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Abstract The typical user interaction with a database sys-
tem is through queries. However, many times users do not
have a clear understanding of their information needs or
the exact content of the database. In this paper, we propose
assisting users in database exploration by recommending to
them additional items, called Ymal (“You May Also Like”)
results, that, although not part of the result of their original
query, appear to be highly related to it. Such items are com-
puted based on the most interesting sets of attribute values,
called faSets, that appear in the result of the original query.
The interestingness of a faSet is defined based on its fre-
quency in the query result and in the database. Database fre-
quency estimations rely on a novel approach of maintaining
a set of representative rare faSets. We have implemented our
approach and report results regarding both its performance
and its usefulness.

Keywords Recommendations · Faceted search ·
Data exploration

1 Introduction

Typically, users interact with a database system by for-
mulating queries. This query-response mode of interaction
assumes that users are to some extent familiar with the con-
tent of the database and that they have a clear understanding
of their information needs. However, as databases become
larger and accessible to a more diverse and less technically
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oriented audience, a more exploratory mode of information
seeking seems relevant and useful [15].

Previous research has mainly focused on assisting users
in refining or generalizing their queries. Approaches to the
many-answers problem range from reformulating the orig-
inal query so as to restrict the size of the result, for exam-
ple, by adding constraints to the query (e.g., [32]), to auto-
matically ranking query results and presenting to users only
the top-k most highly ranked among them (e.g., [12]). With
facet search (e.g., [20]), users start with a general query and
progressively narrow its results down to a specific item by
specifying at each step facet conditions, i.e., restrictions on
attribute values. The empty-answers problem is commonly
handled by relaxing the original query (e.g., [23]).

In this paper, we propose a novel exploratory mode of
database interaction that allows users to discover items that
although not part of the result of their original query are
highly correlated to this result.

In particular, at first, the interesting parts of the result
of the initial user query are identified. These are sets of
(attribute, value) pairs, called faSets, that are highly relevant
to the query. For example, assume a user who asks about the
characteristics (such as genre, production year or country) of
movies by a specific director, e.g., M. Scorsese. Our system
will highlight the interesting aspects of these results, e.g.,
interesting years, pairs of genre and years, and so on (Fig. 1).

The interestingness of each faSet is based on its frequency.
Intuitively, the more frequent a faSet in the result, the more
relevant to the query. To account for popular faSets, we
also consider their frequency in the database. For example,
the reason that a movie genre appears more frequently than
another may not be attributed to the specific director but to
the fact that this is a very common genre. To address the fun-
damental problem of locating interesting faSets efficiently,
we introduce appropriate data structures and algorithms.
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Fig. 1 YmalDB: On the left side, the original user query Q is shown at
the top and its result at the bottom. Q asks for the countries, genres and
years of movies directed by M. Scorsese. On the right side, interesting

parts of the result are presented grouped based on their attributes and
ranked in order of interestingness

Specifically, since the online computation of the frequency
of each faSet in the database imposes large overheads, we
maintain an appropriate summary that allows us to estimate
such frequencies when needed. To this end, we propose a
novel approach based on storing the frequencies of a set of
representative closed rare faSets. The size of the maintained
set is tunable by an ε-parameter so as to achieve a desired
estimation accuracy. The stored frequencies are then used to
estimate the interestingness of the faSets that appear in the
result of any given user query. We present a two-phase algo-
rithm for computing the k faSets with the highest interesting-
ness. In the first phase, the algorithm uses the pre-computed
summary to set a frequency threshold that is used in the sec-
ond phase to run a frequent itemset-based algorithm on the
result of the query.

After the k most interesting faSets have been located,
exploratory queries are constructed whose results possess
these interesting faSets. The results of the exploratory
queries, called Ymal (“You May Also Like”) results, are
also presented to the user. For example, by clicking on each

Fig. 2 YmalDB: Recommendations for a specific interesting piece of
information (Biography films of 1995)

important aspect of the query about movies by M. Scors-
ese, the user gets additional recommended Ymal results,
i.e., other directors who have directed movies with charac-
teristics similar to the selected ones (Fig. 2). This way, users
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get to know other, possibly unknown to the them, directors
who have directed movies similar to those of M. Scorsese in
our example.

Our system, YmalDB, provides users with exploratory
directions toward parts of the database that they have not
included in their original query. Our approach may also assist
users who do not have a clear understanding of the database,
e.g., in the case of large databases with complex schemas,
where users may not be aware of the exact information that
is available.

The offered functionality is complementary to query-
response and recommendation systems. Contrary to facet
search and related approaches, our goal is not to refine the
original query so as to narrow its results. Instead, we provide
users with items that do not belong to the results of their
original query but are highly related to them. Traditional rec-
ommenders [6] and OLAP navigation systems [17] assume
the existence of a log of previous user queries or results and
recommend items based on the past behavior of this particu-
lar user or other similar users. Ymal results are based solely
on the database content and the initial query.

We have implemented our approach on top of a relational
database system. We present experimental results regard-
ing the performance of our summaries and algorithms using
both synthetic and real datasets, namely one dataset contain-
ing information about movies [1] and one dataset containing
information about automobiles [3]. We have also conducted
a user study using the movie dataset and report input from
the users.
Paper outline. In Sect. 2, we present our result-driven frame-
work (called ReDrive) for defining interesting faSets, while
in Sect. 3, we use interesting faSets to construct exploratory
queries and produce Ymal results. Sections 4 and 5 intro-
duce the summary structures and algorithms used to imple-
ment our framework. Section 6 presents our prototype imple-
mentation along with an experimental evaluation of the per-
formance and usefulness of our approach. Finally, related
work is presented in Sect. 7, and conclusions are offered in
Sect. 8.

2 The REDRIVE framework

Our database exploration approach is based on exploiting
the result of each user query to identify interesting pieces of
information. In this section, we formally define this frame-
work, which we call the ReDrive framework.

Let D be a relational database with n relations R =
{R1, . . . , Rn} and let A be the set of all attributes in R.
We use AC to denote the set of categorical attributes and AN

to denote the set of numeric attributes, where AC ∩AN = ∅
and AC ∪ AN = A. Without loss of generality, we assume
that relation and attribute names are distinct.

We also define a selection predicate ci to be a predicate of
the form (Ai = ai ), where Ai ∈ AC and ai ∈ domain(Ai ),
or of the form (li ≤ Ai ≤ ui ), where Ai ∈ AN , li , ui ∈
domain(Ai ) and li ≤ ui . If li = ui , we simplify the notation
by writing (Ai = li ).

To locate items of interest in the database, users pose
queries. In particular, we consider select-project-join (SPJ)
queries Q of the following form:

SELECT proj (Q)

FROM rel(Q)

WHERE scond(Q) AND jcond(Q)

where rel(Q) is a set of relations, scond(Q) is a disjunction
of conjunctions of selection predicates, jcond(Q) is a con-
junction of join conditions among the relations in rel(Q),
and proj (Q) is the set of projected attributes. The result set,
Res(Q), of a query Q is a relation with schema proj (Q).

2.1 Interesting faSets

Let us first define pieces of information in the result set. We
define such pieces, or facets, of the result, as parts of the
result that satisfy specific selection predicates.

Definition 1 (m-FaSet) An m-faSet, m ≥ 1, is a set of m
selection predicates involving m different attributes.

We shall also use the term faSet when the size of the m-faSet
is not of interest.

For a faSet f , we use Att ( f ) to denote the set of attributes
that appear in f . Let t be a tuple from a set of tuples S with
schema R; we say that t satisfies a faSet f , where Att ( f ) ⊆
R, if t[Ai ] = ai , for all predicates (Ai = ai ) ∈ f and
li ≤ t[Ai ] ≤ ui , for all predicates (li ≤ Ai ≤ ui ) ∈ f .
We call the percentage of tuples in S that satisfy f , support
of f in S.

Example. Consider the movies database of Fig. 3 and the
query and its corresponding result set depicted in Fig. 4.
{G.genre = “Biography”} is a 1-faSet with support 0.375
and {1990 ≤ M.year ≤ 2009, G.genre = “Biography”} is a
2-faSet with support 0.25.

We are looking for interesting pieces of information at
the granularity of a faSet: this may be the value of a single
attribute (i.e., a 1-faSet) or the values of m attributes (i.e., an
m-faSet).

Example. Consider the example in Fig. 4, where a user
poses a query to retrieve movies directed by M. Scorsese.
{G.genre = “Biography”} is a 1-faSet in the result that is
likely to interest the user, since it is associated with many of
the movies directed by M. Scorsese. The same holds for the
2-faSet {1990 ≤M.year ≤ 2009, G.genre = “Biography”}.
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Fig. 3 Movies database schema

movieid title year rating
movieid actorid character actorid name sex

ACTORS (A)MOVIES2ACTORS (M2A)

movieid directorid notes directorid name

DIRECTORS (D)MOVIES2DIRECTORS (M2D)

movieid producerid notes producerid name

PRODUCERS (P)MOVIES2PRODUCERS (M2P)

movieid writerid notes writerid name

WRITERS (W)MOVIES2WRITERS (M2W)

MOVIES (M)

movieid country

COUNTRIES (C)

movieid genre

GENRES (G)

movieid language

LANGUAGE (L)

movieid keywords

KEYWORDS (K)

SELECT
FROM
WHERE

AND
AND

, 2 , ,

.directorid = 2 .directorid
2 .movieid = .movieid
.movieid = .movieid

D M.title, M.year, G.genre

D ‘ ’

.name,

.name = M. Scorsese
D  M D  M  G

D M D
M D M
M G

AND

;

(a)

D.name M.title M.year G.genre

M. Scorsese The Aviator 2004 Biography

M. Scorsese Gangs of New York 2002 Drama

M. Scorsese Goodfellas 1990 Biography

M. Scorsese Casino 1995 Drama

M. Scorsese Shutter Island 2004 Thriller

M. Scorsese M. Jackson: Video Greatest Hits 1995 Drama

M. Scorsese The Last Waltz 1978 Biography

M. Scorsese Raging Bull 1980 Documentary

(b)

Fig. 4 a Example query and b result set

To define faSet relevance formally, we take an IR-based
approach and rank faSets in decreasing order of their odds of
being relevant to a user information need. Let uQ be a user
information need expressed through a query Q, and let RuQ

for a tuple t be a binary random variable that is equal to 1 if
t satisfies uQ and 0 otherwise. Then, the relevance of a faSet
f for uQ can be expressed as:

p(RuQ = 1| f )

p(RuQ = 0| f )

where p(RuQ = 1| f ) is the probability that a tuple that satis-
fies f also satisfies uQ , and p(RuQ = 0| f ) is the probability
that a tuple that satisfies f does not satisfy uQ . Using the
Bayes rule we get:

p(RuQ = 1| f )

p(RuQ = 0| f )
= p( f |RuQ = 1)p(RuQ = 1)

p( f |RuQ = 0)p(RuQ = 0)

Since the terms p(RuQ = 1) and p(RuQ = 0) are inde-
pendent of the faSet f and thus do not affect their relative
ranking, they can be ignored.

We make the assumption that all relevant to uQ tuples are
those that appear in Res(Q), thus p( f |RuQ = 1) is equal
with the probability that a tuple in the result satisfies f , writ-
ten p( f |Res(Q)). Similarly, p( f |RuQ = 0) is the probabil-
ity that a tuple that is not relevant, i.e., a tuple that does
not belong to the result set, satisfies f . We make the logical
assumption that the result set is small in comparison with
the size of the database and approximate the non-relevant
tuples with all tuples in the database, that is, all tuples in the
global relation denoted by D, with schema A. Based on the
above motivation, we arrive at the following definition for
the relevance of a faSet.

Definition 2 (interestingness score) Let Q be a query and
f be a faSet with Att ( f ) ⊆ proj (Q). The interestingness
score, score( f, Q), of f for Q is defined as:

score( f, Q) = p ( f |Res(Q))

p( f |D)

The term p( f |Res(Q)) is estimated by the support of f in
Res(Q), that is, the percentage of tuples in the result set that
satisfy f . The term p( f |D) is a global measure that does
not depend on the query. It serves as an indication of the
frequency of the faSet in the whole dataset, i.e., it measures
the discriminative power of f . Note that when the attributes
in Att ( f ) do not belong to the same relation, to estimate this
value, we may need to join the respective relations first.

Intuitively, a faSet stands out when it appears more fre-
quently in Res(Q) than anticipated. For a faSet f, score( f,
Q) > 1, if and only if, its support in the result set is larger
than its support in the database, while score( f, Q) = 1
means that f appears as frequently as expected, i.e., its sup-
port in Res(Q) is the same as its support in the database.

Yet, another way to interpret the interestingness score of
a faSet is with relation to the tf-idf (term frequency-inverse
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document frequency) measure in IR, which aims to promote
terms that appear often in the searched documents but are
not very often encountered in the entire corpus. Here, the
document roughly corresponds to the result set, the term to
a faSet and the corpus to the database.
An association rule interpretation of interestingness. Let r
be the current instance of the global database D. r can be
interpreted as a transaction database where each tuple con-
stitutes a transaction whose items are the specific (attribute,
value) pairs of the tuple. For each query Q, we aim at iden-
tifying interesting rules of the form R f : scond(Q)→ f . In
other words, we search for faSets that are highly correlated
with the conditions expressed in the user query. Each faSet
f is then ranked based on the interestingness or importance
of the associated rule R f . But what makes a rule interesting?

There is large body of research on the topic (see, for
example, [25,27,38,39]). For simplicity, let us assume that
Att (proj (Q)) ⊃ Att (scond(Q)). Let count (scond(Q))

be the number of tuples in r that satisfy scond(Q). Clearly,
count (scond(Q)) = |Res(Q)|. Common measures of the
importance of an association rule are support and confidence,
where the support of a rule is defined as the percentage
of tuples that satisfy both parts of the rule, whereas confi-
dence corresponds to the probability that a tuple that satis-
fies the LHS of the rule also satisfies the RHS. In our case,
support (R f ) = (number of tuples in the Res(Q) that satisfy
f ) / |D| and con f idence(R f ) = (number of the tuples in the
result of Q that satisfy f )/|Res(Q)|. Using either the support
or the confidence of R f to define the interestingness of faSet
f would result in ranking faSets based solely on their fre-
quency in the result set. Note also that for the same number
of appearances in the result set, it holds that the larger the
result, the smallest the confidence of the rule. This means that
more selective queries provide us with rules with higher con-
fidence. However, both measures favor faSets with popular
attribute values.

This bias is a known problem of such measures, caused by
the fact that the frequency of the RHS of the rule is ignored.
This is often demonstrated with the following simple exam-
ple. Assume that we are looking into the relationship between
people who drink tea and coffee, e.g., of a rule of the form
tea→coffee. The confidence of such a rule may be high, even
when the percentage of people that drink both tea and coffee
is smaller than the percentage of the general population of
coffee drinkers, as long as this population is large enough.

To handle this problem, another measure of importance
for association rules has been introduced, called lift, that also
accounts for the RHS of the rule so that popular values, or
faSets in our case, have to appear more often than less popular
ones in the result set to be considered equally important. Lift
expresses the probability that a tuple that satisfies the RHS
of the rule also satisfies the LHS. We show next that our
definition of interestingness for a faSet f corresponds to the

lift of rule R f . Let p(A) be the probability of A appearing
in the database. It holds that:

li f t (R f ) = p(scond(Q) ∧ f )

p(scond(Q))P( f )

= count (scond(Q)∧ f )
|D| /count (scond(Q))count ( f )

|D||D|

= |D|
|Res Q|

count (scond(Q) ∧ f )

count ( f )

since |Res(Q)| and |D| are the same for all faSets in the
result, lift corresponds to the interestingness measure we use
in this paper.
Empty-/Many-answers problem. The goal of our approach
is to assist users in exploring a portion of the database that is
interesting according to their initial query. This goal is mean-
ingful, when the initial query retrieves a non-empty result set.
When the user query retrieves an empty result set, there is
no “lead” to point us to possible exploratory directions and
the interestingness score of all faSets is zero. In such cases,
it is possible to fall back to some default recommendation
mechanism or to resort to query relaxation techniques. When
Res(Q) contains many answers, the interestingness score
still provides us with a means of ranking faSets extracted
from these answers. Recall that, we do not aim at narrow-
ing down the initial result of the user query, but rather at
locating interesting data related to this result. In this case,
the presented faSets can help in highlighting some interest-
ing aspects of this large result set. Note that when the result
set has a size comparable to that of the database, one of the
assumptions made to motivate the definition of interesting-
ness, namely that the result is small in comparison with the
database, may not be valid. However, our definition of inter-
estingness is still valid and provides us with a score based on
the relative frequency of each faSet in the result and in the
database.

2.2 Attribute expansion

Definition 2 provides a means of ranking the various faSets
that appear in the result set, Res(Q), of a query Q and dis-
covering the most interesting ones among them. However,
there may be interesting faSets that include attributes that do
not belong to proj (Q) and, thus, do not appear in Res(Q).
We would like to extend Definition 2 toward discovering
such potentially interesting faSets. This can be achieved by
expanding Res(Q) toward other attributes and relations in D.

Consider, for example, the following query that returns
just the titles of movies directed by M. Scorsese in the data-
base of Fig. 3:

SELECT M.title
FROM D, M2D, M
WHERE D.name = ‘M. Scorsese’
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SELECT
FROM
WHERE

AND

G.genre, C.country
D, M2D, M, G, C

D.name
M.year 1963

= ‘ ’
>

AND
AND
AND
AND

D.directorid M2D.directorid
M2D.movieid M.movieid
M.movieid G.movieid
M.movieid C.movieid

=
=

=
=

M. Scorsese

(a)

SELECT
FROM
WHERE

AND
AND

D.name, M.year
D, M2D, M, G, C

G.genre Drama
C.country
D.name

M.year 1963

= ‘ ’
= Italy

( <> ‘ ’
<= )OR

AND
AND
AND
AND

D.directorid M2D.directorid
M2D.movieid M.movieid
M.movieid G.movieid
M.movieid C.movieid

=
=

=
=

M. Scorsese

(b)

SELECT
FROM
WHERE

AND
AND
AND

D.name, M.year
D, M2D, M, G, C

G.genre Drama
C.country
D.name
M.year 1963

= ‘ ’
= ‘Italy’

= ‘ ’
<=

D.directorid M2D.directorid
M2D.movieid M.movieid
M.movieid G.movieid
M.movieid C.movieid

=
=

=
=

AND
AND
AND
AND

M. Scorsese

(c)

SELECT
FROM
WHERE

AND
AND
AND

D.name, M.year
D, M2D, M, G, C

G.genre Drama
C.country
D.name
M.year 1963

= ‘ ’
= Italy

<> ‘ ’
>

D.directorid M2D.directorid
M2D.movieid M.movieid
M.movieid G.movieid
M.movieid C.movieid

=
=

=
=

AND
AND
AND
AND

M. Scorsese

(d)

Fig. 5 a Original user query and b the default exploratory query for
the interesting faSet {G.genre = “Drama”, C.country = “Italy”}. c, d
are variations of the default exploratory query; in the former, we rec-
ommend M. Scorsese drama movies produced in Italy in different years

than those specified in the original user query, and in the latter, we rec-
ommend non–M. Scorsese drama movies produced in Italy in the same
years as those specified in the original user query

AND D.directorid =M2D.directorid
AND M2D.movieid =M.movieid

All faSets in the result set of Q will appear once (unless
M. Scorsese has directed more than one movie with the
same title). However, including, for instance, the relation
that contains the attribute “Country” in rel(Q) and modi-
fying jcond(Q) accordingly may disclose interesting infor-
mation, e.g., that many of the movies directed by M. Scorsese
are related to Italy.

The definition of interestingness is extended to include
faSets with attributes not in proj (Q), by introducing an
expanded query Q′ with the same selection condition as the
original query Q but with additional attributes in proj (Q′)
and additional relations in rel(Q′).
Definition 3 (expanded interestingness score) Let Q be a
query and f be a faSet with Att ( f ) ⊆ A. The interest-
ingness score of f for Q is defined as:

score( f, Q) = p( f |Res(Q′))
p( f |D)

where Q′ is an SPJ query with proj (Q′) = proj (Q) ∪
Att ( f ), rel(Q′)= rel(Q)∪{R′|Ai ∈ R′, for Ai ∈ Att ( f )},
scond(Q′) = scond(Q) and jcond(Q′) = jcond(Q)∧
(joins with {R′ | Ai ∈ R′, for Ai ∈ Att ( f )}).

For instance, expanding our example query toward the
“Country” attribute is achieved by the following Q′:
SELECT M. t i t l e, C . c o u n t r y

FROM D, M2D, M, C
WHERE D . name = ‘M. S c o r s e s e’

AND D . d i r e c t o r i d = M2D . d i r e c t o r i d
AND M2D . m o v i e i d = M. m o v i e i d
AND M. m o v i e i d = C . m o v i e i d

We defer the discussion on how we select relations toward
which to expand user queries until Sect. 5.3.

3 Exploratory queries

Besides presenting interesting faSets to the users, we use
faSets to discover interesting pieces of data that are poten-

tially related to the user needs but do not belong to the
results of the original user query. In particular, we construct
exploratory queries that retrieve results strongly correlated
with those of the original user query Q by replacing the
selection condition, scond(Q), of Q with equivalent ones,
thus allowing new interesting results to emerge. Recall that
a high interestingness score for f means that the lift of
scond(Q) → f is high, indicating replacing scond(Q)

with f , since scond(Q) seems to suggest f .
For example, for the interesting faSet {G.genre =

“Drama”} in Fig. 4, the following exploratory query:

SELECT D . name
FROM D, M2D, M, G
WHERE G . g e n r e = ‘ Drama’

AND D . name <> ‘M. S c o r s e s e’
AND D . d i r e c t o r i d = M2D . d i r e c t o r i d
AND M2D . m o v i e i d = M. m o v i e i d
AND M. m o v i e i d = G . m o v i e i d

will retrieve other directors that have also directed drama
movies, which is an interesting value appearing in the orig-
inal query result set. The negation term “D.name <> M.
Scorsese” is added to prevent values appearing in the selec-
tion conditions of the original user query from being recom-
mended to the users.

Next, we formally define exploratory queries.

Definition 4 (exploratory query) Let Q be a user query
and f be an interesting faSet for Q. The exploratory
query Q̂ that uses f is an SPJ query with proj (Q̂) =
Att (scond(Q)), rel(Q̂) = rel(Q) ∪ {R′ | Ai ∈ R′,
for Ai ∈ Att ( f )}, scond(Q̂) = f ∧ ¬ scond(Q) and
jcond(Q̂) = jcond(Q)∧ (joins with {R′ | Ai ∈ R′, for
Ai ∈ Att ( f )}).

The results of an exploratory query are called Ymal (“You
May Also Like”) results.

When the selection condition, scond(Q), of the original
user query Q contains more than one selection predicate, then
instead of just negating scond(Q), we could consider vari-
ous combinations of these predicates. This means replacing
scond(Q̂) = f ∧ ¬ scond(Q) in the above definition with
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scond(Q̂) = f ∧ scond(Q)\{ci } ∧ ¬ ci ci ∈ scond(Q).
As an example, consider the user query Q of Fig. 5a and
assume the interesting faSet {G.genre = “Drama”, C.country
= “Italy”}. Then, the exploratory queries of Fig. 5b–d can
be constructed. In general, it is possible to construct up to
2|scond(Q)| − 1 exploratory queries for each interesting faSet
f , each one of them focusing on different aspects of the
interesting faSets. In our approach, as a default, we use the
exploratory query Q̂ where scond(Q̂) = f ∧ ¬ scond(Q)

for each interesting faSet f . If the users wish to, they can
request the execution of other exploratory queries for f as
well by specifying combinations of conditions in scond(Q).

The results of an exploratory Q̂ are recommended to the
user. Since in general, the success of recommendations is
found to depend heavily on explaining the reasons behind
them [40], we include an explanation for why each result of
Q̂ is suggested. The explanation specifies that the presented
result appears often with a value that is very common in the
result of the original query Q. For example, assuming that
F.F. Coppola is a director retrieved by our exploratory query,
then the corresponding explanation would be “You may also
like F.F. Coppola, since F.F. Coppola appears frequently with
the interesting genre Drama and country Italy of the original
query.”

Clearly, one can use the interesting faSets in the results of
an exploratory query to construct other exploratory queries.
This way, users may start with an initial query Q and follow
the various exploratory queries suggested to them to grad-
ually discover other interesting information in the database.
Currently, we do not set an upper limit on the number of
exploration steps. Instead, we let users explore the database
at the extend they wish, similar to the manner users perform
web browsing by following interesting links.
Framework overview. In summary, ReDrive database
exploration works as follows. Given a query Q, the most
interesting faSets for Q are computed and presented to the
users. Such faSets may be either interesting pieces (sub-
tuples) of the tuples in the result set of Q or expanded tuples
that include additional attributes not in the original result.
Interesting faSets are further used to construct exploratory
queries that lead to discovering additional information, i.e.,
recommendations, related to the initial user query. Users can
explore further the database by exploiting such recommenda-
tions for different interesting faSets of the original query or by
recursively applying the same procedure on the exploratory
queries to retrieve additional interesting faSets and, thus, rec-
ommendations.

In the next two sections, we focus on algorithms for the
efficient computation of interesting faSets. Note that our
algorithms are based on maintaining statistics regarding the
frequency of faSets in the database and thus are applicable
to any interpretation of interestingness that exploits frequen-
cies.

4 Estimation of interestingness

Let Q be a query with schema proj (Q) and f be an m-faSet
with m predicates {c1, . . . , cm}. To compute the interesting-
ness of f , according to Definition 2 (and Definition 3), we
have to compute two quantities: p( f |Res(Q)) and p( f |D).

p( f |Res(Q)) is the support of f in Res(Q). This quan-
tity is different for each user query Q and, thus, has to be
computed online. p( f |D), however, is the same for all user
queries. Clearly, the value of p( f |D) for a faSet f could also
be computed online. For example, this can be achieved by the
following simple count query:

SELECT count (∗)
FROM rel(Q)

WHERE f AND jcond(Q)

that returns as a result the number of database tuples that
satisfy the faSet f . However, one such query is needed for
each faSet in Res(Q). Since the number of faSets even for
a small Res(Q) is large, this online computation makes the
location of interesting faSets prohibitively slow. Thus, we opt
for computing offline some information about the frequency
of selected faSets in the database and use this information to
estimate p( f |D) online. Next, we show how we can maintain
such information.

4.1 Basic approaches

Let mmax be the maximum number of projected attributes
of any user query, i.e., mmax = |A|. A brute force approach
would be to generate all possible faSets of size up to mmax and
pre-compute their support in D. Such an approach, however,
is infeasible even for small databases due to the combina-
torial amount of possible faSets. As an example, consider a
database with a single relation R containing 10 categorical
attributes. If each attribute takes on average 50 distinct values,

R may contain up to
∑10

i=1

[(10
i

)× 50i
]
= 1.1904 × 1017

faSets.
A feasible and efficient solution must reach a compromise

between the online computation of p( f |D) and the mainte-
nance of frequency information for selected faSets. A first
such approach would be to pre-compute and store the support
for all 1-faSets that appear in the database. Then, assuming
that faSet conditions are satisfied independently from each
other, the support of a higher-order m-faSet can be estimated
by:

p( f |D) = p ({c1, . . . , cm} |D) =
m∏

i=1

p({ci }|D)

This approach requires the storage of information for only
a relatively small number of faSets. In our previous exam-
ple, we only have to maintain information about 10 × 50
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1-faSets. However, although commonly used in the litera-
ture, the independence assumption rarely holds in practice
and may lead to losing interesting information. Consider, for
example, that the 1-faSets {M.year = 1950} and {M.year =
2005} have similar supports, while the supports of {G.genre
= “Sci-Fi”, M.year = 1950} and {G.genre = Sci-Fi, M.year =
2005} differ significantly with {G.genre = “Sci-Fi,” M.year
= 1950} appearing very rarely in the database. Under the
independence assumption, similar estimation values will be
computed for these two 2-faSets.

4.2 The closed rare faSets approach

We propose a different form of maintaining frequency sum-
maries, aiming at capturing such fluctuations in the support
of related faSets. Our approach is based on maintaining a set
of faSets, called ε-tolerance closed rare faSets (ε-CRFs), and
using them to estimate the support of other faSets in the data-
base. Next, we define ε-CRFs and show that the estimation
error of the support of other faSets is bounded by ε, where ε is
a parameter that tunes the size of the maintained summaries.
Background definitions. First, we define subsumption among
faSets. We say that a faSet f is subsumed by a faSet f ′, if
every possible tuple in the database that satisfies f also satis-
fies f ′. For example, {G.genre = “Sci-Fi”, 2005 ≤M.year ≤
2008} is subsumed by {2000 ≤M.year ≤ 2010}. Formally:

Definition 5 (faSet subsumption) Let D be any database and
f, f ′ be two faSets. We say that f is subsumed by f ′, f �
f ′, if and only if, every possible tuple in the database that
satisfies f also satisfies f ′.

When f � f ′, we also say that f is more specific than f ′
and f ′ is more general than f . If f � f ′ and f ′ � f , we
say that f and f ′ are equivalent. f is called a proper more
specific faSet of f ′, denoted f ≺ f ′, if f is subsumed by
f ′ but is not equivalent to it. We also say that f ′ is a proper
more general faSet of f .

Note that, for two faSets f, f ′ with f ⊆ f ′, it holds that
f ′ � f . For example, {G.genre = “Sci-Fi”, 2005≤M.year
≤ 2008} is subsumed by {2005 ≤M.year ≤ 2008}.

Following the terminology from frequent itemset mining,
given a support threshold ξr , we say that a faSet f is fre-
quent(FF) for a set of tuples S, if its support in S is greater
than or equal to ξr and rare (RF) if its support is in [1, ξr ).

We also call a faSet f closed frequent (CFF) for S if it
is frequent and has no proper more specific faSet f ′, such
that, f ′ has the same support as f in S. Similarly, we define
a faSet f to be closed rare (CRF) for S if it is rare and has
no proper more general faSet f ′, such that f ′ has the same
support as f in S.

Finally, we say that a faSet f is maximal frequent (MFF)
for S, if it is frequent for S and has no more specific faSet f ′
such that f ′ is frequent for S and a faSet f is minimal rare

(MRF) for S if it is rare and has no more general faSet f ′
such that f ′ is rare for S.
Summaries based onε-tolerance. Maintaining the support of
a number of representative faSets can assist us in estimating
the support of a given faSet f . In general, it is more useful
to maintain information about the frequency of rare faSets in
D, since when rare faSets appear in a result set, it is more
likely that they are interesting than when frequent ones do.

Since the number of rare faSets (RFs) may be large, main-
taining the support of all rare faSets may not be cost-effective.
Minimal rare faSets (MRFs) cannot be maintained either,
although their number is small and RFs can be retrieved from
MRFs, it is not possible to accurately estimate the support
of an RF from MRFs. Instead, closed rare faSets (CRFs) can
provide us with both all RFs and their support. Since any RF
that has a distinct support value is also a CRF, the number of
CRFs may be very close to that of RFs. Thus, in our approach,
we maintain a tunable number of CRFs. This number is such
that we can achieve a bound on the estimation of the support
of any RF as a function of a given parameter ε.

We use count ( f, S) to denote the absolute number of
tuples in a set of tuples S that satisfy a faSet f . We first define
the (m, ε)-cover set of a set of rare m-faSets, or Cov(m, ε),
as follows:

Definition 6 (Cov(m, ε)) A set of m-faSets is called an
(m, ε)-cover set for a set of tuples S, denoted Cov(m, ε),
if (1) all its faSets are satisfied by at least one tuple in S,
(2) for every rare m-faSet f in S, there exists a more gen-
eral rare m-faSet f ′ ∈ Cov(m, ε) with count ( f ′, S) ≤
(1 + ε) count ( f, S), where ε ≥ 0, and (3) it has no proper
subset for which the above two properties hold.

In the following, we seek to locate (m, ε)-cover sets that are
minimum, i.e., there is no other (m, ε)-cover set for the same
set of faSets that has a smaller size.

We say that a faSet f ′ ε-subsumes a faSet f , if f � f ′
and count ( f ′, S) ≤ (1+ ε) count ( f, S).

Example. Consider the attribute M.year of the database in
Fig. 3 and let us focus, for illustration purposes, on a sim-
ple example concerning the movies produced from 1960 to
1990. Assume that there are 10 movies produced in the 60 s,
10 movies produced in the 70 s and 20 movies produced in
the 80 s. Consider the 1-faSets {1960 ≤ M.year ≤ 1970},
{1960 ≤M.year ≤ 1980}, {1960 ≤M.year ≤ 1990}, {1970
≤M.year ≤ 1980}, {1970 ≤M.year ≤ 1990} and {1980 ≤
M.year≤1990} with counts 10, 20, 40, 10, 30 and 20, respec-
tively. Let also ε = 1.0. Then, {1960 ≤ M.year ≤ 1980}
ε-subsumes {1960 ≤M.year ≤ 1970} and {1970 ≤M.year
≤ 1980}, {1970 ≤ M.year ≤ 1990} ε-subsumes {1980 ≤
M.year ≤ 1990} and {1960 ≤M.year ≤ 1990} ε-subsumes
{1980 ≤ M.year ≤ 1990}, {1960 ≤ M.year ≤ 1980} and
{1970≤M.year≤ 1990} (Fig. 6). The sets {{1960≤M.year
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1960 M.year 1990 40

1960 M.year 1980 20 1970 M.year 1990 30

1960 M.year 1970 10 1970 M.year 1980 10 1980 M.year 1990 20

Fig. 6 Example of a minimum (m, ε)-cover set (depicted in gray) for
the faSets depicted here (m = 1) along with their counts for ε = 1.0.
Arrows represent subsumption relations and bold arrows represent ε-
subsumption relations

Algorithm 1 Locating an (m, ε)-cover set.
Input: A set of m-faSets X , ε.
Output: An (m, ε)-cover set for X .

1: begin
2: Y ← ∅
3: while at least one faSet in X ε-subsumes another do
4: pick the faSet f ′ ∈ X that ε-subsumes the largest number of

faSets in X
5: for each such faSet f do
6: merge f with f ′
7: X ← X\{ f }
8: end for
9: X ← X\{ f ′}
10: Y ← Y ∪ { f ′}
11: end while
12: return Y
13: end

≤1980}, {1960≤M.year≤1990}} and {{1960≤M.year≤
1970}, {1970≤M.year≤ 1980}, {1960≤M.year≤ 1990}}
are both (1, 1.0)-cover sets for this set of faSets, since they
both cover all faSets. The former is also a minimum set with
this property.

An (m, ε)-cover set is, intuitively, the smallest set that can
represent all faSets of the same size if we allow the counts of
the faSets being represented to differ up to a scale of (1+ ε)

from the count of the faSet that represents them. The problem
of locating (m, ε)-cover sets is an NP-hard problem, similar
to the case of the Set Cover problem. We can use a greedy
heuristic to locate sub-optimal (m, ε)-cover sets. Locating
sub-optimal (m, ε)-cover sets affects only the size of the sum-
maries we maintain and not the bound of the estimations they
provide. In this paper, we use the greedy heuristic shown in
Algorithm 1; at each round, we select to add to Cov(m, ε) the
faSet f ′ that ε-subsumes the largest number of other faSets
and ignore those other faSets from further consideration.

Cover sets allow us to group together faSets of the same
size. To group together faSets of different sizes, we build
upon the notion of δ-tolerance closed frequent itemsets [13]
and define ε-CRFs as follows:

Definition 7 (ε-CRF) An m-faSet f is called an ε-CRF for
a set of tuples S, if and only if, f ∈ Cov(m, ε) for S and it
has no proper more general rare faSet f ′ with | f |− | f ′| = 1

and f ′ ∈ Cov(m − 1, ε), such that count ( f ′, S) ≤ (1 +
ε) count ( f, S), where ε ≥ 0.

Intuitively, a rare m-faSet f is an ε-CRF if, even if we
increase its count by a constant ε, all the (m − 1)-faSets
that subsume it still have a larger count than f . This means
that f has a significantly different count from all its more
general faSets and cannot be estimated (or represented) by
any of them.

Let us assume that a set of ε-CRFs is maintained for some
value of ε. We denote this set C . An RF f either belongs to C
or not. If f ∈ C , then the support of f is stored and its count
is readily available. If not, then, according to Definitions 6
and 7, there is some faSet that subsumes f that belongs to
C whose support is close to that of f . Therefore, given an
RF f , we can estimate its count based on its closest more
general faSet in C . If there are many such faSets, we use the
one with the smallest count, since this can estimate the count
of f more accurately. We use C( f ) to denote the faSet in C
that is the most suitable one to estimate the count of f . The
following lemma holds:

Lemma 1 Let C be a set of ε-CRFs for a set of tuples S and
f be an RF for S, f /∈ C. Then, there exists f ′, f ′ ∈ C with
| f | − | f ′| = i , such that, count ( f ′, S) ≤ φ count ( f, S),
where φ = (1+ ε)2i+1.

Proof Let f be a faSet of size m and C the set of main-
tained ε-CRFs. If f /∈ C , then, according to Definition 6,
there exists an m-faSet f1, such that, count ( f1, S) ≤ (1 +
ε) count ( f, S). If f1 /∈ C , then, according to Definition 7,
there exists an (m − 1)-faSet f2, such that, count ( f2, S) ≤
(1+ε) count ( f1, S) and so on. At some point, we will reach
a faSet f ′ that belongs in C . Let | f |− | f ′| = i . To reach this
faSet, we have made at most i + 1 steps between faSets of
the same size and at most i steps between faSets of different
size, and thus, the lemma holds. ��

To provide more accurate estimations, each ε-CRF f is
stored along with its frequency extension, i.e., a summary
of the actual frequencies of all the faSets that f represents.
Recall that, an ε-CRF f may represent faSets of different
sizes, as indicated by Lemma 1. The frequency extension of
an ε-CRF is defined as follows.

Definition 8 (frequency extension) Let C be a set of ε-CRFs
for a set of tuples S and f be a faSet in C . Let also X ( f )

be the set of all RFs represented in C by f . Then, Xi ( f ) =
{x |x ∈ X ( f ) ∧ |x | − | f | = i}, 0 ≤ i ≤ m, where m =
max{i |Xi ( f ) �= ∅}. The frequency extension of f for i, 0 ≤
i ≤ m, is defined as:

ext ( f, i) =
∑

x∈Xi ( f )
count (x,S)
count ( f,S)

|Xi ( f )|
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Intuitively, the frequency extension of f for i is the average
count difference between f and all the faSets that f repre-
sents whose size difference from f is equal to i . Given a
faSet f , the estimation of p( f |D), denoted p̃( f |D), is equal
to:

p̃( f |D) = count (C( f ), S) · ext (C( f ), | f | − |C( f )|)
It holds that

Lemma 2 Let f be an ε-CRF. Then, for each i , it holds that
1
φ
≤ ext ( f, i) ≤ 1, where φ = (1+ ε)2i+1.

Proof At one extreme, all faSets in Xi ( f ) have the same
count as f . Then, ∀x ∈ Xi ( f ), it holds that count (x, S) =
count ( f, S) and ext ( f, i) = 1. At the other extreme, all
faSets in Xi ( f ) differ as much as possible from f . Then,
∀x ∈ Xi ( f ), it holds that count ( f, S) = φ count (x, S) and
ext ( f, i) = 1/φ. ��

Similar to the proof in [13], it can be shown that the esti-
mation error is bounded by φ, i.e., by ε.

Theorem 1 Let f be an RF and | f | − |C( f )| = i . The
estimation error for p( f |D) is bounded as follows:

1

φ
− 1 ≤ p̃( f |D)− p( f |D)

p( f |D)
≤ φ − 1

Proof From Lemma 2, it holds that p(C( f )|D)
φ

≤ p(C( f )|D)

× ext (C( f ), i) ≤ p(C( f )|D). Since p̃( f |D) = count
(C( f ), S) × ext (C( f ), i), it holds that p(C( f )|D)

φ
≤

p̃( f |D) ≤ p(C( f )|D) (1). Also, it holds that p(C( f )|D)
φ

≤
p( f |D) and, since f � C( f ), p( f |D) ≤ p(C( f )|D).
Therefore, p(C( f )|D)

φ
≤ p( f |D) ≤ p(C( f )|D) (2). From

(1), (2) the theorem holds. ��
Tuningε.Parameter ε bounds the estimation error for the fre-
quencies of the various faSets. Smaller ε values lead to better
frequency estimations. However, this comes at the price of
increased storage requirements, since in the case of smaller
ε values, more faSets enter the set of ε-CRFs and, therefore,
the size of the maintained statistics increases. Next, we pro-
vide a method to assist the system administrator in deciding
an appropriate ε value, given a maximum storage budget b
available for maintaining statistics.

Our basic idea is to start with a rough estimation of ε and
then further refine it to reach the minimum ε value that can
provide statistics which can fit in the allocated storage space.
Our initial estimation is computed as follows. Let MG F( f )

be the set of more general proper faSets of a faSet f , i.e.,
MG F( f ) includes all faSets f ′ that are more general than f
with | f | − | f ′| = 1. We define g( f ) to be the average count
difference between f and the faSets in MG F( f ), i.e, g( f ) =
(1/|M FG( f )|)

∑
f ′∈M FG( f )

count ( f ′,S)
count ( f,S)

. Then, we define the
set of all rare faSets in S as RF(S) and set the initial value of
ε, denoted ε0 to be equal to (1/|RF(S)|)

∑
f ∈RF(S) g( f )− 1.

We proceed as follows. Let ε0 be that initial value. We use
ε0 to locate ε0-CRFs. If the number of located faSets is larger
than the maximum allowed threshold, we set ε1 = 2ε0,
otherwise we set ε1 = ε0/2 and we locate ε1-CRFs. We repeat
this process until we reach the first value of εi that crosses
the storage boundary. εi−1 and εi can be used as upper and
lower bounds for the final estimation, since it holds either
|εi -CRFs| > b and |εi−1-CRFs| ≤ b or vice versa. We set
εi+1 = (εi−1+εi )/2, update either the upper or lower bound,
respectively, and repeat this binary search process until either
|εi+1-CRFs| = b or |εi+1-CRFs| = |εi -CRFs|.

In the above process, we generate all rare faSets once and
then we proceed with multiple generations of ε-CRFs. As
shown in our performance evaluation, the cost of generating
statistics is dominated by the cost of generating all rare faSets,
while the cost of locating ε-CRFs is negligible in comparison.
Estimation overview. Given a threshold ξr and a value for ε,
we maintain the set of ε-CRFs along with the corresponding
frequency extensions. This set, whose size can be tuned by
varying ε, provides us with bounded estimations of p( f |D)

for all rare faSets, that is, for all faSets with support smaller
than ξr . For frequent faSets, we have only the information
that their support is larger than ξr , but this in general suffices,
since it is not likely that these faSets are interesting.

5 Top-k faSets computation

In this section, we present an online two-phase algorithm
for computing the top-k most interesting faSets for a user
query Q. We consider first faSets f in the result set, i.e.,
Att ( f ) ⊆ proj (Q) and discuss attribute expansion later.
A straightforward method would be to generate all faSets
in Res(Q), compute their interestingness score and then
selecting the best among them. This approach, however, is
exponential on the number of distinct values that appear in
Res(Q). Applying an a priori approach for generating and
pruning faSets is not applicable either, since the interesting-
ness score is neither an upwards nor a downwards closed
measure, as shown below. A function d is monotone or
upwards closed if for any two faSets f1 and f2, f2 � f1 ⇒
d( f1) ≤ d( f2) and anti-monotone or downwards closed if
f2 � f1 ⇒ d( f1) ≥ d( f2).

Proposition 1 Let Q be a query and f be a faSet. Then,
score( f, Q) is neither an upwards nor a downwards closed
measure.

Proof Let f1, f2, f3 be three faSets with f1 � f2 �
f3. Consider a database consisting of a single relation
R with three attributes A, B and C and three tuples
{1, 1, 1} , {1, 1, 2}, {1, 2, 1}. Let Res(Q) = {{1, 1, 1},
{1, 2, 1}} and f1 = {A = 1, B = 1, C = 1}, f2 = {A =
1, B = 1} and f3 = {A = 1}. For f2, there exists both a more
general faSet, i.e., f3, and a more specific faSet, i.e., f1, with
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Algorithm 2 Two-Phase Algorithm (TPA).
Input: Q, Res(Q), k, C , ξr of C .
Output: The top-k interesting faSets for Q.

1: begin
2: F ← ∅
3: A← all 1-faSets of Res(Q)

4: for all faSets f ∈ C do
5: if all 1-faSets g ⊆ f are contained in A then
6: f.score = score( f, Q)

7: F ← F ∪ { f }
8: end if
9: end for
10: for all tuples t ∈ Res(Q) do
11: generate all faSets f ⊆ t , s.t. ∃ g ∈ F with g ⊆ f
12: for all such faSets f do
13: f.score = score( f, Q)

14: F ← F ∪ { f }
15: end for
16: end for
17: ξ f ← (kth highest score in F) × ξr
18: candidates← frequentFaSetMiner(Res(Q), ξ f )
19: for all faSets f in candidates do
20: f.score = score( f, Q)

21: F ← F ∪ { f }
22: end for
23: return The k faSets in F with the highest scores
24: end

larger interestingness scores than it. The interestingness score
is not closed even for the case of faSets of the same size. For
example, consider the relation R′ with a single attribute A
and three tuples {1}, {3}, {4} and Res(Q) = {{1}, {4}} and
let f1 = {0 ≤ A ≤ 10}, f2 = {2 ≤ A ≤ 8}, f3 = {4 ≤
A ≤ 5}. Again, for f2, there exists both a more general and a
more specific faSet with larger interestingness score than it.

This implies that we cannot employ any subsumption rela-
tions among the faSets of Res(Q) to prune the search space.

5.1 The two-phase algorithm

To avoid generating all faSets in Res(Q), as a baseline
approach, we consider only the frequent faSets, since these
are the faSets of potential interest. To generate all frequent
faSets, i.e., all faSets whose support in Res(Q) is above a
given threshold ξ f , we apply an adaptation of a frequent item-
set mining algorithm [19] such as the Apriori or FP-Growth.
Then, for each frequent faSet f , we use the maintained sum-
maries to estimate p( f |D) and compute score( f, Q).

The problem with the baseline approach is that it is highly
dependent on the support threshold ξ f . A large value of ξ f

may lead to losing some less frequent in the result but very
rarely appearing in the dataset faSets, whereas a small value
may result in a very large number of candidate faSets being
examined. Therefore, we propose a Two-Phase Algorithm
(TPA), described next, that addresses this issue by setting ξ f

to an appropriate value so that all top-k faSets are located
without generating redundant candidates. The TPA assumes

that the maintained summaries are based on keeping rare
faSets of the database D. Let ξr be the maximum support of
the maintained rare faSets.

In the first phase of the algorithm, all 1-faSets that appear
in Res(Q) are located. The TPA checks which rare faSets
of D, according to the maintained summaries, contain only
conditions that are satisfied by at least one tuple in Res(Q).
Let F be this set of faSets. Then, in one pass of Res(Q), all
faSets of Res(Q) that are more specific than some faSet in F
are generated and their support in Res(Q) is measured. For
each of the located faSets, score( f, Q) is computed. Let s
be the kth highest score among them. The TPA sets ξ f equal
to s × ξr and proceeds to the second phase where it executes
a frequent faSet mining algorithm with threshold equal to
ξ f to retrieve any faSets that are potentially more interesting
than the kth most interesting faSet located in the first phase.

Theorem 2 The Two-Phase Algorithm retrieves the top-k
most interesting faSets.

Proof It suffices to show that any faSet in Res(Q) less fre-
quent than ξ f clearly has interestingness score smaller than
s, i.e., the score of the kth most interesting faSet located in
the first phase and, thus, can be safely ignored. To see this,
let f be a faSet examined in the second phase of the algo-
rithm. Since the score of f has not been computed in the first
phase, then p( f |D) > ξr . Therefore, for score( f, Q) > s
to hold, it must be that p( f |Res(Q)) > s × p( f |D), i.e.,
p( f |Res(Q)) > s × ξr .

The TPA is shown in Algorithm 2, where we use C to
denote the collection of maintained summaries.

5.2 Improving performance

Next, we discuss a number of improvements concerning the
performance of summaries generation and the TPA.

Discretization of numeric values. The cost of generating
summaries and executing the TPA mostly depends on the
number of distinct attribute values that appear in the data-
base. The higher this number is, the more faSets have to be
generated and have their frequencies computed. To reduce
the computational cost of our approach, we consider fur-
ther summarizing numeric attribute values by partitioning
the domain space of numeric attributes into non-overlapping
intervals and replacing each value in the database by the
corresponding interval of values close to it. Similar tech-
niques for domain partitioning have been used in the field
of data mining. As in [35], which considers the problem of
mining association rules in the presence of both categorical
and numeric attributes, we follow the approach of splitting
the domain of numeric attributes into intervals and mapping
each value to the corresponding interval prior to process-
ing our data. The intervals are chosen in different ways for
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each attribute, depending on the semantical meaning of the
attribute or the distribution of values. For example, in case
of attributes containing information such as years and ages,
the intervals correspond to decades. It is possible to follow a
similar approach for categorical attributes as well by group-
ing attribute values based on some hierarchy. However, this
requires the knowledge of such hierarchies which are not
usually available. In our work, we do not further consider
grouping categorical values.

Exploiting Bloom filters for fast frequency estimations. Most
real datasets have a large number of rare faSets that appear
only once. Consider, for example, the movies database of
Fig. 3, where many directors have directed only one movie
in their lifetime and, therefore, they appear only once in the
database. Although such values may have high interesting-
ness score, since they are extremely rare in the whole dataset,
they are not useful for recommending additional results to
the users. To see this, let us assume that a user queries the
database for Sci-Fi movies and a director who appears only
once in the dataset is found in the result. Our framework
would attempt to recommend to the user other genres that
this specific director has directed. However, since this direc-
tor appears only once in the database, no such recommenda-
tions can emerge.

To avoid generating and maintaining information for all
other faSets that these rare faSets subsume, we use the fol-
lowing approach. In a single scan of the data, we identify
all faSets that appear only once and insert them in a hash-
based data structure. In particular, we use a Bloom filter [8].
A Bloom filter consists of a bit array of size l and a set of
h hash functions. Each of the hash functions maps a value
to one of the l positions of the bit array. To add a value into
the Bloom filter, the value is hashed using each of the hash
functions and the h corresponding bits are set to 1. To decide
whether a value has been added into the Bloom filter, the
value is again hashed using each of the hash functions and
the corresponding h bits are checked. If all of them are set
to 1, then it can be concluded that the value has been added
into the Bloom filter. It is possible that those h bits were set
to 1 during the insertion of other values; in that case, we have
a false positive. It is known that, when n values have been
inserted into a Bloom filter, the probability of a false positive
is equal to (1−e−hn/ l)h and, thus, can by tuned by choosing
an appropriate size l for the Bloom filter.

Any faSet that is subsumed by some faSet in the Bloom fil-
ter can appear only once in the database. We exploit this fact
in two ways. First, we avoid the generation and maintenance
of ε-CRFs that are subsumed by faSets in the Bloom filter,
maintaining only the Bloom filter instead which is more space
efficient and can support faSet lookups faster. More specifi-
cally, whenever a candidate rare faSet f is constructed during
the generation of the summaries, we query the Bloom filter

for any sub-faSet of f . In case such sub-faSets exist, then
f cannot appear more than once in the database and, thus,
f is also inserted in the Bloom filter and pruned from fur-
ther consideration. Second, during the candidate generation
phase of the TPA, we also prune candidates that are sub-
sumed by some faSet in the Bloom filter, thus reducing the
computational cost of the algorithm. The frequency of those
faSets can be estimated as being equal to 1.

We have also generalized the use of Bloom filers for prun-
ing more faSets during the generation of ε-CRFs. In partic-
ular, we also insert into the Bloom filter all faSets with fre-
quency below some small system defined threshold value ξ0,
with ξ0 < ξr .

Using random walks for the generation of rare faSets. Our
approach is based on the generation of all ε-CRFs for a
given threshold ξr . A number of different algorithms exist
in the literature on which this generation can be based (e.g.,
[37]). Generally, the generation of all CRFs and even RFs
is required as an intermediate step in most cases. However,
locating all respective RFs for large datasets becomes inef-
ficient, due to the exponential nature of algorithms such as
Apriori. To overcome this, we use a random walks-based
approach [18] to generate RFs. In particular, we do not pro-
duce all RFs as an intermediate step for computing ε-CRFs
but, instead, we produce only a subset of them discovered
by random walks initiated at the MRFs. Our experimental
results indicate that, even though not all RFs are generated,
we still achieve good estimations for the frequencies of the
various faSets.

5.3 FaSet expansion

For a query Q, following the discussion of Sect. 2.2, besides
considering the faSets whose attributes belong to proj (Q),
we would also like to consider potentially interesting faSets
that have additional attributes. Clearly, considering all pos-
sible faSets for all combinations of (attribute, value) pairs is
prohibitive. Instead, we consider adding to proj (Q) a few
additional attributes B that appear relevant to it. Then, we
construct and execute Q′ as defined in Definition 3 and use
the TPA to compute the top-k (expanded) most interesting
faSets of Q′.

The selection of these attributes is dictated by expansion
rules. An expansion rule is a rule of the form A → B,
where A is a set of attributes in the user query, i.e., A ⊆
proj (Q) and B is a set of attributes in the database, i.e.,
B ⊆ A\proj (Q). The meaning of an expansion rule is that
when a query Q contains all attributes of A in its select clause,
then it should be expanded to contain the attributes of B as
well. The attributes of B do not necessarily belong to the rela-
tions of rel(Q). Let A1, . . . , Ar be attributes of proj (Q) and
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Fig. 7 The system architecture
of YmalDB

A1 → B1, . . . , Ar → Br be the corresponding applicable
expansion rules. Then, B = ∪r

i=1 Bi .
Our default approach to faSet expansion is to expand each

user query Q toward one relation from the database D. We
consider only the relations that are adjacent to the query
Q, i.e., have a foreign key connection to some relation in
rel(Q). From these adjacent relations, we choose the one that
is “mostly connected” with rel(Q), i.e., the one for which
the size of its join with its adjacent relation in rel(Q) is the
largest. The main reason for this is that the relation with the
largest size of join will offer more database tuples, and there-
fore, more interesting faSets may be located. We expand Q
toward all the non-id attributes from the relation that was
selected as described above.

6 Experimental results

In this section, we first present YmalDB, our prototype rec-
ommendation system. Then, we present experimental results
regarding the efficiency of our approach. We conclude the
section with a user study.

6.1 YmalDB

YmalDB is implemented in Java (JDK 1.6) on top of MySQL
5.0. Our system architecture is shown in Fig. 7. After the
user submits a query, an optional query expansion step is
performed. Then, the query results along with the maintained
ε-CRFs are exploited to locate interesting faSets in the result.
These faSets are presented to the user who can request the
execution of exploratory queries for any of the presented
faSets and retrieve the corresponding recommendations.

We next describe the user interface and information flow
in YmalDB in more detail. YmalDB can be accessed via a
simple web browser using an intuitive GUI. Users can sub-
mit their SQL queries and see recommendations, i.e., Ymal
results. Along with the results of their queries, users are pre-
sented with a list of interesting faSets based on the query
result (Fig. 1). Since the number of interesting faSets may be
large, interesting faSets are grouped in categories according

to the attributes they contain. Larger faSets (i.e., faSets that
include more attributes) are presented higher in the list, since
larger faSets are in general more informative. The faSets in
each category are ranked in decreasing order of their inter-
estingness score and the top-5 faSets of each category are
displayed. Additional interesting faSets for each category
can be displayed by clicking on a “More” button. We also
present the top-5 faSets with the overall best interestingness
score independent of the category they belong to.

An arrow button appears next to each interesting faSet.
When the user clicks on it, a set of Ymal results, i.e., rec-
ommendations, appear (Fig. 2). These recommendations are
retrieved by executing an exploratory query for the corre-
sponding faSet. An explanation is also provided explaining
how these specific recommendations are related to the origi-
nal query result. Users are allowed to turnoff the explanation
feature.

Since the number of results for each exploratory query
may be large, these results are ranked. Many ranking criteria
can be used. In our current implementation, we present the
results ranked based on a notion of popularity. Popularity
is application-specific, for example, in our movies dataset,
when the Ymal results refer to people, such as directors or
actors, we use the average rating of the movies in which
they participate and present recommendations in descending
order of the associated rank. We present the top-10 recom-
mendations for each faSet. If users wish to do so, they can
request to see more recommendations.

Furthermore, users may ask to execute more exploratory
queries. This can be achieved by either (a) recursively, i.e.,
treating the exploratory query as a regular query and finding
interesting faSets in its result, or (b) relaxing the negation
of the exploratory query, i.e., relaxing some of the selection
conditions of the original query.

Finally, users may request the expansion of their original
queries with additional attributes. Instead of automatically
performing attribute expansion, expansion is done only if
requested explicitly, to avoid confusing the users with unre-
quested attributes. The results of the original user query are
expanded toward the set of attributes indicated by the expan-
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sion rules. Users receive a list of interesting faSets and rec-
ommendations as before.

We have also provided an administrator interface to allow
the fine tuning of the various performance-related parameters
(i.e., ε, ξr and ξ0) and also the specification of additional
expansion rules if needed.

In our user study in Sect. 6.4, we evaluate many of the
design decisions regarding the presentation of interesting
faSets and recommendations as well as regarding explana-
tions and expansions.

6.2 Datasets

We use both real and synthetic datasets. Synthetic datasets
consist of single relations, where each attribute takes values
from a zipf distribution with parameter θ . We use 10,000
tuples and 7 or 10 attributes for each relation. We also exper-
iment with different values of θ (we report results for θ = 1.0
and θ = 2.0). We use “ZIPF-|A|-θ” to denote a synthetic
dataset with |A| attributes and zipf parameter θ . We also
use two real databases. The first one (“AUTOS”) is a single-
relation database consisting of 12 characteristics for 15,191
used cars from Yahoo!Auto [3]. We also use a subset of this
dataset containing 7 of these characteristics. The second one
(“MOVIES”) is a multi-relation database containing infor-
mation extracted from the Internet Movie Database [1]. The
schema of this database is shown in Fig. 3. The cardinality
of the various relations ranges from around 10,000 to almost
1,000,000 tuples. We report results for a subset of relations,
namely Movies, Movies2Directors, Directors, Genres and
Countries.

6.3 Performance evaluation

We start by presenting performance results. There are two
building blocks in our framework. The first one is a pre-
computation step that involves maintaining information, or
summaries, for estimating the frequency of the various faSets
in the database. The second one involves the run-time deploy-
ment of the maintained information in conjunction with the
results of the user query toward discovering the k most inter-
esting faSets for the query. Next, we evaluate the efficiency
and the effectiveness of these two blocks.

We executed our experiments on an Intel Pentium Core2
2.4 GHz PC with 2 GB of RAM.

6.3.1 Generation of ε-CRFs

We evaluate the various options for maintaining rare faSets
in terms of (1) storage requirements, (2) generation time and
(3) accuracy. We base our implementation for locating MRFs
and RFs on the MRG-Exp and Arima algorithms [37] and
use an adapted version of the CFI2TCFI algorithm [13] for
producing ε-CRFs.

Tuning parameters. The basic parameters that control the
generation of the maintained ε-CRFs are the support thresh-
old ξr for considering a faSet rare and the accuracy-tuning
parameter ε. Other parameters include the Bloom filter
threshold (ξ0) and the number of employed random walks
(as described in Sect. 5.2). In our experiments, as a default,
we use a Bloom filter threshold ξ0 equal to 1 %, except for
MOVIES, for which many faSets appear in less than 1 % of
the tuples in the dataset. In this case, we use ξ0 = 0.01 %
(or around 12 tuples in absolute frequency). Also, we keep
the number of random walks fixed (equal to 50 per exam-
ined faSet). The values of our tuning parameters are shown
in Table 3.

We discretize the numeric values of our real datasets as
discussed in Sect. 5.2. In particular, we partition both the
production years of movies in the MOVIES dataset and cars
in the AUTOS dataset into decades and the price and mileage
attributes of the AUTOS dataset into intervals of length
equal to 10,000. Throughout our evaluation, we excluded
id attributes, since they do not contain information useful in
our case.

Effect of ξr and ε. Table 1 shows the number of gener-
ated faSets for our datasets for different values of ξr and
ε. Note that all MRFs are maintained as RFs independently
of the number of random walks. As ε increases, an ε-CRF is
allowed to represent faSets with a larger support difference,
and thus, the number of maintained faSets decreases. Also,
as ξr increases, more faSets of the database are considered
to be rare, and thus, the size of the maintained information
becomes larger. The number of ε-CRFs is smaller than the
number of RFs, even for small values of ε. This is especially
evident in the case of the AUTOS dataset, where many faSets
have similar frequencies.

Table 2 reports the execution time required for generating
faSets. We break down the execution time into three stages:
(1) the time required to locate all MRFs, (2) the time required
to generate RFs based on the MRFs and (3) the time required
to extract the CRFs and the final ε-CRFs based on all RFs.
We see that the main overhead is induced by the stage of gen-
erating the RFs of the database. We can reduce that overhead
by decreasing the number of employed random walks. This
has a tradeoff with the accuracy of the estimations we receive
as we will later see.

To evaluate the accuracy of the estimation of the support
of a rare faSet provided by ε-CRFs, we randomly construct
a number of rare faSets for our datasets. For each dataset,
we generate random faSets of length 1, . . . , �, where � is the
largest size for which there exist faSets with count in (ξ0, ξr ].
Then, we probe our summaries to retrieve estimations for the
frequency of 100 such rare faSets for each size. Here, we
report results for one synthetic and one real dataset, namely
ZIPF-10-2.0 and AUTOS-7. Similar results are obtained
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Table 1 Number of generated faSets

ξr # MRFs # RFs # CRFs # ε-CRFs # BF Pruned

ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.7 ε = 0.9

ZIPF-7-2.0

5 % 129 1172 1172 1172 1171 680 138 129 1623 27644

10 % 59 1211 1211 1211 1210 707 104 95 1623 28339

20 % 44 1627 1627 1627 1626 942 110 101 1623 35667

ZIPF-10-2.0

5 % 259 5676 5676 5676 5674 2968 271 259 7753 228213

10 % 106 7065 7065 7065 7063 3778 202 190 7873 267504

20 % 61 10329 10329 10329 10327 5388 202 190 8090 363260

ξr # MRFs # RFs # CRFs #ε-CRFs # BF Pruned

ε = 1.0 ε = 2.0 ε = 3.0 ε = 4.0 ε = 5.0

ZIPF-7-1.0

5 % 402 758 758 758 496 403 402 402 3968 32090

10 % 217 927 927 927 491 335 329 263 4108 38665

20 % 84 1032 1032 1032 475 286 280 170 4129 42114

ZIPF-10-1.0

5 % 838 1895 1895 1895 1075 840 838 838 12174 131843

10 % 430 2377 2377 2377 1076 674 667 537 13014 163887

20 % 135 2772 2772 2772 1064 559 552 327 13266 18715

ξr # MRFs # RFs # CRFs # ε-CRFs # BF Pruned

ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.7 ε = 0.9

AUTOS-7

5 % 80 1498 1103 397 243 190 162 133 1438 43569

10 % 74 1882 1404 502 299 238 203 170 1513 57091

20 % 43 2006 1511 531 319 253 216 175 1354 61797

AUTOS-12

5 % 214 36555 22360 3153 1361 1003 813 661 9225 1740111

MOVIES

5 % 452 591 556 547 544 543 541 539 68137 2101

for the other datasets as well. Figure 8 shows the average esti-
mation error as a percentage of the actual count of the faSets
when varying ε and ξr (ignore, for now, the dashed lines). We
observe that the estimation error remains low even when ε

increases. For example, it remains under 5 % in all cases for
ZIPF-10-2.0. Even though we do not have the complete
set of ε-CRFs available for our real dataset, because of our
random walks approach for producing RFs, the estimation
error remains under 15 % for that dataset as well.

Tuning ε. Next, we evaluate our heuristic for suggesting ε

values. Figure 9 depicts the ε values and corresponding num-
ber of ε-CRFs for each of the steps of our tuning algorithm for
two of our datasets, namely ZIPF-7-1.0 and AUTOS-7,
ξr = 10 % and various values of the storage limit b. We let
our algorithm suggest an ε value for each case. The suggested

value appears last in the x-axis of each plot. The located ε val-
ues vary depending on b and the specific dataset. Many times,
the storage limit b set by the system administrator may be
flexible, i.e., the system administrator may decide to allocate
a bit more space, if this results in a significant improvement of
ε, as is for example the case in Fig. 10a where an increase in
b from 330 to 340 leads to decreasing ε from 3.932 to 2.364.

Using Bloom filters and varying ξ0. As previously detailed,
Bloom filters can be exploited for fast estimations of faSet
frequencies when the number of faSets that appear only a
handful of times in the database is large (see, for example,
Fig. 11). Table 1 reports the number of faSets inserted into the
Bloom filter during the generation of the ε-CRFs (“# BF”)
and the number of faSets that we were able to prune dur-
ing the generation of RFs because they had a sub-faSet in
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Table 2 Execution time (in ms) for generating faSets

ξr MRFs RFs CRFs # ε-CRFs

ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.7 ε = 0.9

ZIPF-7-2.0

5 % 10313 171641 610 657 687 657 750 735

10 % 5219 179031 657 656 719 688 765 782

20 % 1812 268063 1219 1219 1313 1282 1312 1344

ZIPF-10-2.0

5 % 31203 1421281 16922 17140 16688 16937 17266 17469

10 % 16265 1890844 24265 25046 26281 27781 25844 24328

20 % 5281 2991125 51859 53828 52094 56765 53453 51313

ξr MRFs RFs CRFs # ε-CRFs

ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.7 ε = 0.9

ZIPF-7-1.0

5 % 33484 157250 203 219 219 218 219 219

10 % 8719 197375 297 313 313 344 313 313

20 % 1390 230344 375 407 422 422 453 390

ZIPF-10-1.0

5 % 98515 680359 1360 1406 1453 1437 1453 2203

10 % 24078 855734 2125 2188 2203 2218 2219 3485

20 % 3703 1081219 3703 3890 3969 3703 3875 4078

ξr MRFs RFs CRFs # ε-CRFs

ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.7 ε = 0.9

AUTOS-7

5 % 22437 1416797 1297 985 1000 985 969 1015

10 % 13984 1977250 2203 1578 1562 1547 1719 1593

20 % 6782 2205453 2453 1797 1891 2125 1937 1891

AUTOS-12

5 % 98078 54142515 763235 440969 437531 443219 458766 467969

MOVIES

5 % 149844 15021781 125 125 109 110 109 125

Table 3 Tuning parameters

Parameter Default value Range

Estimation factor ε – 0.1–5.0

Rare threshold ξr 10 % 5 –20%

Bloom filter threshold ξ0 1 % 0.1–5 %

Random walks per faSet 50 10–50

the Bloom filter (“pruned”). We see that using Bloom filters
reduces the cost of generating faSets significantly. Figure 12
shows how the number of the generated MRFs varies as we
change the threshold ξ0 of the Bloom filter for one synthetic
and one real dataset and, also, the number of faSets inserted
into the Bloom filter during the generation of MRFs. In both

cases, we used ξr = 10 % and varied ξ0 from 1 to 5 %. We see
that, as ξ0 increases, more faSets are added into the Bloom
filter and less MRFs are generated. This has an impact on
the following steps of computing RFs, CRFs and ε-CRFs,
since we avoid storing all possible faSets that are subsumed
by some faSet in the Bloom filter. Setting ξ0 too high, how-
ever, excludes many faSets from being considered later by
the TPA (Fig. 13).
Effect of random walks. The cost of generating our sum-
maries can be reduced by employing the random walks
approach. Figure 13 reports the number of generated ε-CRFs
for ZIPF-7-2.0 and AUTOS-7 and the corresponding
execution time when we vary the number of random walks
per faSet. We see that by increasing the number of random
walks, we can retrieve more ε-CRFs. The generation time
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Fig. 8 Estimation error for 100 random rare faSets for different values of ξr when varying ε. a ZIPF-10-2.0 (ξr = 5 %), b ZIPF-10-2.0
(ξr = 10 %), c ZIPF-10-2.0 (ξr = 20 %), d AUTOS-7 (ξr = 5 %), e AUTOS-7 (ξr = 10 %), f AUTOS-7 (ξr = 20 %)
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Fig. 9 Automatically suggesting values for ε given a storage limit b. a ZIPF-7-1.0 (ξr = 10 %), b AUTOS-7 (ξr = 10 %)

of those ε-CRFs is dominated by the time required for the
intermediate step of generating the RFs, and thus, ε does not
affect the execution time considerably.

Next, we evaluate how the estimation accuracy is affected
by the number of random walks. We employ our two datasets
(ZIPF-10-2.0 and AUTOS-7) and generate ε-CRFs for
both of them varying the number of random walks used.
We use a larger number of random walks for the AUTOS-7

dataset, since this dataset contains more RFs than the syn-
thetic one. Figure 14 reports the corresponding average esti-
mation error. We see that the estimation error remains low
even when fewer random walks are used (Fig. 15).

Exploiting subsumption. We also conduct an experiment
to evaluate the performance of our greedy heuristic (Algo-
rithm 1) for exploiting subsumption among faSets of the same
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Fig. 10 Suggested ε values when varying b. a ZIPF-7-1.0 (ξr =
10 %), b AUTOS-7 (ξr = 10 %)

size. To do this, we randomly generate 10,000 tuples with
|A| = 1 taking values uniformly distributed in [1, v] for var-
ious values of v. Then, we construct all 1-faSets of the form
(ai ≤ A ≤ v) where ai ∈ [1, v], i.e., there are initially v

available faSets. We merge the available faSets using (1) the
greedy heuristic (GR) and (2) a random approach where, at
each round, we randomly select one of the available faSets
and check whether it can ε-subsume any other faSets (RA).
Figure 16 shows the final number of faSets when varying ε,
i.e., the size of the corresponding (1, ε)-cover sets. We see
that merging faSets of the same size can greatly reduce the
size of maintained information and that GR produces sets
of considerably smaller sizes than those produced by RA.
This gain is larger as the number of initially available faSets
increases.

6.3.2 Top-k faSet discovery

Next, we compare the baseline and the two-phase algorithms
described in Sect. 4. The TPA is slightly modified to take
into consideration the special treatment of very rare faSets
that have been inserted into the Bloom filter.

To test our algorithms, we generate random queries for
the synthetic datasets, while for AUTOS and MOVIES, we
use the example queries shown in Fig. 17. These queries are

selected so that their result set includes various combinations
of rare and frequent faSets. Figure 15 shows the 1st and 20th
highest ranked interestingness score retrieved, i.e., for the
TPA, we set k = 20, and for the baseline approach, we
start with a high ξ f and gradually decrease it until we get at
least 20 results. We see that the TPA is able to retrieve more
interesting faSets, mainly due to the first phase where rare
faSets of Res(Q) are examined.

We set k = 20 and ξr = 5 % and experimented with
various values of ε. We saw that ε does not affect the inter-
estingness scores of the top-k results considerably. For the
above-reported results, ε was equal to 0.5. In all cases except
for q3 of the AUTOS database, the TPA located k results dur-
ing phase one, and thus, phase two was never executed. This
means that in all cases, there were some faSets present in
Res(Q) that were quite rare in the database, and thus, their
interestingness was high.

The efficiency of the TPA depends on the size of Res(Q),
since in phase one, the tuples of Res(Q) are examined for
locating supersets of faSets in the maintained summaries. The
TPA was very efficient for result sizes up to a few hundred
results, requiring from under a second to around 5 s to run.

6.3.3 Comparison with other methods

We next discuss some alternative approaches for generating
database frequency statistics.

Maintaining faSets up to size �. Instead of maintaining a
representative subset of rare faSets, we consider maintaining
the frequencies of all faSets of up to some specific size �. As
an indication for the required space requirements, Table 4
reports the number of faSets up to size 3 for our datasets.

First, let us consider maintaining only 1-faSets and using
the independence assumption as described in Sect. 4.1. Fig-
ure 8 reports the estimation error when following this alter-
native approach (denoted “IND”). This approach performs
well for the synthetic dataset due to the construction of the
dataset, since the values of each attribute are drawn inde-
pendently from a different zipf distribution. However, this
is not the case for the real dataset, where the independence
assumption leads to a much larger estimation error than our
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Fig. 11 Support of the faSets for the AUTOS dataset (x-axis is the number of faSet ordered by their support, e.g., x=50 means that this is the 50th
less frequent faSet. a FaSet size 1, b FaSet size 2, c FaSet size 3, d FaSet size 4
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Fig. 12 Number of generated
MRFs and number of faSets
inserted into the Bloom filter for
different values of ξ0 when
ξr = 10 %. a ZIPF-7-2.0,
b AUTOS-12

1 2 3 4 5
0

10

20

30

40

50

60

70
ZIPF−7−2.0

ξ
0
 (%)

N
um

be
r 

of
 f

aS
et

s MRFs
#BF

(a)

1 2 3 4 5
60

80

100

120

140

160

180
AUTOS−12

ξ
0
 (%)

N
um

be
r 

of
 f

aS
et

s

MRFs
#BF

(b)

Fig. 13 Number of produced
faSets (top row) and execution
time (bottom row) when using
different numbers of random
walks for generating faSets for
ξr = 5 %. a ZIPF-10-2.0,
b AUTOS-7, c ZIPF-10-2.0,
d AUTOS-7
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approach, even for small values of ε. Therefore, this approach
cannot be employed in real applications.

Considering that we are willing to afford some extra space
to maintain the support of faSets up to size �, �> 1, a more
sophisticated approach is Iterative Proportional Fitting (IPF)
[7]. Let f = {c1, . . . , cm} be a faSet with size m, m > �. f
can be viewed as the result of a probabilistic experiment: We
associate with each selection condition ci ∈ f a binary vari-
able. This binary variable denotes whether the corresponding
selection condition is satisfied or not. The experiment has
v=2m possible outcomes. Let p1 be the probability that the
outcome is (0, 0, . . . , 0), p2 be the probability that the out-

come is (0, 0, . . . , 1) and so on. That is, pi is the probability
of f being satisfied by exactly the conditions corresponding
to the variables equal to 1 as specified by the i th possible
outcome, 1≤ i ≤ v (see Fig. 18 for an example with m = 3
and � = 2). Having pre-computed the support of faSets up
to size �, we have some knowledge (or constraints) for the
values of the discrete distribution p= (p1, . . . , pv)

T . First,
all pi s for which a faSet f of size m with m≤ � is satisfied
must sum up to p( f |D), i.e., the pre-computed support. Sec-
ond, all pi s must sum up to 1. For example, for � = 2, we
have m constraints due to the pre-computed support values
of all 1-faSets and m(m−1)/2 constraints due to the 2-faSets.
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Fig. 14 Estimation error for 100 random rare faSets and ξr = 5 %
for different number of random walks employed during the generation
of ε-CRFs when varying ε. a ZIPF-10-2.0 (10 random walks), b
ZIPF-10-2.0 (20 random walks), c ZIPF-10-2.0 (30 random

walks), d ZIPF-10-2.0 (40 random walks), e ZIPF-10-2.0 (50
random walks), f AUTOS-7 (40 random walks), g AUTOS-7 (50 ran-
dom walks), h AUTOS-7 (60 random walks), i AUTOS-7 (70 random
walks), j AUTOS-7 (80 random walks)
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Fig. 15 Interestingness scores of the top 20 most interesting faSets retrieved by the TPA and the baseline approach. a ZIPF-10-2.0,
b AUTOS-12, c MOVIES

Therefore, we have m+m(m−1)/2+1 constraints in total.
However, there are more variables than constraints; there-
fore, we cannot determine all values of p. IPF is based on the
principle of maximum entropy, which states that, since there
is no reason to bias the estimated distribution of p toward
any specific form, then the estimation should be as close to
the uniform distribution as possible. IPF initializes the ele-
ments of p randomly and then iteratively checks each avail-
able constraint and scales by an equal amount the elements
of p participating in the constraint so that the constraint is
satisfied. It can be proved that this process converges to the
maximum entropy distribution.

The performance of IPF for � = 2 and � = 3 is shown in
Fig. 8, denoted “IPF-2” and “IPF-3”, respectively. We see that
for our synthetic dataset, IPF cannot outperform the indepen-
dence assumption approach. This is not the case for our real
dataset, where IPF performs better. Using IPF with � = 2
results in much higher estimation errors than our ε-CRFs
approach. Increasing � to 3 improves the performance of
IPF. However, this requires maintaining over 6,000 faSets in

total for the AUTOS-7 dataset, while the ε-CRFs approach
requires up to at most around 500 faSets, depending on the
value of ε and ξr .

In general, our ε-CRFs approach provides a tunable
method to retrieve frequency estimations of bounded error
for rare faSets of any size, without relying on an indepen-
dence approach. Also, the estimation error does not increase
for larger faSets, since we maintain a representative set of not
only small faSets, as in the case of IPF, but also larger ones.
Non-derivable faSets. In the case of frequent itemsets, an
alternative approach for creating compact representations
is proposed in [10], where non-derivable frequent itemsets
are introduced. Non-derivable itemsets can be viewed as
an extension of closed frequent itemsets. In particular, a
non-derivable frequent itemset I is an itemset whose sup-
port cannot be derived based on the supports of its sub-
itemsets. For each sub-itemset, a deduction rule is formed,
based on the inclusion/exclusion principle. For example, con-
sider three items a, b and c and let supp(I ) (resp. supp(I ))
be the number of tuples containing (resp. not containing) I .
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Fig. 16 Size of the produced cover sets by the greedy heuristic (GR)
and the random approach (RA) when varying the number of initial
faSets v

Table 4 Number of faSets up to size 3

Dataset # 1-faSets # 2-faSets # 3-faSets

ZIPF-7-2.0 70 1901 13681

ZIPF-10-2.0 100 4048 46293

ZIPF-7-1.0 70 2100 31004

ZIPF-10-1.0 100 4500 106497

AUTOS-7 79 1022 4925

AUTOS-12 117 2844 28704

MOVIES 66726 380603 743152

The inclusion/exclusion principle for the itemset abc states
that supp(abc) = supp(a) − supp(ab) − supp(ac) +
supp(abc). Since supp(abc) must be greater than or equal
to zero, we can deduce that supp(abc) ≥ supp(ab) +
supp(ac) − supp(a). Generally, for every subset X of I ,
it is shown that:

supp(I ) ≤
∑

X⊆J⊂I

(−1)|I\J |+1supp(J ), if |I\X | is odd

supp(I ) ≥
∑

X⊆J⊂I

(−1)|I\J |+1supp(J ), if |I\X | is even

Therefore, for each itemset I , there are a number of rules pro-
viding upper and lower bounds for I . Let uI and lI be these
bounds, respectively. If uI = lI , then we can deduce that
supp(I ) = uI and I is a derivable itemset. The monotonic-
ity property holds for derivable itemsets, i.e., if I is derivable,
then every superset of I is derivable as well. Thus, an Apriori-
like algorithm is employed to generate all non-derivable fre-
quent itemsets.

There are two non-trivial extensions that need to be
addressed for applying non-derivability in our case. First, a
method is required for generating non-derivable rare faSets,

(a)

(b)

Fig. 17 Dataset queries used for evaluating TPA and the baseline
approach. a AUTOS, b MOVIES.

Fig. 18 Example of IPF constraints for � = 2 when estimating
the support of the faSet {D.name = “M. Scorsese”, M.year = “2010”,
G.genre = “Action”}

instead of frequent ones. Second, frequency bounding must
be extended to allow approximations of the frequencies of
the various faSets.
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Fig. 19 Frequent, closed frequent, non-derivable frequent and minimal frequent faSets for various datasets. a ZIPF-7-1.0, b AUTOS-7,
c Mushroom
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Fig. 20 Interestingness of the top-10 faSets for queries with different number of results. a Different queries (|Res(Q)| ≈ 100), b Different queries
(|Res(Q)| ≈ 30), c Different (|Res(Q)|)

The first issue seems to not be easily solvable. When con-
structing deduction rules for a faSet I , it is assumed that
the frequencies of all its sub-faSets are either stored or can
be derived from the frequencies of the stored faSets. This is
not the case for a rare faSet I , since many of the sub-faSets
of I may be frequent, and thus, their frequency may not be
known. We considered following a reverse approach of form-
ing deduction rules based on super-faSets. However, we saw
that only lower bounds can be derived from such rules. The
second issue could be addressed by relaxing the notion of
derivability and allow the upper and lower bounds of a faSet
to differ by a factor δ. However, such an extension is not
clear, even for frequent faSets, since it is not clear how the
estimation error is bounded. The reason for this is that bounds
are computed based on multiple deduction rules where many
different sub-itemsets participate.

Nevertheless, to get some intuition about the prospects
of employing non-derivable faSets, we conducted an exper-
iment for frequent faSets. Figure 19 reports the number of
FFs, MFFs, CFFs and non-derivable frequent faSets (NDFFs)
for our ZIPF-7-1.0 and AUTOS-7 datasets. The number
of CFFs and NDFFs is almost identical to that of FFs for
our datasets, even for small values of ξ f down to 1 %, where
almost all faSets are considered frequent. This is due to the
fact that most faSets in our datasets have distinct frequen-

cies, and thus, the upper and lower bounds derived for the
various itemsets are not equal. Figure 19 also reports results
for Mushroom [2], a dataset widely used in the literature
of frequent itemset mining which does not have the same
property. Employing CFFs and NDFFs performs better for
this dataset. However, we see that the numbers of CFFs and
NDFFs are comparable.

6.3.4 Impact of result size

Next, we study the impact of the query result size on the
usefulness of our method. In general, the interestingness of
a faSet does not depend on the result size per se but rather on
the specific query. To illustrate this, we report the interest-
ingness score of the top-10 faSets of different queries with
roughly the same result size, in particular of queries retriev-
ing the country, year and genre of movies by a number of
different directors that have directed around 100 (Fig. 20a)
and 30 (Fig. 20b) movies each. We see that, even though
these queries have the same result size, the interestingness
of their faSets depends on the specific selection conditions,
i.e., director, of the query.

We also consider queries about movies of the same direc-
tor, namely F.F. Coppola, each retrieving a different num-
ber of results (Fig. 20c). These queries produce many com-
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Fig. 21 Query templates for the MOVIES database used for the user
evaluation

mon faSets which (especially the top 1-3 ones) get a higher
interestingness scores for smaller result sizes, since in this
case, their support in |Res(Q)| is larger. However, the rela-
tive ranking of these common faSets is the same in all queries.
Thus, the output of our approach is not affected by the result
size of the query (Fig. 17).

6.4 User evaluation

To evaluate the usefulness of YmalDB and its various
aspects, we conducted an empirical evaluation using the
MOVIES dataset, with 20 people having a moderate inter-
est in movies, 12 of which were computer science graduate
students, while the rest of them had no related background.
Although this may be considered a relatively small group of
users, it provides an indication of the potential impact of our
approach.

Users were first introduced to the system and were given
some time to familiarize themselves with the interface. Then,
each user was allowed to submit a number of queries to the
system. A set of template queries was available (Fig. 21)
which users could adjust by filling in their preferred direc-
tors, actors, genres and so on. Users could also submit non-
template queries. All users started by submitting template
queries. As they became more comfortable with the system,
many of our computer science users started experimenting
with their own (non-template) queries. The result size of the
various queries was between 20 and 6,700 tuples. User feed-
back seemed to be independent of the size of the retrieved
result set.

We evaluated the effectiveness of the system in two ways:
first, by asking users to explicitly comment on the usefulness
of the various aspects of the system and, second, by monitor-
ing their interactions with the system. More specifically, users
were asked to evaluate the following aspects: (1) the presen-
tation of interesting faSets as an intermediate step before
presenting recommendations, (2) the quality of the recom-
mendations, (3) the usefulness of explanations, (4) the use-

fulness of attribute expansion and (5) the depth of exploration
which can also be seen as an indication of the user engage-
ment with the system. Concerning system interaction, we
monitored: (1) how many template and non-template queries
the users submitted, (2) how many and which interesting
faSets the users clicked on for each query, (3) how many and
which recommendations users were interested, and (4) how
many exploration steps the users followed, i.e., how many
exploratory queries initiated at the originally submitted user
query were submitted. Table 5 summarizes our findings. We
also report the variation in these values. These variations
are relatively small and seems to be attributed to behavioral
habits whose analysis is beyond the scope of this paper. We
present some related comments along with the results.
Interesting faSets. All users preferred being presented first
with interesting faSets instead of being presented directly
with recommendations. Almost all users preferred seeing
interesting faSets grouped in categories according to the
attributes they contain. They felt that this made it easier
for them to focus on the attributes that they found to be
more interesting, which were different for each submitted
query. In particular, one user found this grouping interesting
in itself, in the sense that it provided a summary of the most
important aspects of the result of the original query. Only two
computer science users stated that, even though they gener-
ally preferred being presented with grouped faSets, they also
liked being presented with the top-5 most interesting faSets
independently of their categories. All of our non–computer
science users found this global top-k confusing and preferred
seeing only faSets grouped into categories. For this reason,
we decided to let users enable or disable this feature. Also,
most users, independently of their background, were more
interested in categories corresponding to large faSets because
they felt that these faSets were more informative.

Our monitoring concerning which faSets users eventually
clicked on showed that there were two types of users, those
that clicked on the first one or two faSets from each category
and those that chose one or two categories that seemed the
most interesting to them and then proceeded with clicking
all faSets in these categories, often using the “More” button
to retrieve more faSets in these categories. Around 75 % of
our users belonged to the former type.

Recommendations. Concerning recommendations, we
observed that the exploratory queries that users decided to
proceed with depended on the specific attributes for which
recommendations were being made. For example, when rec-
ommending movie years or genres, around 80 % of the users
decided to click on the first couple of available recommen-
dations. However, when recommending actors or directors,
the same users clicked on the names they were more familiar
with. This supports our decision to rank our recommenda-
tions based on the popularity of values in the dataset.
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Table 5 Summary of the results
of the user study User comments Clicks

Query submission Computer science students preferred
non-template queries/others felt more
comfortable with template queries

5 template queries for all users

2–3 non-template queries on average
in addition for computer science users
(min = 1, max = 5)

Interesting faSets Liked the attribute grouping preferred
faSets with more attributes

75 % 1–2 faSets of all groups (breadth
exploration) (min = 1, max = 4)
25 % all faSets of 1–2 groups (depth
exploration) (min = 1, max = 3)

Recommendations Choice depends on attributes 80 % on the first 1–2 recommen-
dations (genre, year, etc.) and on
all recommendations known to them
(actors, directors)
20 % on many recommendations (up to 8)

Explanations Brief –

Optional

Attribute expansion 80 % liked it Over 90 % clicked first on expanded faSets

20 % found it arbitrary

Exploration depth – 70 % a “close” neighborhood of the original
query (1-2 steps)
30 % navigate away (6–7 steps)

Explanations. Contrary to what we expected, user feelings
toward using explanations were mixed. Generally, the more
users became familiarized with using the system, the less
useful they found explanations. Explanations were better
received by our non-computer science users, since our com-
puter science users were more interested in understanding
how our ranking algorithm works rather than reading the
explanations. Nevertheless, all users agreed that explanations
should be brief, as they felt that detailed explanations would
only clutter the page. Following user feedback, we added an
option to allow users to turn explanations off.

Attribute expansions. Around 70 % of our computer sci-
ence users and all others found query expansion very use-
ful, as they received more recommendations. This behavior
seems to be linked with the fact that users preferred seeing
larger interesting faSets, since more such faSets appear when
expanding queries. Some of our users felt that query expan-
sion was able to retrieve more “hidden” information from the
database, which was something they liked.

Exploration depth. Finally, concerning the amount of explo-
ration steps followed by the users, again, there were two types
of users. Almost 70 % of the users decided to explore a close
“neighborhood” around their original query (1–2 exploration
steps), by following a recommendation and then navigating
back to the previous page to select a different recommenda-
tion for their original query. The remaining users, after fol-
lowing a recommendation and seeing the results and the new
interesting recommendations of the corresponding explor-
ing query, would most often find something interesting in
the new recommendations and navigate further away from
their original query (6–7 exploration steps on average), most

often never returning back to the initial page from which their
exploration originated. As an example of such an exploration,
upon asking for thriller movies in 2006, one of our users fol-
lowed an interesting faSet about Germany and a consequent
recommendation about war movies in 2009. The interest-
ing faSets of the corresponding exploratory query included
the countries Serbia and Bosnia and Herzegovina as well as
Pantelis Voulgaris, which is a director of civil war movies in
Greece.

7 Related work

In this paper, we have proposed a novel database exploration
model based on exploring the results of user queries. Another
exploration technique is faceted search (e.g., [16,20,30]),
where results of a query are classified into different multi-
ple categories, or facets, and the user refines these results by
selecting one or more facet condition. Our approach is differ-
ent in that we do not tackle refinement. Our goal is to identify
faSets, possibly expand them and then use them to discover
other interesting results that are not part of the original query
results.

There is also some relation with query reformulation. In
this case, a query is relaxed or restricted when the number of
results of the original query is too few or too many, respec-
tively, using term rewriting or query expansion to increase
the recall and precision of the original query (e.g., [32]).
Again, our aim is not to increase or decrease the number of
retrieved query results but to locate and present interesting
results that, although not part of the original query, are highly
related to it. Besides reformulating the query, another com-
mon method of addressing the too many answers problem is
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ranking the results of a query and presenting only the top-k
most highly ranked ones to the user. This line of research is
extensive; the work most related to ours is research based on
automatically ranking the results [5,12]. Besides addressing
a different problem, our approach is also different in that the
granularity of ranking in our approach is in the level of faSets
as opposed to whole tuples. We also propose a novel method
for frequency estimation that does not rely on an indepen-
dence assumption.

Yet another method of exploring results relies on why
queries that consider the presence of unexpected tuples in
the result and why not queries that consider the absence of
expected tuples in the result. For example, ConQueR [41]
proposes posing follow-up queries for why not by relaxing
the original query. In our approach, we find interesting faSets
in the result based on their frequency and other faSets highly
correlated with them. Another related problem is construct-
ing a query whose execution will yield results equivalent to a
given result set [33,42]. Our work differs in that we do not aim
at constructing queries but rather guiding the users toward
related items in the database that they may be unaware of.

Other approaches toward making database queries more
user-friendly include query auto-completion (e.g., [21]) and
free-form queries (e.g., [34]). Khoussainova et al. [21] con-
sider the auto-completion of SQL user queries while they are
being submitted to the database. In our work, we consider the
expansion of user queries to retrieve more interesting infor-
mation from the database. The focus of our work is not on
assisting users in query formulation but rather on exploring
query results for locating interesting pieces of information.
[34] considers exploiting database relations that are not part
of user queries to locate information that may be useful to the
users. The focus of this work, however, is on allowing users
to submit free-form, or unstructured, queries and provide
answers that are close to a natural language representation.

In some respect, exploratory queries may be seen as
recommendations. Traditional recommendation methods are
generally categorized into content-based that recommend
items similar to those the user has preferred in the past (e.g.
[26,29]) and collaborative that recommend items that similar
users have liked in the past (e.g. [9,22]). Adomavicius and
Tuzhilin [4] provide a comprehensive survey of the current
generation of recommendation systems. Several extensions
have been proposed, such as extending the typical recom-
menders beyond the two dimensions of users and items to
include further contextual information [28]. Here, we do not
exploit such information but rather rely solely on the query
result and database frequency statistics.

Extending database queries with recommendations has
been suggested in some recent works, namely [24] and
[6,11]. Koutrika et al. [24] propose a general framework
and a related engine for the declarative specification of the
recommendation process. Our recommendations here are of

a very specific form. Recommendations in [6,11] have the
form of queries and are based on the relations they involve
and the similarity of their structure to that of the original user
query. Given past behavor of other users, the goal is to pre-
dict which tuples in the database the user is interested in and
recommend suitable queries to retrieve them. Those recom-
mendations are based on the past behavior of similar users,
whereas we consider only the content of the database and the
query result.

A somewhat related problem is finding interesting or
exceptional cells in an OLAP cube [31]. These are cells
whose actual value differs substantially from the anticipated
one. The anticipated value for a cell is estimated based on
the values of its adjacent cells at all levels of group-bys. The
techniques used in that area are different though, and no addi-
tional items are presented to the users. Giacometti et al. [17]
consider recommending to the users of OLAP cubes queries
that may lead to the discovery of useful information. This is
a form of database exploration. However, such recommenda-
tions are computed based on the analysis of former querying
sessions by other users. Here, we do not exploit any history
or query logs but, instead, we use only the result of the user
query and database information.

Finally, note that we base the computation of interesting-
ness for our results on the interestingness score. There is a
large number of possible alternatives none of which is con-
sistently better than the others in all application domains (see
[38] for a collection of such measures). In this paper, we use
an intuitive definition of interestingness that depends on the
relative frequency of each piece of information in the query
result and the database. Nevertheless, our exploration frame-
work could be employed along with some different inter-
estingness measure as well by adapting the estimation of
interestingness scores accordingly.

This paper is an extended version of [14] including gener-
alized faSets with range conditions, a prototype system and
a user evaluation. Some of our initial ideas on this line of
research appeared in [36].

8 Conclusions and future work

In this paper, we presented a novel database exploration
framework based on presenting to the users additional items
which may be of interest to them although not part of the
results of their original query. The computation of such
results is based on identifying the most interesting sets of
(attribute, value) pairs, or faSets, that appear in the result of
the original user query. The computation of interestingness
is based on the frequency of the faSet in the user query result
and in the database instance. Besides proposing a novel mode
of exploration, other contributions of this work include a fre-
quency estimation method based on storing an ε-tolerance
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CRFs representation and a two-phase algorithm for comput-
ing the top-k most interesting faSets.

There are many directions for future work. One such direc-
tion is to explore those faSets that appear in the result set less
frequently than expected, that is, the faSets that have the
smallest interestingness value. Such faSets seem to be the
ones most loosely correlated with the query and they could
be used to construct exploratory queries of a different nature.
Another interesting line for future research is to apply our
faSet-based approach in the case in which a history of pre-
vious database queries and results is available. In this case,
the definition of interestingness should be extended to take
into consideration the frequency of faSets in the history of
results.
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