying
the final set of items.

8 Evaluation

Evaluating exploratory search is quite difficult and subtle, as
it entails a qualitative and quantitative analysis both of the

user behavior and of the search results. We leverage on the
mapping of the exploratory activity to the cognitive model
of Kuhlthau [30], described in Sect. 7. In this section, we
report the experimental setting (Sect. 8.1) and the results we
obtained in the analysis of our system (Sect. 8.2) and in the
comparison with existing solutions (Sect. 8.3).

8.1 Experimental setting

We engaged 42 users in the evaluation process, 36 males
and 7 females; their average age was 23.0 years (SD 1.83).
Participation was on a volunteer basis. About 65 % of the
users were master and PhD level students from Politecnico di
Milano, while the remaining participants have been recruited
from the general public through mailing lists and social net-
works announcements: 14 % were IT professionals and 21 %

123

656 A. Bozzon et al.

were employed in other sectors. In terms of expertise: 71 %
declared themselves as very active Web search users, with
experience also on advanced features of search engines; 21 %
declared to have average familiarity with Web search; and
only 8 % declared to be basic Web search users.

The evaluation procedure has been performed as follows:

• At first, we asked each user to fill in an online pre-
experiment questionnaire, in order to assess their con-
fidence with search systems. Answers to these question-
naires are mapped on a 5-point Likert scale, ranging from
1 (do not agree/do not know the topic) to 5 (completely
agree/know the topic very well), as typically done in
usability studies.

• Before the beginning of the evaluation session, we pro-
posed a video tutorial illustrating the exploratory search
system at work.

• Then, we described a given search problem and put users
at work on our prototypes asking them to find some solu-
tions to the problem that were of good/acceptable quality
according to their taste, within a reasonable amount of
time. Each user solved a few problems. We logged every
activity, until the user concluded the experiment with an
explicit action of termination (click on the Accept results
button).

• Finally, we asked the user to fill in an online post-
experiment questionnaire, again on a 5-point Likert scale,
for giving us feedback on various aspects: supported fea-
tures, quality of interaction, data visualization modalities,
navigation paths, etc. Many users also gave feedback and
suggestions in free text.

In order to avoid users’ learning bias regarding the inter-
action with the UI, the search problems and the different
system settings were randomly assigned, avoiding that users
could repeat the same problem or use the same setting twice.
We used two scenarios for the experiments: the first was the
night planning scenario, presented in Sect. 3, covering for
instance:

• a rock concert event to attend in New York within the
next 2 weeks;

• a top-quality Italian restaurant in the neighborhoods of
the concert, before the event;

• an inexpensive hotel next to the concert, where to spend
that night.

The second scenario focused instead on people’s relocation,
covering selection of job, housing, and school. Therefore,
each scenario represented a multi-domain problem, typically
covering 3 or 4 domains.

8.2 Experiments and results on the SeCo system

Three experiments have been conducted to assess the perfor-
mance of our system:

• The first one evaluates the relative importance of the var-
ious Kuhlthau search phases according to the Kuhlthau
model, for understanding which activities are mostly per-
formed by users during a session.

• The second experiment compares the use of the full multi-
domain exploratory system with the use of several single-
domain systems, which independently use the same inter-
faces and data sources as our exploratory system. The
experiment allows us to assess the qualitative and quan-
titative advantage of giving explicit support to multi-
domain exploration.

• The third experiment compares the use of an
exploratory system which provides multiple data viewers
with exploratory systems each providing a single data
viewer. The experiment allows us to assess how users
are empowered—or disoriented—when they have sev-
eral viewers available.

Experiment 1: Relevance of Kuhlthau phases. The
Kuhlthau model allows us to evaluate the relative importance
of the various search phases, in terms of number of clicks and
time spent. These are reported in Fig. 10. Note the high inci-
dence of exploration over selection and initialization, as it
can be expected with an exploratory system, while collec-
tion and formulation require much less time and clicks. Note
as well that about 70 % of clicks are relative to exploration,
during about 50 % of the time, indicating a higher number
of clicks per time unit during exploration. A precise account
of mean and standard deviation of the number of clicks and
time spent is reported in the light-gray columns of Fig. 11a,
b, respectively.

Experiment 2: Mono- versus multi-domain search. We
deployed a restricted version of the system, called mono-
domain, where expand and history features were disabled;

0%

10%

20%

30%

40%

50%

60%

70%

Time Click

13.88%

8.51%

34.60%

23.61%

50.50%

67.42%

0.30% 0.26%0.73% 0.20%

Initialization
Selection
Exploration
Formulation
Collection

Fig. 10 Incidence of each cognitive phase during the search process

123

Exploratory search framework 657

0

10

20

30 Mono
Multi

C

lic
ks

0

5

10

15

20

25

30

Initialization

Selection

Exploration

Formulation

Collection

(a)

0

200

400

Mono
Multi

T
im

e
(s

ec
)

0

100

200

300

400

500

Initialization

Selection

Exploration

Formulation

Collection

(b)

Fig. 11 Means and standard deviations of a the number of clicks and
b time spent during the phases of the search process in Experiment 2

the corresponding Kuhlthau model is obtained by removing
the dashed edges in Fig. 9. This version corresponds indeed
to having a set of search systems that let the user explore
one entity at a time: with the restricted version, users can
select any entity, perform one search step, take its result into
account, then choose another entity, perform another step,
and so on—until an acceptable solution of the problem is
found. The restricted version puts the user in a situation sim-
ilar to accessing mono-domain search applications, e.g., one
for concerts, one for restaurants, and one for hotels. Users
were randomly assigned to the normal and restricted ver-
sions, and each experiment was repeated twice, once in both
settings. We then compared the full and restricted version
both quantitatively and qualitatively.

The first evaluation, reported in Fig. 11a, b, compares the
number of clicks and time spent in the various phases for
both the restricted mono-domain version (on the left) and
normal multi-domain version (on the right). Clearly, users
required a higher time and number of clicks on the restricted
version, in all phases. Differences in time spent are higher
than differences in the number of clicks. This indicates that
operations require in general a higher mental effort, while the

number of clicks required to achieve a satisfactory solution
show a smaller increase.

The second evaluation is concerned with a comparison
of the solutions achieved with the restricted and complete
systems. Our experiments show that search results collected
by the users through the complete system are richer both in
terms of number of combinations in the final result sets and
in terms of their degree of diversification, informally defined
as the presence in such combinations of a high number of
different items selected in the various steps of the exploratory
search.

We report these results through four exemplary explo-
ration traces in Figs. 12 and 13. Figure 12 shows two typical
traces of the complete multi-domain search process: Fig. 12
(a) shows that 2 movies were selected at step 1, then 2 theaters
were selected at step 2, yielding to 3 complete combinations;
Fig. 12b shows that 2 movies were selected at step 1, then
5 theaters were selected at step 2, yielding to 3 complete
combinations again. If we define the spread of a solution as
the number of selected items at all the steps preceding the
final one, then the two examples have spread of 4 and 10,

Fig. 12 Typical combinations in the results with complete system

Fig. 13 Typical combinations in the results with reduced system

123

658 A. Bozzon et al.

0

20

40

60

Selection
Exploration

C

lic
ks

10

20

30

50

70

Full Atom Map Table

(a)

S

el
ec

te
d

C
om

bi
nt

at
io

ns

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

Full Atom Map Table

(b)

Fig. 14 Mean and standard deviation of a the number of clicks and b
the number of the final results selected by the user with the different
versions of the system in Experiment 3

respectively. These traces are compared with two typical
traces of the restricted system, shown in Fig. 13.

In both cases, the user selects only one element at steps
1 and 2, and then produces a solution with two combina-
tions, each one with only one item selected at steps 1 and
2. Therefore, in both cases, the spread is 1. We computed
the spread over nine 3-step problems, finding that the mean
spread of the restricted system is ∼1 and the mean spread of
the complete system is 4.44. This corroborates the hypothesis
that full-fledged multi-domain exploratory systems actually
enable a more powerful exploratory search paradigm.

Experiment 3—Richness of data visualization. This exper-
iment aims at determining whether a variety of visualization
widgets is really helping the user in his exploration, or it
constitutes a source of confusion which ultimately reduces
search effectiveness. Also in this experiment, we deployed
restricted versions of the system, this time obtained by elim-
inating visualization widgets. Thus, we compared:

• Complete system, providing all the visualization modal-
ities;

• Only table, providing only the Table visualization;
• Only atom, providing only the Atom visualization;
• Only map, providing only the Map visualization.

Each user was randomly assigned two search tasks, one to be
performed with the complete system and one with a random
selection of one of the restricted versions. We then compared
the two executions both quantitatively and qualitatively.

The quantitative evaluation is simply a count of the num-
ber of visualizations used in the complete system (i.e., how
many times the user switched the visualization during a ses-
sion). We found an average number of visualization switches
of 4.71, which tells us that users found it quite useful to move
from one visual perspective to the other when exploring the
data.

Figure 14a compares the means and standard deviations
of the number of clicks performed by the users with the 4 ver-
sions of the system, considering only Selection and Explo-
ration phases (shown in separate bars in the figure), as these
have been already identified in Experiment 1 as the core
phases of the search process. Selection requires more clicks
when the system is restricted to the tabular format, reflect-
ing greater difficulty in locating the relevant combinations
within the sparse table. Instead, exploration requires more
clicks with the complete system, as the user is challenged by
the availability of different representations of the same infor-
mation. The atom visualization also requires a high number
of clicks, but we regard this fact mostly as a difficulty in
exploration that occurs with the atom visualization widget,
whose effectiveness as desktop viewer is rather question-
able; the atom view is instead preferable to the tabular view
in mobile applications, due to intrinsic limits in exploration
imposed by the size of the display.

As with Experiment 2, the qualitative evaluation is con-
cerned with the quality of the search result; Fig. 14b shows
the means and the standard deviations of the cardinality of
the result sets accepted by users as their final outcome of a
search session. With the complete system users tend to select
a significantly larger number of combinations, hence obtain-
ing a richer final result.

8.3 Comparison with alternative exploratory systems

Besides analyzing the behavior of users when facing the dif-
ferent variants of our system, we also compared our proposal
to some typical exploration paradigms that users adopt nowa-
days by using combinations of existing search engines. In
particular, we considered two typical solutions: the first one
considers the use of a traditional general-purpose search
engine (namely, Google) as primary exploration option; in
this case, users explore results by issuing several search

123

Exploratory search framework 659

(a) (b)

Fig. 15 Mapping of the Google-based (a) and domain-specific sites (b) exploration on the Kuhlthau model

Fig. 16 Time and number of
clicks spent in each phase for
the three different exploration
solutions

[

queries regarding different domains, possibly click on results
for looking at the details, and annotate on paper the interest-
ing solutions they find. The second solution consists of issu-
ing queries to one or more domain-specific sites or search
engines, collecting the interesting results, and then putting
them together through note taking on paper or cut and paste
of data (possibly going through some intermediate steps in
other online site such as geolocation, maps, and distance cal-
culators).

For this evaluation, we proceeded through the following
steps:

1. We mapped the actions of Google-based and domain-
specific explorations to the Kuhlthau model, as we did for
the SeCo system. Figure 15 reports the two versions of
the FSA describing the Kuhlthau model implementations
for the two solutions.

2. We assigned two exploration tasks (equivalent to the ones
assigned for the SeCo system) to evaluators, and we
asked them to find their best solutions to the problem,

by using, respectively, Google and domain-specific sites.
We involved 5 users per system, and we recorded their
activity into screencast videos.

3. We collected their notes on paper that have been used for
the exploration and result selection.

4. Subsequently, we manually analyzed the videos and we
assigned times to the different phases, based on the FSAs
of Fig. 15. We calculated the time and number of clicks
that pertained to each phase, we averaged them on all the
users, and we reported them in Fig. 16 (absolute values for
all the phases) and Fig. 17 (percentages for the two main
phases, i.e., exploration and selection), so as to compare
the different systems.

5. Finally, we looked into the results users had found, to cal-
culate again the spread index. Some graphical examples
of results are reported in Fig. 18.

This study conveys some interesting insights into the pros
and cons of our solution with respect to existing exploration
options:

123

660 A. Bozzon et al.

Fig. 17 Comparison of time
and clicks distribution on the
two main phases (selection and
exploration) in the different
systems

Fig. 18 Two examples of spread of the selected results in Google and
domain-specific sites

Table 2 Post-questionnaire results

Aspect Mean judgment (SD)

Understanding the purpose of the
proposed exploratory search system

3.8 (1.79)

UI intuitiveness 2.2 (1.30)
Clearness of information presentation 2.6 (1.14)
Information layout helps data browsing 2.8 (1.30)
Visualizations modalities allows an easier

information retrieval during the search
process

2.6 (1.52)

System is easy-to-use and easy-to-start
with no prior knowledge

3.6 (0.90)

Video training before the evaluation was
enough

3.4 (1.52)

• Fig. 16 shows that exploration times are by far shorter
with our multi-domain exploration solution (up to 5
times). This demonstrates that the exploratory solutions
we introduced increase effectiveness of user search; of
course, a general-purpose search system would not be
confined to the domains of the DD, and thus would be
capable to arbitrarily widen the exploration search. In
particular, this means that our system’s exploration capa-
bilities are limited to the entities and to the concrete data
sources that have been registered in the system. This is
not a limitation in generality, as any Web source and con-
cept can be registered, but may represent a bottleneck in
the adoption of this solution, considering the cost of enti-
ties definition, Web data source scouting (which is nec-
essarily done by hand), and registration (which is instead
supported by semi-automatic registration methods and
tools, as reported in Quarteroni et al. [38]).

• Users spent a higher share of their time in selection with
the SeCo approach (see Fig. 17). With our system, people
engage more deeply in the choice of the next exploration
direction, while in traditional approaches such choices
are limited, hence selection is faster.

• Finally, exploration results obtained by the users are less
diversified when using traditional approaches (see the
typical examples in Fig. 18). In this case, users do not
have system facilities for storing, connecting, and com-
paring their choices, and thus, they resort to note taking on
paper. This limits their ability of tracking several options
(every user annotated at most three items per domain) and
of comparing and creating combinations (because con-
nections are performed manually and may require other
services, such as geomapping sites for calculating dis-
tances). On the other hand, their freedom in choosing the
exploration direction is greater, while in our approach,
users tend to follow a sequential entity selection process,
facilitated by the ease of going forward from the last step
and of backtracking the last step.

8.4 Questionnaire analysis

As explained in Sect. 8.1, we asked our users to fill in a
pre- and post-experiment questionnaire. The pre-experiment
questionnaire assessed users’ confidence and knowledge of
search systems; the post-experiment questionnaire collected
users’ feedback on the system. From the pre-questionnaire,
we found that all the users routinely perform Internet search
mostly using Google, and none of them had used exploratory
systems before.

Table 2 reports the results obtained from the post-
questionnaire (on a 5-point Likert scale, from 5—best to 1—
worst). From these answers and from informal comments,
we can conclude that:

• Users have understood the purpose of the exploratory
search system.

• They found the system rather easy-to-use and easy-to-
start with no prior knowledge about it, except for a short
training video shown at the beginning of the experiment.

123

Exploratory search framework 661

• Visualization modalities other than table help data brows-
ing, and specifically, the map visualization allows for eas-
ier information retrieval during the search process.

Users provided some suggestions on how the UI can be
improved to enhance user interaction:

• The UI should include user-friendly help for discovering
the various available options at each stage;

• The display of combinations could be clearer, by high-
lighting components belonging to separate domains (e.g.,
by using different colors); some users also asked for recap
pages describing the result of searches in a printable for-
mat (e.g., in Word).

• Some users found that the system provides too many
results at once and suggest to list just the first 10 results,
as it is customary in search engines.

• Some users suggested to provide more search options in
the UI, or to add explicit links to the Web sites describing
entity instances; such changes would require modifica-
tions to the underlying data services.

9 Conclusions and future work

Exploratory search is part of a general trend toward support-
ing long-lived research processes, where each search step is
built upon the previous one in the context of a global plan.
Exploring a search space requires performing specific moves
in that space; hence, interaction cannot be as easy as enter-
ing keywords in a field. We have designed several exploratory
query abstractions, which have been specified in SECOQL
and implemented in our prototypes.

We have been very careful at balancing each addition
of expressive power with the corresponding increase in
complexity of interaction; our prototype was considered
easy-to-use after a short training, although obviously less
user-friendly than a conventional search system. Experiments
confirmed the usefulness of a multi-domain exploratory sys-
tem with multiple viewers, which proved capable of produc-
ing several acceptable results with good diversification, and
confirmed its effectiveness in comparison with conventional
search or use of disconnected domain-specific data services,
although our search options are confined to the data sources
and domains which are known to the system. More efforts
are required in order to further improve our system:

• The selection of data sources through a list of entities
and the entering of input values for search parameters
are not user-friendly; we plan to investigate other forms
of interaction, e.g., through dialogues or entity-specific
UIs.

• Although we developed several viewers, users mostly
resorted to tables and maps; the atom viewer was not
found easy-to-use, and other viewers (e.g., histograms or
diagrams) were developed but not used. Therefore, we
plan to further extend the features natively supported by
map viewers and to better integrate maps with tables.

The multi-domain exploratory search system
presented in this paper is part of Search Computing
(www.search-computing.org), a large project which also
includes a service registration environment, an execution
engine, and a natural language query understanding system.
An open-source software implementation of the system is
available for download on the project’s Web site.

References

1. Baeza-Yates, R.: Applications of Web query mining. In: Losada,
D., Fernandez-Luna, J. (eds.) Advances in Information Retrieval,
Lecture Notes in Computer Science, vol. 3408, pp. 7–22. Springer,
Berlin/Heidelberg (2005)

2. Bates, M.J.: Information search tactics. J. Am. Soc. Inf. Sci. 30(4),
205–214 (1979)

3. Bates, M.J.: The design of browsing and berrypicking tech-
niques for the online search interface. Online Review 13(5), 407–
424 (1989). http://www.gseis.ucla.edu/faculty/bates/berrypicking.
html

4. Belkin, N.J., Cool, C., Stein, A., Thiel, U.: Cases, scripts, and
information-seeking strategies: on the design of interactive infor-
mation retrieval systems. Expert Syst. Appl. 9(3), 379–395 (1995)

5. Bellahsene, Z., Bonifati, A., Rahm, E.: Schema Matching and Map-
ping. Springer, Berlin (2011)

6. Bergamaschi, S., Po, L., Sorrentino, S., Corni, A.: Uncertainty in
Data Integration Systems: Automatic Generation of Probabilistic
Relationships. Springer, Berlin (2010)

7. Bozzon, A., Brambilla, M., Catarci, T., Ceri, S., Fraternali,
P., Matera, M.: Visualization of multi-domain ranked data. In:
Ceri, S., Brambilla, M. (eds.) Search Computing, pp. 53–69.
Springer, Berlin, Heidelberg (2011). http://dl.acm.org/citation.
cfm?id=1983774.1983782

8. Bozzon, A., Brambilla, M., Ceri, S., Fraternali, P.: Liquid query:
multi-domain exploratory search on the Web. In: Proceedings of
the 19th International Conference on World Wide Web (WWW
’10), pp. 161–170. ACM, New York (2010)

9. Braga, D., Ceri, S., Corcoglioniti, F., Grossniklaus, M.: Panta
rhei: flexible execution engine for search computing queries. In:
Ceri, S., Brambilla, M. (eds.) Search Computing, pp. 225–243.
Springer, Berlin, Heidelberg (2010). http://dl.acm.org/citation.
cfm?id=2172319.2172334

10. Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of
multi-domain queries on the Web. Proc. VLDB Endow. 1(1), 562–
573 (2008)

11. Brambilla, M., Campi, A., Ceri, S., Quarteroni, S.: Semantic
Resource Framework, LNCS, vol. 6585 (2011)

12. Broder, A.: A taxonomy of Web search. SIGIR Forum 36(2), 3–10
(2002)

13. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: View-
based query answering in description logics: semantics and com-
plexity. Comput. Syst. Sci. 78(1), 26–46 (2012)

123

http://www.search-computing.org
http://www.gseis.ucla.edu/faculty/bates/berrypicking.html
http://www.gseis.ucla.edu/faculty/bates/berrypicking.html
http://dl.acm.org/citation.cfm?id=1983774.1983782
http://dl.acm.org/citation.cfm?id=1983774.1983782
http://dl.acm.org/citation.cfm?id=2172319.2172334
http://dl.acm.org/citation.cfm?id=2172319.2172334

662 A. Bozzon et al.

14. Capra, R.G., Marchionini, G.: The relation browser tool for faceted
exploratory search. In: Proceedings of the 8th ACM/IEEE-CS Joint
Conference on Digital Libraries (JCDL ’08), pp. 420–420. ACM,
New York, (2008). doi: 10.1145/1378889.1378967

15. Ceri, S., Bozzon, A., Brambilla, M.: The anatomy of a multi-
domain search infrastructure. In: Auer, S., Daz, O., Papadopoulos,
G. (eds.) Web Engineering, Lecture Notes in Computer Science,
vol. 6757, pp. 1–12. Springer, Berlin/Heidelberg (2011)

16. Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping.
SIGMOD Rec. 35(3), 34–41 (2006)

17. Ciglan, M., Norȧvg, K., Hluchy, L.: The SemSets model for ad-hoc
semantic list search. In: Proceedings of WWW, pp. 131–140. New
York (2012)

18. Dalvi, N., Kumar, R., Pang, B., Ramakrishnan, R., Tomkins, A.,
Bohannon, P., Keerthi, S., Merugu, S.: A Web of concepts. In:
Proceedings of PODS, pp. 1–12. ACM (2009)

19. Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. Mor-
gan Kauffman, San Francisco, CA (2012)

20. Doan, A., Halevy, A.Y.: Semantic integration research in the data-
base community: a brief survey. AI Mag. 26(1), 83–94 (2005)

21. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similar-
ity search for Web services. In: Proceedings of VLDB, pp. 372–383
(2004)

22. Fazzinga, B., Lukasiewicz, T.: Semantic search on the Web.
Semant. Web 1(1–2), 89–96 (2010)

23. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based verifi-
cation of Web service compositions. In: Proceedings of Automated
Software Engineering, pp. 152–161 (2003)

24. Golovchinsky, G., Dunnigan, A., Diriye, A.: Designing a tool for
exploratory information seeking. In: Proceedings of the 2012 ACM
Annual Conference Extended Abstracts on Human Factors in Com-
puting Systems Extended Abstracts, CHI EA ’12, pp. 1799–1804.
ACM, New York (2012)

25. Granitzer, M., Sabol, V., Onn, K.W., Lukose, D., Tochtermann,
K.: Ontology alignment: a survey with focus on visually supported
semi-automatic techniques. Future Internet 2(3), 238–258 (2010)

26. Hearst, M.A.: Search User Interfaces, 1 edn. Cambridge University
Press, Cambridge (2009). http://searchuserinterfaces.com/book/

27. Herzig, D.M., Tran, T.: Heterogeneous Web data search using
relevance-based on the fly data integration. In: Proceedings of
WWW, pp. 141–150. New York (2012)

28. Hoffart, J., Suchanek, F.M., Berberich, K., Lewis-Kelham, E.,
de Melo, G., Weikum, G.: Yago2: exploring and querying world
knowledge in time, space, context, and many languages. In: Pro-
ceedings of the 20th International Conference Companion on
World Wide Web, WWW ’11, pp. 229–232. ACM, New York
(2011)

29. Jansen, B.J., Pooch, U.: A review of Web searching studies and a
framework for future research. J. Am. Soc. Inf. Sci. Technol. 52(3),
235–246 (2001)

30. Kuhlthau, C.C.: Inside the search process: information seeking
from the user’s perspective. J. Am. Soc. Inf. Sci. 42(5), 361–371
(1991)

31. Kules, B., Capra, R., Banta, M., Sierra, T.: What do exploratory
searchers look at in a faceted search interface? In: Proceedings
of the 9th ACM/IEEE-CS Joint Conference on Digital Libraries,
JCDL ’09, pp. 313–322. ACM, New York (2009)

32. Kumar, R., Tomkins, A.: A characterization of online browsing
behavior. In: Proceedings of the 19th International Conference
on World Wide Web, WWW ’10, pp. 561–570. ACM, New York
(2010)

33. Lenzerini, M.: Data integration: a theoretical perspective. In: Pro-
ceedings of PODS, pp. 233–246. ACM (2002)

34. Marchionini, G.: Exploratory search: from finding to understand-
ing. Commun. ACM 49, 41–46 (2006)

35. Pirolli, P., Card, S.K.: Information foraging. Psychol. Rev. 106,
643–675 (1999)

36. Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the
Web of data. In: Proceedings of WWW, pp. 771–780. New York
(2010)

37. Preda, N., Kasneci, G., Suchanek, F.M., Neumann, T., Yuan,
W., Weikum, G.: Active knowledge: dynamically enriching RDF
knowledge bases by Web services. In: Proceedings of the 2010
ACM SIGMOD International Conference on Management of data,
SIGMOD ’10, pp. 399–410. ACM, New York (2010)

38. Quarteroni, S., Brambilla, M., Ceri, S.: A bottom-up, knowledge-
aware approach to the integration of Web data services. ACM Trans.
Web (TWEB) (to appear)

39. Quarteroni, S., Guerrisi, V., Torre, P.L.: Evaluating multi-focus
natural language queries over data services. In: Proceedings of
the Eight International Conference on Language Resources and
Evaluation (LREC’12). European Language Resources Associa-
tion (ELRA), Istanbul (2012)

40. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic
schema matching. VLDB 10(4), 334–350 (2001)

41. Rajaraman, A., Sagiv, Y., Ullman, J.D.: Answering queries using
templates with binding patterns (extended abstract). In: Proceed-
ings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, PODS ’95, pp. 105–112.
ACM, New York (1995)

42. Rose, D.E.: The information-seeking funnel. In: Marchionini,
G., White, R. (eds.) National Science Foundation Workshop on
Information-Seeking Support Systems (ISSS), Chapel Hill, NC
(2008)

43. Rose, D.E., Levinson, D.: Understanding user goals in Web search.
In: Proceedings of the 13th International Conference on World
Wide Web, WWW ’04, pp. 13–19. ACM, New York (2004)

44. Saracevic, T.: The stratified model of information retrieval
interaction: extension and applications. In: Proceedings of the
Annual Meeting of the American Society for Information Science
(ASIS’97), pp. 313–327 (1997)

45. Suchanek, F., Kasneci, G., Weikum, G.: Yago: a core of semantic
knowledge. In: Proceedings of WWW, pp. 697–706 (2007)

46. Suchanek, F.M., Bozzon, A., Valle, E.D., Campi, A., Ronchi, S.:
Towards an ontological representation of services in search com-
puting. In: Search Computing—Trends and Developments, LNCS,
vol. 6585, pp. 101–112. Springer, Berlin (2011)

47. Tzitzikas, Y., Hainaut, J.L.: How to tame a very large ER diagram
(using link analysis and force-directed drawing algorithms). In:
ER, pp. 144–159 (2005)

48. Ullman, J.D.: Information integration using logical views. In:
Afrati, F.N., Kolaitis, P.G. (eds.) Proceedings of ICDT, LNCS, vol.
1186, pp. 19–40. Springer, Berlin (1997)

49. White, R.W., Drucker, M., Marchionini, G., Hearst, M., Schraefel,
M.C.: Exploratory search and HCI: designing and evaluating inter-
faces to support exploratory search interaction. In: Proceedings of
the ACM SIGCHI 2007 Workshop (2007)

50. White, R.W., Marchionini, G., Muresan, G.: Evaluating exploratory
search systems: introduction to special topic issue of information
processing and management. Inf. Process. Manag. 44(2), 433–436
(2008)

51. White, R.W., Muresan, G., Marchionini, G.: Report on acm sigir
2006 workshop on evaluating exploratory search systems. SIGIR
Forum 40(2), 52–60 (2006). http://portal.acm.org/citation.cfm?id=
1189702.1189711

52. White, R.W., Roth, R.A.: Exploratory Search: Beyond the Query-
Response Paradigm. Synthesis Lectures on Information Concepts,
Retrieval, and Services. Morgan & Claypool Publishers, San
Rafael, CA (2009)

123

http://dx.doi.org/10.1145/1378889.1378967
http://searchuserinterfaces.com/book/
http://portal.acm.org/citation.cfm?id=1189702.1189711
http://portal.acm.org/citation.cfm?id=1189702.1189711

Exploratory search framework 663

53. Wilson, M.L., Schraefel, M.C.: Evaluating collaborative search
interfaces with information seeking theory. In: Proceedings of 1st
International Collaborative Search Workshop (2008)

54. Wilson, M.L., Schraefel, M.C.: Sii: the lightweight analytical
search interface inspector. In: Proceedings of JCDL09 Workshop
on Lightweight User-Friendly Evaluation Methods for Digital
Librarians, vol. 42(5) (2009)

55. Yogev, S., Roitman, H., Carmel, D., Zwerdling, N.: Towards
expressive exploratory search over entity-relationship data. In: Pro-
ceedings of the 21st International Conference Companion on World
Wide Web, WWW ’12 Companion, pp. 83–92. ACM, New York
(2012)

123

	Exploratory search framework for Web data sources
	Abstract
	1 Introduction
	2 Related work
	2.1 Models of exploratory search
	2.2 Exploratory search systems
	2.3 Exploratory search evaluation
	2.4 Integration of data sources

	3 Background on service registration
	4 Exploratory search interaction
	5 Exploratory query language and protocol
	6 Architecture
	6.1 Server-side components
	6.2 Client-side components

	7 Behavioral model of exploration
	7.1 Kuhlthau model
	7.2 Exploration activities in the user interface
	7.3 Mapping of exploration activities to the Kuhlthau model

	8 Evaluation
	8.1 Experimental setting
	8.2 Experiments and results on the SeCo system
	8.3 Comparison with alternative exploratory systems
	8.4 Questionnaire analysis

	9 Conclusions and future work
	References

