
The VLDB Journal (2012) 21:589–609
DOI 10.1007/s00778-012-0279-5

SPECIAL ISSUE PAPER

On the optimization of schedules for MapReduce workloads
in the presence of shared scans

Joel Wolf · Andrey Balmin · Deepak Rajan ·
Kirsten Hildrum · Rohit Khandekar · Sujay Parekh ·
Kun-Lung Wu · Rares Vernica

Received: 15 August 2011 / Revised: 22 February 2012 / Accepted: 8 May 2012 / Published online: 10 June 2012
© Springer-Verlag 2012

Abstract We consider MapReduce clusters designed to
support multiple concurrent jobs, concentrating on environ-
ments in which the number of distinct datasets is modest rela-
tive to the number of jobs. In such scenarios, many individual
datasets are likely to be scanned concurrently by multiple
Map phase jobs. As has been noticed previously, this sce-
nario provides an opportunity for Map phase jobs to cooper-
ate, sharing the scans of these datasets, and thus reducing the
costs of such scans. Our paper has three main contributions

Rares Vernica is partially supported by NSF grant 0910989.

J. Wolf (B) · K. Hildrum · K.-L. Wu
IBM T.J. Watson Research, Hawthorne, NY 10532, USA
e-mail: jlwolf@us.ibm.com

K. Hildrum
e-mail: hildrum@us.ibm.com

K.-L. Wu
e-mail: klwu@us.ibm.com

A. Balmin
IBM Almaden Research, San Jose, CA 95120, USA
e-mail: abalmin@us.ibm.com

D. Rajan
Lawrence Livermore National Laboratory,
Livermore, CA 94550, USA
e-mail: rajan3@llnl.gov

R. Khandekar
Knight Capital Group, Jersey City, NJ 07310, USA
e-mail: rkhandekar@gmail.com

S. Parekh
Bank of America, New York, NY 10080, USA
e-mail: sujay.parekh@bankofamerica.com

R. Vernica
HP Laboratories, Palo Alto, CA 94304, USA
e-mail: rares.vernica@hp.com

over previous work. First, we present a novel and highly gen-
eral method for sharing scans and thus amortizing their costs.
This concept, which we call cyclic piggybacking, has a num-
ber of advantages over the more traditional batching scheme
described in the literature. Second, we notice that the various
subjobs generated in this manner can be assumed in an opti-
mal schedule to respect a natural chain precedence ordering.
Third, we describe a significant but natural generalization of
the recently introduced flex scheduler for optimizing sched-
ules within the context of this cyclic piggybacking paradigm,
which can be tailored to a variety of cost metrics. Such cost
metrics include average response time, average stretch, and
any minimax-type metric—a total of 11 separate and standard
metrics in all. Moreover, most of this carries over in the more
general case of overlapping rather than identical datasets as
well, employing what we will call semi-shared scans. In such
scenarios, chain precedence is replaced by arbitrary prece-
dence, but we can still handle 8 of the original 11 metrics. The
overall approach, including both cyclic piggybacking and the
flex scheduling generalization, is called circumflex. We
describe some practical implementation strategies. And we
evaluate the performance of circumflex via a variety of
simulation and real benchmark experiments.

Keywords MapReduce · Shared scans · Scheduling ·
Allocation · Optimization · Amortization

1 Introduction

Google’s MapReduce [8] and its open-source implemen-
tation Hadoop [10] have become highly popular in recent
years. There are many reasons for this: simplicity, automatic
parallelizability, natural scalability, and implementability on

123

590 J. Wolf et al.

commodity hardware. Important built-in features include
fault tolerance, communications, and scheduling.

We focus on the problem of scheduling MapReduce work
in this paper and more specifically on a specialized but com-
mon and important variant first introduced by [1]: optimiz-
ing the amortized costs of shared scans of Map jobs. Before
describing this “shared scan” problem in detail, we provide a
brief overview of some popular generic MapReduce schedul-
ers. Understanding the original MapReduce scheduling prob-
lem and its history motivates our approach to the shared scan
special case and places our solution to that problem in the
proper context.

Early MapReduce implementations, including Hadoop,
employed First In First Out (fifo) scheduling. But while sim-
ple and almost universally applicable, fifo is known to have
problems with job starvation in most environments. A large
job can “starve” a small job that arrives even modestly later.
Worse, if the large job is a batch submission and the small job
is an ad-hoc query, the exact completion time of the large job
would not be particularly important, while the completion
time of the small job would be.

The Hadoop Fair Scheduler (fair) is a slot-based
MapReduce scheme designed to avoid starvation by ensur-
ing that each job is allocated at least some minimum num-
ber of slots [28–30]. (Slots are the basic unit of resource
in a MapReduce environment.) But fair does not attempt
to actually optimize any specific scheduling metric. And a
schedule designed to optimize one metric generally performs
quite differently from a fair schedule or one designed to
optimize another metric. By contrast, the Flexible Scheduler
(flex) [26] can optimize a wide variety of standard sched-
uling theory metrics while ensuring the same minimum job
slot guarantees as fair, and maximum job slot guarantees
as well. The desired metric can be chosen from a menu that
includes response time, stretch, and any of several metrics
that reward or penalize job completion times compared to
possible deadlines. This last includes the number of tardy
jobs, tardiness, lateness, and also Service Level Agreements
(slas). There are 16 combinatorial choices in all, because
the metrics can be either weighted or unweighted, and one
can optimize either their average (or, equivalently, from the
perspective of optimization, their sum) across all jobs, or the
maximum such value. Moreover, flex can be regarded as
an add-on module that sits on top of fair, works synergisti-
cally with it, and employs its extensive infrastructure. flex
performs very well on all metrics relative to both fair and
fifo [26].

As first pointed out in [1], there is another, more sub-
tle opportunity for improved scheduling in many common
MapReduce environments: optimizing the amortized costs
of shared scans of jobs in their Map phase. (We will use
the term Map jobs for jobs in their Map phase from here
on.) This is because the number of distinct datasets is often

modest relative to the number of MapReduce jobs. A par-
ticular MapReduce dataset may be used simultaneously by
multiple Map jobs. Also, for many MapReduce jobs, the exe-
cution time cost of the Map phase is primarily that of scan-
ning the data. Furthermore, the Map phase is often the most
expensive (and sometimes the only) phase of a MapReduce
job. Given all of the above, there is considerable leverage in
having Map jobs cooperate in some fashion on dataset scans,
thus amortizing the costs of these scans.

In fact, [1] introduced a pair of schedulers designed for
MapReduce environments with shared scans. (The sched-
ulers in question will henceforth be known collectively as
ako, for the authors Agrawal, Kifer, and Olston.) The ako
schemes determine, for each popular dataset, an optimized
batching interval. The idea is that Map jobs associated with
this dataset delay starting work until this interval expires,
and the scans of all the delayed Map jobs are then bat-
ched together, so that a single scan can be performed for
all of them. An ako off-line optimization algorithm assumes
Poisson arrivals of known rates for the jobs associated with
each dataset and uses a heuristic scheme based on Lagrange
multipliers to find batching intervals that minimize either
the average or the maximum value of a metric somewhat
analogous to stretch. There are some limitations to the ako
approach.

1. Batching forces the trade-off of efficiency for latency. In
other words, batching a number of scans together causes
them to be delayed. A larger batching interval is more
efficient but causes a longer average delay.

2. The assumption of Poisson arrivals allows the optimiza-
tion to be performed, but is restrictive. Jobs do not always
arrive according to such a distribution.

3. The assumption that the arrival rates of the jobs can be
known in advance is problematic. These estimates are
likely to be fairly rough approximations and thus may
affect the quality of the optimization solution.

4. The schedule produced is inherently static and thus can-
not react dynamically to changing conditions. (In fair-
ness, the ako implementation is more dynamic than the
decisions produced by the scheduler itself.)

5. The ako scheme optimizes two variants of an unusual
scheduling metric known as perceived wait time (PWT).
This is defined as the difference between actual response
time of a job and its minimum possible response time.
(By contrast, optimizing the more natural metric stretch,
to which the authors briefly allude, is the ratio of the
two terms. But it is noted that optimizing stretch was
deemed too difficult.) So, ako optimizes either average
or maximum PWT.

6. While average and maximum PWT are metrics that try
to philosophically capture the spirit of fairness, the ako
scheme does not specifically deal with minimum slot

123

On the optimization of schedules for MapReduce workloads 591

allocation constraints. These minimum constraints are a
key guarantee in both fair and flex.

Our goal in this paper is to provide an amortizing
MapReduce scheduler without these limitations. We elimi-
nate latency due to batching by employing a different shared
scan concept which we call cyclic piggybacking. Since cyclic
piggybacking treats the datasets circularly rather than line-
arly, the advantages of amortization are achieved without the
disadvantages of latency: Map jobs can begin immediately.
There is no need for Poisson assumptions or accurate job
arrival rate data. The scheme is dynamic rather than static,
simply dealing with Map jobs as they arrive. Indeed, cyclic
piggybacking itself does not involve any optimization at all. It
can be performed entirely on the fly. Finding high-quality slot
allocations among the jobs does still require an optimization
scheme, and our new scheme for this is a generalization of the
flex algorithm that decomposes each Map job into multiple
subjobs based on the cyclic piggybacking. We then notice
a natural chain precedence ordering that can be assumed
among these subjobs in the optimal solution and solve a
scheduling problem with these constraints. A total of 11 of
the 16 original flex scheduling metrics can be optimized in
this manner. (There may be heuristics available for the oth-
ers.) The 11 include the important and commonly employed
minisum metrics of average (or total) response time, stretch,
and all of the minimax metrics. (Maximum stretch and make-
span are common examples.) All of these metrics can either
be weighted or unweighted.

Furthermore, the shared scan scenario considered above
can be generalized significantly while retaining the spirit of
the original design. Consider semi-shared scans, the case
where jobs scan arbitrarily overlapping datasets, perhaps
within one or more directories. Such a scenario would occur
quite naturally, for instance, if one job scans a day of data,
another scans a week, and a third scans a month. (Note that
weeks are not necessarily contained within a single month.)
Considering the obvious Venn diagram, the point is that there
is a natural partitioning of the union of the datasets based on
the overlapping subsets of various cardinalities. Although
the term becomes something of a misnomer in this general-
ized context, cyclic piggybacking can be easily extended to
the case of semi-shared scans. It also turns out that one can
assume in an optimal schedule a natural precedence order
among the overlapping subsets, from more overlapped to less
overlapped. This is not a chain precedence scenario, as it is for
shared scans. But, at least for the case of minimax scheduling
metrics, the circumflex scheduling scheme works as is. So,
one can optimize any of the 8 separate objective functions
in this general scenario, including makespan and maximum
stretch.

Notions similar to batching and cyclic piggybacking
have been proposed in various contexts. For example,

CoScan [25], a MapReduce scheduling framework, merges
Pig jobs working on the same datasets in order to reduce
I/O costs and eliminate redundant data processing. It also
attempts to maximize the rewards for meeting user specified
soft-deadlines for the jobs. The merging technique employed
essentially batches jobs, so it suffers from the same latency
problems that batching does at the MapReduce level. Other
examples include the broadcast delivery of digital prod-
ucts [27] and databases [6,11,20,31]. To our knowledge,
these have all been for the non-overlapping case: There does
not appear to have been any work on the general semi-shared
scenario. There seems to be very limited additional work
in the area of sharing for MapReduce jobs. Note, however,
that [17] examines a variety of sharing alternatives, includ-
ing shared scans, in a MapReduce framework. In fact, their
MRShare scheme also merges jobs into batches and evaluates
these batches as single queries.

We call our shared scan scheduling scheme circumflex.
For ease of exposition, we focus on the non-overlapping data-
set scenario. But each component of circumflex can be
generalized to the overlapping case, and we will outline these
extensions as well.

In summary, the circumflex scheme described in this
paper involves three main contributions.

1. We adapt the cyclic piggybacking method to MapReduce
jobs for amortizing the cost of the shared scans and gen-
eralize it to handle overlapping datasets. This approach
has a number of advantages over the batching scheme
described in [1].

2. We notice that in the shared scan case, the various sub-
jobs generated in this manner can be assumed to have a
natural chain precedence order in the optimal schedule.
In the semi-shared scan case, a natural precedence order
can be assumed, though not chain precedence.

3. This precedence ordering allows us to formulate and
solve a scheduling problem that is a generalization of
flex. We optimize the scheduling of the subjobs with
respect to any of a choice of 11 standard metrics in the
shared scan case and 8 in the semi-shared scan case, while
respecting minimum slot and precedence constraints.

We illustrate the excellent performance of circumflex
relative to flex and batch in simulation experiments. Since
the metrics optimized by ako and circumflex are disjoint,
we choose not to compare them directly. That would seem
unfair to one scheme or the other. It would also be unfair to
compare circumflex with fair or fifo, because the lat-
ter two do not attempt to optimize any particular metric.
We compare instead the quality of circumflex with that
of flex, and with a batching scheme of our own devising.
(This scheme, called batch, actually employs a flex opti-
mization algorithm on the batched datasets.) Thus, we are

123

592 J. Wolf et al.

examining the performance benefits of high-quality cyclic
piggybacking schedules to schedules optimizing the same
metric, both with and without batching.

We also implemented circumflex inside Clydesdale
[3,14], a very efficient, very I/O-bound research prototype
for structured data processing on Hadoop. Clydesdale’s effi-
ciency means that the bulk of the processing time is spent
scanning the data. This makes it a perfect application for
shared scans, either batching or cyclic piggybacking. For
example, circumflex on Clydesdale achieves up to 3 times
better makespan and up to 5 times better average response
time as compared to the sequential execution of the same
workload. Our performance evaluation on Clydesdale also
shows that circumflex significantly outperforms all batch-
ing schemes.

The remainder of this paper is organized as follows. In
Sect. 2, we briefly describe cyclic piggybacking as an alter-
native employed by circumflex in favor of batching. Sec-
tion 3 gives some preliminaries involving MapReduce and
theoretical scheduling, essentially background information
to understand the next section. We then present an overview
of the circumflex scheduling algorithm in Sect. 4. Section 5
describes a circumflex implementation of shared scans in
Hadoop. In Sect. 6, we describe both simulation and real
benchmark experiments. Conclusions are in Sect. 7.

2 Batching and CIRCUMFLEX cyclic piggybacking

Perhaps, the most instructive way to describe both batching
and cyclic piggybacking is via a common example. We do
this before giving a formal definition of each approach. Spe-
cifically, we employ a simple example with two datasets.

See Figs. 1 and 2, which illustrate both schemes. The hor-
izontal line in the center of each figures represents time. Two
Map jobs scan one or the other of the datasets, labeled as
dataset 1 and 2, respectively. Arrivals of jobs for the dataset

1+ 2+

3+

4+

5+

6+

7+

8+

9+

10+

Job 1 Batching Interval Job 1 Batching Interval

Job 2 Batching Interval

Fig. 1 Batching

1+ 2+

3+

4+

5+

6+

3- 5- 7+ 9+

4- 8+ 6- 10+1- 2-

7- 9-

3,7

5

9

1
2

4

6

8

10

Fig. 2 Cyclic piggybacking

1 are depicted with circles in the center time lines. Details for
dataset 1 are illustrated in the top halves of each figure. Sim-
ilarly, arrivals of jobs for dataset 2 are depicted with squares
in the center time lines, and details are given in the bottom
halves. The figures thus depict the arrival of 10 Map jobs, 6
of which scan dataset 1 and 4 of which scan the dataset 2. The
jobs are numbered, with a plus sign indicating their arrivals.
Recall that we are considering first a non-overlapping data-
set scenario. However, at least our cyclic piggybacking ideas
can easily be extended to the general case, with semi-shared
scans.

2.1 Batching

Consider Fig. 1. Optimized batching intervals for both data-
sets are computed via a scheme such as [1]. The vertical lines
in the top half of the figure depict the temporal boundaries of
the batching intervals for dataset 1, while the vertical lines in
the bottom half depict the boundaries of a batching interval
for dataset 2. The batching intervals for dataset 1 are shorter
than the batching intervals for dataset 2, and only one com-
plete batching interval for the latter dataset fits in the figure.
The dotted lines represent the latency of each job incurs, and
the batching itself is indicated via solid lines. Jobs 1, 2, 4,
and 6 for dataset 1 arrive before the end of the first batch-
ing interval, and they are scanned together, as a batch with
concurrency level 4, at the beginning of the second interval.
Note that job 1 incurs a latency of nearly the entire dataset
1 batching interval. Job 8 arrives during the second batching
interval and is scanned alone at the beginning of the third
interval. Again, the dotted line illustrates the latency and the
solid line illustrates this trivial (concurrency level 1) batch.
Job 10 arrives during the third batching interval, and its scan
is not shown in the figure. Jobs 3, 5, and 7 for dataset 2 are
scanned with concurrency level 3. Job 9, which arrives in a
subsequent batching interval, is not scanned in the figure.

123

On the optimization of schedules for MapReduce workloads 593

The trade-off between latency and efficiency is illustrated
in Fig. 1. Longer batching intervals allow for more jobs
to be batched together, but the average latency of the jobs
increases. The expected average latency is half the time in a
batching interval under typical arrival rate assumptions. This
is the fundamental trade-off of batching. On one extreme,
a batching interval of nearly zero time results in almost no
batching at all. This extreme incurs very small latencies, but
is inefficient because all concurrency levels are close to 1. On
the other extreme, a very large batching interval results in big
concurrency levels and hence great efficiency. But latency
becomes similarly huge.

Formally, the batching schemes described in [1] compute,
for each dataset d, an optimized batching interval time Td .
The optimization algorithm assumes Poisson arrivals of jobs,
as well as estimates of the rates associated with each dataset.
It uses a Lagrange multiplier-based heuristic to find batching
intervals that minimize either the average or maximum PWT.
Assuming a start time of 0, time is then partitioned for any
dataset d into multiple intervals of the form [kTd , (k +1)Td)

for each non-negative integer k. Any Map job arriving in
interval [kTd , (k + 1)Td) and involving dataset d is then per-
formed using a batched scan starting at time (k + 1)Td .

2.2 Cyclic piggybacking

Our new notion of cyclic piggybacking is best understood
by considering Fig. 2, employing the same example as for
batching in Fig. 1. If one thinks of a dataset as an ordered
list of blocks, the dataset can be viewed linearly. Though it
is something of a simplification, one can think of blocks as
being scanned in this line segment from left to right, from
first block to last block. However, recognizing that there is
no special meaning to the first or last blocks, one can also
“glue” these two blocks together and view the dataset cycli-
cally. A good analogy here would be a clock, with blocks
corresponding to hours. So, blocks can be scanned in a clock-
wise manner, starting with the first block—and as the scan
reaches the last block, it can simply begin again at the first
block. In the figure, the topmost point of a circle indicates
the boundary between the first and last block. In the clock
analogy, this point is simply “midnight.”

At time 1, the first job for dataset 1 arrives. This is illus-
trated both via the linear time line and in a cyclic view of
dataset 1 shown at the top. (A plus sign in the linear view
indicates a job arrival, as before, while a minus sign refers
to a job departure. In the cyclic view, these occur at iden-
tical points on the circle.) Map job 1 starts to scan data in
clockwise fashion from the midnight starting point denoted
by 1. Subsequently, a second job for dataset 1 arrives at time
2; this arrival is shown in both the linear and cyclic views.
Considering the cyclic view, the clockwise arc from point
1 to point 2 involves previously scanned blocks, but job 2

Current time

(1,1) (1,2) (1,3) (1,4)Chain of subjobs

Fig. 3 Creation of chain precedence constraints for shared scans

can now piggyback its data scan of subsequent common data
onto the remaining scan of job 1, amortizing costs. In the
linear view, one notices that the concurrency level increases
to 2 once job 2 starts. When job 1 completes its scan, the
remaining blocks of job 2 can be scanned. In the absence of
subsequent arrivals, the concurrency level would return to 1
during this portion of the scan. But notice that all of the con-
currency levels depend dynamically on both future arrivals
and departures: An arrival increments the concurrency level
by 1, while a departure decreases it by 1. The subsequent
arrival of a third job, this time for dataset 2, causes the cyclic
view of dataset 2 at the bottom and the aligned linear view
of job 3 below the center time line. The arrival of job 4 for
dataset 1 causes a concurrency level of 3 for that dataset. The
arrival of job 5 for dataset 2 causes a concurrency level of 2
for the 2nd dataset. The arrival of job 6 causes a concurrency
level of 4 for the 1st dataset. Then, the departure of job 3
occurs, reducing the concurrency level back to 1 for the 2nd
dataset. Note that the eventual departure of job 5 for dataset
2 and the subsequent arrival of job 7 for dataset 2 causes a
new single scan of the first blocks of the 2nd dataset again,
and so forth.

See Fig. 3, which illustrates the state of affairs for dataset
1 at precisely the time when job 6 (the 4th job for dataset 1)
arrives. At this moment in time, 3 jobs for dataset 1 are in
the process of being scanned. The figure shows a decompo-
sition of the current remaining work for the 1st dataset into 4
subjobs, labeled (1, 1), . . . (1, 4). Subjob (1, 1) starts at the
current time and completes at the end of the scan of the 1st
job for dataset 1. The concurrency level is 4. Subjob (1, 2)

starts when subjob (1, 1) ends and completes at the end of the
scan of the 2nd job for dataset 1. The concurrency level is 3.

Formally, subjob (d, k) for dataset d starts when subjob
(d, k −1) ends and completes at the end of the scan of the kth
job for dataset d. It has concurrency level Kd − k + 1, where
Kd is the total number of currently active jobs for dataset d.
(In this case of Fig. 3, K1 = 4.)

123

594 J. Wolf et al.

1

2

3 4

5 6

7

1

2

3 4

5 6

7

Fig. 4 Creation of precedence constraints for semi-shared scans

A few rather delicate points should be made here. First,
note that each subjob belongs to both a Map job and a data-
set. The notation clearly references the latter rather than the
former. Because calling (d, k) a subjob of job d overuses the
term “job,” we avoid this. In other words, we reserve the word
job for the Map jobs themselves. Note also that the notation
is quite dynamic—it changes with job arrivals. Finally, there
could also many synonyms for subjobs, depending on the job
under consideration: If jobs j1 and j2 represent two succes-
sive scans for the same dataset d, then subjob (d, k) viewed
via the first job is the same as subjob (d, k − 1) viewed via
the second. To avoid this unsatisfactory notation, we insist on
using the subjob terminology associated with the last job to
arrive for a particular dataset. (See Fig. 3.) We will discover
in Sect. 4, via a simple interchange argument, that the opti-
mal way to complete these subjobs is in sequential order. In
the figure, this means that subjob (d, 1) should be completed
before subjob (d, 2) starts, and so on.

In the case of semi-shared scans, the subjobs are mod-
estly more complex. Consider the left-hand side of Fig. 4,
representing the remaining scans required for three separate
but overlapping arrivals at the time of the third arrival. The
6 natural subjobs created in this example correspond to the
subsets in the figure. It will turn out in Sect. 4 that the optimal
way to complete these subjobs is from the most overlapped
to the least overlapped subset. We have simply numbered
these 6 subjobs in topological order and displayed the prece-
dence graph shown in the right-hand side of the figure. So,
the most overlapped subjob 1 should precede subjobs 2, 3,
and 4 (which are not comparable). Similarly, subjobs 2 and
3 should precede subjob 5, and so on. (Subjobs 5, 6, and 7
are also not comparable.)

Defined in this manner, cyclic piggybacking suffers from
none of the first four disadvantages noted for ako in Sect. 1.
There is no built-in latency, since jobs are ready to start their
Map phase scans instantly. The arrival distribution and rates
are irrelevant. The design is completely dynamic, reacting
on the fly to any new job arrivals: No optimization algorithm
needs to be executed.

Of course, nothing is ever quite as simple as it might appear
at first. The description of cyclic piggybacking above is a bit
too simple in several ways. We introduce these issues now,
resolving them in subsequent sections.

First, by describing the scanning of datasets in either lin-
ear or cyclic terms, we have essentially implied a discrete
block ordering that does not really exist. This simplification
is strictly for purposes of exposition. In fact, no real order
for the blocks exists, except that inherently implied by the
optimality of the subjob sequencing. There is great flexibil-
ity built into the MapReduce paradigm: The actual block
scan execution order within a subjob depends on an entirely
different layer of the MapReduce scheduler. (This so-called
assignment layer, described in Sect. 3, considers issues such
as data locality when assigning a Map scan to an available
slot on a particular node.) In any reasonable implementa-
tion of the cyclic piggybacking scheme, there will simply
be a bit for each active job and relevant block, which notes
whether or not that block has already been scanned for that
job. Within a subjob, the scanning order of the blocks is
essentially immaterial.

Although we say that the blocks are ready immediately
for scheduling, we may theoretically not have the resources
to schedule that work. We have not yet introduced our
MapReduce scheduler, which attempts to optimally allocate
the slot resources to the various jobs and subjobs. (This sched-
uler will, indeed, attempt to start jobs as they arrive, based
on minimum slot constraints.) But the bottom line is that our
description of cyclic piggybacking thus far blurs this detail.

While we are effectively eliminating initial job latency
via cyclic piggybacking, it is less clear how this new scheme
compares with batching with respect to efficiency. Recall that
batching can span the spectrum with respect to efficiency,
depending on how large the batching intervals are. But it
should be clear that a batching interval of 0 length, yielding
no batching at all, is far less efficient than cyclic piggybac-
king while similarly avoiding latency. We will have more to
say about these efficiency levels in Sect. 6.

Having described cyclic piggybacking itself, we now turn
to the scheduling aspects of circumflex. We introduce this
via scheduling preliminaries in Sect. 3. With this as back-
ground, we then describe the details of the circumflex
scheduler in Sect. 4.

3 Scheduling preliminaries

In this section, we will give brief overviews of a number
of MapReduce and scheduling theory concepts. Understand-
ing these will simplify our exposition of the circumflex
scheduler in Sect. 4. We will outline the two MapReduce
scheduling layers, the scheduling metrics we consider and
their usefulness, the notions of parallelizable jobs and

123

On the optimization of schedules for MapReduce workloads 595

speedup functions, the theoretical notions of moldable and
malleable scheduling, and finally, the concept of epoch-based
scheduling.

3.1 MapReduce scheduling layers

MapReduce scheduling in Hadoop actually consists of two
decoupled layers. The upper layer deals with allocation or
quantity decisions. The lower layer deals with assignment
decisions. Specifically, the lower layer attempts to implement
the allocation decisions of the upper layer, while taking into
consideration a variety of real-world assignment issues not
known to the upper layer.

3.1.1 Allocation layer

It is assumed that each host is capable of simultaneously
handling some maximum number of Map jobs. These are
called Map slots. (A similar statement holds for Reduce phase
jobs, but we are not concerned with those in this paper.)
Aggregating these Map slots over all the hosts in the clus-
ter, one computes the total number S of Map slots. The role
of the allocation layer scheme is to apportion the Map slots
among the active Map jobs in some intelligent manner. The
circumflex scheme is actually an allocation layer sched-
uler. circumflex is fair in the same sense as fair and flex:
Specifically, given a minimum number m j of Map slots for
job j , the scheme will allocate a number of slots s j ≥ m j ,
thereby preventing job starvation. (circumflex also respects
maximum slot constraints: Given a maximum number M j of
Map slots for job j , the scheme will enforce s j ≤ M j for
each job j . flex respects maxima as well.) The resource
constraint [13] is also respected:

∑
j s j ≤ S. (Because

circumflex schedules at the subjob level with precedence
constraints, we note that all of the above carries over natu-
rally. The minimum for a subjob, for example, is the maxi-
mum, over all relevant jobs, of the job minima. The maximum
for a subjob is the minimum, over all relevant jobs, of the job
maxima. Precedence implies that the number of slots s j is
unambiguously defined.)

3.1.2 Assignment layer

It is this layer that makes the actual assignments of Map
job tasks (blocks) to slots, attempting to honor the decisions
made at the allocation layer to the extent that this is “rea-
sonable.” Host slaves report any task completions at heart-
beat intervals, typically on the order of a few seconds. Such
completions free up slots and also incrementally affect the
number of slots currently assigned to the various jobs. Book-
keeping then yields an effective ordering of the jobs, from
most relatively under allocated to most relatively over allo-
cated. For each currently unassigned slot, the assignment

Time

Time

Pe
na

lty
Pe

na
lty

(a)

(c)

Time

Pe
na

lty

(b)

Time

Pe
na

lty

(d)

Time

Pe
na

lty

(e)

Fig. 5 Per job scheduling metrics. a Weighted response time,
b weighted number of tardy jobs, c weighted tardiness, d weighted
lateness, e SLA penality

model then finds an “appropriate” task from the most rela-
tively under allocated job that has one. The notion of what is
appropriate varies with the version of Hadoop. One example
is the locality of the block to the host. In some assignment
layer implementations, a non-local block from the best job
may be passed over for some period of time in favor of a
less appropriate job that has a local block left to scan. This is
known as delay scheduling [30]. Other affinity issues come
into play in different assignment layer implementations.

3.2 Scheduling metrics

Scheduling theory [4,16,19] basically attempts to optimize
schedules with respect to certain metrics (or penalty func-
tions). Given a particular job, a metric measures the “cost”
of completing that job at a particular time. The subfigures in
Fig. 5 describe the five most common categories of per job

123

596 J. Wolf et al.

metrics in the scheduling theory literature. Several combi-
natorial alternatives exist within most of the categories. For
example, we will see below that each of the first four catego-
ries can be weighted or not. (In some cases, specific weight
choices will have special meanings. In other cases, they sim-
ply define the relative importance of each job.) Also, one
might choose to either minimize the sum of the per job met-
rics (a minisum problem), or minimize the maximum of the
per job metrics (a minimax problem). Optimizing each of
these alternatives serves a different but useful purpose.

3.2.1 Response time

The metric illustrated in Fig. 5a is probably the most com-
monly employed in computer science. (The weight is the
slope of the linear function.) There are several natural exam-
ples. Solving the minisum problem effectively minimizes the
average response time, weighted, or otherwise, because the
sum differs from the average by a multiplicative constant.
(Such a constant does not affect the solution to the optimiza-
tion problem.) In the unweighted case, solving the minimax
problem minimizes the makespan of the jobs. This is the
completion time of the last job to finish and is appropriate
for optimizing batch work. Suppose the work (which can be
defined as the minimum response time required to perform
job j in isolation) is W j . As we have noted, the comple-
tion time of a job divided by W j is known as the stretch of
the job. It is a measure of how delayed the job will be by
having to share the system resources with other jobs. Thus,
solving a minisum problem while employing weights 1/W j

will minimize the average stretch of the jobs. Similarly, solv-
ing a minimax problem while employing weights 1/W j will
minimize the maximum stretch. Either of these are excel-
lent fairness measures and are in fact more commonly used
than either average or maximum PWT, the fairness metrics
in ako.

3.2.2 Number of tardy jobs

Here, each job j has a deadline, say D j . In this case, only the
minisum problem is appropriate. The weight is the height of
the “step” in Fig. 5b. The unweighted case counts the number
of jobs that miss their deadlines, clearly a useful metric. The
weighted case counts some jobs more than others.

3.2.3 Tardiness

Again, each job j has a deadline D j . The tardiness metric
generalizes the response time metric, which can be said to
employ deadlines at time 0. Only tardy jobs are “charged,”
and the slope of the non-flat line segment in Fig. 5c is the
weight. It makes sense to speak of either minisum or minimax
tardiness problems, both either weighted or unweighted.

3.2.4 Lateness

Once again, each job j has a deadline D j . The lateness metric
generalizes response time also. As before, the weight is the
slope of the line. Note that “early” jobs are actually rewarded
rather than penalized, making this the only potentially neg-
ative metric. The minisum variant differs from the response
time metric by an additive constant and thus can be solved
in exactly the same manner as that problem. But the mini-
max problem is legitimately interesting in its own right. See
Fig. 5d.

3.2.5 SLA costs

In this metric, each job j has potentially multiple pseudo-
deadlines D j,k that increase with k. And the penalties p j,k

increase with k also. This yields Fig. 5e, a step function for
each job, clearly a generalization of the weighted number of
tardy jobs metric. As in that case, only the minisum prob-
lem is appropriate. One can think of this metric as the total
cost charged to the provider based on a prenegotiated SLA
contract.

3.3 Speedup functions

From a scheduling perspective, a key feature of the Map
phase of a MapReduce job is that it is parallelizable. Roughly
speaking, it is composed of many atomic tasks that are effec-
tively independent of each other and, therefore, can be per-
formed on a relatively arbitrary number of (multiple slots in)
multiple hosts simultaneously. If a given job is allocated more
of these slots, it will complete in less time. In the case of a
Map phase job, these atomic tasks correspond to the blocks.
(In the case of a Reduce phase job, the atomic tasks are cre-
ated on the fly, based on keys.) The circumflex scheme
takes advantage of this additional structure inherent in the
MapReduce paradigm.

We now describe the relevant scheduling theory concepts
formally. See, for example, [16]. Consider a cluster with a
total of S homogeneous Map phase slots. (To be concrete, we
choose to use MapReduce terminology here rather than the
more standard theoretical scheduling terminology. The latter
would employ the word processors instead of slots.)

A job is said to be parallel if it can be performed using
some fixed number s (between 1 and S) of slots simulta-
neously, with an execution time E . (One can think geometri-
cally of this job as a rectangle with width equal to the number
of slots s and height equal to the execution time E .) A job
is said to be parallelizable if it can be performed variously
on an arbitrary number 1 ≤ s ≤ S of slots simultaneously,
with an execution time F(s) that depends on the number
of slots allocated. The execution time function F is known
as the speedup function. It can be assumed without loss of

123

On the optimization of schedules for MapReduce workloads 597

generality to be non-increasing, because if F(s) < F(s +1),
it would be better to simply leave one slot idle. This would
result in a new (replacement) speedup function F̄ for which
F̄(s + 1) = F̄(s) = F(s). One can think, also without
loss of generality, of a job that can be performed on a subset
P ⊆ {1, . . . , S}of possible allocations of slots as being paral-
lelizable: simply define F(s) = min{p∈P|p≤s} F(p), where,
as per the usual convention, the empty set has minimum ∞.
In this sense, parallelizable is a generalization of parallel:
A parallel job employing s slots has a speedup function that
is infinite before s and constant from s onward.

As we shall describe below, the Map phase of a MapReduce
job has, to a good approximation, such a speedup function.
Fig. 6a illustrates a possible speedup function.

3.4 Moldable and malleable scheduling

The problem of scheduling multiple parallel jobs in order to
minimize some given metric can be visualized as a problem
of packing rectangles, with job start times as the decision
variables. Parallel scheduling has been studied extensively
in the scheduling literature [16]. Problems for most of the
natural metrics are NP-hard and thus are often tackled via
so-called approximation algorithms where possible. These
are schemes of polynomial complexity that can be shown
to be within a certain factor of optimal. See, for example,
[7] for the makespan metric and [21] for the weighted and
unweighted response time metrics.

Parallelizable scheduling is a generalization of parallel
scheduling. The simplest such variant is known as moldable
scheduling. Here, the problem is to schedule multiple par-
allelizable jobs to optimize a given metric. The number of
slots is treated as an additional decision variable, but once this
allocation is chosen, it cannot be changed during the entire
execution of the job. The name comes because the rectangles
themselves can be thought of as moldable: Pulling a rectangle
wider (that is, giving a job more slots) has the effect of mak-
ing the rectangle less high (that is, executing the job faster).
Figure 6b illustrates a potential choice of slot allocations for a
moldable job in a MapReduce context. The top-right vertex in
the rectangle corresponds to a point on the speedup function
of Fig. 6a. Moldable scheduling problems can sometimes be
solved by using the parallel scheduling problem algorithm as
a subroutine. See, for example, [23] for makespan and [21]
for weighted and unweighted response time. In each of these
cases, the approximation factor of the parallel algorithm is
retained.

Finally, one can generalize moldable scheduling as well,
so-called malleable scheduling. Here, the problem is to
schedule multiple parallelizable jobs to optimize a given met-
ric, as before. But instead of making a permanent decision
as to the slot allocations, each job can proceed in multi-
ple intervals. Different intervals can involve different allo-

T
im

e

Number of slots

T
im

e

Number of slots

T
im

e

Number of slots

T
im

e

Number of slots

(a) (b)

(c) (d)

Fig. 6 Speedup functions, moldable and malleable jobs, task assign-
ments. a Speedup function, b moldable job, c malleable job, d tasks

cations. Each interval contributes a portion of the total work
required to perform the job. Figure 6c illustrates a potential
three interval choice of slot allocations for a malleable job in
a MapReduce context. See, for example, [5] for makespan.

The optimal malleable schedule for a particular schedul-
ing problem instance will have a cost less than or equal to
that of the optimal moldable schedule for the same problem
instance, since moldable schedules are also malleable. In this
paper, we are attempting to find an optimal malleable sched-
uling solution for each of the relevant objective functions.
But we will first solve the moldable scheduling problem.
The solution there will then help us to solve the more gen-
eral malleable problem.

3.5 Malleable scheduling and the model

Now, we explore how well the MapReduce model fits the
malleable scheduling framework. There are several aspects
to the answer.

To begin with, the parallel job structure in MapReduce is a
direct consequence of the decomposition into small, indepen-
dent atomic tasks. Consider the assignment layer. Its role is to
approximate at any given time the decisions of the allocation
layer by assigning job tasks. Consider Fig. 6d. Over time,
the assignment layer will nearly replicate the malleable allo-
cation decisions given in Fig. 6c by a set of job task to slot
decisions. The approximation is not perfect, for several rea-
sons: First, slots may not free up at precisely the time pre-
dicted by the allocation layer. So, new task slots will not be
assigned perfectly: at the bottom of each interval, the rect-
angle may be slightly jagged. Likewise, slots may not end
at precisely the time predicted by the allocation layer. Thus,
at the top of each interval, the rectangle may also be slightly

123

598 J. Wolf et al.

Slots

T
im

e

(1,1)

(1,2)

(2,1)

(2,2)

(2,3)

Fig. 7 Chain precedence malleable schedule

jagged. Finally, the assignment layer may relax adherence to
the exact allocation goals for the various jobs, for example,
in order to ensure host or rack locality [29,30].

But the first two are modest approximations because indi-
vidual task times are small relative to the total time required
for the job. And discrepancies between the allocation layer
goals and the assignment layer are modest by definition. In
summary, as illustrated in Fig. 6c, d, the malleable scheduling
model fits the reality of the MapReduce paradigm closely.

Moreover, because the tasks are independent, the total
amount of work involved in a job is essentially the sum of
the work of the individual tasks. Therefore, in conjunction
with the statements above, we can actually assume a speedup
function of a very special kind: the speedup should be close to
linear, meaning a speedup function of the form F(s) = C/s
between its minimum and maximum numbers of slots. (Here,
C is a constant for a job proportional to the amount of work
required to perform that job.) Note that this is not a statement
particularly affected by the factors such as locality. Such fac-
tors would affect the constant, not the shape of the speedup
function, which is a truncated hyperbola. (The truncation is
because of the minimum and maximum number of slots for
the job. So, as noted before, the speedup function will be infi-
nite for s < m j and will flatten out at C/M j for s ≥ M j .)

Speedup functions for individual jobs must be estimated in
order for circumflex to do its job. Fortunately, by assuming
relative uniformity among the job task times, we can contin-
ually extrapolate the times for the remaining tasks from the
times of those tasks already completed. In this manner, the
refined estimates should naturally become more accurate as
the job progresses, epoch by epoch. Periodic jobs can also
be seeded with speedup functions obtained from past job
instances.

3.6 Malleable scheduling with precedence constraints

We note that malleable scheduling can be done in the con-
text of subjobs with precedence constraints as well. Figure 7

illustrates a potential malleable schedule of 2 datasets with a
total of 5 subjobs. The 1st dataset has 2 subjobs, namely (1, 1)

and (1, 2), related by a precedence constraint. The 2nd data-
set has 3 subjobs, (2, 1), (2, 2) and (2, 3), related by chain
precedence constraints.

3.7 Epoch-based scheduling

The circumflex scheme is an example of an epoch-based
allocation scheduler. This means that time is partitioned into
epochs of some fixed length T . So, if time starts at t = 0,
the epochs will start at times 0, T, 2T, 3T , and so on, labeled
accordingly. The scheduler will produce allocations that will
be in effect for one epoch, so that the eth epoch allocations
will be honored from time eT to time (e + 1)T . Obviously,
the work for the eth epoch must be completed by the start
time eT of that epoch.

The circumflex scheme receives input describing the
total number of Map slots in the system, the number of active
Map jobs, their subjobs, the minimum and maximum number
of slots per job, the chain precedence constraints, and esti-
mates of the remaining processing times required for each of
the subjobs. Then, the algorithm outputs a high-quality mal-
leable schedule consisting of allocations of slots to subjobs in
some number of intervals. Allocations for the eth epoch will
likely extend beyond the start time of the (e+1)st epoch. But
all allocation decisions will be superseded by the decisions
of the newest epoch. In fact, it is expected that the comple-
tion time of even the first of the consecutive intervals in the
eth epoch will typically exceed the length of an epoch. This
means that generally only the first interval in the output will
actually be enforced by the assignment model during each
epoch.

An advantage of an epoch-based scheme is its resilience
over time. Epoch by epoch, the circumflex scheme auto-
matically corrects its solution in light of more current work
estimates, newly arrived or departed jobs, and cluster state
changes.

4 CIRCUMFLEX scheduling

Assuming the MapReduce and theoretical scheduling prelim-
inaries outlined above, we are in a position to describe the
circumflex scheduler. As before, we shall focus on the fully
overlapping case, but also briefly describe the semi-shared
case where appropriate. In the former case, circumflex is
an epoch-based malleable allocation layer scheduler for sub-
jobs related by chain precedence. It eliminates the last two
disadvantages noted for ako. Specifically, it optimizes both
average and maximum stretch, plus a number of other met-
rics more natural than those of ako. (Of the 16 natural com-
binatorial choices handled by flex, the current version of

123

On the optimization of schedules for MapReduce workloads 599

circumflex can handle 11.) Additionally, circumflex han-
dles the minimum constraints that are inherent in both fair
and flex.

First, we justify the chain precedence assumption among
the subjobs. Then, we describe the two steps of the
circumflex scheduler, each of which generalizes flex. The
first step is to solve one of the two optimization problems,
depending on the precise metric chosen. In this step, we wish
to find a high-quality (linear) priority order for the subjobs.
Actually, this priority ordering will also be a topological order
of the subjobs. (Recall that in the “job” context, a topologi-
cal order is an ordering of the jobs which respects the pre-
cedence among the jobs. Thus, j1 < j2 whenever j1 ≺ j2.)
In one case (minisum average response time variants, spe-
cifically average response time, weighted average response
time, and average stretch), the optimization problem can be
solved by a Generalized Smith’s Rule scheme. This is, as its
name implies, a generalized version of Smith’s Rule [19].
In the other case (all minimax variants), it can be solved by
a Backwards Dynamic Programming scheme. But either of
the optimization schemes provide as output a priority order
of the various subjobs, which is then used as input by the
second step. And because of the imposed topological order,
the schedule output by the second step will retain the original
precedence constraints. In particular, the output of the second
step will be an optimized malleable schedule of the subjobs
for the chosen metric in the cyclic piggybacking environ-
ment. We have designed a new Ready List Malleable Pack-
ing scheme to solve this second problem, generalizing the
scheme first introduced in [26].

4.1 Precedence

Suppose, as before, that there are Kd jobs scanning a
given dataset d at a particular instant in time. We have
seen that this dataset gives rise to Kd subjobs, namely
{(d, 1), . . . , (d, Kd)}. Cyclic piggybacking has the effect of
partitioning the dataset d into Kd + 1 disjoint sets of blocks.
The first set is relevant to all Kd jobs. The second set is still
relevant to Kd −1 jobs, all but the first to arrive. (The first job
has already scanned these blocks.) The third set is still rele-
vant to Kd −2 jobs, all but the first two to arrive. Continuing
in this nested manner, the Kd th subset is still relevant to 1
job, the last to arrive. The (Kd +1)st subset, which is empty if
and only if the last job has just arrived, is no longer relevant.
In general, subjob (d, k) is relevant to Kd − k + 1 jobs.

We claim that the subjobs associated with each dataset
d can be assumed in an optimal schedule to be related by
chain precedence. In other words, (d, 1) ≺ (d, 2) ≺ · · · ≺
(d, K j − 1) ≺ (d, K j). A simple interchange argument suf-
fices to see this: No actual job can complete until all the
blocks associated with its dataset have been scanned. And
all of the possible scheduling metrics are functions of this

completion time. If 1 ≤ k1 < k2 ≤ K j , it can help the
scheduling objective function to perform the scan of a block
in subjob (d, k1) before performing the scan of a block in sub-
job (d, k2). This is because all of the original jobs that are
relevant to subjob (d, k2) are also relevant to subjob (d, k1).
Furthermore, not performing the scans in this order will actu-
ally hurt, because it wastes resources that could be dedicated
to completing subjob (d, k1) earlier. So, after interchang-
ing the block scans into the proper order, the result follows.
Again, see Fig. 3, where d = 1, K j = 4, and we can assume
that (1, 1) ≺ (1, 2) ≺ (1, 3) ≺ (1, 4).

In the semi-shared case, the interchange argument yields
a more general precedence relationship between the subjobs
created. As before, no job can complete until all the blocks
associated with it have been scanned. Considering Fig. 4, it
can help to scan the three-way intersection before two-way
intersections, and the two-way before the one-way. Similarly,
failure to proceed in this order will hurt. The resulting prece-
dence graph is shown. (The arrows indicate precedence.) Of
the three crucial algorithms of circumflex only the Gen-
eralized Smith’s Rule breaks down. It requires chain prece-
dence. But the Backwards Dynamic Programming and Ready
List Malleable Packing schemes carry over unchanged. So, in
the semi-shared scan case, we can handle 8 minimax metrics,
but not weighted average response time metrics.

4.2 Finding a priority ordering

For finding a priority ordering, one of the two schemes is
employed, depending on the problem variant. The first case
handles minisum average response time variants, specifically
average response time, weighted average response time,
and average stretch. The second case handles all minimax
metrics. Either scheme produces an interim schedule that
maintains the precedence constraints (optimal for a single
processor), and the sequencing of the jobs in this interim
schedule determines the input ordering to the Ready List
Malleable Packing scheme.

4.2.1 Weighted average response time

This case is solved by a generalized version of Smith’s
Rule [19]. (Smith’s Rule optimally solves the problem of
minimizing weighted average response time for independent
jobs j with weight w j and processing time p j on one pro-
cessor by sequencing the jobs in non-decreasing order of the
ratios p j/w j .) The pseudo-code for the Generalized Smith’s
Rule is given in Fig. 8. It will be clear that this does, indeed,
represent a generalization of Smith’s Rule to the case of chain
precedence subjobs. See line 7, in particular, where the par-
tial ratios of sums replace the traditional Smith Rule ratios.
The proper ordering is achieved via line 8. Since chain pre-
cedence is maintained in the resulting sequence of subjobs,

123

600 J. Wolf et al.

Fig. 8 Generalized Smith’s Rule

Fig. 9 Backwards Dynamic Programming

the ordering of the completion times of the subjobs is a topo-
logical ordering as well, and this priority ordering is input to
the second step.

Unfortunately, the Generalized Smith’s Rule requires
chain precedence and is not suitable for the case of semi-
shared scans.

4.2.2 Minimax problems

This case is solved by a Backwards Dynamic Programming.
The pseudo-code for this case is given in Fig. 9. This single
processor scheme actually works for arbitrary jobs, any non-
decreasing penalty function Fj , and any precedence relation
≺. Chain precedence is not required. So, we have described
the pseudo-code more generically. As the name implies, the
dynamic program schedules the jobs in reverse order, from
last to first. (See line 4 for the selection criteria.) Since pre-
cedence is maintained in the resulting sequence of subjobs,
the ordering of the completion times is again a topological
ordering, and this priority ordering is input to the second step.

4.3 Ready List Malleable Packing scheme

The second step again works for arbitrary precedence con-
straints, so we describe it in generic job terminology. The
translation to subjobs and chain precedence is easy. This algo-
rithm is a generalization of the one first presented in [26].

Fig. 10 Ready List Malleable Packing scheme

The scheme inputs one of the output priority orderings
from the previous subsection, as appropriate. It then employs
Ready List Malleable Packing scheme. (A ready list is a
dynamically maintained list of jobs that are ready to run at
any given time. In other words, all precedence constraints
must have been satisfied at the time a job is put on the list.)

The pseudo-code for the Ready List Malleable Packing
scheme appears in Fig. 10. Given a priority ordering, the
scheme proceeds iteratively. At any iteration, a current list L
of jobs is maintained, ordered by priority. Time is initialized
to T0 = 0. The current list L is initialized to be all of the
jobs, and one job is removed from L at the completion time
Ti of each iteration i . Call the time interval during iteration i
(from time Ti−1 to Ti) an interval. The number of slots allo-
cated to a given job may vary from interval to interval, thus
producing a malleable schedule.

The i th iteration of the algorithm (lines 4 through 18)
involves the following steps: First, the scheme allocates the
minimum number m j of slots to each job j ∈ L. This is fea-
sible, since the minima have been normalized, if necessary,
during a precomputation step. After allocating these minima,
some slack may remain. This slack can be computed as s =
S − ∑

j∈L m j . The idea is to allocate the remaining allow-
able slots M j − m j to the jobs j in priority order. The first
several may get their full allocations, and those jobs are allo-
cated their maximum number of slots, namely M j = m j +
(M j − m j). But ultimately, all S slots may get allocated in
this manner, leaving at most one job with a “partial” remain-
ing allocation of slots, and all jobs having lower priority with
only their original, minimum number of slots. (The formal
details of these steps are given in the pseudo-code.) Given
this set of job allocations, one of the jobs j completes first,
at time Ti . (Ties among jobs may be adjudicated in priority
order.) Now, job j is removed from L, and the necessary
bookkeeping is performed to compute the remaining work

123

On the optimization of schedules for MapReduce workloads 601

past time Ti for those jobs remaining in L. After J itera-
tions (and J intervals), the list L is depleted and the output
malleable schedule created.

Note that the ready list construct ensures that this scheme
produces a malleable schedule which respects the precedence
constraints.

4.4 Algorithmic complexity

Each of the three circumflex scheduling algorithms hap-
pens to have complexity O(J 2). This includes the General-
ized Smith’s Rule, Backwards Dynamic Programming, and
the Ready List Malleable Packing scheme. Since we are
solving precisely two of these problems once per epoch, we
believe circumflex will be sufficiently fast to handle rea-
sonably large problem instances. However, truly large prob-
lems should still be readily tractable via divide and conquer
decomposition techniques.

5 CIRCUMFLEX implementation

We support circular scans in MapReduce by translating each
subjob into a MapReduce job that uses modified Map and
Reduce tasks, called C-mappers and C-reducers, respec-
tively. C-mappers identify all Map functions that need to
be executed by the subjob and proceed to call every function
on every input record. They prefix every output record with
the job ID of the Map function that produced it. The outputs
are partitioned by this job ID first. Within each partition, a
C-mapper uses the comparison and partitioning functions of
the original jobs. C-reducers are modified to read not only
the results of the C-mappers of this subjob, but also of all the
previous subjobs of the MapReduce job in question.

For example, Subjob1 in Fig. 11 runs Map functions of
three jobs. It produces all output partitions of Job1 followed
by partitions Job2 and then Job3. C-reducers of Sub-

Fig. 11 Shared scans in MapReduce

job1 read only the output partitions of Job1. C-reducers
of Subjob2 read partitions of Job2 from both Subjob1
and Subjob2. Finally, C-reducers of Subjob3 read output
partitions of Job3 from all three subjobs.

In Hadoop, the dominant open-source MapReduce imple-
mentation today, C-mappers can be implemented utiliz-
ing the existing APIs and without modifying the Hadoop
framework itself. C-reducers, in contrast, require modifica-
tions to Hadoop reducer code. Special care must be taken
to preserve the fault tolerance of Hadoop, since C-reducers
break a key assumption of Hadoop by introducing dependen-
cies between Hadoop jobs.

In order to facilitate communication between job clients,
C-mappers and C-reducers of multiple subjobs, we utilize
Apache ZooKeeper, an open-source distributed coordination
service. We first recall some background about Hadoop and
ZooKeeper and then describe the architecture of C-mappers
and C-reducers.

5.1 MapReduce and Hadoop

In the open-source community, Hadoop [10] is a popular
implementation of the MapReduce paradigm. Data are ini-
tially partitioned across the nodes of a cluster and stored
in a distributed file system (DFS). Data are represented as
(key, value) pairs. The computation is expressed using
two functions:

Map (k1,v1) → list(k2,v2);
Reduce (k2,list(v2)) → list(k3,v3).

Figure 12 shows the data flow in a MapReduce compu-
tation. The computation starts with a Map phase in which
the map functions are applied in parallel on different parti-
tions of the input data, called splits. A Map task, or mapper,
is started for every split, and it iterates over all the input
(key, value) pairs applying the Map function. The
(key, value) pairs output by each mapper are assigned
a partition number based on the key and sorted by their par-
tition number and the key using a fixed-size memory buffer.
Once the buffer is filled up, the sorted run is spilled to the
local disk. At the end of the mapper execution, all the spills
are merged into a single sorted file and sent across the cluster

Fig. 12 Data flow in a MapReduce computation

123

602 J. Wolf et al.

in a shuffle phase. At each receiving node, a reduce task, or
reducer, fetches all of its sorted partitions during the shuffle
phase and merges them into a single sorted stream. All the
pair values that share a certain key are passed to a single
reduce call. The output of each reduce function is written
to a distributed file in the DFS.

Finally, the framework also allows the user to provide
initialization and teardown functions for each MapReduce
function and customized hashing and comparison functions
to be used when partitioning and sorting the keys.

5.2 ZooKeeper

circumflex needs to synchronize multiple Hadoop clients
that independently submit jobs for the same dataset into a
single circular scan. To this end, we need a distributed meta-
data store that can perform efficient distributed reads and
writes of small amounts of data in a transactional manner.
The Hadoop project includes just such a tool, a distributed
coordination service called Apache ZooKeeper [2,12]. Zoo-
Keeper is highly available, if configured with three or more
servers, and fault tolerant. Data are organized in a hierar-
chical structure similar to a file system, except that each
node can contain both data and subnodes. A node’s content
is a sequence of bytes and has a version number attached
to it. A ZooKeeper server keeps the entire structure and the
associated data cached in memory. Reads are extremely fast,
but writes are slightly slower because the data need to be
serialized to disk and agreed upon by the majority of the
servers. Transactions are supported by versioning the data.
The service provides a basic set of primitives, like create,
delete, exists, get, and set, which can be easily used
to build more complex services such as synchronization and
leader election. Clients can connect to any of the servers
and, in case the server fails, they can reconnect to any other
server while preserving sequential consistency. Moreover,
clients can set watches on certain ZooKeeper nodes and get
a notification if there are any changes to those nodes.

5.3 C-mappers and C-reducers

The C-map and C-reduce tasks get set up by job clients that
all connect to a single ZooKeeper service. ZooKeeper data
structure contains a node per dataset. When the client sets up
a job j that reads a dataset d, it locates this datasets’s node
Zd in ZooKeeper. First, it creates a ’lock’ subnode of Zd

and does not proceed until this write succeeds. This ensures
that all job clients that want to read the dataset are serialized
during the following critical section.

For every data split di of the dataset d, the client reads
the corresponding split data structure from the ZooKeeper
node Zdi , a child of Zd . If node Zdi exists in ZooKeeper, the

Fig. 13 MapReduce client (1) updates the data structure in ZooKeeper,
and (2) sets up C-map tasks, which in turn (3) read ZooKeeper

client appends j’s ID to the job list in the node—these splits
will be executed by the already existing subjobs. They basi-
cally “ride on the bus” that is already scheduled to leave the
“station,” so we refer to them as rider splits. If Zdi does not
exist, the client creates a new node Zdi , with only j’s ID in the
job list—these splits form the new subjob for j , and we call
them drivers. This critical section is fast, usually subsecond,
so performance impact of serialization is negligible.

For example, Fig. 13 shows a job client ofJob2 that needs
to read Dataset1, which consists of two splits. The cli-
ent reads the ZooKeeper structure for Split1 and appends
Job2. ForSplit2, the structure does not exist, so the client
creates it. Thus, for Job2, Split1 is a rider and Split2
is a driver.

For every rider split, the job client computes its reduce
partition offset—the sum of the number of partitions for all
the jobs before j in that split’s job list. Recall that a C-map-
per produces output partitions of all the jobs in its job list, in
order. For example, Subjob1 in Fig. 11 produces all output
partitions of Job1, followed by partitions Job2 and then
Job3. Thus, the partition numbers of Job1 are unchanged.
The partition numbers ofJob2 are shifted by a fixed offset—
the number of partitions of Job1. These output partitions
will be read by C-reducers of Subjob2, not Subjob1. For
Job3, the offset is the sum of partition counts of Job1 and
Job2.

The offset information is needed by both C-mappers (for
their partitioner functions) and C-reducers (to know which
partitions of previous subjobs to read). To store this infor-
mation, the job client creates a single node in ZooKeeper
that corresponds to job j . This node contains a table of splits
with their offset for partitions of job j , and the job ID of the
driver, the first job in the job list. This offset table is stored
in a compact form, since all splits in a subjob share the job
lists and the offsets.

123

On the optimization of schedules for MapReduce workloads 603

The client submits a job to MapReduce that has a C-map
task for every driver split. If there are no driver splits, the
job contains a single NO-OP Map task needed to start the
reducers. When a C-mapper starts, it reads the ZooKeeper
node that corresponds to its input split, and deletes this node,
making sure that it deletes the same version that it just read.
(Otherwise, it is read again.) This atomic read-and-delete
marks the cutoff when the bus leaves the station, so no more
jobs are allowed to ride. The C-mapper takes the job list from
its ZooKeeper node and proceeds to read the job configura-
tions of all these jobs, combining all their Map tasks into one.

The high-level architecture of a C-mapper is shown in
Fig. 11. A C-mapper runs initialization functions of its Map
tasks. Then, it reads the input records, for each record sequen-
tially invoking the Map function of every Map job. Each Map
function is given a different output collector, which acts as
a wrapper over the real output collector and prefixes every
output key with the job ID of the Map function producing
the output. Similarly, the C-mapper contains a custom com-
parator that unwraps the output key and calls the comparator
of the corresponding job. The C-mapper partitioner function
unwraps the key, calls the corresponding partitioner func-
tion, and also reads from ZooKeeper the job’s partition offset
within the split. The final partition number is obtained by add-
ing this offset and the partition number returned by the job’s
partitioner. Finally, the C-mapper runs the teardown func-
tions of its Map tasks. C-reducers start by reading their job’s
offset table from the ZooKeeper. For every split, the table
contains the driver job ID jd and a partition offset O . Nor-
mally, a reducer number N of a job j reads N ’s partition from
the output of every Map task of j . C-reducers also read par-
tition O + N of jd ’s output, for every split in the offset table.

In case of a system failure, this output partition may not
exist, and since job j has already finished, Hadoop cannot
re-execute its Map tasks as it normally does in case of fail-
ures. To work around this problem, C-reducer reports to the
framework that one C-mapper in its own job has failed and
needs to be re-executed, and puts the information about which
split needs to be rerun in ZooKeeper. Once the C-mapper is
restarted, it will find the split meta-data in ZooKeeper and
read that split instead of its assigned one.

Once all C-reduce tasks are complete, a customized clean-
up task removes the job’s offset table and other job-related
structures from the ZooKeeper.

6 Experiments

6.1 Simulation experiments

In this section, we describe a variety of simulation experi-
ments designed to show the performance of circumflex. In
the interests of space, we concentrate on average response

time, average stretch, and maximum stretch. The circum-
flex scheme can, as noted, handle other metrics as well. In
the interests of space, we have chosen maximum stretch as
representative and most important of the minimax metrics,
but maximum tardiness or lateness runs yield comparable
results.

We compare flex and circumflex with a batch variant
of our own design. (Recall that the ako batching schemes
described in [1] employed the PWT metric and are basically
off-line algorithms.) To compare batching fairly with flex
and circumflex, we have devised a scheme that batches
every dataset scan at the end of a fixed time interval W and
then combined this with a flex scheduling algorithm applied
to the resulting batches. The start times of the intervals are
offset evenly, depending on the dataset involved, to space
the batch arrivals as equally as possible. This batch scheme
seems to be in the spirit of ako. On the negative side, its
batching decisions are not as intelligent. On the positive side,
it also optimizes the chosen metrics quite well.

The experimental design is as follows. Each experiment
simulated 1000 arrivals for a total of D = 20 distinct datasets.
The popularity of each dataset is chosen by sampling from
the CDF of a Zipf-like distribution with parameter θ1 equal
to either 0, .25, .5, .75, or 1.0. (Zipf-like distributions [15]
on a set of size D employ a parameter θ between 0 and 1.
When θ = 1, the distribution is purely Zipf, and when θ = 0,
the distribution is uniform. Zipf-like distributions thus span
a wide variety of common skew patterns.) The arrival times
themselves are chosen according to a Poisson distribution.
The size of each dataset is chosen from a second Zipf-like
distribution with parameter θ2 equal to either 0, .25, .5, .75,
or 1.0. The dataset popularity and size Zipf-like distributions
are then positively or negatively correlated using a simple
scheme. If the correlation is perfectly positive, the largest
datasets are also the most popular. If the correlation is per-
fectly negative, the smallest datasets are most popular. If the
correlation is zero, there is no relation between dataset size
and popularity. We use 9 different parametric choices of cor-
relation. Combined with the 5 choices for each of θ1 and θ2,
this gives us excellent coverage, with 225 parametric alter-
natives. We assumed a total of S = 100 Map slots, corre-
sponding to a cluster of 25 nodes if there were 4 Map slots
per node. We ran each experiment for a nominal total of
T = 100 min, though we allowed the Map work to quiesce
past this time. Finally, we scaled the dataset sizes so that the
total Map times in a non-shared scenario corresponded to
90 % utilization. (This utilization is the total time spent by
the Map work divided by the product T S.)

In the experiments, we computed new schedules for each
of the alternative schemes upon each new arrival. These
schedules were then followed precisely until the next arrival.
Metrics for each arrival were computed, of course, based on
the difference between the arrival and completion times.

123

604 J. Wolf et al.

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6
O

bj
ec

tiv
e

F
un

ct
io

n
R

at
io

CIRCUMFLEX/FLEX
BATCH/FLEX

 0

 0.2

 0.4

 0.6

 0.8

 1

W
or

k
R

at
io

Negative Correlation Positive Correlation Negative Correlation Positive Correlation

CIRCUMFLEX/FLEX
BATCH/FLEX

Fig. 14 Average response time ratios, θ1 = θ2 = 1. a Objective function ratio, b work ratio

We ran 10 repetitions of each experiment, taking aver-
ages and standard deviations. We recorded the ratio of the
objective function value obtained using circumflex to that
of flex and similarly that of batch to flex. We also com-
puted the ratio of the total work for circumflex and batch
to that of flex. For circumflex, we averaged the maxi-
mum number of concurrent subjobs over all datasets, and
for batch we averaged the maximum number of jobs bat-
ched together over all datasets. We used batching intervals
per dataset of W = 2 min (yielding 50 or 51 such intervals
in 100 min) as a base case. Note that this adds an average
latency of 1 min to each arrival.

Figure 14a shows the average response time ratios of
circumflex and batch to flex for the highly skewed case
θ1 = θ2 = 1. Note that the performance of circumflex
improves as the correlation ranges from perfectly negative
to perfectly correlated. Compared with flex, which is opti-
mizing average response time as well, circumflex average
response times decrease from 81 % down to 47 %. There
is reason to believe that dataset popularity and size might
sometimes be negatively correlated, because, for example,
many MapReduce jobs might involve the most recent day of
data. But even in this case, circumflex performs 19 % better
than flex. (In the absence of shared scans, flex does very
well on all metrics, compared to the performance of fair
and fifo [26].) On the other hand, batch always performs
worse than flex, because of the trade-offs involved. In the
case of perfectly negative correlation, batch is 48 % worse
than flex. In the perfectly positive correlation case, batch
is still 11 % worse. Standard deviations of these ratios (not
shown) are very modest for circumflex, relatively less so
for batch. This is an indication of the robustness of the cir-
cumflex scheme. Figure 14b shows the comparable work
ratios for this same example. Both ratios generally decrease
from left to right, as one would expect. As expected, circum-
flex does more work than batch but less work than flex.
The maximum number of concurrent circumflex subjobs
averaged 2.8 in the most negatively correlated case and 4.3 in
the most positively correlated case. The maximum number of

jobs batched together ranged from 4.8 to 5.0, also indicative
of the greater efficiency of batch.

Figure 15a shows the ranges of the circumflex-to-flex
ratio and the batch-to-flex ratio for all 25 parametric
choices of θ1 and θ2. These are arranged in 5 “planes” of
5 values each. The leftmost group of 5 all correspond to
θ1 = 0 and individually to θ2 = .25 ∗ τ , where τ ranges
from 0 to 4. (Thus, the detailed data in Fig. 14a are shown in
summary form in the rightmost pair of bars in Fig. 15a: the
minimum, median, and maximum value across all 9 correla-
tion parameters are shown for each objective function ratio,
for both circumflex and batch. Note that this is possible to
show because the ratios never overlap. The worst circum-
flex ratio is always better than the best batch ratio for any
particular choice of θ1 and θ2. Indeed, the worst circumflex-
to-flex ratio (.98) in the entire graph is essentially identical
to the best batch-to-flex ratio overall (.97). It is also clear
that the ratios for circumflex are much more consistent and
tightly clustered across the parametric choices than the ratios
for batch. circumflex always performs better than flex,
and batch nearly always performs worse than flex: The
extra average latency of 1 min is too great an impediment for
batch to overcome.

Figure 15b, c illustrate the corresponding results for
average and maximum stretch, respectively. (For maximum
stretch, the metric is calculated as the largest value over all
1,000 arrivals.) In both of these metrics, the relative perfor-
mance of circumflex is even stronger than it is for average
response time. A small dataset scan that arrives early in a
batching interval causes a high average stretch value and a
very high maximum stretch value. Both the average and max-
imum stretch ratios vary widely, depending on the paramet-
ric choices. They are never nearly as good as flex. On the
other hand, the performance of circumflex in both cases
is extremely predictable and always much better than that
of flex. In the case of maximum stretch, the performance
differences are dramatic.

We also ran experiments for the average stretch ratios of
circumflex and batch to flex for the modestly skewed

123

On the optimization of schedules for MapReduce workloads 605

 0

 0.5

 1

 1.5

 2

O
bj

ec
tiv

e
F

un
ct

io
n

R
at

io

Popularity and Size Skew

CIRCUMFLEX/FLEX
BATCH/FLEX

 0

 1

 2

 3

 4

 5

Popularity and Size Skew

CIRCUMFLEX/FLEX
BATCH/FLEX

 0

 2

 4

 6

 8

 10

 12

Popularity and Size Skew

CIRCUMFLEX/FLEX
BATCH/FLEX

(a)

(b)

(c)

Fig. 15 Ratio summaries. a Average response time, b average stretch,
c maximum stretch

case θ1 = θ2 = .5. Here, circumflex improves much
more modestly with correlation, from 81 % of flex on
the left to 68 % on the right. Standard deviations remain
quite low, because the circumflex scheme is highly robust.
But the batch-to-flex average stretch ratio is essentially
indifferent to the correlation parameter and has a high stan-
dard deviation. Moreover, the ratio is itself quite high, with
batch between 83 and 103 % worse than flex. Work ratios
(not shown) are between 86 and 92 % for circumflex and
between 78 and 85 % for batch.

Consider the maximum stretch ratios in the somewhat
more skewed case θ1 = θ2 = .75. The metric produces
circumflex to flex of 89 % in the perfectly negatively cor-
related case and 74 % in the perfectly positively correlated
case. But the ratio of batch to flex actually increases from

214 to 250 %. This seems to indicate that batch is not a
good scheme for the maximum stretch metric, unless effi-
ciency is of paramount concern. The work ratios (not shown)
for batch to flex decrease from 84 to 72 %. But even here,
the slightly less efficient (92–82 %) circumflex scheme has
none of the negative performance properties of batch.

While we have not shown all base case experiments in
the interest of space, these figures are quite representative.
For example, in the case of average response time, in 225
experiments, the best average circumflex-to-flex ratio was
41 %, and the worst was 84 %. In the same experiments, the
best average batch-to-flex ratio was 87 %, and the worst
was 191 %. Thus, circumflex performs better than flex
(and better than batch) in all cases. By contrast, batch
performs better than flex in 20 (8 %) of the cases. Similar
statements are true for both stretch metrics.

The scheme in [1] made the reasonable simplifying
assumption that nearly all the work of the Map phase is in the
scanning, so that the subsequent computational work can be
ignored. We choose the same as a base case for the cleanest
possible exposition of the benefits of circumflex. Our sim-
ulation experiments with varying the fraction of Map phase
work which is due to the scans behave entirely in the expected
manner, so we do not show them.

6.2 Benchmark experiments

To evaluate the effectiveness of circumflex in a real-world
setting, we performed experiments for the case where there is
only one dataset. (Recall that we used twenty in our simula-
tions.) Employing just one dataset allows to ignore the effects
of the scheduler, because there are no scheduling decisions
to be made. This, in turn, allows us to focus directly on the
comparison of cyclic piggybacking with batching.

Our workloads were constructed from a set of queries of
the Star Schema Benchmark (SSB) [18], running over a one
TB scale SSB dataset. All the experiments were executed
on a 42-node IBM iDataPlex cluster. Each node has 8 cores,
32GB of RAM, and 5 disks. Our Hadoop v0.21 used 1 mas-
ter and 40 slave nodes. The last node was used for clients
submitting the queries.

6.2.1 Clydesdale cyclic piggybacking implementation

We executed the queries using Clydesdale [14], a research
prototype for structured data processing on Hadoop. Clydes-
dale achieves dramatic performance improvements over
existing solutions without any changes to the underlying
MapReduce implementation. To the best of our knowledge,
Clydesdale is the fastest solution for processing workloads
on structured datasets that fit a star schema on Hadoop. For
example, on the Star Schema Benchmark, Clydesdale is on
average 38 times faster than Apache Hive [22], the dominant

123

606 J. Wolf et al.

approach for structured data processing on Hadoop today.
Clydesdale achieves this through a novel synthesis of several
techniques from the database literature, such as columnar
data storage [9], specialized star-join operators, and hash-
based local aggregation [24]. Each of these were carefully
adapted to the Hadoop environment.

The version of Clydesdale that we used [3] further
improves query response time by bypassing the Hadoop job
submission mechanism. Accordingly, Clydesdale achieves
maximum efficiency, and the bulk of the processing time
is actually spent scanning the data. This makes Clydes-
dale a perfect target for shared scans, either through cyclic
piggybacking or batching. We have observed a throughput
improvement of up to 3 times for cyclic piggybacking, as
compared with sequential query submission. Improvements
in average response times were even higher.

The Clydesdale query processor is started by submitting
a single Map-only Hadoop job. This starts the worker pro-
cesses, implemented as Hadoop mappers. The queries are
submitted through ZooKeeper. Every worker gets the query
information from ZooKeeper, processes the query on its splits
of the dataset, and sends the results of local aggregation to
the client. Upon query completion, the Hadoop job does not
terminate. The workers simply stay idle, waiting for the next
query.

Since Clydesdale does not use all of Hadoop’s mecha-
nisms, we had to adapt circumflex implementation descri-
bed in Sect. 5 appropriately. In particular, the C-reducer
implementation had to be modified to run in Clydesdale’s
client module, though its ZooKeeper-based communication
module remained largely the same. All the C-maps that
access the same dataset now run as different threads of the
same Hadoop Map task (or Clydesdale worker).

Normally, Clydesdale shared scans operate in cyclic pig-
gybacking mode, where each worker goes through all of its
splits in the same order. The queries arrive at any time and
leave once they have been processed on all the splits. To com-
pare circumflex with various batching schemes, we have
also implemented a batch mode, where Clydesdale workers
execute only the set of queries that they find upon initializa-
tion. These batch workers scan every split exactly once and
terminate once the initial set of queries is executed.

The query response time is measured on the client as
the difference between the query completion time (obtain-
ing the entire final result) and the query submission time.
Thus, response time includes transmission of the query to the
workers, through ZooKeeper, setting up per-query structures,
scanning and executing the query on each worker, transmit-
ting the results of local aggregation back to the client, and
performing the final aggregation of the local aggregates.

The best possible response time for an average query, as
obtained by running on an idle Clydesdale system, is about
9 s. The bulk of that time (over 6 s) is spent scanning the splits

and executing the query’s Map function for every record. All
other stages of the query execution are typically subsecond.
In the next section, we will see that circumflex approaches
this minimum response time as interarrival times increase.

6.2.2 Experiment results

We compare average response time and makespan (which is
inversely related to throughput) of Clydesdale running cir-
cumflex with two types of batching schemes: time-based
and size-based. The time-based scheme launches a Clydes-
dale execution every W seconds, assuming at least one query
has arrived. The size-based scheme launches an execution
when N queries have arrived.

Since Clydesdale can only efficiently run one batch at
a time, we improve batching performance by introducing a
heuristic that does not start a batch until the previous one is
completed. When a batch starts, it will execute all the jobs
that have already arrived and have not yet been executed. It is
easy to see that this heuristic is guaranteed not to increase
average response time or makespan. In reality, it improves
them substantially.

The experimental design is as follows. Each experiment
consisted of running the same set of 24 SSB queries, arriv-
ing at random times chosen according to a Poisson distribu-
tion. We varied the average interarrival time from .5 to 10 s.
We repeated every experiment with 5 different seeds for the
arrival time random number generator and report the average
of these 5 runs.

Figure 16a, b compare average response time and make-
span (wall clock time) for circumflex experiments (marked
CFLEX) with that of a few representative variations of
the batching scheme and with sequential query execution
(marked NOSHARE). It is easy to see that if queries arrive
closely together, batching (especially with large batch sizes)
is much better than sequential execution. However, if queries
are spaced out such that there is little overlap, sequential exe-
cution is better, especially in terms of response time.

In Fig. 16a, we notice that SIZE-12 performs better than
SIZE-1 for small interarrival times, as expected. However, as
the interarrival times increases to about 1.5 s, SIZE-1 catches
up with SIZE-12 and soon dominates it significantly. An opti-
mal batch size would depend on the interarrival time, and in
fact, from Fig. 17a, we see that a batch size of 4 performs best
for interarrival times up to 5 s. In all cases, circumflex out-
perfoms size-based batching, sometimes even by a factor of 3.

circumflex is clearly and uniformly better than all of the
alternatives. If there were exactly zero overlap between query
executions, circumflex and sequential execution would
have the same performance. However, given Poisson interar-
rival times, even with 10 s averages, some queries will arrive
closely together. Thus, circumflex performs better even in
such cases.

123

On the optimization of schedules for MapReduce workloads 607

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(S
ec

on
ds

)

Interarrival Time (Seconds)

CFLEX

NOSHARE

SIZE-1

SIZE-12

TIME-3

TIME-24

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10

M
ak

es
pa

n
(S

ec
on

ds
)

Interarrival Time (Seconds)

CFLEX

NOSHARE

SIZE-1

SIZE-12

TIME-3

TIME-24

(a) (b)

Fig. 16 CIRCUMFLEX versus sequential execution versus batching. a Average response time, b makespan

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(S
ec

on
ds

)

Interarrival Time (Seconds)

CFLEX

SIZE-1

SIZE-2

SIZE-3

SIZE-4

SIZE-6

SIZE-12

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10

M
ak

es
pa

n
(S

ec
on

ds
)

Interarrival Time (Seconds)

CFLEX

SIZE-1

SIZE-2

SIZE-3

SIZE-4

SIZE-6

SIZE-12

(a) (b)

Fig. 17 CIRCUMFLEX versus size-based batching. a Average response time, b makespan

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(S
ec

on
ds

)

Interarrival Time (Seconds)

CFLEX

TIME-3

TIME-6

TIME-12

TIME-24

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10

M
ak

es
pa

n
(S

ec
on

ds
)

Interarrival Time (Seconds)

CFLEX

TIME-3

TIME-6

TIME-12

TIME-24

(a) (b)

Fig. 18 CIRCUMFLEX versus time-based batching. a Average response time, b makespan

Figure 17a, b compare circumflex experiments with
size-based batching, using batch size N of 1, 2, 3, 4, 6, and 12
queries. Similarly, Fig. 18a, b show comparisons with time-

based batching. The batch window W are 3, 6, 12, and 24 s.
circumflex remains dominant.

123

608 J. Wolf et al.

In Fig. 18a, notice that batching with smaller time
windows performs consistently better than with larger time
windows, for all query interarrival times. This may sound
counterintuitive, but recall that the batching heuristic ensures
that only one batch runs at a time. As a consequence, the
average time between batches spawned is larger than the
batch time window. This results in better performance than
expected for small batch time windows, especially for small
interarrival times.

7 Conclusions

In this paper, we have introduced circumflex, a new sched-
uler for Map phase jobs in MapReduce environments. This
scheme has major advantages over the previous ako scheme.
circumflex is a two stage approach. In the first stage, cyclic
piggybacking provides a natural and effective technique for
amortizing the costs of shared scans. Jobs are decomposed
into a number of subjobs, which are related by natural pre-
cedence constraints. In the second stage, the resulting pre-
cedence scheduling problem is solved for any of a variety
of metrics, including average response time, average stretch,
and maximum stretch.

Of course, circumflex works best in an environment in
which many closely arriving jobs scan the same dataset or
datasets. Nevertheless, the scheme will work entirely satis-
factorily even if all jobs scan separate datasets. In particular,
such a scenario will not cause any significant additional over-
heads relative to the original MapReduce scheduling para-
digm and still provide some performance gains. If employed
in the environment for which it was designed, the benefits
can be large. For instance, we observed great performance
improvements using cyclic piggybacking in our Clydesdale
prototype, both in terms of makespan (up to a factor of 3)
and average response time (up to a factor up to 5).

Our experiments comparing circumflex with flex and
batch show that the benefits of circumflex can be large.
Moreover, circumflex works well in a general overlapping
dataset environment, resulting in a number of subjobs related
by more arbitrary precedence constraints. In this scenario,
circumflex can optimize any minimax metric, including
maximum stretch.

In the future, we plan to implement and evaluate using
Clydesdale a generalized version of circumflex capable of
dealing with overlapping datasets. We are currently working
on implementing a split elimination feature in Clydesdale
which will make the overlapping datasets scenario common-
place. Using this feature, Clydesdale will be able to skip
scanning a split if it can guarantee, based on some precom-
puted statistics, that none of the records stored in this split
can satisfy the query. Thus, two different queries on the same
dataset will in reality scan different subsets of the dataset’s

splits, resulting in an overlapping dataset problem. We also
plan to work on efficient algorithmic solutions for truly large
circumflex problem instances.

References

1. Agrawal, P., Kifer, D., Olston, C.: Scheduling shared scans of large
data files. Proc. VLDB Endlow. 958–969 (2008)

2. Apache ZooKeeper: http://hadoop.apache.org/zookeeper
3. Balmin, A., Kaldewey, T., Tata, S.: Clydesdale: Structured data

processing on Hadoop. Proceedings of SIGMOD (2012)
4. Blazewicz, J., Ecker, K., Schmidt, G., Weglarz, J.: Scheduling

in Computer and Manufacturing Systems. Springer, New York
(1993)

5. Blazewicz, J., Kovalyov, M., Machowiak, M., Trystram, D.,
Weglarz, J.: Malleable task scheduling to minimize the make-
span. Ann. Oper. Res. 129, 65–80 (2004)

6. Candea, G., Polyzotis, N., Vingralek, R.: Predictable performance
and high query concurrency for data. VLDB J. 20(2), 227–248
(2011)

7. Coffman, E., Garey, M., Johnson, D., Tarjan, R.: Performance
bounds for level-oriented two-dimensional packing problems.
SIAM J. Comput. 9(4), 808–826 (1980)

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on
large clusters. ACM Trans. Comput. Syst. 51(1), 107–113 (2008)

9. Floratou, A., Patel, J., Shekita, E., Tata, S.: Column-oriented stor-
age techniques for MapReduce. Proc. VLDB Endow. 4(7), 419–429
(2011)

10. Hadoop. http://hadoop.apache.org
11. Harizopoulos, S., Ailamaki, A., Shkapenyuk, V.: QPipe: a simul-

taneously pipelined relational query. Proceedings of SIGMOD
(2005)

12. Hunt, P., Konar, M., Junqueira, F., Reed, B.: ZooKeeper: wait-free
coordination for internet-scale systems. Proceedings of USENIX
(2010)

13. Ibaraki, T., Katoh, N.: Resource Allocation Problems. MIT
Press, Cambridge, MA (1988)

14. Kaldeway, T., Shekita, E., Tata S. Clydesdale: Structured data pro-
cessing on MapReduce. Proceedings of Extending Database Tech-
nology (2012)

15. Knuth, D.: The Art of Computer Programming. Addison-Wesley,
Reading, MA (1998)

16. Leung, J., E.: Handbook of Scheduling. Chapman and Hall/CRC,
London (2004)

17. Nykiel, T., Potamias, M., Mishra, C., Kollios, G., Koudas, N.:
MRShare: sharing across multiple queries in MapReduce. Proc.
VLDB Endow. 3(1–2), 494–505 (2010)

18. O’Neil, P., O’Neil, E., Chen, X.: The Star Schema Benchmark
(SSB). http://www.cs.umb.edu/poneil/StarSchemaB.PDF

19. Pinedo, M.: Scheduling: Theory, Algorithms and Systems. Prentice
Hall, Englewood Cliffs, NJ (1995)

20. Qiao, L., Raman, V., Reiss, F., Haas, P., Lohman, G.: Main-memory
scan sharing for multi-core CPUS. Proc. VLDB Endow. 610–621
(2008)

21. Schwiegelshohn, U., Ludwig, W., Wolf, J., Turek, J., Yu, P.: Smart
SMART bounds for weighted response time scheduling. SIAM J.
Comput. 28, 237–253 (1999)

22. Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Zhang, N.,
Anthony, S., Liu, H., Murthy, R.: Hive—a petabyte scale data ware-
house using Hadoop. International Conference on Data Engineer-
ing (2010)

23. Turek, J., Wolf, J., Yu, P.: Approximate algorithms for scheduling
parallelizable tasks. Proceedings of SPAA (1992)

123

http://hadoop.apache.org/zookeeper
http://hadoop.apache.org
http://www.cs.umb.edu/poneil/StarSchemaB.PDF

On the optimization of schedules for MapReduce workloads 609

24. Vernica, R., Balmin, A., Beyer, K., Ercegovac, V.: Adaptive
MapReduce using situation-aware mappers. Proceedings of
Extending Database Technology (2012)

25. Wang, X., Sarma, A., Olston, C.,Burns, R.: CoScan: Cooperative
scan sharing in the cloud. Proceedings of SOCC (2011)

26. Wolf, J.L., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V.,
Parekh, S., Wu, K.-L., Balmin, A.: FLEX: a slot allocation sched-
uling optimizer for MapReduce workloads. Proceedings of Mid-
dleware (2010)

27. Wolf, J.L., Squillante, M.S., Turek, J.J., Yu, P.S., Sethuraman,
J.: Scheduling algorithms for the broadcast delivery of digital prod-
ucts. IEEE Trans. Knowl. Data Eng. 13(5), 721–741 (2001)

28. Zaharia, M.: Hadoop fair scheduler design document. http://svn.
apache.org/repos/asf/hadoop/mapreduce/trunk/src/contrib/fairsch
eduler/designdoc/fair_scheduler_design_doc.pdf

29. Zaharia, M., Borthakur, D., Sarma, J., Elmeleegy, K., Shenker,
S., Stoica, I.: Job scheduling for multi-user MapReduce clusters.
Technical Report EECS-2009-55, UC Berkeley Technical Report
(2009)

30. Zaharia, M., Borthakur, D., Sarma, J., Elmeleegy, K., Shenker,
S., Stoica, I.: Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling. Proceedings of EuroSys
(2010)

31. Zukowski, M., Héman, S., Nes, N., Boncz, P.: Cooperative scans:
dynamic bandwidth sharing in a DBMS. Proc. VLDB Endow. 723–
734 (2007)

123

http://svn.apache.org/repos/asf/hadoop/mapreduce/trunk/src/contrib/fairscheduler/designdoc/fair_scheduler_design_doc.pdf
http://svn.apache.org/repos/asf/hadoop/mapreduce/trunk/src/contrib/fairscheduler/designdoc/fair_scheduler_design_doc.pdf
http://svn.apache.org/repos/asf/hadoop/mapreduce/trunk/src/contrib/fairscheduler/designdoc/fair_scheduler_design_doc.pdf

	On the optimization of schedules for MapReduce workloads in the presence of shared scans
	Abstract
	1 Introduction
	2 Batching and CIRCUMFLEX cyclic piggybacking
	2.1 Batching
	2.2 Cyclic piggybacking

	3 Scheduling preliminaries
	3.1 MapReduce scheduling layers
	3.1.1 Allocation layer
	3.1.2 Assignment layer

	3.2 Scheduling metrics
	3.2.1 Response time
	3.2.2 Number of tardy jobs
	3.2.3 Tardiness
	3.2.4 Lateness
	3.2.5 SLA costs

	3.3 Speedup functions
	3.4 Moldable and malleable scheduling
	3.5 Malleable scheduling and the model
	3.6 Malleable scheduling with precedence constraints
	3.7 Epoch-based scheduling

	4 CIRCUMFLEX scheduling
	4.1 Precedence
	4.2 Finding a priority ordering
	4.2.1 Weighted average response time
	4.2.2 Minimax problems

	4.3 Ready List Malleable Packing scheme
	4.4 Algorithmic complexity

	5 CIRCUMFLEX implementation
	5.1 MapReduce and Hadoop
	5.2 ZooKeeper
	5.3 C-mappers and C-reducers

	6 Experiments
	6.1 Simulation experiments
	6.2 Benchmark experiments
	6.2.1 Clydesdale cyclic piggybacking implementation
	6.2.2 Experiment results

	7 Conclusions
	References

