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Abstract Subgraph querying has wide applications in
various fields such as cheminformatics and bioinformat-
ics. Given a query graph, q, a subgraph-querying algorithm
retrieves all graphs, D(q), which have q as a subgraph, from
a graph database, D. Subgraph querying is costly because it
uses subgraph isomorphism tests, which are NP-complete.
Graph indices are commonly used to improve the perfor-
mance of subgraph querying in graph databases. Subgraph-
querying algorithms first construct a candidate answer set
by filtering out a set of false answers and then verify each
candidate graph using subgraph isomorphism tests. To build
graph indices, various kinds of substructure (subgraph, sub-
tree, or path) features have been proposed with the goal
of maximizing the filtering rate. Each of them works with
a specifically designed index structure, for example, dis-
criminative and frequent subgraph features work with gIn-
dex, δ-TCFG features work with FG-index, etc. We propose
Lindex, a graph index, which indexes subgraphs contained in
database graphs. Nodes in Lindex represent key-value pairs
where the key is a subgraph in a database and the value is a
list of database graphs containing the key. We propose two
heuristics that are used in the construction of Lindex that
allows us to determine answers to subgraph queries conduct-
ing less subgraph isomorphism tests. Consequently, Lindex
improves subgraph-querying efficiency. In addition, Lindex
is compatible with any choice of features. Empirically, we
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demonstrate that Lindex used in conjunction with subgraph
indexing features proposed in previous works outperforms
other specifically designed index structures. As a novel index
structure, Lindex (1) is effective in filtering false graphs, (2)
provides fast index lookups, (3) is fast with respect to index
construction and maintenance, and (4) can be constructed
using any set of substructure index features. These four prop-
erties result in a fast and scalable subgraph-querying infra-
structure. We substantiate the benefits of Lindex and its disk-
resident variation Lindex+ theoretically and empirically.

1 Introduction

Graphs are widely used to model structures and relationships
of objects in various scientific and commercial fields. For
instance, chemical molecules are modeled as graphs [16], and
three-dimensional mechanical parts are stored and manipu-
lated as attributed graphs in a CAD-mechanical-components
database [8]. Graphs are also used in pattern recognition
and have broad applications in computer vision and image
processing [6].

A popular method of retrieving graphs from graph
databases is by performing a subgraph query. Given a graph
database, D, and a query graph, q, a subgraph-querying algo-
rithm retrieves all graphs g ∈ D containing q as a sub-
graph. Deciding whether one graph is a subgraph of another
is referred to as the subgraph isomorphism problem; the prob-
lem has been shown to be NP-complete [7]. Consequently,
for large databases, an index is necessary to enable efficient
query processing. Typical graph indices are sets of key-value
pairs. The key is a subgraph of a graph in the database, and
the value consists of a list of database graphs that contain
the subgraph. When the query graph is a key in the index, the
value can be returned directly as the answer. Otherwise, the
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index is used to return a candidate set C(q) of graphs that
may potentially contain the query. C(q) is typically larger
than the answer set D(q), |C(q)| ≥ |D(q)|. A subgraph iso-
morphism test is performed to check that q is contained in
each candidate graph in C(q). Thus, |C(q)| subgraph iso-
morphism tests must be performed to eliminate graphs that
are not in D(q)(D(q) will also be referred to as the support-
ing set of q in the rest of the paper). Existing methods for
subgraph indexing and querying use such a filtering + veri-
fication paradigm [5,13–15,19,21,23]. Previous works have
mainly focused on mining “good” substructure features for
indexing.1 A good feature set improves the filtering power
by reducing the number of candidate graphs, which leads to a
reduction in the number of subgraph isomorphism tests in the
verification step [5,15,19]. Subtree features are also mined
for indexing, and they are less time-consuming to be mined
in comparison with subgraph features [21,23].

In related works [5,13,19,23], different graph index struc-
tures have been used for different kinds of features; no index
structure is general enough to support all kinds of substruc-
ture features. For example, gIndex [19] cannot index the
δ-TCFG features (which is designed specifically for FG-
index [5]) because it does not support the search for the
closest δ-TCFG supergraph of the query as needed by the
FG-index method. At the same time, FG-index cannot index
the discriminative and frequent subgraph features of gIndex
efficiently, since no apriori pruning can be made during the
index lookup [19]. For the same reason, gIndex cannot sup-
port MimR features [15] efficiently. We show in Sect. 7 that
using gIndex to index MimR features results in a signifi-
cant increase in the index-lookup cost, which dominates the
overall query-processing time when the query is a relatively
large graph. The index structure of TreePi [21] only supports
subtree features. The iGraph framework benchmarked exist-
ing indexing methods and concluded that “there is no single
winner for all experiments” [9]. This observation motivates
the need for a graph index that can be implemented in a
graph database management system and is independent of
the features being indexed. The DBMS can have an exten-
sible library of feature-selection strategies that are applica-
tion-dependent and any of them can be chosen to use with
the index structure.

We propose and evaluate the lattice-structure index,
Lindex.2 In Lindex, each node is associated with a key-value
pair. A key is a (substructure) feature, say sg, and its value set
V , as in an inverted index, is the set of database graphs (IDs)
that contain sg. In Lindex, an edge between two index nodes
indicates that the key in the parent node is a subgraph of the

1 Substructure features will be simply referred to as features in the rest
of the paper.
2 A preliminary version of Lindex was reported in an online-only work-
shop proceeding [20].
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Fig. 1 Example of Lindex

key in the child node. In Fig. 1, we show a simple Lindex.
The root node in the Lindex has a key sg0, the empty graph
(a graph with no nodes or edges). The node sg0 has two chil-
dren nodes with keys sg1 (sg0 ⊂ sg1) and sg3 (sg0 ⊂ sg3).

We show in detail how Lindex is designed and imple-
mented independent of the choice of index features. Lindex
provides the following: (1) high filtering power (Sect. 4), (2)
fast index-lookup strategies (Sect. 5), (3) compact memory
consumption (Sect. 3), and (4) fast index construction and
maintenance (Sect. 6.3).

High filtering power: In previous methods [5,13–15,19,
21,23], when a query graph was not a key in the index, the
number of subgraph isomorphism tests needed to answer a
query q was at least |D(q)|. Can we design a method that
may require fewer subgraph isomorphism tests than the size
of the answer set |D(q)|? We can do so using Lindex. Lindex
utilizes the fact that database graphs that contain a super-
graph of a query q are guaranteed to be in the answer set for
q; those graphs do not need to be checked for subgraph iso-
morphisms. Consider the example in Fig. 1. Let q be the
query. Given the Lindex, max Sub(q) contains the maxi-
mal-subgraph features of q, which are also direct parents
of q, namely, sg2 and sg4. The intersection of their value
sets [a, b, c, e, f ] and [a, b, d, e, f ] is [a, b, e, f ], which
is the candidate set of answers. Our algorithm also finds the
minimal-supergraph features of q, minSup(q). In our exam-
ple, the minimum supergraph of q (direct child of q) is sg5

whose value set is [b, e, f ]. From the Lindex, by construc-
tion, we know that b, e, f contain sg5. Therefore, the data-
base graphs b, e, f are guaranteed to contain q. Hence, we
can directly put [b, e, f ] in the answer set resulting in saving
three costly subgraph isomorphism tests. In our method, only
the graph a has to be checked, while all previous works have
to check all of [a, b, e, f ]. No indices in previous works sup-
port the minimal-supergraph-feature lookup, except for the
FG-index. However, FG-index returns only one supergraph
of q (closed δ-TCFG supergraph) [5], while our proposed
Lindex returns all minimal-supergraph features of queries.
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Lindex: a lattice-based index 231

As we show in Sect. 5.2, Lindex supports fast lookup for
minimal-supergraph features of queries.

A second property of Lindex allows us to partition the
value sets such that subgraph isomorphism tests need to be
performed only on database graphs appearing in one parti-
tion resulting in further reduction in the candidate set. For
details of this property, please see Sect. 4.2.

Fast index lookup: Finding the maximal-subgraph fea-
tures of a query graph, say, q in Fig. 1, requires checking
for subgraph isomorphisms from the indexed substructure,
say, sg2 to q. Looking up maximal-subgraph features using
Lindex is efficient because instead of identifying a full (sub-
graph) mapping from sg2 to q from scratch, by walking down
the lattice, our system can incrementally grow a mapping
from a parent graph, sg1 (sg3) to q to generate a mapping from
a child graph sg2 (sg4) to q. In order to make this traversal
even faster, we propose a heuristic spanning-tree-based tra-
versal of the lattice that works well in practice (see Sect. 5.1).

Compact memory consumption: Lindex is compact
with respect to memory consumption. In Lindex (see Fig. 1),
there is an edge from sg1 to sg2 if sg1 is a subgraph of sg2.
Since sg1 ⊂ sg2, the label of sg2 can be stored as an exten-
sion of the label of sg1, thereby saving space required to
record each feature. Say, sg1 has an edge labeled A and sg2

has two edges with labels A and B. Instead of storing sg2 as
a graph with two edges, we store sg2 as sg1 + edge B.

Easy to construct: Lindex is also easy to construct given
the features. The construction requires no other information
except for the containment relationships between features.
All existing feature-mining algorithms [5,13,15,19,23] mine
the containment relationships of features and then perform
feature selection. For example, given a feature f , gIndex
finds all features fi ⊂ f to decide whether f is a discrimi-
native feature; FG-index finds all features f j ⊃ f to decide
whether f is a δ-TCFG. The construction of Lindex takes
no extra subgraph isomorphism tests if the containment rela-
tions are recorded by the feature miner. In addition, due to
the explicit recording of the lattice structure and fast max-
imal-subgraph lookup, as we will show in Sect. 7, Lindex
is fast on constructing value sets in comparison with other
indices.

Note that the benefits of Lindex due to its lattice struc-
ture can be reaped in conjunction with the benefits due to
other feature-selection techniques. For example, as we show
later, using Lindex with the features used by FG-index out-
performs FG-index. Lindex is also flexible enough that it can
be partially stored in main memory and partially on disk (see
Sect. 3.3). Lindex also allows us to use different strategies
for selecting the in-memory features and the disk-resident
features. In one of our experiments, we use MimR [15] to
select the in-memory features but the index nodes stored on
disk have keys corresponding to frequent subgraphs in the
database as in FG-index. As future research identifies better

feature-selection algorithms for a set of workload queries
whose answers should be pre-computed and stored on disk,
for example, Frequently Asked non-FG-Queries [4], we can
seamlessly plug those algorithms into the Lindex framework.

In summary, our contributions are listed as follows:

1. We propose Lindex, an index structure independent of
index features.

2. Lindex filters more false answers than other indices given
the same index features, reduces the number of subgraph
isomorphism tests over false positive candidates, and
results in lower verification costs.

3. Lindex is fast with respect to index lookup, using both
maximal-subgraph-feature search and minimal-super-
graph-feature search for queries.

4. Lindex is concisely structured and requires no extra data
structure, for example, feature-inverted-index [4].

5. Lindex is easy to construct and maintain.

We demonstrate the superiority of Lindex by comparing it
with FG-index [5], gIndex [19], Tree+δ [23], SwfitIndex [13],
and MimR [15] both theoretically and empirically (Sect. 7).
We observed that when the query is small, Lindex can filter
out 1/3 more false graphs than gIndex (Fig. 10a, b). Lin-
dex’s index-lookup time is 1/10 of that of FG-index for large
queries (Fig. 10c). In addition, the memory consumption of
Lindex is only half of that of other indices (Table 3). Also,
the index-structure construction cost of Lindex is only 1/6
of that of FG-index’s construction time (Table 4).

Organization: We organize the paper as follows: Sect. 2
introduces preliminaries and related works. Section 3 intro-
duces the structure of Lindex. In Sect. 4, we present the strat-
egies adopted by Lindex to generate a smaller candidate set to
save on the verification cost. In sect. 5, we show how to effi-
ciently lookup Lindex. The overall query-processing frame-
work using Lindex and its time complexity is discussed in
Sect. 6. We compare Lindex against existing methods and
show our empirical results in Sect. 7. Finally, we conclude
in Sect. 8.

2 Preliminaries and related work

2.1 Preliminaries

A graph g = (V, E, L) is defined on a set of vertices V and
a set of edges E such that E ⊆ V ×V . Each node v or edge e
is associated with one label L(u) or L(e) ∈ L . In this paper,
we consider databases of undirected, labeled, and connected
graphs, but our methods can be applied to other types of
graphs with minor modifications. Existing works have used
frequent subgraphs (trees) as index features [5,13,19,21,23].
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Table 1 Symbols and terms summarization

Symbol Description

D Graph database; a collection of graphs

q Query graph

D(g) Supporting set of g in database D

C(q, F) Candidate set of query q with features F

g1 ⊂ g1 Graph g1 is a subgraph of g2

DL(D) Dense graph lattice based on D

SL(F) Sparse graph lattice consisting features F

max Sub(g, F) Maximal subgraphs of g in lattice SL(F)

minSup(g, F) Minimal supergraphs of g in lattice SL(F)

Vd (sg), Vi (sg) Direct/Indirect value set of node with key sg

M(g1, g2) All mappings from graph g1 to g2

Definition 1 (Frequent subgraphs) In a graph database D,
the support of a subgraph sg is the number of graphs g ∈ D
that contain sg. The graphs containing sg in D comprise the
supporting set of sg, D(sg). The frequency of sg, f req(sg),
is the ratio between sg’s supporting set and |D|, |D(sg)|/|D|.
The subgraph sg is a frequent subgraph if and only if its sup-
port is greater than σ |D|, where σ is named as the minimum
support.

Subgraph querying is defined as follows: given a query
graph q, find q’s supporting set in the graph database D.
In order to answer subgraph queries, typically, one has to
perform (sub)graph isomorphism tests.

Definition 2 (Subgraph isomorphism) We say two graphs
g1 = (V1, E1, L) and g2 = (V2, E2, L) are isomorphic to
each other if there is a bijection between V1 and V2, that
is, a mapping M(g1, g2) that maps any adjacent vertices
u1, v1 in g1 to a pair of adjacent vertices u2 = M(u1),
v2 = M(v1) in g2, where L(u1) = L(u2), L(v1) = L(v2),
and L(E(u1, v1)) = L(E(u2, v2)), and vice-versa. Sub-
graph isomorphism between g1 and g2 is an isomorphism
between g1 and a graph g′2 that is a subgraph embedded in g2.

In Table 1, we summarize several symbols and terms that
appear frequently in this paper.

2.2 Subgraph querying

Because subgraph isomorphism is NP-complete, scanning a
large graph database and checking whether each database
graph contains a query is computationally infeasible. Inclu-
sive-logic-based filtering algorithms use the following: if a
database graph g does not contain a feature f that is con-
tained in the query q, then g cannot be a supergraph of
q, and can be filtered out [5,13,15,19,21,23]. Usually, an
inverted index is built to implement the above inclusive-logic
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Fig. 2 Graph inverted index for subgraph querying

filtering, as shown in Fig. 2. Each feature is a substructure
stored in memory, and there is a value set (supporting set)
D(sg) associated with each feature sg. The value sets (IDs
of graphs containing the feature sg) are stored on disk. Given
a query q, we first look up the index for a feature isomor-
phic to q. If there exists such a feature sgi = q, D(sgi ) is
returned directly as the answer. Otherwise, we look for fea-
tures contained in the query, say, sg3 and sg4 in Fig. 2. The
value sets of sg3 and sg4 are intersected to obtain a candi-
date set, C(q) = D(sg3) ∩ D(sg4) = {a, b, e, f }. Implic-
itly, graphs {c, d, g, h} are pruned out. Finally, each candi-
date graph in C(q) is checked via a subgraph isomorphism
test to see whether it contains q. This procedure is similar
to that used to process simple conjunctive queries using the
Boolean Retrieval Model for documents. However, it is more
challenging than using the Boolean retrieval model for doc-
uments, because of the following factors:

1. An exponential number of subgraph features could be
indexed, which cannot fit the memory. So, it may be
preferable to index a small set of features F ⊂ F .

2. Finding the features contained in the query (maximal-
subgraph-feature search), for example, sg3 ⊂ q and
sg4 ⊂ q in Fig. 2, involves subgraph isomorphism tests
or graph canonical labeling, both of which are NP-hard
problems.

3. Verifying each candidate graph with subgraph isomor-
phism test is expensive in comparison with string match-
ing.

In order to address the above difficulties, previous works
mine a set of features (challenge 1) to minimize the num-
ber of isomorphism tests (challenge 3) [5,13,15,19,21,23].
Correspondingly, in order to reduce the time taken to lookup
the index (challenge 2), different index structures have been
built for different types of features. For example, gIndex uses
a hash table to store all the canonically labeled subgraph fea-
tures [19]; FG-index uses a specially designed edge-inverted
index to organize all features [5]. However, there is no index
structure that can efficiently support all different kinds of
features.
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Lindex: a lattice-based index 233

In this paper, we propose Lindex and a novel filtering
model described in Sect. 4 to decrease the size of candi-
dates C(q, F) from that obtained by previous methods (chal-
lenge 3), for any choice of features F . This modified filtering
model needs the underlying graph index to support the fast
search of the maximal-subgraph features and minimal-super-
graph features of a given query (challenge 2). We show in
Sect. 7 that the index lookup in Lindex (maximal-subgraph-
feature search and minimal-supergraph-feature search) is
much faster than that in traditional indexes, such as gIndex
and FG-index. Furthermore, Lindex is concise and easier to
construct than other indexes, for example, FG-index, which
has several components.

2.3 Related work

In this section, we survey the related work in brief. First,
we discuss existing work on feature-based inverted indexes,
and then, we discuss other alternatives to indexing graph
databases.

2.3.1 Feature-based inverted indexes

All feature-based inverted indexes adopt the inclusive-logic
filtering introduced in Sect. 2.2. Han et al. have shown that
feature-based inverted indexes perform the best in compar-
ison with other indexes [9], which proves the power of the
inclusive-logic filtering.

The first inverted index approach, GraphGrep, indexes all
paths up to length 10 [14]. Yan et al. [19] proposed gIndex,
which indexes frequent and discriminative subgraphs. gIndex
has a higher filtering power than GraphGrep, since subgraphs
can record more structural information than paths.

In gIndex, discriminative features f are indexed as black
nodes and indiscriminative intermediate features f ′ ⊂ f
are indexed as white nodes. Both black and white nodes are
stored in memory. The index in gIndex is a hash table where
the keys are the DFS codes of the features and their values
are the corresponding supporting sets, as in Fig. 3. For white
nodes (indiscriminative features), there is no value set. When
a query graph q comes in, the search algorithm first enumer-
ates all frequent subgraphs of q, canonically labels them,
and searches the label in the hash table. A frequency-based
apriori rule can be used to prune the search space during
index lookup to find maximal-subgraph features for queries:
if an enumerated subgraph f is not frequent (not in the hash
table), then any of f ’s supergraphs cannot be frequent or
reside in the hash table either; hence, it is safe to skip enu-
merating f ’s supergraphs. In order to use this apriori rule,
gIndex stores lots of frequent features although they are not
discriminative (i.e., the white node in the index). Hence, it is
not space efficient. In addition, this frequency-based apriori
rule cannot be used on other features, for example, MimR

Fig. 3 Example of gIndex structure

Fig. 4 Example of FG-index

features (introduced later). If we organize the MimR features
with gIndex (as proposed by Sun et al. [15]), the maximal-
subgraph-feature search is time-consuming because of the
large unpruned search space (see Sect. 7 for details).

Sun et al. [15] have proposed an approach for mining infor-
mative subgraphs called MimR. The MimR subgraphs are
learnt based on a set of possible queries. The subgraphs are
selected using a forward feature-selection algorithm based on
information theory to maximize the average filtering power
using those training queries. In order to maximize the filtering
power, the algorithm uses an approximate method to select
a set of subgraph features that have the minimum redun-
dancy among them while trying to maximize their informa-
tion content. We found that MimR constructs a candidate set
C(q) that is smaller than that created using other features
when the same number of features are indexed.

Cheng et al. [5] index frequent-subGraph queries or FG
queries, which they define as queries with large supporting
sets D(q)s. FG-index pre-computes and stores the answer
sets for all possible FG queries on disk, so that FG queries
can be answered directly without isomorphism tests. FG-
index further mines δ-TCFG features to index FG queries
and stores them in memory. A frequent subgraph is δ-TCFG
if and only if � a frequent subgraph g′ s.t. g′ ⊃ g and
f req(g′) ≥ (1− δ) f req(g). FG-index indexes the δ-TCFG
features using an edge-inverted index, in which the key is a
distinct edge e contained in δ-TCFG features and the value set
is the set of δ-TCFG features containing e, as shown in Fig. 4.
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The δ-TCFG features (IDs) in the value sets are assigned to
different buckets according to their edge count.3

A join operation of the value sets is conducted while
searching for minimal-supergraph features of q, and a union
operation is conducted while searching for maximal-sub-
graph features of q. For example, given a size-k query q hav-
ing distinct edges {e1, e2, e3, e4}, the minimal-supergraph
candidates of q, {sg5, sg10}, can be found by joining value
sets of e1, e2, e3, and e4 (the candidates must contain more
than k edges). The set of candidates for the minimal su-
pergraphs of q is still large due to the loss of the struc-
tural information by using the edge index (as reported by
Chen et al. [4]). Hence, in FG*-index (an advanced FG-
index), an additional “inverted-feature-index” is added [4].
The keys of the “inverted-feature-index” are subgraphs of
the δ-TCFG features, and the value sets are the IDs of
δ-TCFG features. Those subgraphs are selected to have
edge count between l = 2 and u = 4. The inverted-fea-
ture-index improves the time taken to lookup the index for
the closest-δ-TCFG supergraph feature, but it needs addi-
tional memory to store the keys and the value sets [4].
The situation is worse for maximal subgraphs; the sub-
graph features of q can contain any of the four edges;
and they can be C = {sg3, sg4, sg6, sg7, sg8, sg9}. Each
of the candidate feature sgi ∈ C need to be checked
with subgraph isomorphism tests. In order to save the
index-lookup time for the maximal-subgraph-feature search
in FG-index, FG-index does not return the complete set of
maximal-subgraph features [5], which inevitably decreases
the filtering power of the index. In addition, FG-index is
optimized for queries that are frequent subgraphs (FG que-
ries) in the database. Unfortunately, for queries that are
not frequent subgraphs in the database, non-FG queries,
FG-index falls back to the filter+verify strategy. Thus, for
non-FG queries, the filtering power of FG-index is lower
than that of MimR because the δ-TCFG features used by
FG-index to index the graph database are mined without
trying to maximize the filtering power. As we show in
Sect. 7, FG-index does not optimize the average perfor-
mance when the workload contains both FG and non-FG
queries.

Identifying which subgraphs to index is slow because the
mining process involves a significant amount of testing for
subgraph isomorphisms [18]. To reduce the time required
to mine features, three subtree-based approaches were pro-
posed [13,21,23]. TreePi [21] and SwiftIndex [13] use fre-
quent and discriminative subtrees for indexing. SwiftIndex
organizes features as QI-sequences (string labels) in a pre-
fix tree. When a query q comes in, SwfitIndex traverses the
prefix tree and checks whether the feature corresponding to

3 For simplicity, we did not show the bucket assignment by edge
frequency.

an index node is a subgraph of the query using subgraph iso-
morphism, which is similar to what Lindex checks. However,
SwiftIndex only supports the lookup for maximal-subgraph
features. Tree+δ, as the name denoted, has two separate indi-
ces, one gIndex hash table for subtree features and a δ index
for subgraph features; the latter can largely improve the filter-
ing power [23]. The frequency-based a prioi rule can be used
on the gIndex hash table because Tree+δ indexes discrimina-
tive and frequent subtree features. However, there is no prun-
ing for the δ index. The filtering power of subtrees is lower
than that of subgraphs. When offline index construction is
affordable, we still prefer a subgraph-based index because of
its higher filtering power.

We summarize the various existing feature-based inverted
index structures and their properties in Table 2. The “Index-
Structure” column shows the core data structure of the index.
The “Filtering Effectiveness” column shows the filtering
power of the selected features and filtering models. We rate
the filtering power of each index using “fair,” “good,” and
“best.” The “Index-Lookup” column shows the methods used
by different algorithms to find maximal-subgraph or mini-
mal-supergraph features, and their corresponding time costs.
“The Extra-Memory” column describes what additional
memory the index needs besides that for storing the features.

2.3.2 Other graph indexes

Besides feature-based inverted indexes, researchers have also
proposed some “tree-like” indexes [10,17]. In CTree, graphs
in a database and their subgraphs or closure graphs are orga-
nized using an index tree. The answer set is retrieved by
traversing this index tree. However, in CTree, subgraph iso-
morphism or approximate subgraph isomorphism has to be
tested on each step of the tree traversal, which leads to longer
response times in comparison with the inverted-index-based
approaches mentioned above. Williams, Huang, and Wang
proposed a Graph Decomposition Index (GDIndex) [17].
GDIndex contains all graph decompositions of graphs in the
database, where the graph decomposition of a graph g refers
to the enumeration of all connected, induced subgraphs of g.
GDIndex is very effective in processing graphs with limited
size (less than 20 nodes). The index is usually large and does
not fit in main memory for large graphs.

In the past few decades, researchers in cheminformatics
developed an approach called Fingerprint to filter out false
answers [1]. Each chemical structure’s fingerprint is a fea-
ture vector in a high-dimensional space. A feature may be
defined as follows: an atom, a pattern representing an atom
and its nearest neighbors, a pattern representing a group of
atoms, a path up to n bonds in length, etc [12]. The feature
space includes all these patterns and consequently has a high
dimension. To conquer the high dimensionality, a hash code
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Table 2 Related works on subgraph querying

Name Index structure Filtering effectiveness Index lookup Extra memory

gIndex A hash table of features DFS
codes

Inclusive-logic filtering (fair) Support maximal-subgraph-
feature search only. Use
Apriori rule to prune the
search space (fast)

Extra memory for indiscrimi-
native features (white node)

MimR A hash table of features DFS
codes

Inclusive-logic filtering
(good)

Support maximal-subgraph-
feature search only. No
pruning available (slow)

FG-index An edge-inverted index. Fea-
tures are distributed both in
memory and on disk

Direct answer retrieval for
FG queries (good). Inclusive-
logic filtering for Non-FG
queries (fair)

Support maximal-subgraph-
feature search. A union oper-
ation is conducted to find the
candidate max-sub features
(slow). Also support closest
δ-TCFG supergraph-feature
search (slow)

Extra memory for edge-inverted
index

FG*-index Additional feature-inverted
index and a FAQ Index

Same as FG-index. Improved closest δ-TCFG su-
pergraph-feature search (fast)

Extra memory for feature-
inverted index

QuickSI Swift Index: a prefix tree of sub-
tree features’ QI-sequences

Inclusive-logic filtering (fair) Support max-subtree-feature
search only (fast)

Tree+δ gIndex for subtree features and
a separate hash table δ for sub-
graph features

Inclusive-logic filtering (fair) Support maximal-subgraph-
feature search only. Apriori
rule used for gIndex (fast), but
no pruning for δ index (slow)

Lindex Organize features in a lattice Modified inclusive-logic filter-
ing and direct inclusion of true
answers (best)

Support maximal-subgraph-
feature and minimal-super-
graph-feature search (fast)

Lindex+ Features are distributed in
memory and on disk

Same as Lindex. Direct answer
retrieval for indexed queries
(best)

same as Lindex

of the feature vector is used instead for filtering; however,
hash coding of the vector reduces the filtering power.

GCode [24] encodes database graphs into spectrum codes
based on spectral graph theory and uses interlacing theo-
rem to prune the false candidate graphs. Other works, such
as GString [11], primarily target two-dimensional chemical
structure graphs. Lindex can be used to index more generic
graphs.

In this paper, we extend our preliminary version of Lin-
dex [20]. Detailed algorithms for index-structure construc-
tion (Sect. 3.2.2) and value-set construction (Sect. 4.4) are
introduced. We have optimized the maximum-subgraph-
search and minimum-supergraph-search algorithms. We con-
struct a minimum spanning tree based on the frequency
of the index features, as introduced in Sect. 5.1.3. In this
paper, we show how this minimum spanning tree can help to
reduce the isomorphism tests in maximal-subgraph search.
The maximal-subgraph features obtained using the algorithm
in the preliminary version contains false positives. In this
paper, we design algorithm to prune out those false posi-
tives efficiently as introduced in Sect. 5.2.2. We compare
and contrast the index lookup of Lindex and related works in
Sects. 5.1.1 and 5.2.1. We show how we can extend Lindex
to a disk-based index, Lindex+, and present its query pro-

cessing framework and discuss its time complexity (Sect. 6).
Additionally, in Sect. 6.3, we discuss how to update Lindex
briefly.

This paper also extends the empirical evaluation over the
preliminary version. Apart from the query processing times,
we report the index construction and memory consumption
costs. Apart from comparisons with gIndex, FG-index, and
MimR, in this paper, we also provide comparisons with
QuickSI and Tree+δ. We test the scalability of Lindex with
additional indexing features. As reported in Sect. 7.3, we con-
trol the number of indexing features using minimum support.
We also study the performance Lindex with real and synthetic
graphs with various edge count and density parameters, as
reported in Sect. 7.4. Apart from empirical evidence, in this
paper, we also prove the correctness of the value-set-partition
heuristic (Sect. 4.3).

3 A lattice-based graph index

In this section, we propose Lindex, a graph-lattice-based
index. First, we introduce a graph lattice, and then, we show
how a compact index, Lindex, is constructed based on the
graph lattice.
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sg0 

sg1 sg2 

sg4 

sg3 a

b
c

Database 
Graph 
Instantiated 
Lattice Node 

Value Set:  
(Stored On Disk) 
Sg0 [], [a, b, c]
Sg1 [a, c], [b]
Sg2 [a], [b, c]
Sg3 [b], []
Sg4 [c], [] 

Fig. 5 Example of Lindex: a sparse lattice. The database graphs are
not part of the index, it is drawn for demonstration purpose

3.1 Graph lattice

In a graph lattice, each node represents a graph. Any pair
of graphs {gA, gB} in the lattice have a least upper bound
gA ∪ gB and a greatest lower bound gA ∩ gB . A complete
graph lattice has a greatest element that is a graph containing
all graphs in the lattice and a least element that is an empty
graph ∅.
Definition 3 (Graph lattice) A graph lattice
(GL ,⊆) is a lattice defined using the subgraph isomorphism
relation, ⊆, and satisfies reflexive, antisymmetric, and tran-
sitive properties as follows. Given three graphs gA, gB , and
gC in a graph lattice,

(1) gA ⊆ gA

(2) if gA ⊆ gB and gB ⊆ gA, then gA = gB

(3) if gA ⊆ gB and gB ⊆ gC , then gA ⊆ gC (1)

As shown in a Hasse diagram of a graph lattice in Fig. 5,
the lattice is composed of a set of graphs. A directed edge
is drawn from sg2 to sg3 if and only if sg2 ⊂ sg3. Here,
we omit edges that can be obtained using the transitivity of
the subgraph isomorphism relation, that is, there is no edge
E(sg0, sg3) if sg0 ⊂ sg2 ⊂ sg3. If a lattice constructed from
a database contains all the subgraphs of all the graphs in the
database, we refer to it as a Dense Lattice, DL(D). A lattice
is a Sparse Lattice, SL(F), if it only consists a subset, F ,
of subgraphs in the dense lattice. A dense lattice is too large
to generate and manipulate for most databases in practice.
Figure 5 is a sparse lattice, that is, not all subgraphs of data-
base graphs are listed. Note that the solid nodes in Fig. 5
represent database graphs, and they are not part of the sparse
lattice but visualized only for demonstration purposes.

In a sparse graph lattice, SL(F), for each graph g, the
maximal subgraphs and minimal supergraphs of g are defined
as follows:

Definition 4 (maxSub, minSup)

max Sub(g, F) = {sgi ∈ F |sgi ⊂ g,

�x ∈ Fs.t.sgi ⊂ x ⊂ g} (2)

minSup(g, F) = {sgi ∈ F |g ⊂ sgi ,

�x ∈ Fs.t.g ⊂ x ⊂ sgi } (3)

In Fig. 5, graphs sg1 and sg2 are maximal subgraphs and the
graph sg4 is a minimal supergraph of graph a. For brevity,
when the Lindex being referred to is clear from the context,
we simplify the notation by dropping the second argument
from max Sub and minSup and write them as max Sub(g)

and minSup(g).

3.2 Structure of Lindex

Lindex, L(D, F), is an inverted index built on a sparse graph
lattice SL(F) and a graph database D. In Lindex, a node is
associated with a <key,value> pair. The key is a subgraph
(feature) in the graph lattice SL(F), and the value is a list
of IDs of graphs in the database that are supergraphs of the
key. In this paper, we denote t as a Lindex node, sgt as the
corresponding graph key of t , and V (sgt ) as the value of t .
Node t1 ≺ t2 if and only if sgt1 ⊂ sgt2 . Given a graph g
and a Lindex L(D, F), its maximal-subgraph nodes are the
nodes corresponding to max Sub(g, F) in the sparse lattice
SL(F), and its minimal-supergraph nodes are the nodes cor-
responding to minSup(g, F). The root of a Lindex is a node
r whose key is an empty graph ∅. In this paper, we abuse the
notation slightly when the meaning is clear from the context.
A node may refer to either a node in Lindex or a graph in a
graph lattice, based on the context.

Lindex versus GDIndex: Lindex is different from the
lattice structure in GDIndex [17]. GDIndex is a dense lattice,
in which all subgraphs of the database graphs are instanti-
ated. A hash table is also built whose keys are the canonical
labels of subgraphs, and values are the links to those sub-
graphs on the dense lattice. In order to process the query q,
GDIndex first converts q to its canonical form and looks up
the hash table to locate a subgraph sg = q. Then, GDIn-
dex searches for database graphs containing sg by walking
through the dense lattice. This query-processing model is not
based on the inclusive-logic filter+verification paradigm, and
no isomorphism tests are needed for verification. However,
the dense lattice is too big to fit into memory. Hence, GDIn-
dex is not scalable to large graph datasets. Lindex, on the
other hand, is built upon a sparse lattice, which only stored
subgraph features selected for indexing by miners studied in
previous works [5,15,19,23]. Hence, Lindex is scalable to
large databases and large graphs. Lindex does not use a hash
table. For each feature in the sparse lattice, Lindex stores an
associated list of graph IDs on disk as value sets. Further-
more, Lindex uses the inclusive logic for filtering, and that
is different from the query-processing model of GDIndex.

3.2.1 Serializing the index features

Graph canonical labels, such as “DFSCode” [18] of sub-
graphs, are commonly used to store subgraph features in
a feature-based index [15,19]. Here, the label is a string
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representation of the entire graph, which is different from the
label for nodes and edges. The canonical label (DFSCode)
is constructed as follows. For each edge in a graph, a tuple
of the form <ID(u), ID(v), L (u), L (edge(u, v)), L (v)>
is created for an edge between u and v where the functions
ID(·) and L(·) return the id and the label of a vertex and/or
edge, respectively. The label for the graph is a sequence of
tuples constructed from its edges. Different assignments of
vertex-ids to vertices in a graph result in different labels. The
different labels of a graph are sorted lexicographically; the
first label is chosen as the canonical label.

Efficient memory usage enables us to index additional
graph features and thus increases the filtering power of a
graph index. In order to minimize memory usage, Lindex
stores the label of a graph key of a node as an extension
of the label of its (chosen) parent node. (We discuss how
a parent is chosen and the rationale behind choosing a par-
ent in Sect. 5.1.3 in more detail). For example, the label of
the graph sg3 is <1,2,6,1,7>,<1,3,6,2,6> and the label of its
chosen parent sg2 is <1,2,6,1,7>. The label of sg3 is stored
as just <1,3,6,2,6>. The existence of the first edge (belong-
ing to sg2) is understood to be in sg3 and is not explicitly
stored to save memory. Besides reducing memory consump-
tion while saving key graphs, extension labeling also inte-
grates an implicit identity mapping from all the vertices in
the parent graph to vertices in the children with the same ver-
tex-ids as those in the parent. These implicit mappings are
useful in mapping expansion while traversing the lattice (for
more details, see Sect. 5.1).

Algorithm 1 Construct Lindex lattice

Input: Selected Index Features F
Output: Sparse lattice SL(F)

Procedure:
1: Mine the containment relationships between features F , and store

their mappings
2: Sort F in descend order of their edge count.
3: Build a Lattice SL(F) with disconnected nodes F
4: for Each feature (node) sgi do
5: for Each feature sg j with j < i do
6: if sg j ⊃ sgi and sg j sgi is not connected by a path then
7: connect sgi to sg j by a direct edge
8: end if
9: end for
10: end for
11: Construct a Spanning Tree T out of SL(F)

12: Depth First Search, label each node sgi as an extension of its parent
in T

3.2.2 Lindex lattice construction

Algorithm 1 describes the process of constructing a Lindex.
To construct the sparse lattice of Lindex, we need to first find
the containment relationships of features, as shown in line 1

sg0 

sg1 
sg3 

sg2 sg4 

sg5 

q sg6 

sg7 
sg9 

sg8 sg10 

sg11 
sg13 

sg12 sg14 

Memory 

Disk 

Fig. 6 Example of Lindex+

of Algorithm 1, which are by-products of the feature miner
in the feature-selection phase [5,13,15,19,23]. Since Lindex
is independent of features, any substructure features can be
used as input to the algorithm. Lines 2 to 10 construct the
sparse lattice SL(F). In line 11, a spanning tree of the lattice
is built. The spanning tree is built for fast index lookup, and its
construction will be introduced in more detail in Sect. 5.1.3.
Then, the index subgraph features are labeled as an extension
of their parents in the spanning tree. The extension labeling
can be easily computed given the recorded mappings between
index features.

The above procedure does not include the construction
of the value sets. For each feature sg, if its supporting set
D(sg) can be returned directly from the feature mining algo-
rithm, then the value sets can be populated directly. Usually,
as in gIndex [19] and cIndex [2], a sampled graph dataset
D′ ⊂ D is used for feature mining. Thus, D′(sg) instead
of D(sg) will be returned by the feature mining algorithm.
In order to find the complete set of D(sg), we need to pop-
ulate the value sets (details in Sect. 4.4). We show empiri-
cally that Lindex is also faster with respect to constructing
value sets than other indexes, because of the explicit record-
ing of the lattice structure and its fast maximal-subgraph
lookup.

3.3 Lindex+: disk-resident Lindex

Although compact, Lindex may still be too big to fit in main
memory when there are too many indexed subgraph features.
As in FG-index [5], in such a case, we propose a disk-resident
extension of Lindex, Lindex+, as shown in Fig. 6. Construct-
ing Lindex+ involves two steps: (a) Choose a set of nodes N1

(sg0–sg5 in Fig. 6) from the corresponding lattice to instanti-
ate in memory and construct a Lindex using it; and (b) From
the rest of the nodes N2 from the lattice that are not cho-
sen to be instantiated in memory construct a set of on-disk
Lindexes. We refer to the first-level in-memory index as the
first-level Lindex. The N2 nodes on disk are linked from the
N1 nodes that are instantiated in main memory.

For example, the on-disk nodes group, for example
sg6−10, is linked from sg2 because sg2 is the maximum sub-
graph of features sg6−10. A maximum subgraph of graph is
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a maximal subgraph of the graph with the minimum fre-
quency. If two maximal subgraphs have the same minimum
frequency, we choose the first maximal subgraph as the max-
imum subgraph according to their labels lexicographically.
Each of the in-memory nodes is associated with a closure of
on-disk features, whose maximum subgraph is the in-mem-
ory node. For each closure of on-disk features, we build one
on-disk Lindex, which is linked by an in-memory node. For
example, the on-disk Lindex built on the closure sg6−10 is
linked by the in-memory node sg2, in Fig. 6. Since the in-
memory and on-disk Lindex share the same structure, we
generally name them as Lindex and treat them the same in
this paper.

The sparse lattice of the first-level Lindex resides in
memory. We store all value sets and all on-disk Lindexes
(including both sparse lattices and their value sets) on disk.
We have experimented using MimR [15] features and δ-
TCFG [5] for the nodes stored in main memory and stored
all frequent subgraphs (FG) on disk. Thus, FG queries can
be answered directly as in FG-index. Note that this mix-and-
match feature of Lindex+ is a result of the generality of the
Lindex data structure and allows us to take advantage of the
best of multiple worlds.

4 Filtering power of Lindex

In this section, we introduce two strategies that Lindex uses
to decrease the size of the candidate sets. Both strategies
are independent of underlying features, thus, leading to the
generality of Lindex.

4.1 Direct inclusion of true answers

The first strategy used to prune candidate sets is as follows.
Any graph g indexed by a supergraph node of a query q
can be pruned from C(q) (the set of candidate graphs that
are checked with subgraph isomorphism tests) and directly
included in the answer set because g contains q. This strategy
is formalized in Property 1.

Property 1 (Minimal supergraph pruning) Given a query q,
and Lindex L(D, F), the candidate set on which an algorithm
should check for subgraph isomorphism is C(q)=∩i D( fi )−
∪ j D(h j ),∀ fi ∈ max Sub(q), and ∀h j ∈minSup(q).

The key challenge to implementing the above-mentioned
direct-inclusion strategy is how to find minimal supergraphs
of the query in a time-efficient manner. To the best of
our knowledge, no other feature-based indexes can sup-
port the minimal-supergraph lookup. FG-index supports the
search for the closest δ-TCFG supergraph of the query, but
the closest δ-TCFG supergraph is only one of the mini-
mal supergraphs. Cheng et al., [3] have used a similar

direct-inclusion strategy for supergraph querying (returns the
database graphs contained in the query). In supergraph que-
rying, if a feature sg ⊂ q, then all database graphs con-
tained in sg, {g ∈ D|g ⊂ sg} will be included in the
answer directly. Unlike subgraph querying, the direct inclu-
sion in supergraph querying does not use minimal-super-
graph features.

4.2 Pruning using the value set partitions

In this subsection, we show how the need for subgraph
isomorphism tests is further reduced by partitioning the
value sets in Lindex. We introduce the key idea using an
example.

Example 1 In Fig. 7, we show a part of a dense lattice DL
(D). sg1, sg2, sg3, and sg4 are graph keys of nodes in DL(D)

out of which sg1, sg2, and sg3 are instantiated in the sparse
lattice SL(F) constructed from DL(D). Let a and b be two
graphs in the database. Which database graphs should be in
the value set of sg1 to enable us to answer a query q? In
our example, clearly, if q = sg1, then we need both a and
b. However, if q is not equal to sg1, we argue it suffices to
keep only b in the value set of sg1 and not a. We identify
the different cases that may occur and show that we do not
need to include a in the value set of sg1 in any of these cases.
(1) q exists in the path between sg1 and sg2. In this case,
sg2 is a supergraph of q, and thus, a containing sg2 can be
included in the answer set of q without verification and, thus,
does not need to be in the value set of sg1. (2) q exists in the
path between sg2 and a. Because sg2 is a maximal subgraph
of q and not sg1, the algorithm will not use the value set
of sg1 in this case. (3) For all the other placements of q in
the other paths, there is no path from q to a implying that a
does not contain q; thus, we do not need a in the value set of
sg1. Thus, the node a that is not need to be included in sg1’s
value set is because ∃sg2 such that a ⊃ sg2 ⊃ sg1. Notice,
however, graph b needs to be included in sg1’s value set even
if ∃sg3 such that b ⊃ sg3 ⊃ sg1 essentially because ∃sg4

that sg1 ⊂ sg4 ⊂ b and sg4 is not instantiated. The query q
can be placed along the path from sg1 to sg4 and q has no
containment relationship with sg3. In this case, graph b will
be missed from the answer set if b is not included in the value
set of sg1 (note that sg4 is not instantiated in the sparse lattice
and will not be returned as a minimal supergraph of q).

In existing methods [5,13,15,19,21,23], the value set for
a node t consists of D(sgt ). We propose to partition the value
set for each node into two parts: the direct value set Vd(sgt )

and the indirect value set Vi (sgt ). Both value sets are used
when the query subgraph exists as a key in the lattice; other-
wise, an intersection of the direct value sets of the maximal
subgraphs of the query gives us the candidate set on which
subgraph isomorphism should be performed.
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Fig. 7 Example of value set partition

Based on this intuition, we propose the following prop-
osition: If all paths in the dense graph lattice DL(D), from
a graph sgt to a graph g, where g ∈ D, go through at least
one node sg′t such that sg′t ∈ F , where F is the set of graphs
instantiated in the sparse lattice, then the database graph g
should not be included in the direct value set of node t with
graph key sgt in Lindex L(D, F). Hence, the following def-
inition:

Definition 5 (Direct and indirect value set) For a Lindex
L(D, F), a graph g is in the direct value set Vd(sgt ) iff g ∈
D(sgt ) and there exists a path in the dense graph lattice,
DL(D), from sgt to g that does not pass through any node
in the instantiated sparse graph lattice SL(F) That is,

Vd(t) = {g ∈ D(sgt )|∃path P(sgt , g) ∈ DL(D)

∧∃path P(sgt , x1, . . . , xn, g) ∈ DL(D),

∀xi �∈ F, i ∈ {1, n}} (4)

The indirect value set Vi (sgt ) contains all database graphs
that are supergraphs of sgt but not contained in Vd(sgt ).

Our algorithm also uses the following property to reduce
the number of subgraph isomorphism tests:

Property 2 (Direct value set pruning) Given a query q and
Lindex L(D, F), the candidate graphs need for verification
is
C(q) = ∩i Vd( fi ) − ∪ j D(h j ), (∀ fi ∈ max Sub(q) and
∀h j ∈ minSup(q)).

Instead of using ∩i D( fi ) as in Property 1, Property 2 uses
∩i Vd( fi ). The size of ∩i Vd( fi ) is smaller than that of ∩i D
( fi ), reducing the number of required subgraph isomorphism
tests further.

We now provide a simple example to show how our algo-
rithm works and highlight the main advantages of Lindex
over existing algorithms.

Example 2 In Fig. 5 we show part of an instantiated sparse
lattice with the nodes sg0, sg1, sg2, sg3, and sg4. Graphs
a, b, c are in the database and are not instantiated in the lattice
but they are shown in the graph for illustration purposes only.
Let us say that the query is isomorphic to graph a. The lat-
tice would be traversed, and the maximal subgraphs of a are
determined to be sg1 and sg2. The minimal supergraph of a
is sg4. The algorithm takes the intersection of the direct value

sets of sg1 and sg2. The lists shown in the figure beside each
node depict its value set: the first list is the direct value set,
and the second list is the indirect value set. The algorithm
takes the intersection of the direct value sets of the maximal
subgraphs and obtains the candidate set {a, c} ∩ a = a for
verification. The union of the value sets (both direct and indi-
rect) of the minimal supergraph sg4 is {c} and that is directly
included in the answer and deducted from the candidate set.
Finally, the set {a} is taken, and its element a is verified to
contain the query (a ⊇ q) and is added to the answer set.
The answer set {a, c} is output.

The example shown above illustrates the efficacy of Lin-
dex over other indexing schemes like gIndex, FG-index, or
MimR. gIndex, FG-index (assuming that a is not an indexed
feature), and MimR would find all the maximal subgraphs
sg1 and sg2. Their value- sets would be {a, b, c}, and their
intersection would be verified. Thus, to generate the answer,
they would need three subgraph isomorphism tests. If the
query q is a frequent subgraph, both FG-index and Lindex+
would have a node in the index (could be disk-resident) and
the value set of a would be retrieved directly.

4.3 Proof of value set partition

We prove the correctness of Property 2 below.

Theorem 1 If there exists any graph g in a database D that
contains a query graph q, the graph g is in the answer set
using Property 2.

Proof Case 1: If q appears in the sparse lattice (q ∈ F),
then all database graphs in the value set of q are returned. By
construction, the graph g will appear in a value set (either
direct or indirect) of q since g contains q and thus g is in the
answer set.

Case 2a: If q is not indexed (q �∈ F), let there exist a
feature graph sg′ in the sparse lattice SL(F) such that sg′ is
a minimal supergraph of q and the database graph g is in the
value set of sg′ (q ⊂ sg′ ⊂ g). In this case, the algorithm
finds the complete set of minimal supergraphs of the query
q in the sparse lattice, and g will be added into the answer
set directly without any subgraph isomorphism test.

Case 2b: If neither q nor any supergraph of q is in F , or
q �∈ F and none of q’s (minimal) supergraph nodes contain
g in the value set, then the algorithm finds max Sub(q), the
maximal subgraphs of q in SL(F). (1) The graph g must
appear in the intersection of Vd( f ), ∀ f ∈ max Sub(q). To
show this, we need to show that g appears in the direct value
set of all maximal-subgraph nodes of q in L(F, D). The
graph g belongs to D( f ) because f is a maximal subgraph
of q and g contains q, and thus, g also contains q’s maximal
subgraph f . By Definition 4, a database graph g that contains
f will be in Vd( f ) unless all paths from f to g in the dense
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lattice DL(D) pass through at least one node from F . There
must exist a path from f to g in the dense lattice DL(D)

because g appears in the database and f is a subgraph of g.
For the path P = ( f, . . . , q, . . . , g), its first half ( f, . . . , q)

does not pass through any graphs in F (otherwise, f is not
a maximal subgraph of q). Recall, in this case, neither q nor
any supergraph of q that is a subgraph of g is in SL(F).
Thus, the second half (q, . . . , g) does not pass any graph in
F either. Therefore, there exists a path P connecting f and g
without passing any graphs in F . Hence, g does not appear in
the indirect value set and is in each Vd( f ) and thereby in the
candidate set C . (2) Because g contains q, g will be added
to the answer set.

4.4 Partitioned value-set construction

Value-set construction: Due to the fact that a sampled data-
base D′ ⊂ D is used during the feature mining, the support-
ing set D′( f ), instead of D( f ), is returned by the feature
miner for each selected feature f ∈ F . Our system needs to
populate the value sets in Lindex. As in document indexing,
it processes database graphs one after another and adds them
to the graph inverted index. For a database graph g, we first
find all indexing features contained in g, sub(g) = { f ⊆
g| f ∈ F}, and then we append the ID for graph g to the end
of f ’s value set for each f ∈ sub(g).

In this subsection, we show how our algorithm partitions
the value sets for Lindex during value-set population. Let a
graph g be in the direct value set of a node with key sgt , that is,
g ∈ Vd(sgt ). From Definition 4, we know that there exists a
path in the dense lattice DL(D), p(sgt , g), from t’s graph key
sgt to g that does not pass through any node n ∈ F instanti-
ated in the sparse lattice SL(F). The direct value set Vd(sgt )

is easy to be obtained if we have the dense lattice DL(D).
However, computing and searching on DL(D) are infeasible
because of its large size. Now, we introduce our algorithm
that partition the value sets of nodes in the Lindex without
pre-computing and utilizing DL(D) (see Algorithm 2).

For each database graph g, our algorithm first finds the
maximal-subgraph nodes of g and adds g into the direct value
set of each maximal-subgraph node (lines 4–7). For index
nodes t whose keys are subgraphs of g but not maximal sub-
graphs, g can be either in their direct value sets or indirect
value sets. We try to extend the embeddings of sgt on g to a
certain size max Size and check whether there is an embed-
ding of sgt on g that can be extended without passing any
graphs corresponding to a lattice node. Here, max Size is the
size (number of edges) of the largest subgraph key in Lindex
(line 1). An embedding of sgt on g is an instance of g’s sub-
graph that is isomorphic to sgt . We extend the embedding by
adding one edge l in each step (lines 12–13), where l ∈ g,
l �∈ e but l is connected to e in g.

Algorithm 2 Value-Set Construction

Input: Graph Database D, Sparse lattice SL(F)

Output: Lindex L
Procedure:
1: maxSize← edge count of the largest subgraph in F
2: HashSet labels← canonical label of each sugbraph in F
3: for each graph g ∈ D do
4: max Sub(g)← maxSub-Search(SL(F), g);
5: for each graph f ∈ max Sub(g) do
6: Vd ( f )← Vd ( f ) ∪ g;
7: end for
8: for each node t that is a subgraph node but not a maximal-subgraph

node of g do
9: Calculate the set of embeddings Esgt ,g
10: for each embedding e = esgt ,g do
11: while e is extendable do
12: Find an unvisited edge, l = (u, v) ∈ g s.t. u ∈ e v �∈ e
13: e← e ∪ l
14: if size(e) > maxSize then
15: break
16: else if The set labels contains canonical-label(e) then
17: e← e − l
18: end if
19: end while
20: if size(e) > maxSize then
21: break
22: end if
23: end for
24: if ∃e, where e’s size ≥ maxSize then
25: Vd (sgt )← Vd (sgt ) ∪ g
26: else
27: Vi (sgt )← Vi (sgt ) ∪ g
28: end if
29: end for
30: end for

Thus, if an embedding esgt ,g can be extended to a embed-
ding of size larger than max Size, without passing through
any feature graph in F , then there is a path in the dense lattice
DL(D) from sgt to g that does not pass through any graph
in the sparse lattice. Thus, g should be in the direct value
set of node t (lines 24–25). Otherwise, g is in the indirect
value set of the node t (line 27). Following the above steps,
we populate the value set for each index node in Lindex (the
<key, value> pair) and finalize the construction of Lindex.

Partitioning the value set into direct and indirect value
sets takes additional computation in comparison with find-
ing the unpartitioned value set. However, we show in our
experiments that partitioning the value set by extending the
embedding is affordable. In our empirical study, we find that
populating the value set of Lindex takes even less time than
populating the value set of gIndex and FG-index. This is
mainly because Lindex can find the (maximal) subgraph fea-
tures of the inserted database graph g efficiently as shown in
Sect. 5.1.

Because the feature mining and index building are pre-
computed offline, it will not increase query processing times.
Also, to alleviate the computation bottleneck, we can set the
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max Size for each subgraph feature f as the size f + δ, where
δ is a manually set parameter.

5 Fast index lookup

Recall that in Sect. 2.2, we introduce the three challenges
of solving the subgraph-querying problem. One of the chal-
lenges is how to search for the maximal-subgraph features
of q efficiently. Although the verification time dominates
the overall response time for the subgraph-querying problem
most of the time, the index-lookup time can sometimes be a
major part of the response time. As we show in Sect. 7, for
some large queries, the index-lookup time of gIndex using
MimR features exceeds the verification cost. To maintain
a low index-lookup cost, FG-index only finds a subset of
maximal subgraphs of the query, which inevitably decreases
the filtering power of the δ−TCFG features. In addition, as
introduced in Sect. 4.1, the direct inclusion of true answers
needs the support of fast minimal-supergraph-feature search
over the index structure. In this section, we introduce efficient
algorithms that Lindex uses to search for max Sub(q, F) and
minSup(q, F).

5.1 Maximal-subgraph search

5.1.1 Maximal-subgraph search in related work

To find the maximal-subgraph features of a query, q, pre-
vious methods like gIndex [19] check whether all possible
subgraphs of the query q are indexed. gIndex first enumer-
ates all subgraphs of q, canonically labels them to strings,
and then looks them up in a hash table as shown in Fig. 3.
The total number of subgraphs of q is exponential in the size
of q. To decrease the running time, an apriori-based pruning
rule is used on discriminative and frequent features (DF) [19].
Because all frequent subgraphs are indexed, if one subgraph
sg of the query q is not indexed then it is not frequent and
none of its super graphs can be frequent; its super graphs
need not be enumerated. However, for features like MimR,
δ-TCFG, such a pruning strategy cannot be applied because
not all frequent subgraphs are indexed.

Another method, adopted in FG-index [5] and
SwiftIndex [13], checks for containment between each
indexed subgraph feature sg and the query q using a subgraph
isomorphism test. For FG-index, the maximal subgraphs are
obtained as follows. Given a query q containing the distinct
edges, say e1, e2, e3, and e4 as in Fig. 4. All subgraphs con-
taining any of the above four edges can be candidates for the
maximal-subgraph features of q. FG-index unions the fea-
tures containing e1, e2, e3, and e4 to get a set of candidate
maximal-subgraph features and tests each candidate feature
starting from the largest feature first to the smallest with sub-

graph isomorphism tests. There are two drawbacks of this
maximal-subgraph-feature search algorithm: (1) too many
candidate features are generated due to the union operation,
and (2) each isomorphism test is evoked from scratch. Hence,
using FG-index searching for maximal-subgraph features is
generally slow. FG-index does not return the complete set
of maximal subgraphs of the q, leading to the decrease in
filtering power of the inclusive-logic filtering.

There are also more advanced indexes supporting fast
search of maximal-subgraph features, such as cIndex [2]
and GPTree [22]. They were built to address “supergraph
querying” but can also be used to find subgraph features of
queries. However, in order to support subgraph queries, both
need to index additional small features H , which are mined
from subgraph-search indexing features F . This hierarchical
index, unlike Lindex, requires additional memory to store H
and their corresponding value sets.

5.1.2 Lindex maximal-subgraph search

The advantage of maintaining a graph lattice is that instead
of constructing canonical labels for each subgraph of q or
running an isomorphism test for each index feature, while
traversing a graph lattice, mappings constructed to check that
a feature graph sgt is contained in q can be extended to check
whether a supergraph of sgt , sg′t in the lattice is contained in
q by incrementally expanding the mappings from sgt to q.
Also, the isomorphism test from sg′t to query q can be saved
if sgt is not subgraph isomorphic to q. This computational
saving does not require any extra indexes or memory.

Before describing the algorithm to search for maximal-
subgraph features, max Sub(q, F), we introduce a span-
ning tree that is used to facilitate the max Sub(q, F) search.
A node sgt has multiple parents in the sparse lattice SL(F)

(each parent being a subgraph of sgt ). In choosing one par-
ent from whose label the label of a node is derived, we
create a spanning tree of the lattice. We use this spanning
tree to visit each node in the sparse lattice while identifying
max Sub(q, F). The spanning tree is constructed during the
construction of Lindex (see Sect. 5.1.3 for details).

In Algorithm 3, max Sub − search, the graph lattice is
traversed as follows. For the nodes (graphs) in the first level
(children of the root node of the lattice), there exists no map-
ping to the query from nodes in the level above, that is, the
root node that corresponds to an empty graph. In this case,
the algorithm checks whether each graph sgc is contained in
the query graph q (line 3). If it is, all mappings of sgc on q
are stored and used later when the mappings are expanded
to check whether any child, say sg′c, of c is also contained in
q. Let us say that M(sgc, q) is the set of mappings from sgc

to q. Since sg′c, as a child of sgc, is labeled as an exten-
sion of sgc, the vertex vi (sgc) in sgc maps to the vertex
vi (sg′c) and vice-versa (the identical mapping can be obtained
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Algorithm 3 maxSub-search

Input: A sparse lattice SL(F), Query Graph q
Output: max Sub(q) Maximal Subgraphs of q
Procedure: main
1: max Sub(q)← ∅
2: for each child sgc of L’s root do
3: M(sgc, q)← all mappings from sgc to q
4: if M(sgc, q) �= ∅ then
5: maxSub-Search(sgc , q, SL(F), M(sgc, q), max Sub(q))
6: end if
7: end for
8: return max Sub(q)

Procedure: maxSub-Search
Input: Lattice node sgc, Query q, Sparse lattice SL(F), Mappings
{M(sgc, q)}, max Sub(q)

Output: max Sub(q)

1: extendable← False
2: for each child sg′c of graph sgc do
3: M(sg′c, q)← ∅ {Mappings from sg′c to q}
4: for each mapping m ∈ M(sgc, q) do
5: if m can be extended to a mapping m(sg′c, q) then
6: M(sg′c, q)← M(sg′c, q)+ m(sg′c, q)

7: end if
8: end for
9: if M(sg′c, q) is not empty then
10: maxSubSearch(sg′c, q, SL(F), M(sg′c, q), max Sub(q))
11: extendable← True
12: end if
13: end for
14: if extendable = False then
15: max Sub(q)← max Sub(q) ∪ sgc
16: end if

from the extension label of sg′c as introduced in Sect. 3.2.1).
In M(sgc, q), vertex vi (sgc) maps to v j (q). Given that vertex
vi (sg′c) maps to vi (sgc) in sgc and vi (sgc) maps to v j (q) in
the query graph, the vertex vi (sg′c) maps to v j (q).

The partial mappings pM(sg′c, q) can be constructed at
query-time. For each pM(sg′c, q), the algorithm, max Sub−
Search, tries to expand it to a complete mapping M(sg′c, q)

(line 5–7). If the partial mapping can be expanded, the algo-
rithm continues to search for mappings from sg′c’s children
to q. If a lattice node sg′c is not contained in q, then none
of sg′c’s descendants can be subgraphs of q and are thus not
checked. Expanding existing partial mappings pM(sg′c, q)

utilizing prior information available in M(sgc, q) is signifi-
cantly cheaper than checking for the isomorphism between
sg′c and q afresh. Thus, our method requires significantly less
time than prior methods.

Subgraph isomorphism test versus embedding search-
ing: A potential concern with our maximal-subgraph-search
algorithm may be the difference between the time complex-
ity of detecting subgraph isomorphism of two graphs and
that of finding all mappings between the two graphs. In the
traditional method, such as in FG-index, it is sufficient to
test whether there is one mapping between the sgt and q if
sgt ⊂ q. But in the Lindex search, we need to find all the

Sparse  
Lattice Node 
Query 

sg0

sgt2
sgt1

sgt sg1
q

q

Fig. 8 Example of spanning-tree construction

mappings between sgt and the query. However, using Lindex
is always faster than using other indexes, for example, FG-
index because they still need to find all the mappings. Given
two features sgt and sgt ′ , sgt ⊂ sgt ′ , sgt ⊂ q, and sgt ′ �⊂ q.
Assume that there are n mappings in M(sgt , q); there are
n corresponding partial mappings pM(sgt ′, q) where sgt ′ ⊃
sgt . In order to find the complete set of maximal subgraphs of
the query q, FG-index will eventually verify whether sg′t ⊆ q
holds. FG-index exhaustively searches each partial mapping
between sgt ′ and q to show that none of them can be extended
to a full mapping. Therefore, although in the isomorphism
test between sgt and q, the traditional method, such as FG-
index, does not enumerate all the mappings between sgt and
q, but in the isomorphism test between sgt ′ and q, it enumer-
ates all those n mappings and extends them.

Memory consumption: In the algorithm described above,
we adopt a breadth-first approach and store all the mappings
from one feature sgt to the query q, M(sgt , q). However,
in cases where memory is limited, the traversal can be eas-
ily changed to depth-first in which mappings are enumerated
and extended one after another.

As with gIndex, maximal subgraphs obtained by the above
algorithm are a super-set of max Sub(q) for a given query
q because there could be a scenario where sg1 and sg2 are
identified as the maximal subgraphs of a query q even though
there is a path from sg1 to sg2 in the sparse lattice SL(F)

because the path was not included in the spanning tree T .
The output of this lattice traversal using the spanning tree
related to the lattice is a set C M B(q) of Candidate Maximal
suBgraphs of a query graph q. In the Sect. 5.2, we show how
we can generate the set of minimal supergraphs of q and also
prune C M B(q) to obtain max Sub(q).

5.1.3 Spanning-tree construction

Constructing the spanning tree (introduced above) involves
choosing which parent’s label to extend while labeling each
index feature with an eye toward minimizing the search time
for finding the maximal-subgraph features of queries. Con-
sider a query q. Assume there is a node sgt in the sparse
lattice in Fig. 8, sgt �⊂ q, which has two parents sgt1 and sgt2
where sgt1 �⊂ q and sgt2 ⊂ q.

If we choose sgt2 as the parent of sgt in the spanning
tree, then sgt �⊂ q will not be detected until we expand the
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mappings M(sgt2 , q) to try to find M(sgt , q); whereas if we
choose sgt1 , we can know that sgt �⊂ q without expand-
ing M(sgt1, q) to M(sgt , q). In order to save search time,
we have to identify a mapping extension failure as soon as
possible, but that depends on the query graph. Intuitively, a
reasonable heuristic choice is to choose the parent with the
least chance of appearance in a query workload. The least
popular parent will provide early pruning for most queries.
However, because we do not have a real-world query work-
load, we use the database as a surrogate. Our algorithm uses
the following heuristic:

If freq(sgt1) < freq(sgt2 ), then Probability (sgt1 �⊂ q) >

Probability (sgt2 �⊂ q).
We follow this heuristic to construct the spanning tree: for

each node, from its list of parents, we choose its extension
labeling parent sgt , as the parent with minimum frequency
in the database.

5.2 Minimal-supergraph search

5.2.1 Previous work comparison

To the best of our knowledge, the only graph index that
supports supergraph-feature search is FG-index. In FG-
index, an edge index is built to facilitate the index lookup,
as shown in Fig. 4. Given a size-k query containing distinct
edges e1 and e3, the supergraph-feature candidates, {g5, g10},
are obtained by intersecting the features (IDs) containing e1

and e3. Then, each candidate feature, from small to large,
is verified with subgraph isomorphism tests, until the clos-
est δ-TCFG supergraph is found [5]. However, as indicated
in FG*-index, the candidate set obtained by the edge index
is generally large due to the fact that distinct edges cannot
fully record the structural information of graphs [4]. To fur-
ther reduce the index-lookup time, FG*-index uses an addi-
tional inverted index to index the δ-TCFG features. The keys
of this inverted index are all subgraphs of δ-TCFG features
with edge counts between two and four [4]. Although effec-
tive, extra memory is required to store this additional fea-
ture-inverted index (both keys and value sets). However, as
we show below, Lindex can support the minimal-supergraph-
feature search without any additional index structure. Also,
candidate sets for supergraph features are generally much
smaller than that of FG-index because substructure features
(instead of distinct edges) lead to tighter candidate sets.

5.2.2 Minimal-supergraph search

We introduce the algorithm to find the minimal supergraphs
minSup(q, F) and the exact set of maximal subgraphs max
Sub(q, F) of the query q in this subsection. The algorithm
is based on the following observation:

Property 3 The set of minimal supergraphs of a query q is
a subset of the intersection of the set of descendants of each
maximal-subgraph feature of q in the sparse lattice, SL(F).
minSup(q, F) ⊆ ∩sg∈max Sub(q,F)Descendant(sg).

This property evolves from the following simple obser-
vation: If a graph in the sparse lattice is a supergraph of the
query q, it must contain each of q’s subgraphs in the lattice
as subgraphs of its own. Our algorithm starts from C M B(q)

generated as described in Sect. 5.1. For each feature h in
C M B(q), the algorithm finds the descendants of h in the
sparse lattice. Then, the algorithm finds the Candidate Min-
imal-suPergraph set, C M P(q), for minSup(q) as the inter-
section of these descendant sets. The set C M P(q) is then
sorted based on the sizes of its element graphs. For each graph
h in C M P(q), a subgraph isomorphism test is performed to
determine whether it is a supergraph of the query q. Once
h is a supergraph of q, all descendants of h can be removed
from C M P(q) because here we are only interested in the set
of minimal supergraphs of q. The removal of h’s descendants
from C M P(q) further reduces the search space.

Algorithm 4 minSup-search
Input: Sparse lattice SL(F), Query Graph q,
Candidate maximal-subgraph Set C M B(q)

Output: minSup(q)

1: sort C M B(q) according to their graph keys’ size in descending order
2: candidate Set C ← ∅
3: Des( fi )← find descendants of fi in SL, fi ∈ C M B(q)

4: if any of fi ’s descendants = f j , where j < i then
5: C M B(q)← C M B(q)− fi
6: end if
7: C M P(q)← ∩ fi∈C M B(q) Des( fi )

8: sort candidate C M P(q) with regard to their graph keys’ size in
ascending order

9: for each graph h ∈ C M P(q) do
10: if h ⊃ q then
11: minSup(q)← minSup(q)+ h
12: remove all h’s descendants from C M P(q)

13: end if
14: end for

Our algorithm to find minimal supergraphs of a query
q also helps us prune C M B(q) (as generated by the sub-
routine described in Sect. 5.1) to obtain max Sub(q). As
remarked above, if an edge between subgraph nodes sg1 and
sg2 appears in lattice SL(F), but not its spanning tree, our
algorithm in Sect. 5.1 could potentially choose both sg1 and
sg2 in C M B(q). While determining minSup(q), the algo-
rithm would prune sg1 out. As indicated above, our algorithm
constructs the set of proper descendants Des(sgi ) for each
element sgi of C M B(q) while constructing minSup(q). We
can check whether a sg j ∈ C M B(q) is included in Des(sgi )

for any i �= j . If ∃i such that sg j ∈ Des(sgi ), then sgi should
be removed from the C M B(q), because sgi is not a maximal
subgraph of q (for it is contained in sg j ).
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6 Lindex framework

6.1 Answer subgraph querying with Lindex+

Based on the properties introduced in previous sections,
Lindex takes the following steps to process subgraph queries,
as specified in Algorithm 5. First, the algorithm searches for
the set of maximal-subgraph features of q in Lindex. If q
is a key in Lindex L , all graphs that appear in the value set
(both direct and indirect value sets) of the feature f = q in
L are returned. Otherwise, we obtain the maximum subgraph
feature of q, Fk(q) (recall the difference between maximal
and maximum). Then, load the on-disk Lindex+, L ′, rooted
from Fk(q) into memory. We continue searching for q on L ′.
If q is a key in L ′, then the value set of q is returned as the
answer directly.

Algorithm 5 Graph Querying Using Lindex+

Input: Lindex L(D, F), Graph Database D, Query q
Output: Answer set An
Procedure:
1: CandidateSet C ← ∅ (Graphs need to be verified)
2: AnswerSet An← ∅
3: Graphs F ←maxSub-search(SL(F), q)

4: if ∃ f ∈ Fand f = q then
5: return An← V ( f )

6: else
7: choose maximum subgraph fk ∈ F
8: load outer memory Lindex rooted from fk , L ′(D, F ′)
9: Graphs F ′ ←maxSub-search(SL(F ′), q)

10: if ∃ f ′ ∈ F ′and f ′ = q then
11: return An← V ( f ′)
12: end if
13: end if
14: C ← ∩ f ∈F Vd ( f )

15: Graphs H ←minSup-search(SL(F), q, F);
16: C ← C − ∪h∈H V (h)

17: An← ∪h∈H V (h)

18: Add all subgraphs g ∈ C that contain the query q to An
19: return An

Otherwise, the algorithm falls back to “filter+verify” and
constructs a set of candidate graphs C(q) that are in the
direct value set of all the maximal-subgraph features of q in
L . Then, the algorithm finds the set of minimal-supergraph
features of q. The database graphs that are indexed by any
minimal-supergraph features are removed from C(q) and are
added to the answer set T r = ∪h∈minSup(q)V (h). Next, the
algorithm checks that each candidate graph in C(q) contains
q using a subgraph isomorphism test; false positives that are
not supergraphs of the query q are pruned. Let C(q)′ be the
set of graphs that passed the subgraph isomorphism test. The
final answer set is the union of C(q)′ and T r .

6.2 Time complexity

The complexity of the subgraph isomorphism tests typically
dominates the time complexity for the rest of the query pro-
cessing including traversing the lattice and the rest of the
algorithm. There are three places in our algorithms where
we perform subgraph isomorphism tests: (1) In maximal-
subgraph search, partial mappings are expanded as the lattice
is traversed. These are “partial” isomorphism tests, and the
exact number of expansions of the mappings needed is diffi-
cult to quantify because it is dependent upon the data. Their
cost has to be estimated empirically. (2) In minimal-super-
graph search, Algorithm 4, line 10. Here, the number of tests
done is equal to |C M P(q)|. (3) In the main algorithm of
subgraph-querying processing, Algorithm 5, line 18. Here,
the number of tests done is equal to |C |. The majority of the
time savings accrues from following: We save on the number
of subgraph isomorphisms when the additional isomorphism
tests performed by our algorithm in Algorithm 4 and Algo-
rithm 3 substantially cut down the number of isomorphisms
performed in Algorithm 5.

Time complexity for maxSub-search: The time
complexity of the maxSub-search algorithm contains the time
taken for the following steps: (1) find all mappings from the
children of the root to the query. Since for features mined by
most feature-selection algorithms, the root’s children are dis-
tinct edges, the complexity of this step equals to that of count-
ing distinct edges in the query; (2) time taken to expand the
mappings for each descendant (of the root’s children) until
the maximal subgraphs are obtained. This is proportional to
the number of nodes traversed in the lattice.

Time complexity for minSup-search: Let us consider
the time required for the minSup-search algorithm. The min-
Sup-search algorithm has the following operations: (1) sort
C M B(q) and C M P(q). These operations are O(nlog(n))

where n is the size of the lists. (2) Find the set of descen-
dants of the maximal subgraphs of q in the Lindex (line 3).
This operation is linear in the number of descendants of the
maximal subgraphs in the Lindex. (3) Prune the descendants
of minimal-supergraph features in this list (line 12). These
operations can be done at most in quadratic time with respect
to the number of descendants. (4) Check for subgraph iso-
morphism (line 10). The number of isomorphism tests run
depends on the size of C M P(q). We denote the time taken
by the first three items as Ttraverse (the time taken to traverse
and process the partial lattice), and the cost of each isomor-
phism test is Tiso. The time taken by minSup-search can be
estimated as: TminSup−Search = |maxSub(q)| × Ttraverse +
|C M P(q)| × Tiso.

Overall query processing complexity: Thus, the response
time of the overall query processing can be expressed
as:
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Tresponse = T f iltering + Tveri f ication

= Tsearch + Tintersection + Tveri f ication

= (Tmax Sub + T∩)+ (TminSup + T∪)+ |C(q)| × Tiso,

(5)

where |C(q)| is the number of candidate graphs need to be
verified (line 18, Algorithm 5), T∩ (T∪) is the cost of intersec-
tion (union) operations on value sets and depends on the size
of answer sets of maxSub-search (minSup-search). T∩(T∪)
also includes time spending on loading value set from disk
to primary memory.

T∩∪ ∝ |max Sub(q)| + |minSup(q)|.

Compared with previous work [5,19], TminSup(q)+T∪ are
the newly added costs. The time saved on the Tveri f ication

largely outweighs the additional time taken to compute the
minimal supergraphs of the query especially when query q
is a non-FG query. In addition, our maxSub-search algorithm
outperforms traditional algorithms. Furthermore, T∩ is less
than that in other algorithms, because we can find the precise
set of maximal subgraphs of the query and consequently save
time because our algorithm loads less values sets from disk
(especially useful for large databases).

6.3 Updating Lindex

In this subsection, we briefly discuss how Lindex can be
updated. When a graph g is deleted from the database, we
walk down the lattice as we do with a query g and remove g
from all the value sets of all its subgraphs. When a graph g
is added to the database, we do a similar walk except that we
need to determine whether g needs to be in the direct value
set or the indirect value set. The costs incurred for deletion
are similar to that in gIndex and FG-index; insertions in our
index have an extra cost of checking direct/indirect, but that
is offset because maxSub-search in Lindex is much faster
due to its strategy of expanding mappings of parent nodes to
obtain mappings to child nodes.

When the optimal set of features that should be indexed
changes, the feature-selection algorithms, for example, gIn-
dex, FG-index, MimR, must be re-run. Incremental feature-
selection/update algorithms need to be designed in the future.
In practice, the set of optimal features changes very slowly
because the semantics of the data or user access patterns do
not change overnight, say in chemical databases; however,
in scenarios where the features change and incremental fea-
ture update algorithms are designed, we can design Lindex
to use those features and feature update algorithms. Note that
the feature-selection part of the update algorithm dominates
the index-construction time for gIndex, FG-index, MimR,
and Lindex and is orders of magnitude greater than the time

Index\Feature DFG TCFG MimR Tree+ DFT 

Gindex 

FG-index 

Lindex 

Lindex+ 

SwiftIndex 

Fig. 9 Index structures and features studied

taken to create the index once the features are obtained for
all of these methods.

7 Experimental evaluation

In this section, we compare Lindex with gIndex [19], FG-
index [5], Tree+δ [23], SwiftIndex [13], and MimR [15].
Other indexing methods, not based on feature-based indi-
ces, such as CTree [10], GDIndex [17], and GCode [24], do
not perform well in the general case [9]. The comparison
between feature-based indices and non-feature-based indi-
ces is out of the scope of this paper. Interested readers can
refer to iGraph [9].

For Lindex+, the on-disk subgraph features are only used
for answering the query directly if the query is indexed. Fig. 9
lists all the indices and features we compare in this paper.

The asterisks show that certain index structures (rows) are
evaluated with certain features (columns). For example, Lin-
dex+ is evaluated jointly with δ-TCFG features, and we name
it as Lindex+(δ-TCFG). DFG/T refers to discriminative and
frequent subgraph/subtree features [13,19,23].

We set the default parameters suggested by the original
works unless we specified otherwise. For DFG and DFT,
the default max-min support is 0.1|D| (D is the graph data-
set), max L = 10, discriminative ratio γ = 2 [13,19]. For
Tree+δ, the default parameters are set as follows: the min-
imum discriminative ratio ε0 = 0.1, max-min support is
0.1|D|, and σ∗ is 0.8 for discriminative graph feature selec-
tion during query processing. Since the DFG/T and subtree
features in Tree+δ adopt a size-increasing min-support strat-
egy, the actual min-support for a size-L feature is

√
L/max L

× (max-min support). For example, for a 4-edge feature, its
actual min-support is

√
4/10×0.1 = 0.063. For δ-TCFG, we

use minimum support = 0.03|D| and δ = 0.1. To make the
FG-index indexing comparable number of in-memory fea-
tures as DFG/T and Tree+δ, the minimum support is set to
be 0.03|D| instead of 0.1|D| or 0.01|D| (suggested by the
original work). This slight modification of the setting is fair,
since (1) the number of features for DFG/T, MimR, Tree+δ,
and δ-TCFG are comparable. (2) Lindex (or Lindex+) is
compared with other index structures using the same fea-
tures. For example, no matter how many δ-TCFG features
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are selected for indexing, Lindex (or Lindex+) and FG-index
use the same δ-TCFG feature set. We also compare the per-
formance of Lindex and other indices with varying number
of features mined with varying minimum support.

Storing value sets in memory is not scalable for large data-
sets. For Lindex(+) and FG-index, to make the memory con-
sumption comparable, we store the value sets of gIndex on
disk. As in related works [5,15,19,21,23,13], we do not have
access to a real-world query workload. Thus, we used a ran-
domly generated query set to train the MimR algorithm as
suggested by Sun et al. [15]. To test the effectiveness of dif-
ferent indices, first we generate a series of query sets Q4

to Q24, where the subscript denotes the number of edges
in each query in the query set. Each query set contains 200
queries generated from the graph database. The queries are
generated as follows. First, we choose 1,000 graphs out of
the database at random and find all of their subgraphs with-
out eliminating duplicates. Then, we sample subgraphs from
this lot according to a uniform distribution or a normal distri-
bution. Thus, frequent subgraphs have a higher chance to be
selected. Where not explicitly specified, experimental eval-
uations are on queries sampled using a normal distribution.

Datasets: We evaluate the performance of our index on the
AIDS Antiviral Screen dataset consisting of 43,905 chemi-
cal structures [5,13,15,19,23]. We also use a second dataset
obtained from emolecules.com, which we will refer to as the
eMolecules dataset to test the scalability of our algorithm. To
evaluate the performance of Lindex over graphs with varying
density, we use synthesized graph data generated with Graph-
Gen [5]. The density of a graph g with nodes V and edges
E is defined as the ratio |E |

|V |×|V | . We generate five graph sets
(each containing 10,000 graphs) with average density 0.1,
0.2, to 0.5.

We implement our algorithms with Java and use the Lu-
cene library4 to build the value sets. We implemented gIn-
dex, FG-index, SwiftIndex, Tree+δ indices based on the same
framework. The feature mining tasks were run on machines
with 32G RAM, and the indexing algorithms were tested with
a maximum heap size of 2G.

7.1 Experiment on the AIDS dataset

7.1.1 Memory consumption

Table 3 shows the number of selected features from the AIDS
dataset and their memory cost. The second line lists the count
of various features mined from the graph dataset. Since gIn-
dex(DFG/T) stores both black nodes (for filtering) and white
nodes in memory [19], the count of DFG/T features has two
numbers, the first one is the total number of features in mem-
ory and the second number is the black nodes count. Lindex

4 http://lucene.apache.org/.

Table 3 Index memory cost: AIDS dataset (KB)

Mem DFG δ-TCFG MimR Tree+δ DFT

Feature count 7599
6328

9873
5712

5000 6172
38

7500
6172

gIndex 1,359 1,534 1,348 1,339

FG-index 1,826

Lindex 677 772 676 671

Lindex+ 841 776

SwiftIndex 860

only stores the black nodes. For the δ-TCFG features, the
first number is the total number of features (both in-mem-
ory and on-disk) and the second one is the count of δ-TCFG
features. For Tree+δ features, the first number is the count
of subtree features and the second number is the count of δ

features. Lines 3–7 show the memory consumption of gIn-
dex, FG-index, Lindex, and SwiftIndex on various features.
It shows that Lindex is the most compact index with respect
to memory consumption.

7.1.2 Query processing time

Figures 10 and 11 show the real query processing times of
the different indices. The filtering time includes index-lookup
time (finding max Sub(q, F)), value-set fetching time (from
disk), and value-set join or union operation time. The ver-
ification time is the time spent on subgraph isomorphism
tests in the verification step. Lindex(+) using the same set of
features has less candidate verification time due to its high
filtering power. Also, Lindex uses less filtering time in com-
parison with other indices since the maximal-subgraph and
minimal-supergraph search over Lindex is fast.

Figure 10a shows that Lindex outperforms gIndex with
the same set of discriminative and frequent features (DFG).
When the query is small (4–7 edges), Lindex saves verifi-
cation time. When the query is large, Lindex saves filtering
time. Similar results are observed in Fig. 10b too. The Swift-
Index outperforms gIndex on filtering time but is still not
as good as Lindex. Also, SwiftIndex does not improve the
filtering power as Lindex does on small queries. The filtering
time of gIndex (DFG/T) takes a small portion of the overall
response time because a frequency-based apriori rule can be
used to prune the maximal-subgraph search space early [19].
But for the δ features in Tree+δ and MimR features, this
apriori rule cannot be applied and the maximal-subgraph
search time exceeds the verification time by several times
when the query is large, (see Fig. 11a, b). By using Lindex on
MimR features ( and δ features in Tree+δ), the filtering time
decreases significantly, thus reducing the overall response
time. Figure 10c shows that using the same δ-TCFG features,
Lindex outperforms FG-index significantly on processing
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(a) (b) (c)

Fig. 10 Experiment on AIDS dataset: 40,000 graphs (1)

Fig. 11 Experiment on AIDS
dataset: 40,000 graphs (2)
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large queries. In FG-index, in order to control the filtering
time, an incomplete max Sub(q, F) is returned [5]. As we
can see, this incomplete maxSub set decreases the overall fil-
tering power, thus enlarging the cost of isomorphism tests.
Also, when the query is large, the time of the incomplete max-
imal-subgraph search still takes six times as that in Lindex+.

From the above experiment, we observe that MimR fea-
tures and δ-TCFG features can filter more false graphs in
comparison with discriminative and frequent subgraphs (note
that the different kinds of features have comparable counts);
however, their filtering time is very high. By using Lindex, the
filtering time reduces significantly and this reduction allows
us to index δ-TCFG and MimR features. Additionally, Lin-
dex also helps improve the filtering power by adopting two
advanced query processing strategies (see Sect. 4), especially
for small queries.

7.1.3 Index-construction time

In this subsection, we report the construction time for Lindex.
As discussed in Sects. 3.2.2 and 4.4, the construction of a
graph index consists of two sub routines that construct the
index and populate the value sets. The index structure, for
example, sparse lattice SL(F) for Lindex, hash table for gIn-
dex, edge-inverted index for FG-index, is first constructed

given the features mined by the feature miner. As shown
in Table 4, the index-structure construction time is low for
most indices, except for FG-index, in which an edge-inverted
index of features is built. The FG-index (δ-TCFG) row shows
the time taken to build an in-memory FG-index (IGI), and the
FG-index (FG) row shows the time taken to build and save the
on-disk part of FG-index. Construction of the gIndex is fast
because it is just a hash table storing all canonical labels of the
features. Lindex lattice construction runs faster than gIndex
because Lindex only stores the black nodes (gIndex stores
both black and white nodes). Lindex construction is slower
than SwfitIndex construction due to the spanning-tree con-
struction (Sect. 5.1.3) and extension labeling (Sect. 3.2.1).
Our observations of the index-structure construction times
are consistent with that of previous works [5,13,19].

After the index structure is created, the value sets are con-
structed. Due to the large size of value sets for large databases,
the value sets are commonly stored on disk. The original gIn-
dex stores value sets in memory [19], which makes gIndex
not scalable to large datasets as reported by Cheng et al. [5].
We store value sets on disk for all graph indexing methods.
We use the Lucene library to implement the value sets. The
results of our experiments are Lucene-dependent, but it is
fair since all of the studied indices are implemented with the
same framework.
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Table 4 Index-structure construction time (ms)

Index name (features) Original index Lindex

gIndex (DFG) 518 202

gIndex (DFT) 151 104

SwiftIndex (DFT) 84 104

FG-index (δ-TCFG) 4,169 241

FG-index (FG) 867,926 124,224

gIndex (MimR) 381 338

Table 5 Value sets construction time (s)

Index name (features) Original index Lindex

gIndex (DFG) 1,516 454

gIndex (DFT) 1,510 450

SwiftIndex (DFT) 198 450

FG-index (δ-TCFG) 5,784 2,333

FG-index (FG) 3,875 199

Implementing different indices with the same framework
is important in performance evaluation and comparison, as
shown in iGraph [9]. In addition, the coupling (dependence)
between the index structure (or query processing model) and
the Lucene-implemented value sets is low, so that other value-
set implementations, for example, iGraph [9], can also be
adopted. By using the Lucene library, we build the value
sets by inserting database graphs. For each database graph
g, we first lookup up the index structure to find features f
contained in g and then append g’s ID at the end of f ’s
value sets. As we argued, this value-set construction strategy
is suitable for large datasets when the graph miner cannot
return D( f ) for each feature f . Table 5 shows the time taken
to construct the value sets for gIndex, FG-index, SwfitIn-
dex, and Lindex. Lindex, despite spending time partitioning
value sets, outperforms gIndex and FG-index due to its fast
subgraph-feature lookup (Sect. 5.1). SwiftIndex runs faster
than Lindex on constructing value sets since its index lookup
is comparable to Lindex and it does not partition the value

sets. As can be seen from Table 5, the value-set construction
time is high for all indices and it is comparable to the time
taken to mine subgraph features. However, unlike frequent
subgraph mining algorithms, value-set construction can run
on distributed systems. For example, the graph database can
be segmented and stored on distributed file systems. Multiple
machines can build the value sets for one or several segments
of the graph database. Then, the value sets can be merged. Lu-
cene library does support the merging of value sets. Detailed
discussions for distributed and time-efficient value-set con-
struction are beyond the scope of this paper, and we would
like to study this problem in our future work.

Index maintenance: From the above experimental results,
we can also observe the advantage of Lindex on index main-
tenance over a dynamically changing graph database. If after
updating, the graphs in the updated database and the original
database graphs have similar characteristics, the features do
not need to be changed [19]. The index structure is stable but
the value sets need to be updated. Therefore, inserting (delet-
ing) a graph g makes no other changes except for append-
ing (deleting) g’s ID to (from) f ’s value set, ∀ f ⊂ g. As
in Table 5, Lindex is fast with respect to inserting graphs
in the database, which implies that Lindex can support fast
updates. When the updated graphs and original graphs do not
have similar characteristics, features need to be re-mined and
both the index structure and value set should be re-built, in
which case, Lindex is still faster to construct in comparison
with other indices.

7.2 Indexing large datasets

In this subsection, we test Lindex on large-scale datasets.
Dataset and setting: We construct five datasets randomly

sampled from the eMolecules dataset. They contain 65,536
(216), …, 1,048,576 (220) graphs. They are denoted as
DB(16) to DB(20). The largest dataset we use, DB(20), is
10 times larger than the largest dataset used in previous works
(FG-index was tested on 100,000 graphs [4]). We observe
linear growth with respect to query processing times and

Table 6 Index memory cost:
eMolecules dataset (KB) Data Count Mem

DFG TCFG gIndex Lindex (DFG) FG-index Lindex+ (TCFG)

DB (16) 3,512 4,887
2,038

678 399 740 332

DB (17) 4,465 4,898
2,036

833 506 839 340

DB (18) 5,495 4,922
2,046

1,016 622 1,002 349

DB (19) 6,906 4,925
2,046

1,299 780 1,263 358

DB (20) 8,618 4,931
2,051

1,601 972 1,704 374
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Fig. 12 Experiment on
eMolecules: large-scale datasets

(a) (b)

index-construction times of Lindex as we show in this sub-
section. We adopt the same parameter settings for the AIDS
dataset. Since the MimR feature miner is not scalable to large
datasets, we do not compare it in this section. Also, as can be
observed on the AIDS dataset, the improvement of Lindex
over DFT features is similar to that on DFG features, so we
skip the study of DFT features.

Memory consumption: The experimental results on mem-
ory consumption are given in Table 6. The two columns on
the left show the number of DFG and δ-TCFG features mined
from the five graph datasets. As before, the first number of the
TCFG column is the total number of frequent subgraphs and
the second number is the δ-TCFG count. The table shows that
the δ-TCFG features are more stable compared to the DFG
features. As we further investigate the features, we observe
that most of the new DFG features added (with the growth
of the database) are not frequent subgraphs but features with
edges < 4 (gIndex select all less-than-4-edge subgraphs).
The frequent subgraphs mined by both DFG and δ-TCFG
algorithms do not change much when the database grows.
This further shows that the five sets of database graphs have
similar characteristics.

The four columns on the right show the memory con-
sumption of gIndex, FG-index, and Lindex(+). This result is
consistent with the result observed on the AIDS dataset. Lin-
dex(+) takes less memory than gIndex and FG-index while
indexing the same features.

Query Processing Time: Figure 12a shows the query pro-
cessing time of Lindex and FG-index over 1,000 queries (uni-
formly sampled). Lindex+(δ-TCFG) is faster than FG-index
on all graph datasets. In addition, the filtering time and veri-
fication time are both linear to the growth of the graph data-
base. We further observe that the increase in the filtering
time is mainly due to the value-set fetching and join opera-
tions, of which the time complexity is O(|D|), where D is
the graph database. The index-lookup time does not change
much. For this experimental setting, the value-set fetching
time dominates the overall filtering time. Thus, the lines for
the filtering time of Lindex and FG-index overlap in the fig-
ure. As we will see in the next subsection, when more fea-

Table 7 Index-structure construction time (ms)

Data FG-index Lindex+(TCFG)

DB(16) 3,299 1,720

DB(17) 5,765 1,684

DB(18) 10,322 2,039

DB(19) 19,370 2,651

DB(20) 38,230 2,611

tures are indexed, the overall filtering time is dominated by
the index-lookup time. Lindex outperforms FG-index signif-
icantly with respect to the filtering time in that case.

Similar results can be observed on DFG features, as shown
in Fig. 12b. The results shown above demonstrate the sca-
lability of Lindex: the query processing time of Lindex is
linear to |D|, and the improvement of Lindex over gIndex
(FG-index) is also linear to |D| (In Fig. 12a, b, the database
size |DB(i + 1)| = 2 ∗ |DB(i)|; hence, exponential curves
are shown in the Figure).

Construction time: As in Table 4, the time taken to con-
struct gIndex and Lindex is low. Table 7 shows the index-
construction time for FG-index and Lindex+. Although the
δ-TCFG and FG features are stable, the index-construction
time for FG-index (in-memory + on-disk) grows linearly with
the size of the graph database. This increase is because an in-
memory edge-inverted index is built for infrequent edges [5].
For each infrequent edge e, the value set of e contains all data-
base graphs having edge e. To construct this infrequent edge
index, we have to scan the whole graph database. Hence, the
construction time increases when the graph database doubles
its size.

For dataset DB(16), the time taken to construct the value
sets are: gIndex = 442 s, Lindex(DFG) = 141 s, FG-index =
5,388 s, and Lindex+(TCFG) = 272 s. In addition, the value-
set construction time increases linearly with the growth of the
database. Also, as before, the value-set construction time is
comparable to the frequent subgraph feature mining time. For
example, for the graph database DB(20), the frequent feature
mining time for DFG features is 2,011 s, and the value-set
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Table 8 Index memory cost: DB(17), (KB)

Min–max support 0.1 0.06 0.03 0.02

Feature count 4,465 4,559 4,847 5,111

gIndex 833 877 1,011 1,135

Lindex (DFG) 506 526 586 639

Min support 0.03 0.02 0.01

Feature count 4,898
2,036

8,948
3,808

24,171
10,744

FG-index 839 1,284 3,133

Lindex+ (TCFG) 340 646 1,817

construction time of Lindex(DFG) is 2,451 s. The value-set
construction time, unlike the frequent feature mining time,
also includes the time for writing the value sets to disk.

7.3 Indexing large feature sets

In this subsection, we study how Lindex performs with a
large number of indexing features.

Dataset and setting: We use a middle-sized graph dataset,
DB(17), containing 131,072 graphs. This dataset is larger
than the 100,000-graph dataset—the largest dataset used in
previous work [5]. We run the DFG feature miner with max-
min support 0.1, 0.06, 0.03, and 0.02 and construct gIndex
and Lindex with those features. We also run the δ-TCFG fea-
ture miner with minimum support 0.03, 0.02, and 0.01 and
construct FG-index and Lindex+ with selected features. (The
definition of max-min support for DFG is different from the
minimum support for δ-TCFG as explained before).

Memory consumption: In Table 8, rows 2 and 5 show
the feature count of the DFG and δ-TCFG features. Decreas-
ing the minimum support increases the number of selected
DFG features slightly. However, the number of δ-TCFG fea-
tures grows significantly. This growth is different from that
observed in the last subsection, where the DFG features grow
but the δ-TCFG features are stable when the graph database
doubles its size. Rows 3, 4, 6, and 7 show the memory con-
sumption of gIndex, Lindex, and FG-index correspondingly.

Table 9 Index-construction time: DB(17), (ms)

Min–max support 0.1 0.06 0.03 0.02
gIndex 267 272 290 304
Lindex (DFG) 124 150 169 182
Min support 0.03 0.02 0.01
FG-index 5,765 27,625 77,227
Lindex+(TCFG) 1,684 7,609 21,591

It shows, as expected, that Lindex is more efficient in memory
consumption than gIndex and FG-index.

Query processing times: Figure 13a shows the query pro-
cessing times of 1,000 uniformly sampled queries with Lin-
dex+(δ-TCFG) and FG-index. Decreasing the minimum sup-
ports increases the number of features indexed. Correspond-
ingly, the index-lookup time for both Lindex and FG-index
increases. However, with more features indexed, the verifi-
cation time decreases due to the tighter candidate sets (more
false answers are filtered). At some point, the filtering time
(mostly index-lookup time) exceeds the verification time.
The merit of Lindex is that the intersection point of filtering
time and the verification time is lower than that of other indi-
ces. Also, as can be seen from Fig. 12a, the query processing
time of Lindex is always lower than that of FG-index. Similar
results can be seen on gIndex(DFG) and Lindex(DFG), (see
Fig. 13b).

Construction time: Table 9 shows the index-structure
construction time for gIndex, FG-index, and Lindex(+).
Since the number of selected features for gIndex and Lin-
dex(DFG) does not grow much when the min-max sup-
port decreases, the index-construction time does not increase
much. However, for the δ-TCFG features, the index-structure
construction time for both FG-index and Lindex+ grows sig-
nificantly, due to the explosion of the number of features. In
addition, as the table shows, the time taken to construct the
index is linear with respect to the number of features indexed.
Hence, Lindex can be scaled to handle large feature sets.

The value-set construction time for DFG features does not
change much for both gIndex and Lindex (DFG) when the
max-min support decreases. For example, the time taken to
construct value sets for gIndex grows from 851 to 1,211 s

Fig. 13 Experiment on
eMolecules: varying parameters (a) (b)
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Fig. 14 Experiment on
eMolecules: Lindex and gIndex
on varying edge dataset
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Fig. 15 Experiment on
eMolecules: Lindex and
FG-index on varying edge
dataset

(a) (b)

Fig. 16 Experiment on synthesized graphs: varying density

when the max-min support drops from 0.06 to 0.03; the time
for Lindex (DFG) grows from 285 to 331 s. However, the
time taken to construct value sets for δ-TCFG features grows
dramatically. For FG-index, the time taken to construct value

sets is 25,711 s when min-support= 0.02 and 65,599 s when
min-support= 0.01. For Lindex+, the value-set construction
time is 1,050 s when min-support = 0.02 and 1,993 s when
min-support= 0.01. This increase is because the number of
selected DFG feature changes slightly when max-min sup-
port decreases, but the selected δ-TCFG features and FG
features (stored on-disk) grow significantly when the mini-
mum support decreases. In addition, we also observe that the
value-set construction time for Lindex is linear with respect
to the number of features indexed.

7.4 Various graphs

Impact of graph size: In all the experiments above, the
average edge count of graphs is 30. We also study the
effectiveness of Lindex over graphs with 40 and 50 edges.
We randomly selected 10,000 graphs from eMolecules data-
set with average edge counts of 40 and 50, and ran the exper-
iment. As shown in Figs. 14 and 15, the improvement of
Lindex is consistent with previous experimental results.

Graph density: We also realized that the density (edge
count to node count ratio) of the graphs we studied is
generally low. In order to better study the performance of
Lindex, we generate five synthesized graph datasets with

123



252 D. Yuan, P. Mitra

average density {0.1, 0.2, 0.3, 0.4, 0.5}. The above datasets
were generated by the tool provided by Cheng, et al. [5].

We first mine DFG features for gIndex, and we observe all
frequent subgraphs have less than 4 edges. Since all features
with edge count less than 4 are selected as discriminative and
frequent features as in gIndex [19]), in this dataset, all fre-
quent subgraphs are selected. Therefore, the two strategies
Lindex used to reduce the verification time lose their power.
In this case, Lindex outperforms gIndex only on filtering time
and the improvement is similar to that in Fig.10a. We further
mine δ-TCFG features with δ = 0.8. As in Figure 16, Lindex
outperforms FG-index by a factor of 10 and this improvement
is consistent when the graph density varies.

8 Conclusion

We proposed Lindex to process subgraph queries efficiently.
Our query answering algorithm identifies a set of maximal
subgraphs in the index and obtains a candidate set of answers
by intersecting the direct value set of these subgraphs. In
our algorithm, we prune this candidate set by identifying
supergraphs of the query and eliminating graphs in the data-
base that contain these supergraphs from the candidate set;
our lattice-based index also makes efficient finding of su-
pergraphs possible. Pruning the candidate set reduces the
number of subgraph isomorphism tests required to answer
graph queries. Consequently, we show that Lindex outper-
forms other existing methods, including gIndex, FG-index,
MimR, Tree+δ, and QuickSI, on a query workload over an
existing benchmark dataset.
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