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Abstract Entity resolution (ER) identifies database records
that refer to the same real-world entity. In practice, ER is
not a one-time process, but is constantly improved as the
data, schema and application are better understood. We first
address the problem of keeping the ER result up-to-date when
the ER logic or data “evolve” frequently. A naïve approach
that re-runs ER from scratch may not be tolerable for resolv-
ing large datasets. This paper investigates when and how we
can instead exploit previous “materialized” ER results to save
redundant work with evolved logic and data. We introduce
algorithm properties that facilitate evolution, and we pro-
pose efficient rule and data evolution techniques for three ER
models: match-based clustering (records are clustered based
on Boolean matching information), distance-based cluster-
ing (records are clustered based on relative distances), and
pairs ER (the pairs of matching records are identified). Using
real datasets, we illustrate the cost of materializations and the
potential gains of evolution over the naïve approach.

Keywords Entity resolution · Rule evolution ·
Data evolution · Data cleaning

S. E. Whang (B) · H. Garcia-Molina
Computer Science Department, Stanford University,
Stanford, CA 94305, USA
e-mail: swhang@cs.stanford.edu

H. Garcia-Molina
e-mail: hector@cs.stanford.edu

Present address:
S. E. Whang
Google Inc., Mountain View, CA, USA

1 Introduction

Entity resolution [8,10,19,31] (also known as record link-
age or deduplication) is the process of identifying records
that represent the same real-world entity. For example, two
companies that merge may want to combine their customer
records. In such a case, the same customer may be repre-
sented by multiple records, so these matching records must
be identified and combined (into what we will call a cluster).
This ER process is often extremely expensive due to very
large datasets and complex logic that decides when records
represent the same entity.

In practice, an entity resolution (ER) result is not produced
once, but is constantly improved based on better understand-
ings of the data, the schema, and the logic that examines and
compares records. For example, suppose a database systems
and applications vendor acquire a computer hardware com-
pany. The type of products the company purchases changes
significantly, to include computer chips, cooling fans, and
so on. In this case, the logic for resolving the products pur-
chased from suppliers can change significantly. While any
new data can be resolved using the new logic, the existing
resolved data need to be updated as well. This update can be
time-consuming and redundant, especially if mergers (of sup-
pliers, vendors, acquired companies), changes in tax codes,
introduction of new products, changes to business strategy,
changes to compliance regulations, and so on, are frequent.

In particular, here we focus on (1) changes to the logic
that decides when records represent the same entity and (2)
new data to resolve. Figure 1 shows our general approach
for incremental ER. Suppose that we have computed the ER
result E1 using the ER logic on a set of input records S.
Given new information in the form of rules or data, we would
like to produce the new ER result E2 efficiently. Instead of
re-running ER from scratch and producing E2 from S (fol-
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Fig. 1 Incremental ER

Table 1 Records to resolve

Record Name Zip Phone

r1 John 54321 123-4567

r2 John 54321 987-6543

r3 John 11111 987-6543

r4 Bob null 121-1212

Table 2 Evolving from rule B1 to rule B3

Comparison rule Definition

B1 pname

B2 pname ∧ pzip

B3 pname ∧ pphone

lowing the vertical arrow from the top left box to the bottom
left box), our approach is to efficiently derive E2 from E1

using evolution techniques (following the top right box to
the bottom left box).

We first solve the problem of incremental ER on evolv-
ing logic. Initially, we start with a set of records S and then
produce a first ER result E1 based on S and a rule B1, which
determines if two records represent the same entity. Some
time later, rule B1 is improved yielding rule B2, so we need
to compute a new ER result E2 based on S and B2. The
process continues with new rules B3, B4, and so on.

To motivate and explain our approach focusing on rules,
consider the following example. Our initial set of peo-
ple records S is shown in Table 1. The first rule B1 (see
Table 2) says that two records match (represent the same
real-world entity) if predicate pname evaluates to true. Pred-
icates can in general be quite complex, but for this example,
assume that predicates simply perform an equality check. The
ER algorithm calls on B1 to compare records and groups
together records with name “John,” producing the result
{{r1, r2, r3}, {r4}}. (As we will see, there are different types
of ER algorithms, but in this simple case, most would return
this same result.)

Next, say users are not satisfied with this result, so a data
administrator decides to refine B1 by adding a predicate that
checks zip codes. Thus, the new rule is B2 shown in Table 2.
The naïve option is to run the same ER algorithm with rule B2

on set S to obtain the partition {{r1, r2}, {r3}, {r4}}. (Only
records r1 and r2 have the same name and same zip code.)
This process repeats much unnecessary work: For instance,
we would need to compare r1 with r4 to see whether they
match on name and zip code, but we already know from the
first run that they do not match on name (B1), so they cannot
match under B2.

Because the new rule B2 is stricter than B1 (we define
this term precisely later on), we can actually start the second
ER from the first result {{r1, r2, r3}, {r4}}. That is, we only
need to check each cluster separately and see if it needs to
split. In our example, we find that r3 does not match the other
records in its cluster, so we arrive at {{r1, r2}, {r3}, {r4}}. This
approach only works if the ER algorithm satisfies certain
properties and B2 is stricter than B1. If B2 is not stricter
and the ER algorithm satisfies different properties, there are
other incremental techniques we can apply based on mate-
rialization (explained below). Our goal in this paper is to
explore these options: Under what conditions and for what
ER algorithms are incremental approaches feasible? And in
what scenarios are the savings over the naïve approach sig-
nificant?

In addition, we study a complementary technique: mate-
rialize auxiliary results during one ER run, in order to
improve the performance of future ER runs. To illustrate,
say that when we process B2 = pname ∧ pzip, we con-
currently produce the results for each predicate individ-
ually. That is, we compute three separate partitions, one
for the full B2, one for rule pname, and one for rule pzip.
The result for pname is the same {{r1, r2, r3}, {r4}} seen
earlier. For pzip, it is {{r1, r2}, {r3}, {r4}}. As we will see
later, the cost of computing the two extra materializations
can be significantly lower than running the ER algorithm
three times, as a lot of the work can be shared among the
runs.

The materializations pay off when rule B2 evolves into
a related rule that is not quite stricter. For example, say
that B2 evolves into B3 = pname ∧ pphone, where pphone

checks for matching phone numbers. In this case, B3 is
not stricter than B2, so we cannot start from the B2 result.
However, we can start from the pname result, since B3

is stricter than pname. Thus, we independently examine
each cluster in {{r1, r2, r3}, {r4}}, splitting the first cluster
because r1 has a different phone number. The final result is
{{r1}, {r2, r3}, {r4}}. Clearly, materialization of partial results
may or may not pay off, just like materialized views and
indexes may or may not help. Our objective here is, again, to
study when is materialization feasible and to illustrate sce-
narios where it can pay off.
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The second problem we solve is incremental ER on new
data. This time, the rule remains the same, but new records
may now have to be resolved in addition to the original
records. For example, after resolving the four records in
Table 1, we may have to resolve two more records r5 and
r6. While resolving the additional records, we would like to
avoid redundant record comparisons as many as possible.

In summary, our contributions in this paper are as follows:

• We define an ER model (Sect. 2) that clusters records
and formalize evolution for Boolean comparison rules.
We identify two desirable properties of ER algorithms
(rule monotonic and context free) that enable efficient
evolution. We also contrast these properties to two prop-
erties mentioned in the literature (order independent and
incremental).
• We propose efficient rule and data evolution techniques

that use one or more of the four properties (Sects. 3, 4).
We believe that our results can be a useful guide for ER
algorithm designers: If they need to handle evolving rules
efficiently, they may want to build algorithms that have
at least some of the properties we present.
• We explore two variations of the evolution problem:

– The comparison rule is a distance function instead of
a Boolean function.

– An ER algorithm returns pairs of matching records
instead of a partition.

We provide rule and data evolution techniques analogous
to those for clustering-based ER using Boolean compar-
ison rules (Sect. 5).
• We categorize a number of existing ER algorithms based

on the properties they satisfy (Sect. 6).
• We experimentally evaluate (Sect. 7) the rule and data

evolution algorithms for various clustering-based ER
algorithms using actual comparison shopping data from
Yahoo! Shopping and hotel information from Yahoo!
Travel. Our results show scenarios where rule evolution
can be faster than the naïve approach by up to several
orders of magnitude. We also illustrate the time and space
cost of materializing partial results and argue that these
costs can be amortized with a small number of future evo-
lutions. Finally, we also experiment with ER algorithms
that do not satisfy our properties and show that if one is
willing to sacrifice accuracy, one can still use our rule
evolution techniques.

2 Model and properties

Throughout this paper, we consider three ER models: match-
based clustering , distance-based clustering, and pairs ER. In
this section, we focus on the match-based clustering model,

which uses a Boolean comparison rule for resolving records.
We formalize the ER model and discuss two important prop-
erties for ER algorithms that can significantly enhance the
runtime of evolution. We compare the two properties with
existing properties for ER algorithms in the literature. In
Sect. 5, we show that not much changes for the corresponding
properties in distance-based clustering and pairs ER.

2.1 Match-based clustering model

We define a Boolean comparison rule B as a function that
takes two records and returns true or false. We assume
that B is commutative, i.e., ∀ri , r j , B(ri , r j ) = B(r j , ri ).

Suppose we are given a set of records S = {r1, . . . , rn}.
An ER algorithm receives as inputs a partition Pi of S and
a Boolean comparison rule B and returns another partition
Po of S. A partition of S is defined as a set of clusters P =
{c1, . . . , cm} such that c1 ∪ . . . ∪ cm = S and ∀ci , c j ∈ P
where i �= j, ci ∩ c j = ∅.

We require the input to be a partition of S so that we may
also run ER on the output of a previous ER result. In our
motivating example in Sect. 1, the input was a set of records
S = {r1, r2, r3, r4}, which can be viewed as a partition of
singletons Pi = {{r1}, {r2}, {r3}, {r4}}, and the output using
the comparison rule B2 = pname ∧ pzip was the partition
Po = {{r1, r2}, {r3}, {r4}}. If we run ER a second time on
the ER output {{r1, r2}, {r3}, {r4}}, we may obtain the new
output partition Po = {{r1, r2, r3}, {r4}} where the cluster
{r1, r2} accumulated enough information to match with the
cluster {r3}. An alternative ER model is to accept a set of
records and return another set of merged records. However,
we believe that using partitions of records is more convenient
for our purposes without reducing expressiveness.

How exactly the ER algorithm uses B to derive the out-
put partition Po depends on the specific ER algorithm. The
records are clustered based on the results of B when compar-
ing records. In our motivating example (Sect. 1), all pairs of
records that matched according to B2 = pname ∧ pzip were
clustered together. Note that, in general, an ER algorithm may
not cluster two records simply because they match according
to B. For example, two records r and s may be in the same
cluster c ∈ Po even if B(r, s) = false. Or the two records
could also be in two different clusters ci , c j ∈ Po(i �= j)
even if B(r, s) = true.

We also allow input clusters to be un-merged as long as the
final ER result is still a partition of the records in S. For exam-
ple, given an input partition {{r1, r2, r3}, {r4}}, an output of
an ER algorithm could be {{r1, r2}, {r3, r4}} and not necessar-
ily {{r1, r2, r3}, {r4}} or {{r1, r2, r3, r4}}. Un-merging could
occur when an ER algorithm decides that some records were
incorrectly clustered [28].

Finally, we assume the ER algorithm to be non-
deterministic in a sense that different partitions of S may
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be produced depending on the order of records processed or
by some random factor (e.g., the ER algorithm could be a
randomized algorithm). For example, a hierarchical cluster-
ing algorithm based on Boolean rules (see Sect. 6.1) may
produce different partitions depending on which records are
compared first. While the ER algorithm is non-deterministic,
we assume the comparison rule itself to be deterministic, i.e.,
it always returns the same matching result for a given pair of
records.

We now formally define a valid ER algorithm.

Definition 1 Given any input partition Pi of a set of records
S and any Boolean comparison rule B, a valid ER algorithm
E non-deterministically returns an ER result E(Pi , B) that
is also a partition Po of S.

Note that Definition 1 covers deterministic ER algorithms
as well.

We denote all the possible partitions that can be pro-
duced by the ER algorithm E as Ē(Pi , B), which is a
set of partitions of S. Hence, E(Pi , B) is always one
of the partitions in Ē(Pi , B). For example, given Pi =
{{r1}, {r2}, {r3}}, Ē(Pi , B) could be {{{r1, r2}, {r3}}, {{r1},
{r2, r3}}} while E(Pi , B) = {{r1, r2}, {r3}}.

An important concept used in evolution is the relative
strictness between comparison rules:

Definition 2 A Boolean comparison rule B1 is stricter than
another rule B2 (denoted as B1 ≤ B2) if ∀ri , r j , B1(ri , r j ) =
true implies B2(ri , r j ) = true.

For example, a comparison rule B1 that compares the
string distance of two names and returns true when the
distance is lower than 5 is stricter than a comparison rule B2

that uses a higher threshold of, say, 10. As another exam-
ple, a comparison rule B1 that checks whether the names and
addresses are same is stricter than another rule B2 that only
checks whether the names are same.

Our incremental ER approach is based on Boolean match
functions or distance functions for pairs of records. Machine
learning (ML), probabilistic modeling, and graph-based
approaches can be used to develop and refine these func-
tions. For instance, the developer of the ER algorithm can
use ML and training data to determine what features and
thresholds to use for deciding if records match, or in deter-
mining the distance between records. If an improved training
set is obtained, then ML can be used to obtain new match or
distance functions, and our strategy can be used to incre-
mentally obtain a new resolution. However, if the resulting
ML-based ER algorithm cannot be described via match or
distance functions, then our techniques are not applicable. In
this later case, we suspect that incremental resolution will be
extremely difficult.

When applying the incremental ER techniques, the appli-
cation developer must analyze her ER algorithm and check if

it satisfies certain properties, which we define from Sect. 2.2.
For example, Collective ER techniques [4] that use similarity
functions must satisfy the properties in Sect. 5.1.2 to use our
framework.

2.2 Properties

We introduce two important properties for ER algorithms –
rule monotonic and context free – that enable efficient evo-
lution for match-based clustering.

2.2.1 Rule monotonic

Before defining the rule monotonic property, we first define
the notion of refinement between partitions.

Definition 3 A partition P1 of a set S refines another parti-
tion P2 of S (denoted as P1 ≤ P2) if ∀c1 ∈ P1, ∃c2 ∈ P2 s.t.
c1 ⊆ c2.

For example, given the partitions P1={{r1, r2}, {r3}, {r4}}
and P2 = {{r1, r2, r3}, {r4}}, P1 ≤ P2 because {r1, r2} and
{r3} are subsets of {r1, r2, r3} while {r4} is a subset of {r4}.

We now define the rule monotonic property, which guar-
antees that the stricter the comparison rule, the more refined
the ER result.

Definition 4 An ER algorithm is rule monotonic (RM) if,
for any three partitions P, P1

o , P2
o and two comparison rules

B1 and B2 such that

• B1 ≤ B2 and
• P1

o ∈ Ē(P, B1) and
• P2

o ∈ Ē(P, B2)

then P1
o ≤ P2

o .

An ER algorithm satisfying RM guarantees that, if the
comparison rule B1 is stricter than B2, the ER result pro-
duced with B1 refines the ER result produced with B2. For
example, suppose that P = {{r1}, {r2}, {r3}, {r4}}, B1 ≤
B2, and E(Pi , B1) = {{r1, r2, r3}, {r4}}. If the ER algo-
rithm is RM, E(Pi , B2) can only return {{r1, r2, r3}, {r4}}
or {{r1, r2, r3, r4}}.

2.2.2 Context free

The second property, context free, tells us when a subset
of Pi (called P , which is a partition of a subset of S) can
be processed “in isolation” from the rest of the clusters.
(For clarification, the second condition says that none of the
records in P can match with any of the records in Pi − P).
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Definition 5 An ER algorithm is context free (CF) if for any
four partitions P, Pi , P1

o , P2
o and a comparison rule B such

that

• P ⊆ Pi and
• ∀Po ∈ Ē(Pi , B), Po ≤ {⋃c∈P c,

⋃
c∈Pi−P c} and

• P1
o ∈ Ē(P, B) and

• P2
o ∈ Ē(Pi − P, B)

then P1
o ∪ P2

o ∈ Ē(Pi , B).

Suppose that we are resolving Pi = {{r1}, {r2}, {r3}, {r4}}
with the knowledge that no clusters in P = {{r1}, {r2}} will
merge with any of the clusters in Pi−P = {{r3}, {r4}}. Then,
for any Po ∈ Ē(Pi , B), Po ≤ {{r1, r2}, {r3, r4}}. In this case,
an ER algorithm that is CF can resolve {{r1}, {r2}} indepen-
dently from {{r3}, {r4}}, and there exists an ER result of Pi

that is the same as the union of the ER results of {{r1}, {r2}}
and {{r3}, {r4}}.

2.3 Existing ER properties

To get a better understanding of RM and CF , we compare
them to two existing properties in the literature: incremental
and order independent.

An ER algorithm is incremental [18,19] if it can resolve
one record at a time. We define a more generalized version of
the incremental property for our ER model where any subsets
of clusters in Pi can be resolved at a time.

Definition 6 An ER algorithm is general incremental (GI)
if for any four partitions P, Pi , P1

o , P2
o , and a comparison

rule B such that

• P ⊆ Pi and
• P1

o ∈ Ē(P, B) and
• P2

o ∈ Ē(P1
o ∪ (Pi − P), B)

then P2
o ∈ Ē(Pi , B).

For example, suppose we have P = {{r1}, {r2}}, Pi =
{{r1}, {r2}, {r3}}, and P1

o = {{r1, r2}}. That is, we have
already resolved P into the result P1

o . We can then add to
P1

o the remaining cluster {r3} and resolve all the clusters
together. The result is as if we had resolved everything from
scratch (i.e., from Pi ). Presumably, the former way (incre-
mental) will be more efficient than the latter.

The GI property is similar to the CF property, but also
different in a number of ways. First, GI and CF are similar
in a sense that they use two subsets of Pi : P and Pi − P .
However, under GI, Pi − P is not resolved until P has been
resolved. Also, GI does not assume P and Pi − P to be
independent (i.e., a cluster in P may merge with a cluster in
Pi − P).

Fig. 2 ER Algorithms satisfying properties

We now explore the second property in the literature. An
ER algorithm is order independent (OI) [19] if the ER result
is same regardless of the order of the records processed. That
is, for any input partition Pi and comparison rule B, Ē(Pi , B)

is a singleton (i.e., Ē(Pi , B) contains exactly one parti-
tion of S). An order independent ER algorithm is also
deterministic.

The venn diagram in Fig. 2 shows various ER algorithms
that satisfy one or more of the four properties. The details
on how the properties relate to each other, the definitions of
the ER algorithms, and the proofs on why each ER algo-
rithm satisfies its properties are later explained in Sect. 6.
For now, we briefly describe three basic ER algorithms:
HCB, SN , and M E . The hierarchical clustering algorithm
(HCB) combines matching pairs of clusters in any order
until now clusters match with each other. The sorted neigh-
bor algorithm (SN ) sorts the input records by a key and
then slides a fixed-sized window while matching the records
within the same window. Finally, the Monge–Elkan algo-
rithm (M E) maintains a fixed-length queue containing clus-
ters and compares each new record with the clusters in the
queue.

In the following sections, we propose various incremental
ER algorithms. The input of incremental rule evolution con-
sists of an ER algorithm E , an input partition Pi , an old rule
B1, and a new rule B2. The input of incremental data evolu-
tion consists of an ER algorithm E , a rule B, an input par-
tition Pi , and another partition P ′i that contains new records
to resolve with Pi . The output of both types of incremental
evolution is a partition of records. We explore incremental
ER algorithms for rule evolution in Sect. 3 and data evolution
in Sect. 4.

3 Rule evolution

As described in Sect. 1, rule evolution occurs when the
Boolean comparison rule of an ER algorithm improves. In
this section, we present rule evolution techniques that incre-
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mentally update ER results. We first explain how to mate-
rialize previous ER results for fast rule evolution. Next, we
present efficient rule evolution techniques for ER algorithms
using the properties in Sect. 2. Finally, we discuss more
advanced materialization strategies that can further improve
rule evolution efficiency.

3.1 Materialization

To improve our chances that we can efficiently compute a
new ER result with rule B2, when we compute earlier results
we can materialize results that involve predicates likely to
be in B2. In particular, let us assume that rules are Boolean
expressions of smaller binary predicates. For example, a rule
that compares the names and addresses of two people can be
defined as pname∧ paddress where pname could be a function
that compares the names of two people while the predicate
paddress could compare the street addresses and apartment
numbers of two people. In general, a predicate can be any
function that compares an arbitrary number of attributes. We
assume that all predicates are commutative and (without loss
of generality) all rules are in conjunctive normal form (CNF).
For example, the rule B = p1 ∧ p2 ∧ (p3 ∨ p4) is in CNF
and has three conjuncts p1, p2, and p3 ∨ p4.

When we compute an earlier result E(Pi , B1) where say
B1 = p1 ∧ p2 ∧ p3, we can also materialize results such as
E(Pi , p1), E(Pi , p2), E(Pi , p1 ∧ p2), and so on. The most
useful materializations will be those that can help us later
with E(Pi , B2). (See Sect. 3.3.) For concreteness, here we
will assume that we materialize all conjuncts of B1 (in our
example, E(Pi , p1), E(Pi , p2), and E(Pi , p3)).

Instead of serially materializing each conjunct, however,
we can amortize the common costs by materializing different
conjuncts in a concurrent fashion. For example, parsing and
initializing the records can be done once during the entire
materialization. More operations can be amortized depend-
ing on the given ER algorithm. For example, when material-
izing conjuncts using an ER algorithm that always sorts its
records before resolving them, the records only need to be
sorted once for all materializations. In Sect. 7.5, we show that
amortizing common operations can significantly reduce the
time overhead of materializing conjuncts. A partition of the
records in S can be stored compactly in various ways. One
approach is to store sets of record IDs in a set where each
inner set represents a cluster of records. A possibly more
space-efficient technique is to maintain an array A of records
(where the ID is used as the index) where each cell contains
the cluster ID. For example, if r5 is in the second cluster,
then A[5] = 2. If there are only a few clusters, we only need a
small number of bits for saving each cluster ID. For example,
if there are only 8 clusters, then each entry in A only takes 3
bits of space.

Algorithm 1 Rule evolution given RM and CF
1: input: The input partition Pi , the comparison rules B1, B2, the ER

result for each conjunct of B1, the hash table H containing ER mate-
rializations of conjuncts in B1

2: output: The output partition Po ∈ Ē(Pi , B2)
3: Partition M ←∧

conj∈Conj (B1)∩Conj (B2) H (conj)
4: return

⋃
c∈M E({c′ ∈ Pi |c′ ⊆ c}, B2)

3.2 Rule evolution

We provide efficient rule evolution techniques for ER algo-
rithms using the properties. Our first algorithm supports ER
algorithms that are RM and CF . As we will see, rule evo-
lution can still be efficient for ER algorithms that are only
RM. Our second algorithm supports ER algorithms that are
GI. Before running the rule evolution algorithms, we mate-
rialize ER results for conjuncts of the old comparison rule
B1 by storing a partition of the input records S (i.e., the ER
result) for each conjunct in B1 (see Sect. 3.3 for possible
optimizations). In general, we suspect that (although we will
not explicitly show) the number of properties satisfied by the
ER algorithm is correlated with better runtime performance.

To explain our rule evolution algorithms, we review a
basic operation on partitions. The meet of two partitions P1

and P2 (denoted as P1 ∧ P2) returns a new partition of S
whose members are the non-empty intersections of the clus-
ters of P1 with those of P2. For example, given the partitions
P1 = {{r1, r2, r3}, {r4}} and P2 = {{r1}, {r2, r3, r4}}, the
meet of P1 and P2 becomes {{r1}, {r2, r3}, {r4}} since r2 and
r3 are clustered in both partitions. We also show the follow-
ing lemma regarding the meet operation, which is a standard
result in set theory. Proofs for this result and subsequent ones
can be found in Appendix 10.

Lemma 1 If ∀i, P ≤ Pi , then P ≤∧
Pi .

3.2.1 ER algorithms satisfying RM and CF

Algorithm 1 performs rule evolution for ER algorithms that
are both RM and CF . (We define real ER algorithms that
can be plugged into Algorithm 1 in Sect. 6.) The input
requires the input partition Pi , the old, and new compar-
ison rules (B1 and B2, respectively), and a hash table H
that contains the materialized ER results for the conjuncts
of B1. The conjuncts of a comparison rule B are denoted
as Conj (B). For simplicity, we assume that B1 and B2

share at least one conjunct. Step 3 exploits the RM prop-
erty and meets the partitions of the common conjuncts
between B1 and B2. For example, suppose that we have
B1 = p1 ∧ p2 ∧ p3 and B2 = p1 ∧ p2 ∧ p4. Given Pi =
{{r1}, {r2}, {r3}, {r4}}, say we also have the materialized ER
results E(Pi , p1) = {{r1, r2, r3}, {r4}} and E(Pi , p2) =
E(Pi , p3) = {{r1}, {r2, r3, r4}}. Since the common con-
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juncts of B1 and B2 are p1 and p2, we generate the meet
of E(Pi , p1) and E(Pi , p2) as M = {{r1}, {r2, r3}, {r4}}.
By RM, we know that E(Pi , B2) refines M because B2

is stricter than both p1 and p2. That is, each cluster in the
new ER result is contained in exactly one cluster in the
meet M . Step 4 then exploits the CF property to resolve
for each cluster c of M , the clusters in Pi that are subsets
of c (i.e., {c′ ∈ Pi |c′ ⊆ c}). Since the clusters in differ-
ent {c′ ∈ Pi |c′ ⊆ c}’s do not merge with each other, each
{c′ ∈ Pi |c′ ⊆ c} can be resolved independently. As a result,
we can return {{r1}}∪ E({{r2}, {r3}}, B2)∪{{r4}} as the new
ER result of B2.

In order to prove that Algorithm 1 is correct, we first prove
three lemmas below. For simplicity, we denote {c′ ∈ Pi |c′ ⊆
c} as IN(Pi , c). For a set of clusters Q, we define IN(Pi , Q) =
⋃

c∈QIN(Pi , c).

Lemma 2 For an RM algorithm, ∀Po ∈ Ē(Pi , B2),

Po≤M.

Lemma 3 Suppose we have an algorithm that is RM
and CF , an initial partition Pi , and two rules B1, B2

with the conjuncts Conj (B1), Conj (B2), respectively. Let
M =

∧
conj∈Conj (B1)∩Conj (B2)

E(Pi , conj). For any W ⊆
M, E(IN(Pi , W ), B2) ≤ W .

Lemma 4 Given the same setup as in Lemma 3, let Y ⊆ M
and Z ⊆ M such that Y ∩ Z = ∅ and Y ∪ Z = W (note:
W ⊆ M). Let Q = E(IN(Pi , W ), B2) (there is only one
solution). Then Q ≤ {⋃c∈Y c,

⋃
c∈Z c}.

Proposition 1 Algorithm 1 correctly returns a partition
Po ∈ Ē(Pi , B2).

Proposition 2 The complexity of Algorithm 1 is O(c×|S|+
|S|c

|S|c−1+zc × g(
|Pi |×(|S|c−1+zc)

|S|c ,
|S|
|Pi | )) where S is the set of

records in the input partition of records Pi , c is the number
of common conjuncts between B1 and B2, z is the average
cluster size for any partition produced by a conjunct, and
g(N , A) is the complexity of the ER algorithm E for an input
partition containing N clusters with an average size of A
records.

While Algorithm 1 does not improve the complexity of
the given ER algorithm E running without rule evolution, its
runtime can be much faster in practice because the overhead
for meeting partitions is not high (Step 3), and there can be
large savings by running ER on small subsets of Pi (i.e., the
{c′ ∈ Pi |c′ ⊆ c}’s) (Step 4) rather than on the entire partition
Pi .

We can also prove that the space complexity of Algo-

rithm 1 is O(|S|+h(
|Pi |×(|S|c−1+zc)

|S|c ,
|S|
|Pi | ))using the notations

in Proposition 2 and defining h(N , A) as the space complex-
ity of the ER algorithm E for an input partition containing
N clusters with an average size of A records.

3.2.2 ER algorithms satisfying RM only

The rule evolution algorithm for ER algorithms that are only
RM is identical to Algorithm 1 except for Step 4, where we
can no longer process subsets of Pi independently. However,
we can still run Step 4 efficiently using global information.
Consider the sorted neighborhood ER algorithm (SN ), which
is defined in Sect. 6.1. The first step of SN is to move a slid-
ing window on a sorted list of records, comparing records
pairwise only within the same window of size W . (The sec-
ond step is a transitive closure of all matching pairs.) In Step
4, we are able to resolve each {c′ ∈ Pi |c′ ⊆ c}(c ∈ M) using
the same window size W as long as we also use the global
sort information of the records to make sure only the records
that would have been in the same window during the origi-
nal run of SN should be compared with each other. Suppose
that we have B1 = pname ∧ pzip, B2 = pname ∧ pphone,
and the initial set Pi = {{r1}, {r2}, {r3}, {r4}, {r5}}. We set
the sort key to be the record ID (e.g., r4 has the ID 4). As a
result, the records are sorted into the list [r1, r2, r3, r4, r5].
Using a window size of W = 3, suppose we materialize
E(Pi , pname) = {{r1, r3, r5}, {r2}, {r4}} because r1 and r3

matched when the window covered [r1, r2, r3] and r3 and r5

matched when the window covered [r3, r4, r5]. The records
r1 and r5 only match during the transitive closure in the
second step of SN . The meet M in Algorithm 1 is also
{{r1, r3, r5}, {r2}, {r4}} because there is only one common
conjunct pname between B1 and B2. Thus, we only need to
resolve the set {r1, r3, r5} using B2. However, we must be
careful and should not simply run E({r1, r3, r5}, B2) using a
sliding window of size 3. Instead, we must take into account
the global ordering information and never compare r1 and r5,
which were never in the same window. Thus, if B2(r1, r3) =
false, B2(r3, r5) = false, and B2(r1, r5) = true, the
correct ER result is that none of r1, r3, r5 are clustered. While
we need to use the global sort information of records, our
rule evolution is still more efficient than re-running SN on
the entire input Pi (see Sect. 7). In general, the rule evolution
techniques for other ER algorithms that only satisfy RM
may vary.

3.2.3 ER algorithms satisfying GI

Algorithm 2 performs rule evolution for ER algorithms that
satisfy the GI property. Algorithm 2 is identical to Algo-
rithm 1 except for Step 4. Since the RM property is not
satisfied anymore, we can no longer assume that the meet
M is refined by the ER result of B2. Hence, after each
{c′ ∈ Pi |c′ ⊆ c} is resolved, we need to run ER on the
union of the results (i.e., the outermost ER operation in Step
4) to make sure we found all the matching records. The GI
property guarantees that the output Po is equivalent to a result
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Algorithm 2 Rule evolution given GI
1: input: The input partition Pi , the comparison rules B1, B2, the ER

result for each conjunct of B1, the hash table H containing ER mate-
rializations of conjuncts in B1

2: output: The output partition Po ∈ Ē(Pi , B2)
3: Partition M ←∧

conj∈Conj (B1)∩Conj (B2) H (conj)
4: return E(

⋃
c∈M E({c′ ∈ Pi |c′ ⊆ c}, B2), B2)

in Ē(Pi , B2). Using the same example for Algorithm 1, we
now return E({{r1}} ∪ E({r2, r3}, B2) ∪ {{r4}}, B2).

There are two factors that make Algorithm 2 efficient for
certain ER algorithms. First, each cluster in M is common to
several ER results and thus contains records that are likely to
be clustered. An ER algorithm may run faster by resolving
clusters that are likely to match first. Second, there are fewer
clusters for the outer E operation to resolve compared to
when E runs on the initial partition Pi . An ER algorithm may
run faster when resolving fewer (but larger) clusters. While
not all ER algorithms that are GI will speed up from these
two factors, we will see in Sect. 7 that the HCB algorithm
indeed benefits from Algorithm 2.

The complexity of Algorithm 2 can be computed by
adding the cost for meeting partitions and the cost for run-
ning ER on clusters. In comparison with Algorithm 1, the
additional cost is the outermost ER operation in Step 4. In
practice, Algorithm 2 is slower than Algorithm 1, but can
still be faster than running the ER algorithm E without rule
evolution.

Proposition 3 Algorithm 2 correctly returns an ER result
Po ∈ Ē(Pi , B2).

3.3 Materialization strategies

Until now, we have used a general strategy for rule mate-
rialization where we materialize on each conjunct. In this
section, we list possible optimizations for materializations
given more application-specific knowledge. Our list is by no
means exhaustive, and the possible optimizations will depend
on the ER algorithm and comparison rules.

A group of conjuncts is “stable” if they appear together in
most comparison rules. As a result, the group can be mate-
rialized instead of all individual conjuncts. For example, if
the conjuncts p1, p2, and p3 are always compared as a con-
junction in a person records comparison rule, then we can
materialize on p1∧ p2∧ p3 together rather than on the three
conjuncts separately. Hence, the time and space overhead of
materialization can be saved.

If we know the pattern of how the comparison rule will
evolve, we can also avoid materializing on all conjuncts. In
the ideal case where we know that the comparison rule can
only get stricter, we do not have to save any additional materi-
alizations other than the ER result of the old comparison rule.

Another scenario is when we are only changing the postfix
of the old comparison rule, so we only need to materialize
on all the prefixes of the old comparison rule. For example,
if we have the comparison rule p1 ∧ p2 ∧ p3, then we can
materialize on p1, p1∧ p2, and p1∧ p2∧ p3. If the ER algo-
rithm is both RM and CF , then the ER result of p1∧ p2 can
be computed efficiently from the ER result of p1, and the ER
result of p1 ∧ p2 ∧ p3 from that of p1 ∧ p2.

4 Data evolution

Until now, we have studied how ER can be incremental on
comparison rules. In this section, we focus on how ER can
be incremental on newly incoming data. For example, if the
ER result for the input Pi = {{r1}, {r2}} is Po = {{r1, r2}}
and we have a partition of new records P ′i = {{r3}, {r4}} to
resolve, we would like to quickly resolve the entire partition
{{r1}, {r2}, {r3}, {r4}} by exploiting the intermediate output
Po.

The general incremental (GI) property (see Definition 6)
can directly be used for incremental ER on new data. Suppose
we use a match-based clustering ER algorithm E along with
a Boolean comparison rule B. Given a previous ER result Po

(produced from Pi ) and a new partition P ′i , the incremental
data algorithm computes the ER result of Pi ∪ P ′i by comput-
ing E(Po∪P ′i , B) (instead of E(Pi∪P ′i , B)). In our example
above, the ER result for {{r1}, {r2}, {r3}, {r4}} can be com-
puted with E(Po ∪ P ′i , B) = E({{r1, r2}, {r3}, {r4}}, B). We
now prove the correctness of incrementally applying the ER
algorithm on a previous ER result.

Proposition 4 If the ER algorithm E is GI, then given a
previous ER result Po (produced from Pi ) and a new partition
P ′i , the incremental data algorithm correctly produces an ER
result of Pi ∪ P ′i .

While running ER from the intermediate result Po has
the same complexity as running ER from scratch, the time
saved for producing Po can be significant. Continuing our
example above, suppose the ER algorithm E compares all
pairs of clusters and merges the ones that match with each
other. Also assume that, whenever E compares two clusters,
it simply compares the records with the smallest IDs (e.g.,
a record r2 has an ID of 2) from the two clusters using B.
Since the subset {{r1}, {r2}} has already been resolved into
Po = {{r1, r2}}, the incremental data algorithm can run E
on the input {{r1, r2}, {r3}, {r4}}, which results in 3 record
comparisons. On the other hand, if E started from scratch, it
would have to resolve {{r1}, {r2}, {r3}, {r4}} and thus perform
6 record comparisons.

However, the incremental data algorithm is not always
faster than starting ER from scratch. Suppose that E still
matches clusters the same way as above, but is now

123



Incremental entity resolution on rules and data 85

defined to re-resolve all the records of its input from
scratch. Obviously, E still satisfies GI. However, when E
is given {{r1, r2}, {r3}, {r4}} as input, it will start resolving
{{r1}, {r2}, {r3}, {r4}} (ignoring the intermediate result Po)
and perform all the 6 record comparisons. Hence, while the
GI property is a pre-requisite for the correctness of incre-
mental data evolution, it does not necessarily guarantee better
efficiency.

5 Variations

In this section, we propose rule and data evolution techniques
for two variations of the ER model. The first model clusters
records based on their relative distances. The second model
generates pairs of matching records instead of a partition
of records. We will show that the properties and evolution
algorithms in Sects. 3 and 4 carry over to these new scenarios.

5.1 Distance-based evolution

We consider rule and data evolution techniques on distance-
based clustering where records are clustered based on their
relative distances instead of the Boolean match results used
in the match-based clustering model. We first define our com-
parison rule as a distance function. We then define the notion
of strictness between distance comparison rules and define
properties analogous to those in Sect. 2.2. Finally, we provide
a model on how the distance comparison rule can evolve and
present our rule evolution techniques.

5.1.1 Distance-based clustering model

In the distance-based clustering model, records are clustered
based on their relative distances with each other. The compar-
ison rule is now defined as a commutative distance function
D that returns a non-negative distance between two records
instead of a Boolean function as in Sect. 2.1. For example,
the distance between two person records may be the sum
of the distances between their names, addresses, and phone
numbers. The details on how exactly D is used for the clus-
tering differs for each ER algorithm. In hierarchical clus-
tering using distances [21], the closest pairs of records are
merged first until a certain criterion is met. A more sophisti-
cated approach [6] may cluster a set of records that are closer
to each other compared to records outside, regardless of the
absolute distance values. Other than using a distance compar-
ison rule instead of a Boolean comparison rule, the definition
of a valid ER algorithm remains the same as Definition 1.

In order to support rule evolution, we model D to return a
range of possible non-negative distances instead of a single
non-negative distance. For example, the distance D(r1, r2)

can be all possible distances within the range [13, 15].

We denote the minimum possible value of D(r1, r2) as
D(r1, r2).min (in our example, 13) and the maximum value
as D(r1, r2).max (in our example, 15). As a result, an ER
algorithm that only supports single value distances must be
extended to support ranges of values. The extension is spe-
cific to the given ER algorithm. (We provide concrete exam-
ples of extensions in Sect. 6.2.) However, in the case where
the distance comparison rule only returns single value ranges,
the extended algorithm must be identical to the original ER
algorithm. Thus, the extension for general distances is only
needed for rule evolution and does not change the behavior
of the original ER algorithm.

A rule evolution occurs when a distance comparison rule
D1 is replaced by a new distance comparison rule D2. We
define the notion of relative strictness between distance com-
parison rules analogous to Definition 2.

Definition 7 A distance comparison rule D1 is stricter than
another rule D2 (denoted as D1 ≤ D2) if ∀r, s, D1(r, s).
min ≥ D2(r, s).min and D1(r, s).max ≤ D2(r, s).max .

That is, D1 is stricter than D2 if its distance range is
always within that of D2 for any record pair. For example, if
D2(r, s) is defined as all the possible distance values within
[D1(r, s).min−1, D1(r, s).max+1], then D1 ≤ D2 (assum-
ing that D1(r, s).min ≥ 1).

5.1.2 Properties

We use properties analogous to RM, CF,GI, and OI from
Sect. 2.2 for the distance-based clustering model. The only
differences are that we now use distance comparison rules
instead of Boolean comparison rules (hence we must replace
all B’s with D’s) and Definition 7 instead of Definition 2 for
comparing the strictness between distance comparison rules.
To show how the properties hold in practice, we define two
distance-based clustering algorithms – HCDS and HCDC —
in Sect. 6.2.

5.1.3 Rule evolution

While we used the CNF structures of comparison rules to per-
form rule evolution in Sect. 3.2, the distance comparison rules
are not Boolean expressions. Instead, we define a model on
how the distance comparison rule can evolve. We assume that
each distance D1(r, s) changes by at most f (D1(r, s)) where
f is a positive function that can be provided by a domain
expert who knows how much D1 can change. Examples of
f include a constant value (i.e., each distance can change by
at most some constant c) or a certain ratio of the original dis-
tance (i.e., each distance can change by at most X percent).
As a result, D1(r, s).max+ f (D1(r, s)) ≥ D2(r, s).max and
D1(r, s).min − f (D1(r, s)) ≤ D2(r, s).min. As a practical
example, suppose that D1 returns the sum of the distances for
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the names, addresses, and zip codes, and D2 returns the sum
of the distances for the names, addresses, and phone num-
bers. If we restrict the zip code and phone number distances
to be at most 10, then when D1 evolves to D2, we can set
f = 10. Or if the zip code and phone number distances are
always within 20% of the D1 distance, then f = 0.2×D1.

Given D1 and D2, we can now define a third dis-
tance comparison rule D3(r, s) = [max{D1(r, s).min −
f (D1(r, s)), 0}, D1(r, s).max + f (D1(r, s))], which satis-
fies D3 ≥ D1 and D3 ≥ D2. (Notice that our definition
ensures all the possible distances of D3 to be non-negative.)
Compared with the Boolean clustering model, rule D3 acts
as the “common conjuncts” between D1 and D2. As a result,
we now materialize the ER result of D3, E(Pi , D3), instead
of the ER results for all the conjuncts in the first comparison
rule. We also update Algorithm 1 in Sect. 3.2.1 by replacing
Step 3 with “Partition M ← H(D3)” where H is a hash table
that only contains the result E(Pi , D3) for the comparison
rule D3.

Example We illustrate rule evolution for the HCDS algo-
rithm (see Sect. 6.2) using the updated Algorithm 1. Sup-
pose we are given the input partition Pi = {{r1}, {r2}, {r3}}
and the distance comparison rule D1 where D1(r1, r2) =
[2], D1(r2, r3) = [4], and D1(r1, r3) = [5]. We use the
threshold T = 2 for termination. If we are given f (d) =
0.1×d, D3 is defined as D3(r1, r2)=[1.8, 2.2], D3(r2, r3) =
[3.6, 4.4], and D3(r1, r3) = [4.5, 5.5]. We then materialize
the ER result M = E(Pi , D3). Among the records, only r1

and r2 match having D3(r1, r2).min = 1.8 ≤ T = 2. Once
the clusters {r1} and {r2}merge, {r1, r2} and {r3} do not match
because D3(r1, r3).min = 4.5 and D3(r2, r3).min = 3.6,
both exceeding T . Hence M = {{r1, r2}, {r3}}. Suppose we
are then given D2 such that D2(r1, r2) = [2.2], D2(r2, r3) =
[3.9], and D2(r1, r3) = [4.9] (notice that indeed D2 ≤ D3).
We then return

⋃
c∈M E({c′ ∈ Pi |c′ ⊆ c}, D2) using the

same threshold T = 2. For the first cluster in M , we run
E({{r1}, {r2}}, D2). Since D2(r1, r2).min = 2.2 > T, {r1}
and {r2} do not merge. The next partition {{r3}} is a singleton,
so our new ER result is {{r1}, {r2}, {r3}}, which is identical
to E(Pi , D2).

5.1.4 Data evolution

We can again exploit the GI property for incremental ER on
new data. The data evolution techniques are the same as the
ones in Sect. 4 except that we now use a distance comparison
rule D instead of a boolean comparison rule B.

5.2 Pairs ER evolution

Until now, we have assumed that an ER algorithm clusters
records and returns a partition. Many ER works [2,26,31],

however, assume that ER returns the matching pairs of
records instead of a clustering result. In this section, we thus
consider an alternative ER model (called pairs ER) where an
ER algorithm receives a set of records and returns a set of
record pairs. Again, although we use a different ER model,
we show in this section the ER properties and evolution tech-
niques are analogous to those of clustering-based ER.

5.2.1 Pairs ER model

Given a set of records R and a Boolean comparison rule B, a
pairs ER algorithm E returns the subset of pairs in the cross-
product R×R excluding self-pairings that are matching pairs
of records. We assume that E derives from a more general
operator JE that receives two sets of records S and T (along
with B) and produces a set of pairs JE (S, T, B) ⊆ S× T . In
the case where S = T , we exclude self-pairings. The pairs
ER algorithm E thus resolves R by computing JE (R, R, B).
Just like in Sect. 2.1, we assume that JE is non-deterministic
and may return more than one possible set of matching record
pairs. Hence, we denote J̄E (S, T, B) as the set of all possible
JE (S, T, B) results. Finally, if E uses a distance function D
for matching records, we can simply replace B with D.

Example We define a pairs ER algorithm (called Join-
Based) that returns all the pairs of records that match
according to B by performing pairwise comparisons. For
instance, if R = {r1, r2, r3} and B(r1, r2) = B(r2, r3) =
true while B(r1, r3) = false, then JJoin(R, R, B) =
[(r1, r2), (r2, r3)]. (We use square brackets to denote lists.)

5.2.2 Properties

Using the matching operator JE of the pairs ER algorithm
E , we can define the RM, CF,GI, and OI properties for
ER that are analogous to those in Sect. 2.2. (We omit the
definitions for brevity.)

Proposition 5 The Join-Based algorithm is RM, CF,

OI, and GI.

5.2.3 Rule evolution

Algorithm 3 performs rule evolution for pairs ER using the
RM and CF properties and closely resembles Algorithm 1.
Other rule evolution algorithms analogous to those for clus-
tering ER algorithms can be defined in a similar fashion.

Revisiting our motivating example in Sect. 1, suppose that
we are performing rule evolution for the Join-Based algo-
rithm using Algorithm 3. We first materialize the two con-
juncts of B1 = pname ∧ pzip. The result of conjunct pname

is materialized as the list [(r1, r2), (r1, r3), (r2, r3)] since the
three records r1, r2, and r3 match with each other. The con-
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Algorithm 3 Rule evolution for pairs ER given RM and CF
1: input: The comparison rules B1, B2, the pairs ER result for each

conjunct of B1, a hash table H containing the pairs ER results for
each conjunct in B1

2: output: Pairs ER result using B2
3: Pairs I ←⋂

conj∈Conj (B1)∩Conj (B2) H (conj)
4: return

⋃
c∈T ransClosure(I ) JE (c, c, B2)

junct pzip (which also has exactly one predicate) is materi-
alized as [(r1, r2)] because only r1 and r2 have the same zip
code. During the rule evolution using B2 = pname ∧ pphone,
we set I = [(r1, r2), (r1, r3), (r2, r3)] and compute the tran-
sitive closure of I , which is {{r1, r2, r3}}. For the only clus-
ter c = {r1, r2, r3} in the transitive closure, we compute
JE (c, c, B2) and return [(r2, r3)], which is the exact same
solution as resolving all four records r1, r2, r3, and r4 using
B2.

Proposition 6 Algorithm 3 correctly returns the set of record
pairs Jo ∈ J̄E (R, R, B2).

5.2.4 Data evolution

Just like in Sect. 4, we can exploit the GI property for incre-
mental ER on new data. Suppose we use a pairs ER algo-
rithm E along with a Boolean comparison rule B. Given
a previous result Jo = JE (R, R, B) and a new set of
records S, the incremental data algorithm performs this step:
Jo ∪ JE (R, S, B) ∪ JE (S, S, B).

Proposition 7 If a pairs ER algorithm E is GI, then given
a previous ER result Jo (produced from R) and a new set of
records S, the incremental data algorithm correctly produces
an ER result of R ∪ S.

6 ER algorithms and their properties

We now define the match-based and distance-based ER algo-
rithms in the venn diagram of Fig. 2 and prove why each ER
algorithm satisfies its properties. All the proofs for the results
in this section can be found in Appendix 10. As a reminder,
we abbreviate the rule monotonic property as RM, context
free as CF , general incremental as GI , and order independent
as OI.

6.1 Match-based clustering

The match-based ER algorithms in Fig. 2 are SN , SN 2,

HCB, HC2
B, HCB R , and M E . While the original definitions

of these ER algorithms assume a set of records S as an input,
we provide simple extensions for the algorithms to accept
a set of clusters Pi as in Definition 1. We then show which

properties each ER algorithm satisfies. We note that the def-
initions of SN 2 and HC2

B can be found in Appendix 10.

6.1.1 ER algorithms

SN The sorted neighborhood (SN ) algorithm [16] first sorts
the records in Pi (i.e., we extract all the records from the clus-
ters in Pi ) using a certain key assuming that closer records in
the sorted list are more likely to match. For example, suppose
that we have the input partition Pi = {{r1}, {r2}, {r3}} and
sort the clusters by their names (which are not visible in this
example) in alphabetical order to obtain the list [r1, r2, r3].
The SN algorithm then slides a fixed-sized window on the
sorted list of records and compares all the pairs of clusters that
are inside the same window at any point. If the window size
is 2 in our example, then we compare r1 with r2 and then r2

with r3, but not r1 with r3 because they are never in the same
window. We thus produce pairs of records that match with
each other. We can repeat this process using different keys
(e.g., we could also sort the person records by their address
values). After collecting all the pairs of records that match,
we perform a transitive closure on all the matching pairs of
records to produce a partition Po of records. For example, if
r1 matches with r2 and r2 matches with r3, then we merge
r1, r2, r3 together into the output Po = {{r1, r2, r3}}.
Proposition 8 The SN algorithm is RM, but not CF .

HCB Hierarchical clustering based on a Boolean compar-
ison rule [3] (which we call HCB) combines matching pairs
of clusters in any order until no clusters match with each
other. The comparison of two clusters can be done using
an arbitrary function that receives two clusters and returns
true or false, using the Boolean comparison rule B to
compare pairs of records. For example, suppose we have the
input partition Pi = {{r1}, {r2}, {r3}} and the comparison
rule B where B(r1, r2) = true, B(r2, r3) = true, but
B(r1, r3) = false. Also assume that, whenever we com-
pare two clusters of records, we simply compare the records
with the smallest IDs (e.g., a record r2 has an ID of 2) from
each cluster using B. For instance, when comparing {r1, r2}
with {r3}, we return the result of B(r1, r3). Depending on the
order of clusters compared, the HCB algorithm can merge
{r1} and {r2} first, or {r2} and {r3} first. In the first case, the
final ER result is {{r1, r2}, {r3}} (because the clusters {r1, r2}
and {r3} do not match), while in the second case, the ER result
is {{r1}, {r2, r3}} (the clusters {r1} and {r2, r3} do not match).
Hence, Ē(Pi , B) = {{{r1, r2}, {r3}}, {{r1}, {r2, r3}}}.
Proposition 9 The HCB algorithm is CF , but not RM.

HCBR We define the HCB R algorithm as a hierarchical
clustering algorithm based on a Boolean comparison rule
(just like HCB). In addition, we require the comparison rule
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to match two clusters whenever at least one of the records
from the two clusters match according to B. (This property is
equivalent to the representativity property in reference [3].)
For example, a cluster comparison function that compares all
the records between two clusters using B for an existential
match is representative. That is, given two clusters {r1, r2}
and {r3, r4}, the cluster comparison function returns true
if at least one of B(r1, r3), B(r1, r4), B(r2, r3), or B(r2, r4)

returns true.
We can prove that the HCB R is both RM and CF (see

Proposition 11). We first define the notation of connected-
ness. Two records r and s are connected under B and Pi

if there exists a sequence of records [r1(= r), . . . , rn(= s)]
where for each pair (ri , ri+1) in the path, either B(ri , ri+1) =
true or ∃c ∈ Pi s.t. ri ∈ c, ri+1 ∈ c. Notice that connect-
edness is “transitive,” i.e., if r and s are connected and s and
t are connected, then r and t are also connected.

Lemma 5 Two recordsr and s are connected under B and Pi

if and only if r and s are in the same cluster in Po ∈ Ē(Pi , B)

using the HCB R algorithm.

We next prove that HCB R returns a unique solution.

Proposition 10 The HCB R algorithm always returns a
unique solution.

Finally, we prove that HCB R is both RM and CF .

Proposition 11 The HCB R algorithm is both RM and CF .

ME The Monge–Elkan (M E) clustering algorithm (we
define a variant of the algorithm in [24] for simplicity) first
sorts the records in Pi (i.e., we extract all the records from the
clusters in Pi ) by some key and then starts to scan each record.
For example, suppose that we are given the input partition
Pi = {{r1}, {r2}, {r3}}, and we sort the records in Pi by their
names (which are not visible in this example) in alphabetical
order into the sorted list of records [r1, r2, r3]. Suppose we are
also given the Boolean comparison rule B where B(r1, r2) =
true, but B(r1, r3) = false and B(r2, r3) = false.
Each scanned record is then compared with clusters in a fixed-
length queue. A record r matches with a cluster c if B(r, s) =
true for any s ∈ c. If the new record matches one of the
clusters, the record and cluster merge, and the new cluster
is promoted to the head of the queue. Otherwise, the new
record forms a new singleton cluster and is pushed into the
head of the queue. If the queue is full, the last cluster in
the queue is dropped. In our example, if the queue size is
1, then we first add r1 into the head of the queue, and then
compare r2 with {r1}. Since r2 matches with {r1}, we merge
r2 into {r1}. We now compare r3 with the cluster {r1, r2}
in the queue. Since r3 does not match with {r1, r2}, then we
insert {r3} into the head of the queue and thus remove {r1, r2}.
Hence, the only possible ER result is {{r1, r2}, {r3}} and thus

Ē(Pi , B) = {{{r1, r2}, {r3}}}. In general, M E always returns
a unique partition.

Proposition 12 The M E algorithm does not satisfy RM or
CF .

6.1.2 More properties

We continue the construction of the venn diagram in Fig. 2.
We first add the OI property into the venn diagram. Proposi-
tion 13 shows that the OI property includes the RM prop-
erty. Proposition 14 shows that the M E algorithm is OI, but
not RM. Also, OI partially overlaps with CF , but does not
contain it. According to Proposition 15, the HCB R algorithm
is both OI and CF . According to Proposition 16, the HCB

algorithm is CF , but not OI. Finally, Proposition 14 shows
that the M E algorithm is OI, but not CF .

Proposition 13 Any ER algorithm that is RM is also OI.

Proposition 14 The M E algorithm is OI and GI, but not
RM or CF .

Proposition 15 The HCB R algorithm is RM, CF,GI, and
OI.

Proposition 16 The HCB algorithm is CF and GI, but not
OI (and consequently not RM).

We now add the GI property into the venn diagram in
Fig. 2. The GI property partially intersects with the other
three properties RM, CF , and OI and does not include any
of them. Proposition 15 shows that HCB R is RM, CF,GI,
and OI. Hence, GI intersects with the other three properties.
Proposition 16 shows that the HCB algorithm is GI, but not
OI (and consequently not RM). Proposition 14 shows that
the M E algorithm is GI, but not CF . Hence, none of the
other three properties include GI. Proposition 17 shows the
existence of an ER algorithm that is RM (the same algorithm
is also OI), but not GI. Proposition 18 shows the existence
of an ER algorithm that is CF , but not GI. Hence, GI does
not include any of the other three properties.

Proposition 17 There exists an ER algorithm that is RM
(and consequently OI as well), but not GI or CF .

Proposition 18 There exists an ER algorithm that is CF and
OI, but not GI or RM.

Finally, Proposition 19 shows that the SN algorithm is
RM,OI, and GI, but not CF .

Proposition 19 The SN algorithm is RM (and conse-
quently OI) and GI, but not CF .

123



Incremental entity resolution on rules and data 89

6.2 Distance-based clustering

We now define the two distance-based ER algorithms in Fig. 2
and show which properties they satisfy.

HCDS The single-link hierarchical clustering algorithm
[12,21] (HCDS) merges the closest pair of clusters (i.e., the
two clusters that have the smallest distance) into a single
cluster until the smallest distance among all pairs of clusters
exceeds a certain threshold T . When measuring the distance
between two clusters, the algorithm takes the smallest pos-
sible distance between records within the two clusters. Sup-
pose we have the input partition Pi = {{r1}, {r2}, {r3}}where
D(r1, r2) = 2, D(r2, r3) = 4, and D(r1, r3) = 5 (we later
extend HCDS to support ranges of distances) with T = 2.
The HCDS algorithm first merges r1 and r2, which are the
closest records and have a distance smaller or equal to T , into
{r1, r2}. The cluster distance between {r1, r2} and {r3} is the
minimum of D(r1, r3) and D(r2, r3), which is 4. Since the
distance exceeds T, {r1, r2} and {r3} do not merge, the final
result is {{r1, r2}, {r3}}.

We extend the HCDS algorithm by allowing ranges of
distances to be returned by a distance comparison rule, but
only comparing the minimum value of a range with either
another range or the threshold T . That is, D(r, s) is con-
sidered a smaller distance than D(u, v) if D(r, s).min ≤
D(u, v).min. Also, D(r, s) is considered smaller than T if
D(r, s).min ≤ T . For example, [3, 5] < [4, 4] because 3
is smaller than 4, and [3, 5] > T = 2 because 3 is larger
than 2. The extended HCDS algorithm is trivially identical
to the original HCDS algorithm when D only returns a single
value.

Proposition 20 shows that the HCDS algorithm is RM,

CF,GI, and OI. As a result, the HCDS algorithm can use
Algorithm 1 (with minor changes; see Sect. 5.1.3) for rule
evolution.

Proposition 20 The extended HCDS algorithm is RM,

CF,GI, and OI.

HCDC The complete-link hierarchical clustering algo-
rithm [21] (HCDC ) is identical to the HCDS algorithm
except in how it measures the distance between two clus-
ters. While the HCDS algorithm chooses the smallest
possible distance between records within the two clus-
ters, the HCDC algorithm takes the largest possible dis-
tance instead. For example, the cluster distance between
{r1, r2} and {r3} is the maximum of D(r1, r3) and D(r2, r3).
We use the same extension used in HCDS to support
ranges of values for distances where only the minimum
values of each range are compared to other ranges or
thresholds.

Proposition 21 shows that the extended HCDC algorithm
is CF and OI, but not RM or GI. As a result, the extended

HCDC algorithm cannot use Algorithms 1 or 2 for rule evo-
lution.

Proposition 21 The extended HCDC algorithm is CF , but
not RM,OI, or GI.

7 Experimental evaluation

We evaluate our rule and data evolution techniques for ER
based on clustering. Since data incremental ER algorithms
have been studied and evaluated in our previous work [3],
our focus in this section is on rule evolution. However, in
Sect. 7.8, we briefly illustrate the potential gains of incremen-
tal data processing. We do not present experimental results
for pairs ER evolution since they are analogous to those of
clustering-based ER.

Evaluating rule evolution is challenging since the results
depend on many factors including the ER algorithm, the com-
parison rules, and the materialization strategy. Obviously,
there are many cases where evolution and/or materialization
are not effective, so our goal in this section is to show there
are realistic cases where they can pay off, and that in some
cases the savings over a naïve approach can be significant. (Of
course, as the saying goes, “your mileage may vary”!) The
savings can be very important in scenarios where datasets are
large and where it is important to obtain a new ER result as
quickly as possible (think of national security applications
where it is critical to respond to new threats as quickly as
possible).

For our evaluation, we assume that blocking [25] is used,
as it is in most ER applications with massive data. With block-
ing, the input records are divided into separate blocks using
one or more key fields. For instance, if we are resolving prod-
ucts, we can partition them by category (books, movies, elec-
tronics, etc). Then, the records within one block are resolved
independently from the other blocks. This approach lowers
accuracy because records in separate blocks are not com-
pared, but makes resolution feasible. (See [22,30] for more
sophisticated approaches). From our point of view, the use
of blocking means that we can read a full block (which can
still span many disk blocks) into memory, perform resolution
(naïve or evolutionary), and then move on to the next block.
In our experiments, we thus evaluate the cost of resolving a
single block. Keep in mind that these costs should be multi-
plied by the number of blocks.

There are three metrics that we use to compare ER strate-
gies: CPU, IO, and storage costs. (Except for Sect. 7.7, we do
not consider accuracy since our evolution techniques do not
change the ER result, only the cost of obtaining it.) We dis-
cuss CPU and storage costs in the rest of this section, leaving
a discussion of IO costs to Sect. 7.2. In general, CPU costs
tend to be the most critical due to the quadratic nature of the

123



90 S. E. Whang, H. Garcia-Molina

ER problem, and because matching/distance rules tend to be
expensive. In Sect. 7.2, we argue that IO costs do not vary sig-
nificantly with or without evolution and/or materialization,
further justifying our focus here on CPU costs.

We start by describing our experimental setting in Sect. 7.1.
Then, in Sects. 7.3 and 7.4, we discuss the CPU costs of ER
evolution compared to a naïve approach (ignoring material-
ization costs, if any). In Sect. 7.5, we consider the CPU and
space overhead of materializing partitions. Note that we do
not discuss the orthogonal problem of when to materialize (a
problem analogous to selecting what views to materialize).
In Sect. 7.6, we discuss total costs, including materialization
and evolution. In Sect. 7.7, we consider scenarios where the
necessary properties do not hold. Finally, in Sect. 7.8, we
evaluate data evolution.

7.1 Experimental setting

We experiment on a comparison shopping dataset pro-
vided by Yahoo! Shopping and a hotel dataset provided
by Yahoo! Travel. We evaluated the following ER algo-
rithms: SN , HCB , HCB R, M E, HCDS , and HCDC . Our
algorithms were implemented in Java, and our experiments
were run on a 2.4GHz Intel(R) Core 2 processor with 4GB
of RAM.

Real Data The comparison shopping dataset we use was pro-
vided by Yahoo! Shopping and contains millions of records
that arrive on a regular basis from different online stores and
must be resolved before they are used to answer customer
queries. Each record contains various attributes including the
title, price, and category of an item. We experimented on a
random subset of 3,000 shopping records that had the string
“iPod” in their titles and a random subset of 1 million shop-
ping records. We also experimented on a hotel dataset pro-
vided by Yahoo! Travel where tens of thousands of records
arrive from different travel sources (e.g., Orbitz.com) and
must be resolved before they are shown to the users. We
experimented on a random subset of 3,000 hotel records
located in the United States. While the 3K shopping and
hotel datasets fit in memory, the 1 million shopping dataset
did not fit in memory and had to be stored on disk.

Comparison Rules Table 3 summarizes the comparison rules
used in our experiments. The Type column indicates whether
the comparison rules are Boolean comparison rules or dis-
tance comparison rules. The Data column indicates the data
source: shopping or hotel data. The Comparison rules col-
umn indicates the comparison rules used. The first two rows
define the Boolean comparison rules used on the shopping
and hotel datasets. For the shopping datasets, BS

1 compares
the titles and categories of two shopping records while BS

2
compares the titles and prices of shopping records. For the
hotel data, B H

1 compares the states, cities, zip codes, and

Table 3 Comparison Rules

Type Data Comparison rules

Boolean Shopping BS
1 : pti ∧ pca

BS
2 : pti ∧ ppr

Boolean Hotel B H
1 : pst ∧ pci ∧ pzi ∧ pna

B H
2 : pst ∧ pci ∧ pzi ∧ psa

Distance Shopping DS
1 : Jaroti

DS
2 : Jaroti changes randomly within 5%

Distance Hotel DH
1 : Jarona + 0.05×Equalsci

DH
2 : Jarona + 0.05×Equalszi

Table 4 ER and rule evolution algorithms tested

ER algorithm Section Rule evolution algorithm used

SN 6.1.1 Alg. for SN in Sect. 3.2.2

HCB 6.1.1 Alg. 2

HCB R 6.1.1 Alg. 1

M E 6.1.1 Alg. 1

HCDS 6.2 Alg. 1 (for distance-based clustering)

HCDC 6.2 Alg. 1 (for distance-based clustering)

names of two hotel records. The B H
2 rule compares the states,

cities, zip codes, and street addresses of two hotel records.
The last two rows define the distance comparison rules for
the two datasets. For the shopping data, DS

1 measures the
Jaro distance [31] between the titles of two shopping records
while DS

2 randomly alters the distance of DS
1 by a maximum

ratio of 5%. The Jaro distance returns a value within the range
[0, 1] and gives higher values for closer records. For the hotel
data, DH

1 sums the Jaro distance between the names of two
records and the equality distance between the cities of two
records weighted by 0.05. We define the equality distance to
return 1 if two values are exactly the same and 0 if they are
not the same. The DH

2 rule sums the Jaro distance between
names with the equality distance between the zip codes of
two records weighted by 0.05. As a result, the DH

1 distance
can alter by at most the constant 0.05.

ER and Rule Evolution Algorithms We experiment rule
evolution on the following ER algorithms: SN , HCB ,

HCB R, M E, HCDS , and HCDC . Table 4 summarizes for
each ER algorithm which section it was defined in and which
rule evolution algorithm is used. The HCDS and HCDC

distanced-based clustering algorithms terminate when the
minimum distance between clusters is smaller than the
threshold 0.95 (recall that closer records have higher Jaro +
equality distances). Although the M E and HCDC algorithms
do not satisfy the RM property, we can still use Algorithm 1
to efficiently produce new ER results with small loss in accu-
racy. Notice that, although M E is GI, Algorithm 2 is not
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efficient because of the way M E extracts all records from
the input partition Pi (without exploiting any of the clusters
in Pi ) and sorts them again. Both the HCDS and HCDC

algorithms use Algorithm 1 adjusted for the distance-based
clustering model (see Sect. 5.1.3).

7.2 Evaluating IO costs

We discuss the corresponding IO costs and argue that the
materialization IO costs are less significant than the CPU
costs. Using our blocking framework, we can analyze the
overall runtime of an ER process. The basic operations of an
ER process are described in Table 5. The operations are cat-
egorized depending on whether they are disk IO consuming
operations or CPU time-consuming operations.

To compare the overall performance of an ER process
using rule evolution and a naïve ER process without rule evo-
lution, we consider the scenario where we run ER once using
an old comparison rule and then perform one rule evolution
using a new comparison rule. A naïve ER process without rule
evolution would roughly require initializing the records, cre-
ating the blocks, and reading and resolving the blocks twice.
An ER process using rule evolution on the other hand would
require the same process above plus the additional work of
creating and using rule materializations minus running ER
on all blocks during the rule evolution. The decompositions
of the two approaches for our one rule evolution scenario

Table 5 Basic operations in blocking ER framework

Oper. Description

IO time-consuming operations

RF Read records from input file

RB Read all blocks to memory

WB Write out all blocks to disk

RM Read all materializations to memory

WM Write all materializations to disk

O Write the output ER result to disk

CPU time-consuming operations

I Initialize records (trim attributes not used in rules)

E Run ER on all blocks (one block at a time)

M Create materializations for all blocks (one at a time)

V Run rule evolution (using materializations)

on all blocks (one at a time)

Table 6 Decomposition of ER processes for one rule evolution

ER process Decomposition

Naïve RF , I, WB , RB , E, O, RB , E, O

Using rule evolution RF , I, WB , RB , E, O, M, WM , RB , RM , V, O

are shown in Table 6. Notice that the listed operations are
not necessarily run sequentially. For example, for the naïve
approach, the RB and E operations are actually interleaved
because each block is read and then resolved before the next
block is read.

The IO overhead of using rule evolution compared with
the IO cost of the naïve approach can thus be written as

RM+WM
RF+WB+2×RB+2×O . Since the size of the materializations
is usually much smaller than the size of the entire set of
records (see Sect. 3.1), the additional IOs for rule evolution
are also smaller than the IOs for reading and writing the
blocks. Thus, the IO costs do not vary significantly with or
without evolution and/or materialization.

7.3 Rule evolution efficiency

We first focus on the CPU time cost of rule evolution (exclu-
sive of materialization costs, if any) using blocks of data
that fit in memory. For each ER algorithm, we use the best
evaluation scheme (see Sect. 7.1) given the properties of the
ER algorithm. Table 7 shows the results. We run the ER
algorithms SN , HCB , and HCB R using the Boolean com-
parison rules in Table 3 on the shopping and hotel datasets.
When evaluating each comparison rule, the conjuncts involv-
ing string comparisons (i.e., pti , pna , and psa) are evaluated
last because they are more expensive than the rest of the
conjuncts. We also run the HCDS algorithm using the dis-
tance comparison rules in Table 3 on the two datasets. Each
column head in Table 7 encodes the dataset used and the
number of records resolved in the block. For example, Sh1K
means 1,000 shopping records while Ho3K means 3,000
hotel records. The top five rows of data show the runtime
results of the naïve approach while the bottom five rows show
the runtime improvements of rule evolution compared with
the naïve approach. Each runtime improvement is computed
by dividing the naïve approach runtime by the rule evolu-
tion runtime. For example, the HCB R algorithm takes 3.56
seconds to run on 1K shopping records and rule evolution
is 162 times faster (i.e., having a runtime of 3.56

162 = 0.022
seconds).

As one can see in Table 7, the improvements vary widely
but in many cases can be very significant. For the shop-
ping dataset, the HCB R , and HCDS algorithms show up
to orders of magnitude of runtime improvements. The SN
algorithm has a smaller speedup because SN itself runs effi-
ciently. The HCB algorithm has the least speedup (although
still a speedup). While the rule evolution algorithms for
SN , HCB R , and HCDS only need to resolve few clusters
at a time (i.e., each {c′ ∈ Pi |c′ ⊆ c} in Algorithm 1), Algo-
rithm 2 for the HCB algorithm also needs to run an outermost
ER operation (Step 4) to resolve the clusters produced by the
inner ER operations. The hotel data results show worse run-
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Table 7 ER algorithm and rule evolution runtimes

ER algorithm Sh1K Sh2K Sh3K Ho1K Ho2K Ho3K

ER algorithm runtime (seconds)

SN 0.094 0.152 0.249 0.012 0.027 0.042

HCB 1.85 7.59 17.43 0.386 2.317 5.933

HCB R 3.56 19.37 48.72 0.322 1.632 4.264

HCDS 8.33 40.38 111 5.482 27.96 73.59

Rule evolution runtime (seconds)

SN 0.023 0.036 0.056 0.01 0.014 0.021

HCB 1.23 4.125 8.42 0.304 1.782 4.672

HCB R 0.022 0.024 0.04 0.009 0.012 0.018

HCDS 0.028 0.057 0.121 0.017 0.056 0.135

Ratio of ER algorithm runtime to rule evolution runtime

SN 4.09 4.22 4.45 1.2 1.93 2

HCB 1.5 1.84 2.07 1.27 1.3 1.27

HCB R 162 807 1218 36 136 237

HCDS 298 708 918 322 499 545

time improvements overall because the ER algorithms with-
out rule evolution ran efficiently.

7.4 Common rule strictness

The key factor of the runtime savings in Sect. 7.3 is the strict-
ness of the “common comparison rule” between the old and
new comparison rules. For match-based clustering, the com-
mon comparison rule between B1 and B2 comprises the com-
mon conjuncts Conj (B1) ∩ Conj (B2). For distance-based
clustering, the common comparison rule between D1 and D2

is D3, as defined in Sect. 5.1.3. A stricter rule is more selec-
tive (fewer records match or fewer records are within the
threshold) and leads to smaller clusters in a resolved result.
If the common comparison rule yields smaller clusters, then
in many cases, the resolution that starts from there will have
less work to do.

By changing the thresholds used by the various predicates,
we can experiment with different common rule strictness,
and Fig. 3 summarizes some of our findings. The horizon-
tal axis shows the strictness of the common rule: It gives
the ratio of record pairs placed by the common rule within
in a cluster to the total number of record pairs. For exam-
ple, if an ER algorithm uses pti to produce 10 clusters of

size 10, then the strictness is
10×(10

2 )

(100
2 )

= 0.09. The lower

the ratio is, the stricter the common rule, and presumably,
fewer records need to be resolved using the new comparison
rule.

The vertical axis in Fig. 3 shows the runtime improve-
ment (vs. naïve), for four algorithms using our shopping data
comparison rules in Table 3. The runtime improvement is

Fig. 3 Degree of change impact on runtime, 3K shopping records

computed as the runtime of the naïve approach computing
the new ER result divided by the runtime of rule evolution.
As expected, Algorithms SN , HCB R , and HCDS achieve
significantly higher runtime improvements as the common
comparison rule becomes stricter. However, the HCB algo-
rithm shows a counterintuitive trend (performance decreases
as strictness increases). In this case, there are two competing
factors. On one hand, having a stricter common comparison
rule improves runtime for rule evolution because the com-
putation of each E({c′ ∈ Pi |c′ ⊆ c}, B2) in Step 4 becomes
more efficient. On the other hand, a common comparison
rule that is too strict produces many clusters to resolve for
the outermost ER operation in Step 4, increasing the overall
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runtime. Hence, the increasing line eventually starts decreas-
ing as strictness decreases.

7.5 Materialization overhead

In this section, we examine the CPU and space overhead of
materializations, independent of the question of what con-
juncts should be materialized. Recall that materializations
are done as we perform the initial resolution on records S.
Thus, the materialization can piggyback on the ER work that
needs to be done anyway. For example, the parsing and ini-
tialization of records can be done once for the entire process
of creating all materializations and running ER for the old
comparison rule. In addition, there are other ways to amor-
tize work, as the resolution is concurrently done for the old
rule and the conjuncts we want to materialize. For example,
when materializing for the SN and M E algorithms, the sort-
ing of records is only done once. For the HCB and HCB R

algorithms, we cache the merge information of records. For
the HCDS and HCDC algorithms, the pairwise distances
between records are only computed once. We can also com-
press the storage space needed by materializations by storing
partitions of record IDs.

Table 8 shows the time and space overhead of materializa-
tion in several representative scenarios. In particular, we use
Algorithms SN , HCB , HCB R , and HCDS on 3K shopping
and hotel records and assume all conjuncts in the old rule are
materialized.

The Time O/H columns show the time overhead where
each number is produced by dividing the materialization CPU
time by the CPU runtime for producing the old ER result. For
example, materialization time for the SN algorithm on 3K
shopping records is 0.52x the time for running E(Pi , BS

1 )

using SN . Hence, the total time to compute E(Pi , BS
1 ) and

materialize all the conjuncts of BS
1 is 1 + 0.52 = 1.52 times

the runtime for E(Pi , BS
1 ) only. The numbers in parentheses

show the time overhead when we do not materialize the most
expensive conjunct. That is, for SN , HCB , and HCB R in
the shopping column, we only materialize pca ; in the hotel
column, we only materialize pst , pci , and pzi (without pna).

For the shopping dataset, the SN and HCB algorithms
have time overheads less than 2 (i.e., the number of conjuncts

Table 8 Time overhead (ratio to old ER algorithm runtime) and space
overhead (ratio to old ER result) of rule materialization, 3K records

ER alg. Sh3K Space O/H Ho3K Space O/H
Time O/H Time O/H

SN 0.52 (0.02) 0.28 1.14 (0.27) 0.14

HCB 0.87 (0.04) 0.14 3.18 (0.71) 0.1

HCB R 11 (3E-6) 0.14 13.28 (1.06) 0.1

HCDS 0.44 0.07 0.61 0.02

in BS
1 ) due to amortization. For the same reason, HCDS has

a time overhead below 1. The HCB R algorithm has a large
overhead of 11x because each common conjunct tends to pro-
duce larger clusters compared with E(Pi , B H

1 ), and HCB R

ran slowly when larger clusters were compared using the
expensive pti conjunct.

The hotel dataset shows similar time overhead results,
except that the time overheads usually do not exceed 4 (i.e.,
the number of conjuncts in B H

1 ) for the match-based cluster-
ing algorithms.

The Space O/H columns show the space overhead of mate-
rialization where each number was produced by dividing
the memory space needed for storing the materialization by
the memory space needed for storing the old ER result. For
example, the materialization space for the SN algorithm on
3K shopping records is 0.28x the memory space taken by
E(Pi , BS

1 ) using SN . The total required space is thus 1+0.28
= 1.28 times the memory space needed for E(Pi , BS

1 ). The
space overhead of materialization is small in general because
we only store records by their IDs.

7.6 Total runtime

The speedups achievable at evolution time must be balanced
against the cost of materializations during earlier resolutions.
The materialization cost of course depends on what is mate-
rialized: If we do not materialize any conjuncts, as in our
initial example in Sect. 1, then clearly there is no overhead.
At the other extreme, if the initial rule B1 has many conjuncts
and we materialize all of them, the materialization cost will
be higher. If we have application knowledge and know what
conjuncts are “stable” and likely to be used in future rules,
then we can only materialize those. Then, there is also the
amortization factor: If a materialization can be used many
times (e.g., if we want to explore many new rules that share
the materialized conjunct), then the materialization cost, even
if high, can be amortized over all the future resolutions.

We study the total run time (CPU and IO time for origi-
nal resolution plus materializations plus evolution) for sev-
eral scenarios. We experiment on 0.25 to 1 million shopping
records (multiple blocks are processed). Our results illustrate
scenarios where materialization does pay off. That is, mate-
rialization and evolution lowers the total time, as compared
to the naïve approach that runs ER from scratch each time.
Of course, one can also construct scenarios where material-
ization does not pay off.

We measure the total runtimes of ER processes as defined
in Sect. 7.2 where we run ER once using an old comparison
rule and then perform one rule evolution using a new com-
parison rule. We experimented on 0.25 to 1 million random
shopping records and used the following Boolean compar-
ison rules for the SN , HCB , and HCB R algorithms: B1 =
pca ∧ pti (same as BS

1 in Table 3) and B2 = pca ∧ ppr . In
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Fig. 4 Scalability, 1M shopping records

addition, we only materialized on the conjunct pca instead of
on both conjuncts in B1. The time overheads for materializ-
ing pca were shown in parentheses in Fig. 4. For the HCDS

algorithm, we used DS
1 and DS

2 in Table 3. We used minhash
signatures [17] for distributing the records into blocks. For
the shopping dataset, we extracted 3-grams from the titles
of records. We then generated a minhash signature for each
records, which is an array of integers where each integer is
generated by applying a random hash function to the 3-gram
set of the record.

Figure 4 shows our total time results where we measured
the total runtimes of running ER on B1 and then evolving once
to B2. Each rule evolution technique and its corresponding
naïve approach use the same shape for points in their plots.
For example, the rule evolution runtime plot for the SN algo-
rithm uses white square points while the naïve SN approach
uses black square points. In addition, all the naïve approach
plots use white shapes while the rule evolution plots use black
shapes. Our results show that the total runtimes for the SN
and HCB algorithms do not change much because the run-
time benefits of using rule evolution more or less cancels
out the runtime overheads of using rule evolution. For the
HCB R and HCDS algorithms, however, the runtime bene-
fits of rule evolution clearly exceed the overheads. While we
have shown the worst case scenario results where only one
evolution occurs, the improvements will most likely increase
for multiple rule evolutions using the same materializations.
That is, given that rule evolution can be several orders of
magnitude faster than running ER from scratch, further rule
evolutions will cost a negligible amount of runtime compared
to the naïve approach.

7.7 Without the properties

So far, we have only studied scenarios where one or more of
the properties needed for our rule evolution techniques held.

We now consider a scenario where the necessary properties
do not hold. In this case, we need to use the naïve approach
to get a correct answer. From our previous results, however,
we know that the naïve approach can be very expensive com-
pared with rule evolution. The alternatives are to fix the ER
algorithm to satisfy one of the properties or to run one of our
rule evolution algorithms even though we will not get correct
answers. We investigate the latter case and see if we can still
return ER results with minimum loss in accuracy.

We experiment on two ER algorithms that do not satisfy
the RM property and thus cannot use Algorithm 1: the M E
and HCDC algorithms. While the M E algorithm is still GI
and can thus use Algorithm 2, there is no runtime benefit
because in M E all the records in Pi are extracted and sorted
again regardless of the clusters in Pi .

To measure accuracy, we compare a rule evolution algo-
rithm result with the corresponding result of the naïve
approach. We consider all the records that merged into an
output cluster to be identical to each other. For instance, if
the clusters {r} and {s} merged into {r, s} and then merged
with {t} into {r, s, t}, all three records r, s, t are considered
to be the same. Suppose that the correct answer A contains
the set of record pairs that match for the naïve solution while
set B contains the matching pairs for the rule evolution algo-
rithm. Then, the precision Pr is |A∩B|

|B| while the recall Re is
|A∩B|
|A| . Using Pr and Re, we compute the F1-measure, which

is defined as 2×Pr×Re
Pr+Re , and use it as our accuracy metric.

Table 9 shows the runtime and accuracy results of run-
ning Algorithm 1 as the rule evolution algorithm on datasets
that fit in memory. The columns show the dataset used and
the number of records resolved. The top two rows of data
show the runtimes for the naïve approach. The middle two
rows of data show the runtime improvements of rule evo-
lution compared with the naïve approaches. Each runtime
improvement is computed by dividing the naïve approach
runtime by the rule evolution runtime (not including the mate-
rialization costs). Overall, the runtime of M E improves by
1.67x to 5.53x while the runtime of HCDC improves by 501x
to 2386x. The bottom two rows of data show the accuracy
values of each ER result compared with the correct result
produced by the naïve aproach. The accuracy results are near-
perfect for the M E algorithm while being at least 0.85 for
HCDC . The experiments show that rule evolution may pro-
duce highly accurate ER results even if the ER algorithms do
not satisfy any property while still significantly enhancing
the runtime performance of rule evolution.

7.8 Data evolution

We now evaluate how data evolution can speed up ER.
Table 10 shows the ER runtimes for resolving 500 additional
shopping (hotel) records after 3K random shopping (hotel)
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Table 9 Runtime and accuracy results for ER algorithms without the properties

ER alg. Sh1K Sh2K Sh3K Ho1K Ho2K Ho3K

ER algorithm runtime (seconds)

M E 0.094 0.162 0.25 0.015 0.033 0.051

HCDC 8.08 39.2 105 5.51 28.1 73.57

Ratio of ER algorithm runtime to rule evolution time

M E 5.53 5.23 5.43 1.67 2.06 2.04

HCDC 674 1509 2386 501 879 1115

F1 accuracy of rule evolution

M E 0.94 0.95 0.97 1.0 1.0 0.997

HCDC 0.93 0.86 0.85 1.0 0.999 0.999

Table 10 Data evolution runtime (seconds) when resolving 500 addi-
tional records. (An asterisk means that the resolution result is approxi-
mate. See text.)

ER alg. Sh3K Data Evol. Ho3K Data Evol.
Naïve Naïve

SN 0.303 0.303 0.095 0.095

HCB 22.1 5.81 8.85 2.14

HCB R 78.8 28.5 5.23 1.63

HCDS 161 100 101 58.8

M E 0.268 0.268 0.134 0.134

HCDC 149 103 (*) 100 55.7 (*)

records have been resolved. The naïve approach is to run
ER on 3K + 500 = 3,500 records while the data evolution
approach resolves the 500 records starting from the previ-
ous ER result of the 3K records. As a result, data evolutions
for the HCB, HCB R, HCDS , and HCDC algorithms outper-
form the naïve approaches by 1.5–4.1x. However, the SN and
M E algorithms do not have better runtimes for data evolu-
tion because they re-sort all the records before resolving them
(i.e., effectively starting ER from scratch). Notice that, in the
worst case, data evolution has the same performance as start-
ing ER from scratch. An interesting future enhancement is
to add algorithm-specific optimizations (e.g., caching record
comparison results) to make data evolution more efficient.

Recall that the GI property does not hold for the HCDC

algorithm. (The property holds for all the other algorithms
of Table 10.) Thus, the HCDC result may not be 100 % cor-
rect. In practice, one may still want to do incremental resolu-
tion even with non-GI algorithms to obtain the performance
gains, even at a slight loss of accuracy. In our test scenario,
for HCDC , the accuracies of the data evolution ER results
compared with the naïve (but correct) results are 0.91 and
0.999 for the shopping and hotel datasets, respectively. In
general, the degree of such divergence depends on both the
ER algorithm and the dataset. If the application cannot tol-
erate any error, then the ER algorithm needs to be modified
to satisfy the GI property.

8 Related work

Entity resolution has been studied under various names
including record linkage [25], merge/purge [16], dedupli-
cation [26], reference reconciliation [9], object identifica-
tion [27], and others (see [8,10,13,31] for recent surveys).
Entity resolution involves comparing records and determin-
ing whether they refer to the same entity or not. Most of the
works fall into one of the ER models we consider: match-
based clustering [3,16], distance-based clustering [4,21],
or pairs ER [2,26,31]. While the ER literature focuses on
improving the accuracy or runtime performance of ER, they
usually assume that the logic and data are fixed during res-
olution. To the best of our knowledge, our work is the first
to consider the ER result update problem when the ER logic
itself changes.

Materializing ER results is related to the topic of query
optimization using materialized views, which has been stud-
ied extensively in the database literature [7,11]. The focus
of materialized views, however, is on optimizing the exe-
cution of SQL queries. In comparison, our work solves a
similar problem for comparison rules that are Boolean or
distance functions. Our work is also related to construct-
ing data cubes [15] in data warehouses where each cell of a
data cube is a view consisting of an aggregation (e.g., sum,
average, count) of interests like total sales. More recently,
materialization lists [20] have been used to enhance ER scal-
ability. Each materialization list ranks pairs of records based
on their similarity according to a field. In comparison, our
rule evolution techniques store the ER results of comparison
rules. Nonetheless, we believe our rule evolution techniques
can improve by using techniques from the literature above.
For example, deciding which combinations of conjuncts to
materialize is related to the problem of deciding which views
to materialize.

Data evolution is related to the problem of clustering
data streams. Charikar et al. [5] propose incremental cluster-
ing algorithms that minimize the maximum cluster diameter
given a stream of records. Aggarwal et al. [1] propose the
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CluStream algorithm, which views a stream as a changing
process over time and provides clustering over different time
horizons in an evolving environment. Our work complements
the above techniques by proposing a formal property (GI)
that guarantees the correctness of data evolution.

One of the recent challenges in information integration
research is called Holistic Information Integration [14] where
both schema and data issues are addressed within a single
integration framework. For example, schema mapping can
help with understanding the data and thus with ER while ER
could also provide valuable information for schema mapping.
Hence, schema mapping and ER can mutually benefit each
other in an iterative fashion. While our work does not address
the schema mapping problem, we provide a framework for
iteratively updating ER results when the comparison logic
(related to the schema) changes or new data are added.

This paper significantly extends a previous conference
publication [29] by studying rule and data evolution for three
general ER models – two based on clustering records and one
based on finding matching pairs of records.

9 Conclusion

In most ER scenarios, the logic and data for resolving records
evolve over time, as the application itself evolves and as the
expertise for comparing records improves. In this paper, we
have explored a fundamental question: When and how can we
base a resolution on a previous result as opposed to starting
from scratch? We have answered this question for clustering-
based and pairs ER in two commonly used contexts, record
comparisons based on Boolean predicates, and record com-
parisons based on distance (or similarity) functions. We iden-
tified two properties of ER algorithms, rule monotonic, and
context free (in addition to order independent and general
incremental) that can significantly reduce runtime at evolu-
tion time. We also categorized several popular ER algorithms
according to the four properties.

In some cases, computing an ER result with new rules or
data can be much faster if certain partial results are mate-
rialized when the original ER result (with the old rule) is
computed. We studied how to take advantage of such mate-
rializations, and how they could be computed efficiently by
piggybacking the work on the original ER computation.

Our experimental results focused on rule and data evolu-
tion for clustering ER and evaluated the cost of both mate-
rializations and the evolution itself (computing the new ER
result), as compared to a naïve approach that computed the
new result from scratch. We considered a variety of pop-
ular ER algorithms (each having different properties), two
datasets, and different predicate strictness. The results illus-
trate realistic cases where materialization costs are relatively
low, and evolution can be done extremely quickly.

Overall, we believe our analysis and experiments provide
guidance for the ER algorithm designer. The experimental
results show the potential gains, and if these gains are attrac-
tive in an application scenario, our properties help us design
algorithms that can achieve such gains.

10 Proofs

10.1 Rule evolution

Lemma 1 If ∀i, P ≤ Pi then P ≤∧
Pi .

Proof We can prove by induction on the number of partitions
that are combined with the meet operation. ��

Lemma 2 For anRMalgorithm,∀Po ∈ Ē(Pi , B2), Po ≤
M .

Proof We first use the RM property to prove that ∀Po ∈
Ē(Pi , B2), Po ≤ M . For each conj ∈ Conj (B1) ∩
Conj (B2), B2 ≤ conj . Hence, by RM,∀P1

o ∈ Ē(Pi , B2)

and ∀P2
o ∈ Ē(Pi , conj), P1

o ≤ P2
o . Since M =∧

conj∈Conj (B1)∩Conj (B2)
E(Pi , conj), we conclude that

∀Po ∈ Ē(Pi , B2), Po ≤ M using Lemma 1. ��
Lemma 3 Suppose we have an algorithm that is RM

and CF , an initial partition Pi , and two rules B1, B2

with the conjuncts Conj (B1), Conj (B2), respectively. Let
M = ∧

conj∈Conj (B1)∩Conj (B2)
E(Pi , conj). For any W ⊆

M, E(IN(Pi , W ), B2) ≤ W .

Proof We use CF to prove that for any W ⊆ M, E(IN
(Pi , W ), B2) ≤ W . To avoid confusion with the initial set
of clusters Pi , we use the symbol P ′i instead of Pi when
using Definition 5. We satisfy the first two conditions in
Definition 5 by setting P = IN(Pi , W ) and P ′i = Pi . The
first condition, P ⊆ P ′i , is satisfied because IN(Pi , W ) is
a subset of Pi by definition. The second condition, ∀Po ∈
Ē(P ′i , B2), Po ≤ {⋃c∈P c,

⋃
c∈P ′i−P c}, is satisfied because

we know by Lemma 2 that ∀Po ∈ Ē(Pi , B2), Po ≤ M .
Also, we know that W ⊆ M . Thus, for P1

o = E(P, B2)

and P2
o = E(P ′i − P, B2), P1

o ∪ P2
o = E(P ′i , B2). Since

E(P ′i , B2) ≤ M, P1
o = E(IN(Pi , W ), B2) ≤ W , which also

implies that E(IN(Pi , W ), B2) ≤ M . ��
Lemma 4 Given the same setup as in Lemma 3, let Y ⊆ M

and Z ⊆ M such that Y ∩ Z = ∅ and Y ∪ Z = W (note:
W ⊆ M). Let Q = E(IN(Pi , W ), B2) (there is only one
solution). Then Q ≤ {⋃c∈Y c,

⋃
c∈Z c}.

Proof Suppose that Q �≤ {⋃c∈Y c,
⋃

c∈Z c}. Then, a cluster
in Q must have one cluster from Y and one from Z . Since
Q ≤ M (by Lemma 3), however, we arrive at a contradiction.

��
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Proposition 1 Algorithm 1 correctly returns a partition
Po ∈ Ē(Pi , B2).

Proof We use CF to prove that Po =⋃
c∈M E({c′ ∈ Pi |c′ ⊆

c}, B2) ∈ Ē(Pi , B2). Suppose that M = {c1, . . . , c|M|}. We
omit the B2 from any expression E(P, B2) for brevity (B1

is not used in this proof). To avoid confusion with the initial
set of clusters Pi , we use the symbol P ′i instead of Pi when
using Definition 5 later in this proof. We define the follow-
ing notation: α(k) = ⋃

c∈{c1,...,ck } E(IN(Pi , c)) and β(k) =⋃
c∈M−{c1,...,ck } IN(Pi , c). Our goal

⋃
c∈M E({c′ ∈ Pi |c′ ⊆

c}, B2) ∈ Ē(Pi , B2) can thus be written as α(|M |) ∈ Ē(Pi ).
To prove that α(|M |) ∈ Ē(Pi ), we first prove a more general
statement: any α(k)∪E(β(k))∈ Ē(Pi ) for k ∈ {0, . . . , |M |}.
Clearly, if our general statement holds, we can show that
α(|M |) ∈ Ē(Pi ). We use induction on the number of parti-
tions k processed in isolation.

Base case: k = 0. Then any α(0) ∪ E(β(0)) = E(Pi ) ∈
Ē(Pi ).

Induction: Suppose the equation above holds for k = n
(i.e., any α(n) ∪ E(β(n)) ∈ Ē(Pi )). We want to show that
the equation also holds when k = n + 1 where n + 1 ≤ |M |.

We first show that E(IN(Pi , cn+1)) ∪ E(β(n + 1)) =
E(β(n)) using CF . We satisfy the first two conditions of Def-
inition 5 by setting P = IN(Pi , cn+1) and P ′i = β(n). The
first condition, P ⊆ P ′, is satisfied because IN(Pi , cn+1)

is a subset of β(n) by definition. The second condition,
∀Po ∈ Ē(P ′i ), Po ≤ {⋃c∈P c ,

⋃
c∈P ′i−P c}, is satisfied by

Lemma 4 by setting Y = {cn+1} and Z = {cn+2, . . . , c|M|}.
Hence, for P1

o = E(P) and P2
o = E(P ′i − P), P1

o ∪ P2
o =

E(IN(Pi , cn+1)) ∪ E(β(n + 1)) = E(β(n)).
Now α(n+1)∪E(β(n+1)) = α(n)∪E(IN(Pi , cn+1))∪

E(β(n+ 1)), which is equal to some result α(n)∪ E(β(n)).
Using the induction hypothesis, we know that any α(n) ∪
E(β(n)) ∈ Ē(Pi ), so α(n + 1) ∪ E(β(n + 1)) ∈ Ē(Pi ) as
well, which proves our induction step. ��

Proposition 2 The complexity of Algorithm 1 is O(c ×
|S| + |S|c

|S|c−1+zc × g(
|Pi |×(|S|c−1+zc)

|S|c ,
|S|
|Pi | )) where S is the set

of records in the input partition of records Pi , c is the number
of common conjuncts between B1 and B2, z is the average
cluster size for any partition produced by a conjunct, and
g(N , A) is the complexity of the ER algorithm E for an input
partition containing N clusters with an average size of A
records.

Proof The complexity of Algorithm 1 can be computed by
adding the cost for meeting partitions of the common con-
juncts (Step 3) and the cost for running ER on the clusters
in M (Step 4). In Step 3, we perform c − 1 meets, which
takes about O(c×|S|) time where the meet operation can be
run in O(|S|) time [23]. Given a record r , the probability of
some other record s clustering with r is z−1

|S|−1 because each
cluster has an average size of z. The probability for s to be in

the same cluster with r for all the c meeting partitions is thus
( z−1
|S|−1 )c, assuming that all conjuncts cluster records inde-

pendently. As a result, the expected number of records to be
clustered with r in M is (|S|−1)×( z−1

|S|−1 )c. Hence, the aver-

age cluster size of M is 1+ (|S|−1)× ( z−1
|S|−1 )c ≈ 1+ zc

|S|c−1

records. The expected number of clusters in M is thus approx-
imately |S|

1+ zc

|S|c−1
= |S|c
|S|c−1+zc . Each {c′ ∈ Pi |c′ ⊆ c} (where

c ∈ M) has on average |Pi |
|S|c

|S|c−1+zc

= |Pi |×(|S|c−1+zc)
|S|c clus-

ters of Pi where the average size of each cluster in Pi

is |S|
|Pi | . The complexity of Step 4 is thus O(

|S|c
|S|c−1+zc ×

g(
|Pi |×(|S|c−1+zc)

|S|c ,
|S|
|Pi | )). Hence, the total algorithm complex-

ity is O(c × |S| + |S|c
|S|c−1+zc × g(

|Pi |×(|S|c−1+zc)
|S|c ,

|S|
|Pi | )). ��

Proposition 3 Algorithm 2 correctly returns an ER result
Po ∈ Ē(Pi , B2).

Proof Suppose M = {c1, c2, . . . , c|M|}. For this proof,
we denote {c′ ∈ Pi |c′ ⊆ c} as IN(Pi , c). We also
omit B2 from each E(P, B2) expression for brevity (B1

is not used in this proof). We define the following nota-
tions: α(k) = ⋃

c∈M−{c1,...,ck } E(IN(Pi , c)) and β(k) =⋃
c∈{c1,...,ck } IN(Pi , c). To avoid confusion with the initial

set of clusters Pi , we use P ′i instead of Pi when using Defin-
ition 6 later in this proof. To prove that Po = E(α(0)) ∈
Ē(Pi ) = Ē(β(|M |)), we prove the more general state-
ment that Po ∈ Ē(α(k) ∪ β(k))) for k ∈{0, . . . , |M |}.
Clearly, if our general statement holds, we can show that
Po ∈ Ē(β(|M |)) = Ē(Pi ) by setting k = |M |.

Base case: We set k = 0. Then Po = E(α(0)) ∈
Ē(α(0)) = Ē(α(0) ∪ β(0)).

Induction: Suppose that our statement holds for k = n,
i.e., Po = E(α(0)) ∈ Ē(α(n)∪β(n)). We want to show that
the same expression holds for k = n + 1 where n+1 ≤ |M |.
We use the GI property by setting P = IN(Pi , cn+1) and
P ′i = α(n + 1) ∪ β(n + 1). The first condition P ⊆ P ′i is
satisfied because β(n + 1) contains P . We then set P1

o =
E(P) = E(IN(Pi , cn+1)) and P2

o = E(P1
o ∪ (P ′i − P)) =

E(E(IN(Pi , cn+1)) ∪ α(n + 1) ∪ β(n)) = E(α(n) ∪ β(n)).
The GI property tells us that P2

o ∈ Ē(P ′i ) = Ē(α(n +
1) ∪ β(n + 1)). Thus, any E(α(n) ∪ β(n)) ∈ Ē(α(n + 1) ∪
β(n+1)). Using our induction hypothesis, we conclude that
Po = E(α(0)) ∈ Ē(α(n)∪β(n)) ⊆ Ē(α(n+1)∪β(n+1)).

��
Proposition 4 If the ER algorithm E is GI, then given a

previous ER result Po (produced from Pi ) and a new partition
P ′i , the incremental data algorithm correctly produces an ER
result of Pi ∪ P ′i .

Proof Suppose that Po ∈ Ē(Pi , B). Also say that P2
o ∈

Ē(Po ∪ Pi , B) = Ē(Po ∪ (Pi ∪ P ′i − Pi ), B). Then, by the
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GI property, P2
o ∈ Ē(Pi ∪ P ′i , B), so P2

o is an ER result that
can be produced from Pi ∪ P ′i . ��

10.2 Variations

Proposition 5 The Join-Based algorithm is RM,

CF,OI, and GI.

Proof The proof is similar to that of Proposition 15. ��
Proposition 6 Algorithm 3 correctly returns the set of

record pairs Jo ∈ J̄E (R, R, B2).

Proof The proof is similar to that of Proposition 1. ��
Proposition 7 If a pairs ER algorithm E is GI, then given

a previous ER result Jo (produced from R) and a new set of
records S, the incremental data algorithm correctly produces
an ER result of R ∪ S.

Proof The proof is similar to that of Proposition 4. ��

10.3 ER algorithms and their properties

Proposition 8 The SN algorithm is RM, but not CF .

Proof We prove that the SN algorithm is RM. Given any
partition P and two comparison rules B1 and B2 such that
B1 ≤ B2, the set of pairs of matching records found by B1

is clearly a subset of that found by B2, during the first phase
of the SN algorithm. As a result, the transitive closure of the
matching pairs by B1 refines the transitive closure result of
B2 (i.e., P1

o ≤ P2
o ).

We prove that the SN algorithm is not CF using a
counter example. Suppose that the input partition is Pi =
{{r1}, {r2}, {r3}}, and we sort the records in Pi by their record
IDs (e.g., the record r2 has the ID of 2) into the sorted list
[r1, r2, r3]. Given the comparison rule B, suppose that only
the pair r1 and r3 match with each other. Using a window size
of 2, we do not identify any matching pairs of records because
r1 and r3 are never in the same window according to the sorted
list. Hence, E(Pi , B) = {{r1}, {r2}, {r3}}. To apply the CF
property, we set P = {{r1}, {r3}} and Pi = {{r1}, {r2}, {r3}}.
The first two conditions in Definition 5 are satisfied because
P ⊆ Pi and ∀Po ∈ Ē(Pi , B) = {{{r1}, {r2}, {r3}}}, Po ≤
{⋃c∈P ,

⋃
c∈Pi
} = {{r1, r3}, {r2}}. Also, E(P, B) is always

{{r1, r3}} (because r1 and r3 surely match being in the
same window) and E(Pi − P, B) is always {{r2}}. However,
E(P, B) ∪ E(Pi − P, B) = {{r1, r3}, {r2}} �⊆ Ē(Pi , B) =
{{{r1}, {r2}, {r3}}}, violating the CF property. ��

Proposition 9 The HCB algorithm is CF , but not RM.

Proof We prove that the HCB algorithm is CF . Given the
four partitions P, Pi , P1

o , P2
o of Definition 5, suppose that

P1
o ∪ P2

o �∈ Ē(Pi , B). We then prove that the four conditions
of Definition 5 cannot all be satisfied at the same time. We first
assume that the first, third, and fourth conditions are satisfied.
That is, P ⊆ Pi , P1

o ∈ Ē(P, B), and P2
o ∈ Ē(Pi − P, B).

Now suppose when deriving E(Pi , B) that we “replay” all
the merges among the clusters of P that were used to derive
P1

o and then “replay” all the merges among the clusters of
Pi − P that were used to derive P2

o . We thus arrive at the
state P1

o ∪ P2
o and can further merge any matching clusters

until no clusters match to produce a possible ER result in
Ē(Pi , B). Since P1

o ∪ P2
o �∈ Ē(Pi , B), there must have been

new merges among clusters in P1
o and P2

o . Since none of
the clusters within P1

o or clusters within P2
o match with each

other, we know that there must have been at least one more
merge between a cluster in P1

o and a cluster in P2
o when deriv-

ing E(Pi , B). As a result, the second condition cannot hold
because there exists an ER result Po ∈ Ē(Pi , B) such that
Po �≤ {⋃c∈P c,

⋃
c∈Pi−P c} because there exists a cluster in

Po that contains records in P as well as Pi − P . Hence, we
have proved that all four conditions can never be satisfied if
P1

o ∪ P2
o �∈ Ē(Pi , B).

We prove that the HCB algorithm is not RM using a
counter example. Consider the example, we used for illustrat-
ing the HCB algorithm where Ē(Pi , B) was {{{r1, r2}, {r3}},
{{r1}, {r2, r3}}}. Now without having to define a new Boolean
comparison rule, by setting B1 = B, B2 = B, P1

o =
{{r1, r2}, {r3}}, and P2

o = {{r1}, {r2, r3}}, we see that P1
o �≤

P2
o (although B1 ≤ B2), contradicting the RM property.

This result suggests that any ER algorithm that can produce
more than one possible partition given any Pi and B is not
RM. We show in Proposition 13 the equivalent statement
that any ER algorithm that is RM always returns a unique
solution. ��

Lemma 5 Two records r and s are connected under B
and Pi if and only if r and s are in the same cluster in Po ∈
Ē(Pi , B) using the HCB R algorithm.

Proof Suppose that r and s are in the same cluster in Po.
If r and s are in the same cluster in Pi , then r and s are
trivially connected under B and Pi . Otherwise, there exists
a sequence of merges of the clusters in Pi that grouped r
and s together. If two clusters ca and cb in Pi merge where
r ∈ ca and s ∈ cb, then r and s are connected because there
is at least one pair of records r ′ ∈ ca and s′ ∈ cb such that
r ′ and s′ match (i.e., B(r ′, s′) = true), and r is connected
to r ′ while s is connected to s′. Furthermore, we can prove
that any record in ca ∪ cb is connected with any record in a
cluster cc that merges with ca ∪ cb using a similar argument:
We know there exists a pair of records r ′ ∈ ca∪cb and s′ ∈ cc

that match with each other, and r is connected to r ′ while s
is connected to s′, which implies that r and s are connected
under B and Pi . By repeatedly applying the same argument,
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we can prove that any r and s are connected if they end up
in the same cluster in Po.

Conversely, suppose that r and s are connected as the
sequence [r1(= r), . . . , rn(= s)] under B and Pi . If r
and s are in the same cluster in Pi , they are already clus-
tered together in Po. Otherwise, all the clusters that contain
r1, . . . , rn eventually merge together according to the HCB R

algorithm, clustering r and s together in Po. ��
Proposition 10 The HCB R algorithm always returns a

unique solution.

Proof Suppose that HCB R produces two different output
partitions for a given partition Pi and comparison rule B,
i.e., Ē(Pi , B) = {P1

o , P2
o , . . .}. Then, there must exist two

records r and s that have merged into the same cluster accord-
ing to one ER result, but not in the same cluster for the other
ER result. Suppose that r and s are in the same cluster in
P1

o , but in separate clusters in P2
o . Since r and s are clustered

together in P1
o , they are connected by Lemma 5. Hence, r

and s must also be clustered in P2
o again by Lemma 5, con-

tradicting our hypothesis that they are in different clusters in
P2

o . Hence, HCB R always returns a unique partition. ��
Proposition 11 The HCB R algorithm is both RM and

CF .

Proof The HCB R algorithm is CF because the HCB algo-
rithm already is CF . To show that the HCB R algorithm also
is RM, suppose that B1 ≤ B2. Then, all the clusters that
match according to B1 also match according to B2. Hence,
for any P1

o ∈ Ē(Pi , B1), we can always construct an ER
result P2

o ∈ Ē(Pi , B2) (which is unique by Proposition 10)
where P1

o ≤ P2
o by performing the exact same merges done

for P1
o and then continuing to merge clusters that still match

according to B2 until no clusters match according to B2. ��
Proposition 12 The M E algorithm does not satisfy RM

or CF .

Proof We prove that the M E algorithm is not RM using
a counter example. Suppose that the input partition is Pi =
{{r1}, {r2}, {r3}}, and we sort the records by their record IDs
(e.g., the record r2 has the ID of 2) into the sorted list of
records [r1, r2, r3]. Suppose that B1(r1, r3) = true, but
B1(r1, r2) = false and B1(r2, r3) = false. Compared
with B1, the only difference of B2 is that B2(r2, r3) = true.
Clearly, B1 ≤ B2. Using a queue size of 2, E(Pi , B1) returns
{{r1, r3}, {r2}} only because r1 and r2 are inserted into the
queue separately, and r3 then merges with {r1}. On the other
hand, E(Pi , B2) returns {{r1}, {r2, r3}} because r1 and r2 are
inserted into the queue separately, and r3 matches with {r2}
first. Since E(Pi , B1) = {{r1, r3}, {r2}} �≤ {{r1}, {r2, r3}} =
E(Pi , B2), the RM property does not hold.

We prove that the M E algorithm is not CF using a
counter example. Suppose that the input partition is Pi =
{{r1}, {r2}, {r3}}, and we sort the records by their IDs into the
sorted list of records [r1, r2, r3]. Suppose that B(r1, r3) =
true, but B(r1, r2) = false and B(r2, r3) = false.
Using a queue size of 1, we do not identify any matching
pairs because r1 is never compared with r3 because once
r2 enters the queue, {r1} is pushed out of the queue. Hence,
E(Pi , B) is always {{r1}, {r2}, {r3}}. Using Definition 6, sup-
pose we set P = {{r1}, {r3}} and Pi = {{r1}, {r2}, {r3}}.
The first condition is satisfied because P ⊆ Pi . The sec-
ond condition is satisfied because ∀Po ∈ Ē(Pi , B), Po =
{{r1}, {r2}, {r3}} ≤ {⋃c∈P c,

⋃
c∈Pi−P c} = {{r1, r3}, {r2}}.

Also, P1
o is always {{r1, r3}} because r3 matches with {r1}

while {r1} is in the queue, and P2
o is always {{r2}}. As a result,

P1
o ∪P2

o = {{r1, r3}, {r2}} �∈ Ē(Pi , B) = {{{r1}, {r2}, {r3}}},
contradicting CF . ��

Proposition 13 Any ER algorithm that is RM is also OI.

Proof Suppose that we are given an RM ER algorithm E ,
and the OI property does not hold. Then, there exists a par-
tition Pi and comparison rule B such that Ē(Pi , B) contains
at least two different partitions Px and Py . Without loss of
generality, we assume that Px �≤ Py . However, we violate
Definition 4 by setting B1 = B, B2 = B, P1

o = Px , and
P2

o = Py because B1 ≤ B2, but P1
o = Px �≤ Py = P2

o .
Hence, E cannot satisfy the RM property, a contradiction.

��
Proposition 14 The M E algorithm is OI and GI, but not

RM or CF .

Proof Proposition 12 shows that M E does not satisfy RM
or CF . The M E algorithm is OI because it first sorts the
records in Pi before resolving them with a sliding window
and thus produces a unique solution. The M E algorithm is
GI because E(P1

o ∪ (Pi − P), B) always returns the same
result as E(Pi , B). That is, M E extracts all the records from
its input partition before sorting and resolving them, and P1

o ∪
(Pi − P) contains the exact same records as those in Pi (i.e.,
⋃

c∈P1
o ∪(Pi−P) c =⋃

c∈Pi
c). ��

Proposition 15 The HCB R algorithm is RM, CF,GI,
and OI.

Proof Proposition 11 shows that HCB R is RM and CF .
The HCB R algorithm is also OI by Proposition 10. To show
that HCB R is GI, consider the four partitions P, Pi , P1

o , P2
o

of Definition 6, and suppose that the three conditions P ⊆
Pi , P1

o ∈ Ē(P, B), and P2
o ∈ Ē(P1

o ∪ (Pi − P), B) hold.
We show that P2

o ∈ Ē(Pi , B). Starting from Pi , P2
o is the

result of “replaying” the merges used to produce P1
o , and then

“replaying” the merges used to produce a possible result of
E(P1

o ∪ (Pi − P), B). Since no clusters in P2
o match with
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each other, P2
o is also a possible result for E(Pi , B). Hence,

P2
o ∈ Ē(Pi , B). ��

Proposition 16 The HCB algorithm is CF and GI, but
not OI (and consequently not RM).

Proof Proposition 9 shows that HCB is CF . The proof that
HCB is GI is identical to the proof for HCB R and is omitted.

The HCB algorithm does not satisfy OI because, depend-
ing on the order of records compared, there could be sev-
eral possible ER results. For example, given the input parti-
tion Pi = {{r1}, {r2}, {r3}} and the comparison rule B, sup-
pose that B(r1, r2) = true and B(r2, r3) = true, but
B(r1, r3) = false. Also assume that, whenever we com-
pare two clusters of records, we simply compare the records
with the smallest IDs from each cluster using B. For instance,
when comparing {r1, r2} with {r3}, we return the result of
B(r1, r3). Then depending on the order of clusters in Pi com-
pared, the HCB algorithm either produces {{r1, r2}, {r3}} or
{{r1, r2, r3}}. ��

Proposition 17 There exists an ER algorithm that is RM
(and consequently OI as well), but not GI or CF .

Proof We define a variant of the SN algorithm called SN 2.
Recall that the SN algorithm involves identifying the match-
ing pairs of records by first sorting the records from Pi and
then comparing records within the same sliding window. At
the end, we produce a transitive closure of all the matching
records. During the transitive closure, however, we define
SN 2 to also consider all the records within the same clus-
ter in the input partition Pi as matching. For example, sup-
pose we have Pi = {{r1, r2}, {r3}} and a comparison rule
B such that B(r1, r3) = true, but B(r1, r2) = false
and B(r2, r3) = false. Given a window size of 2, sup-
pose that we sort the records in Pi by record ID into the list
[r1, r2, r3]. Then the original SN algorithm sorts will return
{{r1}, {r2}, {r3}} because r1 and r3 are never compared in the
same window. However, the new SN 2 algorithm will con-
sider r1 and r2 as matching because they were in the same
cluster in the input partition Pi . Hence, the result of SN 2 is
{{r1, r2}, {r3}}.

We prove that the SN 2 algorithm is RM. Given any
partition P and two comparison rules B1 and B2 such that
B1 ≤ B2, the set of pairs of matching records found by B1

is clearly a subset of that found by B2, during the first phase
of the SN algorithm where we find all the matching pairs
of records within the same sliding window at any point. In
addition, the set of matching pairs of records identified from
Pi is the same for both B1 and B2. As a result, the transi-
tive closure of the matching pairs by B1 refines the transi-
tive closure result of B2 (i.e., for any P1

o ∈ Ē(Pi , B1) and
P2

o ∈ Ē(Pi , B2), P1
o ≤ P2

o ).
We prove that the SN 2 algorithm is not GI using a

counter example. Suppose that we have Pi = {{r1, r2}, {r3}}

and a comparison rule B such that B(r1, r3) = true, but
B(r1, r2) = false and B(r2, r3) = false. Given a win-
dow size of 2, suppose that we sort the records in Pi by
record ID into the list [r1, r2, r3]. As a result, Ē(Pi , B) =
{{{r1}, {r2}, {r3}}} because r1 and r3 are never compared
within the same window. Using Definition 6, suppose that
we set P = {{r1}, {r3}} and Pi = {{r1}, {r2}, {r3}}. As a
result, P1

o = E(P, B) = {{r1, r3}} because r1 and r3 surely
match being in the same window. Also, P2

o = E(P1
o ∪ (Pi −

P), B) = E({{r1, r3}, {r2}}, B) = {{r1, r3}, {r2}} because
r1 and r3 are in the same cluster of the input partition P1

o ∪
(Pi − P). Since E(Pi , B) is always {{r1}, {r2}, {r3}}, P2

o �∈
Ē(Pi , B) = {{{r1}, {r2}, {r3}}}. Hence, the GI property is
not satisfied. (On the other hand, the original SN algorithm
is GI; see Proposition 19.)

To prove that SN 2 is not CF (in order to show that Fig. 2
correctly categorizes SN 2), we can directly use the proof of
Proposition 8 that was used to show SN is not CF . ��

Proposition 18 There exists an ER algorithm that is CF
and OI, but not GI or RM.

Proof We define a variant of the HCB algorithm (called
HC2

B) where all matching clusters are merged, but only in
a certain order. For example, we can define a total ordering
between pairs of clusters where the clusters with the “small-
est record IDs” are merged first. We first define the following
notations: MinI D1 = min{minr∈c1 ID(r), minr∈c2 ID(r)},
Max I D1=max{minr∈c1 ID(r), minr∈c2 ID(r)}, MinI D2=
min{minr∈c3 ID(r), minr∈c4 ID(r)}, and Max I D2 = max
{minr∈c3 ID(r), minr∈c4 ID(r)} where the ID(r ) function
returns the ID of r . We merge the pair of clusters (c1, c2)

before the pair of matching clusters (c3, c4) if either
MinI D1 < MinI D2 or both MinI D1 = MinI D2 and
Max I D1 < Max I D2. For example, the matching clus-
ters {r3, r9} and {r6, r7} merge before the matching clus-
ters {r4, r8} and {r6, r7} because MinI D1 = 3, Max I D1

= 6, MinI D2 = 4, Max I D2 = 6 and thus MinI D1 <

MinI D2. In general, we can use any total ordering of pairs
of clusters. As a result of using the total ordering, the HC2

B
algorithm always produces a unique ER result. For exam-
ple, suppose that we have Pi = {{r1}, {r2}, {r3}} and the
Boolean comparison rule B where B(r1, r2) = true and
B(r2, r3) = true, but B(r1, r3) = false. Also assume
that, whenever we compare two clusters of records, we sim-
ply compare the records with the smallest IDs from each
cluster using B. For instance, when comparing {r1, r2} with
{r3}, we return the result of B(r1, r3). Then the ER result
E(Pi , B) = {{r1, r2}, {r3}}. The clusters {r1} and {r2}merge
before {r2} and {r3} because MinI D1 = 1 < 2 = MinI D2.
Once {r1} and {r2} merge, {r1, r2} does not match with {r3}
because B(r1, r3) = false.

We show that the HC2
B algorithm is CF . Given the

four partitions P, Pi , P1
o , P2

o , suppose that the four condi-

123



Incremental entity resolution on rules and data 101

tions in Definition 5 are satisfied. That is, P ⊆ Pi ,∀Po ∈
Ē(Pi , B), Po ≤ {⋃c∈P c ,

⋃
c∈Pi−P c}, P1

o ∈ Ē(P, B),

and P2
o ∈ Ē(Pi − P, B). Since HC2

B returns a unique
solution, there is exactly one Po ∈ Ē(Pi , B). Suppose
that Po was generated via a sequence of cluster merges
M1, M2, . . . where each M involves a merge of two clus-
ters. Since Po ≤ {⋃c∈P c ,

⋃
c∈Pi−P c}, we can split the

sequence into merges Ma
1 , Ma

2 , . . . that only involve clusters
in P and merges Mb

1 , Mb
2 , . . . that only involve clusters in

Pi − P . We can run the first batch of merges Ma
1 , Ma

2 , . . .

to produce a possible result of E(P, B) and run the second
batch of merges Mb

1 , Mb
2 , . . . to produce a possible result of

E(Pi − P, B). Since HC2
B returns a unique solution, both

ER results E(P, B) and E(Pi − P, B) are in fact unique
and thus are equal to P1

o and P2
o , respectively. The union of

P1
o and P2

o is equivalent to the result of running the merges
M1, M2, . . ., i.e., E(Pi , B). Hence, P1

o ∪ P2
o ∈ Ē(Pi , B).

The HC2
B algorithm is OI because the merges are done

in a fixed order.
We show that the HC2

B algorithm does not satisfy GI
using a counter example. Suppose that we have Pi =
{{r1}, {r2}, {r3}} and the Boolean comparison rule B where
B(r1, r2) = true and B(r2, r3) = true, but B(r1, r3) =
false. Also assume that, whenever we compare two clus-
ters of records, we simply compare the records with the small-
est IDs from each cluster using B. For instance, when com-
paring {r1, r2} with {r3}, we return the result of B(r1, r3).
Then, the ER result E(Pi , B) = {{r1, r2}, {r3}} because {r1}
and {r2} merge first (before {r2} and {r3}) and then {r1, r2}
does not match with {r3} because B(r1, r3) = false. How-
ever, in Definition 6 suppose that we set P = {{r2}, {r3}} and
Pi = {{r1}, {r2}, {r3}}. Then P1

o = E(P, B) = {{r2, r3}}
because {r2} matches with {r3}. Also P2

o = E(P1
o ∪

(Pi − P), B) = E({{r2, r3}, {r1}}, B) = {{r1, r2, r3}}
because {r2, r3} and {r1} match. Since E(Pi , B) is always
{{r1, r2}, {r3}}, P2

o �∈ Ē(Pi , B) = {{{r1, r2}, {r3}}}. Hence,
the GI property is not satisfied.

We show that the HC2
B algorithm is not RM using a

counter example. We use the same example in the pre-
vious paragraph where E(Pi , B) = {{r1, r2}, {r3}}. Now
suppose that we are given a stricter comparison rule B1

where B1(r2, r3) = true, but B1(r1, r2) = false and
B1(r1, r3) = false. Then E(Pi , B1) = {{r1}, {r2, r3}}
because only {r2} and {r3} match. Hence, although B1 ≤ B,

E(Pi , B) = {{r1, r2}, {r3}} �≤ E(Pi , B1) = {{r1}, {r2, r3}},
violating RM. ��

Proposition 19 The SN algorithm is RM (and conse-
quently OI) and GI, but not CF .

Proof Proposition 8 shows that SN is RM (and conse-
quently OI), but not CF . We prove that the SN algorithm is
GI. Recall that SN extracts all records in the input partition
before sorting and resolving them. Hence, the ER result is

the same for different input partitions as long as they con-
tain the same records. For example, E({{r1, r2}, {r3}}, B) =
E({{r1}, {r2, r3}}, B) because the two input partitions con-
tain the same records r1, r2, and r3. In Definition 6, we know
that E(P1

o ∪ (Pi − P), B) always returns the same result as
E(Pi , B) because P1

o ∪ (Pi − P) contains the same records
as those in Pi . Thus, for any P2 ∈ Ē(P1

o ∪(Pi−P), B), P2 ∈
Ē(Pb, B). ��

Proposition 20 The extended HCDS algorithm is RM,

CF,GI, and OI.

Proof The proof is analogous to that of Proposition 15. ��
Proposition 21 The extended HCDC algorithm is CF , but

not RM,OI, or GI.

Proof The proof that HCDC is CF is an extension of the
analogous proof in Proposition 18. We can prove that HCDC

does not satisfy the other properties using counter examples.
��
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