
The VLDB Journal (2015) 24:169–192
DOI 10.1007/s00778-011-0262-6

SPECIAL ISSUE PAPER

Clustering and aggregating clues of trajectories for mining
trajectory patterns and routes

Chih-Chieh Hung · Wen-Chih Peng · Wang-Chien Lee

Received: 24 September 2010 / Revised: 28 September 2011 / Accepted: 1 November 2011 / Published online: 20 November 2011
© Springer-Verlag 2011

Abstract In this paper, we propose a new trajectory
pattern mining framework, namely Clustering and Aggre-
gating Clues of Trajectories (CACT), for discovering
trajectory routes that represent the frequent movement
behaviors of a user. In addition to spatial and temporal
biases, we observe that trajectories contain silent durations,
i.e., the time durations when no data points are available to
describe the movements of users, which bring many chal-
lenging issues to trajectory pattern mining. We claim that a
movement behavior would leave some clues in its various
sampled/observed trajectories. These clues may be extracted
from spatially and temporally co-located data points from
the observed trajectories. Based on this observation, we pro-
pose clue-aware trajectory similarity to measure the clues
between two trajectories. Accordingly, we further propose
the clue-aware trajectory clustering algorithm to cluster
similar trajectories into groups to capture the movement
behaviors of the user. Finally, we devise the clue-aware tra-
jectory aggregation algorithm to aggregate trajectories in the
same group to derive the corresponding trajectory pattern and
route. We validate our ideas and evaluate the proposed CACT
framework by experiments using both synthetic and real data-
sets. The experimental results show that CACT is more effec-
tive in discovering trajectory patterns than the state-of-the-art
techniques for mining trajectory patterns.
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1 Introduction

Owing to the pervasiveness of GPS-equipped mobile devices
today, the locations of users can be easily determined and
shared with friends via social networking web sites such as
Google Latitude and Foursquare. Notice that movements of
mobile users can be captured as trajectories. For example,
time-stamped and geotagged photographs shared by a user
on Flickr may provide the trajectory of her photo-shooting
trip. Moreover, some time-sorted check-in records of a user
on Foursquare also form a trajectory. Furthermore, a number
of web sites have been hosting the sharing of user-generated
trajectory data [1]. Obviously, user trajectories provide very
valuable information that can be useful for various location-
based services such as trip planning, personalized navigation
routing services, mobile commerce, and location-based rec-
ommendation services. In these application domains, tech-
niques for mining trajectory patterns and frequent trajectory
routes are very important. In this paper, we study data mining
techniques for discovering the frequent trajectory patterns
and routes of individual users.

Mining trajectory patterns and routes are very challenging
due to inherent noises and the limitations of trajectory acqui-
sition technology. Generally speaking, a trajectory consists
of sequential data points recording the locations and asso-
ciated occurrence time sampled from the movements of a
user. Given the logged historic trajectories of the user, we
not only aim to identify the sequential relationships, also
termed as the movement behavior, among regions where
the user frequently passes by but also to construct detailed
trajectory routes that represent these movement behaviors.
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Fig. 1 An example of trajectories from the CarWeb dataset. a T1. b T2. c T3. d Time representation

The prior work in [8] defines general movement behavior
that consists of movement features, such as velocity, acceler-
ation, and spatial regions. In this paper, we study the move-
ment behavior in terms of spatial regions. Nevertheless, as
reported in many prior works, trajectories exhibit certain spa-
tial/temporal biases and temporal shifts. In other words, the
locations and occurrence time of data points in two trajecto-
ries are usually not the same, even if these two trajectories
capture the same movement behavior of the user. We use
Fig. 1 as an example to illustrate the spatial/temporal biases,
temporal shifts, and a phenomenon called silent duration that
frequently appears in trajectories. Figure 1a–c show three tra-
jectories T1, T2 and T3, respectively, collected from our Car-
Web service.1 These three trajectories actually logged the
same movement behavior of a user. Notice that the roman
numbers associated with the data points represent their sam-
pling order in the corresponding trajectories. Figure 1d shows
the timestamps of all data points (and their corresponding
trajectories) in the time line. It can be seen in Fig. 1 that
data points of T1 and T3 are not exactly aligned in either
spatial or temporal dimensions, even though these two tra-
jectories capture the same movement behavior of the user.
Compared to T1 and T3, T2 is delayed for approximately 2
time slots. This is referred to as the temporal shift of tra-
jectories in this paper. Consider the data points collected at
time slot 7 in T1 and T3. While these two trajectories do not
have time shifts, there is a spatial bias since the location of
data point III in Fig. 1a is clearly different from that of data
point IV in Fig. 1c. Additionally, trajectory data may also
exhibit the silent duration phenomenon that, to the best of
our knowledge, has not been explicitly addressed previously
in the literature. The silent duration denotes a time duration
when there is no data point presence due to data loss or sam-
pling strategies employed in forming a trajectory. As shown
in Fig. 1d, data points are not available at all the time slots.

1 Some trajectories of this datasets are available in http://www.cs.nctu.
edu.tw/hungcc/CarWeb.htm.

Thus, detailed information between two data points of the
trajectories is missing. For example, the route information
between data point I and data point II of trajectory T1 shown
in Fig. 1a is not available. Clearly, the movement paths at
silent durations are uncertain. While many research effort has
been put forth to address the issues of uncertain data man-
agement [26], it is out of the scope of our work. Here, we aim
to develop a framework to discover trajectory patterns and
routes. By clustering and aggregating trajectories, our pro-
posed framework infers movement paths at silent durations,
which is very challenging due to the unique characteristics
of trajectories (i.e., spatial and temporal bias, temporal shifts
and silent durations).

As mentioned earlier, given the trajectories of a user, we
aim to determine the frequent trajectory routes of this user
in addition to his/her trajectory patterns. Consider again the
three trajectories in Fig. 1 that capture the same movement
behavior of a user. It is intuitively challenging to identify
the actual routing path behind these three trajectories. While
a considerable amount of research efforts on trajectory pat-
tern mining have been reported in the literature [2,11,14,23],
they mostly focus on discovering frequent sequences of “hot
regions” where the user frequently appears, rather than piec-
ing together the routing paths among hot regions. Even worse,
due to the existence of silent durations, they are not able to
generate a sufficient number of hot regions, not to mention
capturing the trajectory routes among the hot regions in the
discovered trajectory patterns. Furthermore, a user usually
has more than one movement behaviors hidden in the logged
trajectories. As a result, the hot regions identified from the
whole collection of a user’s trajectories may be too general
to precisely represent her movement behaviors. To address
this issue, an idea is to first cluster the trajectories of a user
into several groups. Each group of similar trajectories is sup-
posed to represent one movement behavior of the user. Thus,
the hot regions (as well as the trajectory route) derived from
trajectories in the same group are more representative of the
particular movement behavior.
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Fig. 2 Clustering and aggregating for deriving frequent trajectory routes
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Fig. 3 Overview of our proposed framework CACT

To illustrate the research tasks and issues faced to achieve
our goal, we consider Fig. 2, where six trajectories repre-
senting two movement behaviors (i.e., circle and S-shape
movements) are given. Our goal is to derive trajectory pat-
terns and routes as shown in the right-hand side of Fig. 2.
With the presence of silent durations in these trajectories,
it is very difficult to determine whether two given trajecto-
ries are similar, i.e., capturing the same movement behavior
or not. Therefore, there is a need to define a new similarity
measure for comparing a pair of trajectories with silent dura-
tions. Based on the similarity among pairs of trajectories, one
could cluster similar trajectories into groups (as depicted in
Fig. 2). Finally, data points of trajectories in the same cluster
could be aggregated to infer the trajectory pattern and route.
Based on the above observations, three major challenges to
be addressed in this paper are summarized as follows:

– Define a new similarity measure for trajectories with
silent durations.

– Design a new clustering technique that exploits the pro-
posed new similarity measure to group trajectories with
silent durations.

– Generate trajectory patterns and routes for the trajectory
clusters to represent the underlying movement behavior.

In this paper, we propose a new trajectory pattern min-
ing framework, called Clustering and Aggregating Clues of
Trajectories (CACT), for discovering trajectory patterns and
deriving trajectory routes that represent the movement behav-
iors of a user. As suggested by its name, the framework is
built upon an important notion of clues. We observe that

trajectories obtained by sampling the same movement behav-
ior are likely to consist of some spatially and temporally close
data points that capture certain common partial movement
behaviors of the user. These spatially and temporally close
data points provide important clues hinting at the underlying
movement behavior. Thus, trajectories with the close clues
should be clustered together. However, even if we are able to
cluster together the trajectories sampled from the same move-
ment behavior, the trajectories in a cluster may only represent
a partial trajectory route. Hence, we need to further merge
several partial trajectory routes into a more complete trajec-
tory route. To do so, one may identify clues among clusters
for possible merges. Consider T1 and T2 in Fig. 1a, b. The
data point II and data point III in T2 are close to data points II
and IV in T3. Thus, these two trajectories are likely to refer
to the same movement behavior.

Figure 3 shows the proposed framework CACT that con-
sists of three primary components, including (i) clue-aware
trajectory similarity (CATS), (ii) clue-aware trajectory clus-
tering (CATC), and (iii) clue-aware trajectory aggregation
(CATA), corresponding to the research issues discussed ear-
lier. Notice that CATS identifies clues among trajectories first
and then uses them to measure the pair-wise similarity among
trajectories. In light of CATS, CATC exploits clues between
trajectories to group similar trajectories into clusters such that
each cluster represents one movement behavior of the user.
Specifically, given a set of trajectories with pair-wise similar-
ity measures, a clue-graph is constructed to capture the simi-
larity relationship among trajectory pairs. By deriving cliques
in the clue-graph, CATC is able to obtain clusters of tra-
jectories that have high similarity and further merge similar
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clusters into a larger cluster based on the notion of clues.
Finally, by aggregating trajectories in the same cluster, CATA
derives the corresponding trajectory pattern and route. Notice
that the proposed trajectory pattern mining framework is not
only able to discover trajectory patterns but also trajectory
routes to capture the frequent movement behaviors of a user.
Extensive experiments using both real and synthetic datasets
are conducted for performance evaluation. We compare the
proposed algorithms with existing similarity measures, clus-
tering algorithms and trajectory pattern mining algorithms.
The results show that CACT can discover trajectory patterns
effectively, even if trajectories with silent durations do not
fully capture the complete movement route of a user.

The primary contributions made in this research study are
fivefold:

– To the best of our knowledge, this is the first work that
addresses the issue of silent durations in frequent trajec-
tory pattern mining.

– A new similarity measure based on the notion of clues in
trajectories of the same movement behavior is proposed.

– Based on the proposed clue-aware similarity, a clue-aware
trajectory clustering algorithm is developed.

– New trajectory patterns, represented as trajectory routes,
based on spatial-temporal hot regions derived in our
framework are discovered.

– A comprehensive performance evaluation is conducted.
Experimental results show the superiority of our proposed
methods over existing works.

The rest of the paper is organized as follows. Related
works are discussed in Sect. 2. Our research problem is for-
mulated in Sect. 3. The three components of the CACT frame-
work, i.e., CATS, CATC and CATA, are detailed in Sects. 4,
5 and 6, respectively. The experimental results are shown in
Sect. 7. Finally, Sect. 8 concludes the paper.

2 Related works

In this section, we first review some existing similarity mea-
sures for a pair of trajectories and then survey the trajectory
clustering techniques. Finally, we discuss related works on
trajectory pattern mining.

2.1 Similarity measures

A considerable amount of research efforts have been put forth
on similarity measures for both trajectory data (e.g., LCSS
[31], ERP [3], EDR [4], and RTSD [29]) and time series data
(e.g., DTW [18,33], SpADe [5], and wDF[6]). Since our goal
is to identify similar movement behaviors from trajectories,
we compare the proposed similarity with LCSS, DTW, EDR

Table 1 Comparison of similarity measurements

Functions Temporal Time Space Mapping Empty
shifts sensitive quantization scheme mapping

DTW
√

None 1− n/n − 1

LCSS
√ √

Discrete 1− 1
√

EDR
√

Discrete 1− 1
√

wDF
√ √

None 1− 1

CATS
√ √

Continuous n − 1
√

and wDF. Table 1 summaries these existing similarity mea-
sures and their capabilities or schemes in dealing with the
following five issues: (a) temporal shifts; (b) time sensitivity,
(c) space quantization, (d) mapping of data points, and (e)
empty mapping. The issue of temporal shifts, which has been
discussed earlier, is handled well by all the compared similar-
ity measures. On the other hand, time sensitivity indicates the
capability of identifying two trajectories that have the same
spatial feature but the occurrence time of data points in these
two trajectories are different. Next, the issue of space quan-
tization concerns how to assign weights to overcome spatial
bias. Existing similarity measures assign different weights to
data points from different trajectories based on their distance.
The weights are then aggregated as a score as the similarity
measure of two trajectories. There are two kinds of space
quantization: one is the discrete scheme and the other is the
continuous scheme. For the discrete scheme, if the distance
between two data points is larger than a spatial threshold,
the weight for these two data points is set to 0. Otherwise,
the weight is set to 1. For the continuous scheme, pairs of
data points with distances smaller than the spatial thresh-
old are assigned different weights. Given two trajectories
(e.g., Ti and Tj ), a mapping scheme represents how to map
one data point of trajectory Ti to data points of trajectory
Tj when computing the similarity value. Mapping scheme
1 − n denotes that a data point of Ti may be mapped to n
data points of Tj ; scheme n − 1 denotes that n data points
of Ti could be mapped to one data point of Tj ; and scheme
1−1 denotes that one data point of Ti can be mapped to only
one data point of Tj and each data point of Tj could only
be mapped to from one data point in Ti . For example, DTW
has two mapping schemes n − 1 and 1 − n. On the other
hand, LCSS adopts only the mapping scheme 1− 1 because
a point is only mapped to the other one point. Finally, empty
mapping denotes whether a data point could be skipped from
mapping to a data point.

Note that RTSD and SpADe are not applicable for trajec-
tory pattern mining. Explicitly, RTSD considers two trajec-
tories to be similar if one can be transformed into another
by translations and rotations. Thus, a hurricane moving from
South to South-East is considered to be similar to another
hurricane moving from West to South-West. Unfortunately,
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the trajectory patterns considered in this paper are based on
“physical” regions. Therefore, rotations are not allowed. As
for SpADe, it uses “shapes” to distinguish whether two time
series are similar or not. SpADe first finds local patterns and
then calculates the distance between two time series by cal-
culating the shortest path between matched local patterns.
To recognize whether two trajectories have the same shape,
SpADe tolerates certain amplitude-scaling and amplitude-
shifting. However, this may not be desirable for trajectory
pattern mining because two trajectories of the same shape
do not represent the same movement behavior if they are not
close enough in both spatial and temporal dimensions. More-
over, due to silent durations, local patterns may not always
be recognized due to the lack of information in silent dura-
tions. Thus, we only consider LCSS, DTW, EDR and wDF
for performance comparisons (see Sect. 7). Since the exist-
ing similarity measures are not designed to handle the silent
durations of trajectories, our proposed similarity measure is
uniquely different from others.

2.2 Trajectory clustering

The existing work on trajectory clustering could be classified
into the following two categories: (i) clustering on the entire
trajectories; and (ii) clustering on sub-trajectories. For the
first category, a model-based approach for trajectory cluster-
ing is proposed in [9], which assumes that each trajectory
is smooth such that each data point could be estimated by
a probability density function. In this work, each cluster is
assumed to have a density probability function to “generate”
trajectories. The probability that a trajectory belongs to some
clusters can be modeled as the mixture of these density proba-
bility functions. Therefore, each trajectory is first represented
by a regression mixture model, which is used to determine its
cluster memberships based on maximum-likelihood princi-
ple. However, a major deficiency of this technique is that the
probability density function of each cluster and the number
of clusters need to be given a priori. In [25], a density-based
clustering algorithm is adapted to the trajectory data based
on a simple notion of distance between trajectories. In this
work, the Euclidean distance between location points at each
time slot is calculated. Then, the average Euclidean distance
over all time slots is obtained. Accordingly, a density-based
clustering algorithm, OPTICS, is used to cluster trajectories.
Moreover, an empirical comparison with several traditional
k-means and hierarchical algorithms showed that OPTICS
is the most suitable clustering algorithm for clustering tra-
jectories. An advantage of this work is that the number of
clusters does not need to be specified in advance. However,
data points at every time slot need to be available (or be
well-approximated) to compute the proposed distance func-
tion. Thus, this approach may not work very well when silent
durations appear in trajectories.

For the second category, the state-of-art approach is
TraClus [19]. The primary goal of this work is to discover
common sub-trajectories from a set of trajectories. A key
observation in this work is that clustering based on the whole
trajectory could miss some common sub-trajectories, which
are very useful in many applications, especially when regions
of special interest are considered for analysis. Therefore, a
partition-and-group framework for clustering sub-trajecto-
ries is proposed. This framework first decomposes a tra-
jectory into a set of line segments and then groups similar
line segments together into a cluster. In our work, we cluster
the whole trajectories instead of sub-trajectories. For com-
parison, we adapt TraClus to find common sub-trajectories
among trajectories and then formulate the similarity of tra-
jectories using these common sub-trajectories. We compare
our proposed clustering algorithm with this modified Tra-
Clus and find that it does not work so well when trajectories
cannot fully represent the movement behaviors of a user, i.e.,
when the silent durations appear in the trajectories. The com-
parison results are shown later in Sect. 7.

2.3 Trajectory pattern mining

The problem of trajectory pattern mining has attracted a con-
siderable amount of research efforts. Generally speaking,
typical trajectory pattern mining frameworks first find hot
regions and then derive the sequential relationship among
these hot regions. The authors in [15,23,30] have stud-
ied the mining of spatio-temporal association rules of hot
regions from a set of trajectories. In [2], the authors pro-
pose exploiting the fuzziness of locations in patterns and
developing algorithms to discover spatio-temporal sequential
patterns. Furthermore, the authors in [17] propose a cluster-
ing-based approach to discover moving regions within time
intervals. The authors in [19,21] propose a framework to
cluster
sub-trajectories, which first partition trajectories into small
segments and then cluster them based on their geometric
properties (i.e, angle, distance, length). In [14], the authors
develop a hybrid prediction model, consisting of a vector-
based and a pattern-based model, to predict the movements
of users. In [11] and [10], the authors exploit temporal-anno-
tated sequences in which sequences are associated with time
information (i.e., transition times between two movements).

We mention in passing some works that deal with the
trajectory convoy problem and the moving clusters prob-
lem. In the trajectory convoy problem [16], a convoy rep-
resents a group of objects that travel together for more than
some minimum time duration. For example, in Fig. 4a, given
the minimum time duration as 3, these five objects belong
to one convoy because they travel together for a sufficient
long time duration. Clearly, our trajectory patterns are dif-
ferent from the trajectory convoys in that a trajectory pattern
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Fig. 4 Examples for trajectory convoy (a), moving clusters (b) and
SWARM (c)

indicates sequential relationships among hot regions,
whereas a convoy indicates a set of objects that have spatial
relationships at some time slots. The objectives of these two
problems are significantly different. Moreover, the distance
between objects in a cluster at a time slot may be larger. For
example, the distance between O1 and O5 is large, reflecting
the same problem existing in hot regions determined by den-
sity-based approaches. If trajectories have silent durations,
the trajectory convoy will not discover good clusters at each
time slot. As for the moving clusters problem, the goal is to
derive a sequence of spatial clusters to a sequence of spatial
clusters at consecutive time slots such that the intersection
of spatial clusters contains a sufficient number of objects.
In other words, the number of objects in the intersection of
spatial clusters should be larger than a specified threshold
[17]. For example, in Fig. 4b, if the threshold for the portion
of common objects is 1/2, C1 and C2 become moving clus-
ters. Notice that moving clusters refer to the spatial group of
objects over time. However, our trajectory pattern mining is
to discover frequent movement behavior. The moving clus-
ters problem only considers the number of common objects
among spatial clusters, and the objects in the set of mov-
ing clusters are not always the same. Hence, moving clusters
cannot directly reflect frequent trajectory patterns. A varia-
tion of the moving clusters problem is to find a swarm [20],
where a swarm is a group of objects that are in the same
cluster for at least min_t timestamp snapshots. To illustrate

these concepts, we borrow Figure 1 from [20]. As can be
seen in Fig. 4c, the routes of O1 and O2 are very close at
timestamps t1, t3, t5 and t9. Assume that the min_t is set to
2. Both O1 and O2 are in the same swarm. However, both O1

and O2 are different in terms of their trajectory route. Thus,
the work in [20] cannot discover trajectory routes. All of the
above works assume that trajectories contain detailed move-
ment information. The most challenging issue in our paper
is that trajectories may have some silent durations and thus
do not always capture movement behaviors in detail. More-
over, previous works do not cluster trajectories to determine
the hot regions. For trajectory clustering, the issues of dealing
with trajectories that reflect only partial movement behaviors
are not addressed. By fully exploiting trajectory clues, our
proposed framework is not only able to accurately discover
trajectory patterns, but also to identify trajectory routes that
capture movement behavior very well. These features distin-
guish our works from others.

3 Problem formulation

A trajectory Ti of a user is a time-ordered sequence of data
points, expressed as Ti =< pi,1, pi,2, . . . , pi,n >, where
pi, j = (�i, j , ti, j ) represents the location of the user (i.e.,
�i, j ) at the time ti, j , ti, j < ti, j+1 and n is the length of tra-
jectory Ti . The location �i, j is usually a two-dimensional or
three-dimensional data point. Given a set of trajectories, we
intend to mine sequential relationships among hot regions,
which is extended from the notion of “regions” in [2]. Explic-
itly, the hot region defined in this paper specifies not only a
spatial area but also a temporal time interval where and when
a user appears. The definition of a hot region, serving as the
basic unit of trajectory patterns, is as follows:

Definition 1 Hot region: Given a spatial threshold ε and a
temporal threshold τ , a hot region is a spatial-temporal prism
structure ri that satisfies the following two criteria: (1) the
time interval of hot region ri , denoted as [ri .S, ri .E] where
ri .S and ri .E are the start and end time of ri , respectively,
is required to satisfy ri .E − ri .S ≥ τ ; (2) the projection of
ri in the two-dimensional XY -plane is a rectangle such that
for each data point x in this rectangle, the distance between
data point x and the representative line of the rectangle Li is
smaller than ε. The representative line of the rectangle is the
regression line of the points.2

For example, three trajectories are shown in Fig. 5, where
data points of trajectories are marked by black points at the
corresponding time slots. Given τ = 2 and ε, two hot regions
r1 and r2, represented as two spatio-temporal prisms, are gen-
erated. The hot region r1 is emphasized in the right of this

2 The criterion (2) can be easily generalized to three-dimensional space.
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figure. The line in the center of this rectangle is the repre-
sentative line of this hot region. These two hot regions r1

and r2 have their time duration as 2 (i.e., 3 − 1 ≤ 2 and
6−4 ≤ 2, respectively), and the spatial projections of r1 and
r2 are rectangles with their representative lines.

Definition 2 Trajectory patterns: A trajectory pattern T P
(i.e., the frequent trajectory route) is represented as an
ordered sequence of hot regions T P=r1r2 . . . rk , where k is
the length of T P .

From the above definitions, a trajectory pattern is repre-
sented by a sequence of representative lines, and thereby,
the sequence of representative lines is viewed as a trajec-
tory route. Since our goal is to derive frequent trajectory
routes, each trajectory pattern T P is derived from a set of
supporting trajectories where the number of supporting tra-
jectories should exceed a predefined threshold min_sup. In
other words, the derived trajectory pattern infers one frequent
route from its supporting trajectories. Specifically, the sup-
porting trajectories for trajectory pattern T P is defined as
follows:

Definition 3 Supporting trajectory: Given a trajectory pat-
tern T P = r1r2 . . . rk , for each hot region ri of T P , a sup-
porting trajectory with respect to T P has at least a data point
p such that the occurrence time of p is within ri .S and ri .E ,
and dist(p, Li ) < ε, where dist(·, ·) is the Euclidean dis-
tance.

According to the definition of the trajectory patterns and
supporting trajectories, the problem in this paper can be for-
mulated as follows.

Problem formulation: Given a set of trajectories and
four thresholds, min_sup, ε, τ and λ, where min_sup is for
frequency, ε is for tolerating some spatial bias, τ is for the
time duration of a hot region, and λ is for similarity values,
the problem is to discover trajectory patterns in which (1)
each trajectory pattern is derived from more than min_sup
supporting trajectories; and (2) the similarity value between
any two supporting trajectories in the same trajectory pat-
terns is larger than or equal to λ. Moreover, the trajectory
patterns are further used to infer the trajectory routes.

In summary, given a set of trajectories of a user, we tar-
get at discovering trajectory patterns that in turn are used to
infer the frequent trajectory routes for the user. As discussed
earlier, a user may have multiple movement behaviors. To
judiciously infer the frequent trajectory routes of a user, we
choose to first perform trajectory clustering to derive a set of
clusters that represent different movement behaviors. Each
cluster represents one trajectory pattern. Since trajectories
have silent durations, we derive hot regions for each clus-
ter by aggregating trajectories in the cluster. As pointed out
earlier, the proposed Clustering and Aggregating Clues of
Trajectories (CACT) framework consists of three major
components, including Clue-Aware Trajectory Similarity
(CATS), Clue-Aware Trajectory Clustering (CATC) and
Clue-Aware Trajectory Aggregation (CATA). In the follow-
ing sections, we will present the algorithmic details of each
component.

4 Clue-aware trajectory similarity

In this section, we first analyze the unique characteristics of
trajectories and then present our design of similarity mea-
sure. Finally, we discuss some interesting properties of the
proposed clue-based similarity measure.

4.1 Characteristics of trajectories

To cluster “similar” trajectories together, it is essential to for-
mulate a similarity measure between two trajectories. Before
we proceed to present the clue-based similarity measure, we
summarize some characteristics of trajectories as follows:

– Spatial and temporal bias: In practice, trajectories are
obtained by trajectory acquisition devices or schemes,
which unfortunately may introduce spatial and tempo-
ral bias to data points of trajectories. For example, the
position accuracy of GPS (Global-Position System) has
inherent spatial bias. Moreover, the occurrence times of
data points sampled from exactly the same movement
behavior are not always the same. Consider a worker who
goes to his office from his home at 8:00 am every day. Data
points of trajectories recording this movement behavior
usually do not have the same occurrence time. One reason
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is that the positioning device takes some time to deter-
mine the position. Thus, even if this user leaves his home
at 8:00 am every day, data points of trajectories may have
some temporal bias.

– Temporal shifts: Due to varied speeds and delays of user
movements, trajectories may have temporal shifts. For
example, although a user follows the same movement
path to his office every day, some sub-trajectories have
shifted occurrence times.

– Noise: Positioning devices can be easily affected by
environmental factors, such as buildings, shelters, and
weather. Hence, data points of trajectories usually have
some noises. Noises represent some abnormal sampled
locations that do not make sense to describe the user
movements.

– Silent duration: The length of a trajectory is mainly
decided by the time and the sampling rate. For the same
movement path, even if the same sampling rate is used,
trajectories collected may still have different lengths due
to environmental factors (e.g., the weather) and the limita-
tion of position devices (i.e., the capability of positioning
devices in computing and networking). In this paper, a
silent duration refers to a time duration when there are no
logged data points about user movements.

4.2 Design of the clue-aware trajectory similarity

Trajectories that capture the same movement behavior of
a user are likely to have some “clues” referring to those
spatially and temporally co-located data points among tra-
jectories. Since trajectories may have silent durations, these
spatially and temporally co-located data points should be
carefully identified and utilized to infer trajectory routes.
Thus, given two trajectories, the Clue-Aware Trajectory
Similarity (CATS) aims to couple as many spatially and
temporally co-located data points between two trajectories
as possible. CATS overcomes the impact resulting from the
aforementioned characteristics of trajectories via a spatial
decaying function, clue scores of data points, and a new map-
ping scheme.

To identify whether two trajectories come from the
same movement behavior, we could observe whether there
are many spatially and temporally co-located data points
between two trajectories. The concept of clues is to evaluate
how many such co-located points exist between two trajec-
tories. To achieve this goal, some technical issues should be
dealt with. First, for any two points in the different trajecto-
ries, the closer two points are, the stronger clues they reveal.
That is, the movement routes of two trajectories tend to pass
a similar area. Moreover, two co-located points reveal some
clues only if their occurrence times are close enough. Due
to the nature of temporal shifting, two points may appear
in a similar area with a certain time delay. Thus, we should

tolerate such temporal shifting when identifying the clues
between two trajectories. To conclude, by tolerating certain
temporal shifting, the strength of clues between two trajec-
tories is decided not only by the number of spatial co-located
points but also by how close they are. Thus, each component
of CATS in the following is designed to capture the strength
of clues between two trajectories.

Since trajectories usually contain spatial bias, we first use
a spatial decaying function to measure the degree of bias as
follows.

Definition 4 Spatial Decaying Function: Given a spatial
threshold ε and two data points pi,� = (li,�, ti,�) and p j,k =
(l j,k, t j,k) from two trajectories (i.e., Ti and Tj ), a spatial
decaying function for two points pi,� and p j,k is defined as

fε(pi,�, p j,k) =
{

0 , if dist(pi,�, p j,k) > ε

1− dist(pi,�,p j,k )

ε
, otherwise

where dist(·, ·) denotes Euclidean distance between two data
points.

The value of spatial decaying function ranges from 0 to 1.
Obviously, the closer the two data points, the larger the value
is. If the locations of two data points are exactly the same,
the value is 1. On the other hand, if the distance between two
points is greater than ε, the value is 0. For example, Fig. 6
shows two trajectories T1 and T2, where the underlying gray
lines are actual movements and the circles represent the data
points of T1 and T2. The underlined number of each data point
is the occurrence time of this data point. Consider ε = 4 and
Euclidean distance as the distance function. Given two points
p1,2 = (2, 2, 3) and p2,1 = (3, 3, 3), it can be derived that

f4(p1,1, p2,4) = 1 −
√

2
4 = 0.65. On the other hand, given

p1,4 = (7, 4, 9) and p2,1 = (3, 3, 3), we can derive that
f4(p1,4, p2,1) = 0 since dist(p1,4, p2,1) > ε = 4.

In the spatial decaying function, a parameter ε is given to
tolerate the spatial bias and shifting of data points.3 Basically,
the spatial decaying function performs a continuous space
quantization (i.e., from 0 to 1), which reflects the closeness
between two data points, in contrast to the discrete space
quantization employed in LCSS and EDR (i.e., 0 or 1). For
example, if the ε is set as 10 m, consider two cases: (i) two
points with a distance of 1 m, and (ii) two points with a dis-
tance of 9 m. As aforementioned, the closer two points are,
the stronger clues they have since they are highly likely to
co-locate at the nearby area. Therefore, in this setting, case
(i) reveals a stronger clue than case (ii). LCSS and EDR do
not distinguish these two cases since the distances in both
cases are smaller than 10 m.

According to the spatial and temporal information of data
points, we give a score for data points with respect to a

3 Since the parameter ε will decide the size of hot regions in trajectory
patterns, this parameter should be set according to application require-
ments (the desirable size of hot regions).
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(a)

(b)

Fig. 6 An illustrative example for clue-aware similarity of T1 and T2.
a C AT S4,4(T1, T2). b C AT S4,4(T2, T1)

reference trajectory. For a data point, there are many possible
way to evaluate the clues between this point and the reference
trajectory. An obvious way is to map this data point to the
closet point on the reference trajectory by tolerating some
temporal shifting. That is, a data point is aligned to the point
that can reveal the strongest clues in the reference trajectory.
To realize this idea, we define the clue score of data points
with respect to the reference trajectory. Specifically, given a
data point pi,� ∈ Ti and a reference trajectory Tj , the clue
score of data point pi,� with respect to trajectory Tj is used
to identify the best mapping point on Tj for pi,� in spatial
and temporal dimensionality.

Definition 5 Clue score of data points: Given a point pi,�,
a reference trajectory Tj , a spatial threshold ε, and a temporal
threshold τ , the clue score of data point pi,� to trajectory Tj

is defined as scoreε,τ (pi,�, Tj ) = max{ fε(pi,�, p j,k)|p j,k ∈
Tj and t j,k ∈ [ti,� − τ, ti,� + τ ]}.

Figure 6 illustrates the computation of clue scores.
Assume that ε = 4, τ = 4. Figure 6a shows two trajectories,
T1 and T2 where the underlying gray line is the real move-
ment. Consider a data point p1,5 of T1 as an example. The clue
score of data point p1,5 with respect to trajectory T2 finds the
best mapping data points of T2 within a time interval between
14 − 4 and 14 + 4. As shown in Fig. 6a, four data points,
p2,3, p2,4, p2,5, and p2,6 of T2, are possible mapping data

points for p1,5 since their respective times are within 14− 4

to 14+4. Since f4(p1,5, p2,5) = 1−
√

5
4 = 0.44 is the largest

value among that of all other points, the clue score of p1,5

with respect to trajectory T2 is thus scoreε=4,τ=4(p1,5, T2) =
0.44.

In the definition of clue scores, a temporal parameter τ is
used to retrieve data points of trajectories whose occurrence
times are within a particular time interval. Using this param-
eter, our proposed CATS can deal with temporal shifting.
Since the times of data points to be mapped are constrained
by the temporal parameter, the clue score is sensitive to time.
Likewise, the clue score is also sensitive to locations. How-
ever, it still tolerates spatial and temporal biases within the
degree specified by spatial and temporal thresholds.

In light of the clue score defined for data points, we define
the clue-aware similarity between two trajectories as follows.

Definition 6 Clue-aware trajectory similarity: Given a
spatial threshold ε and a temporal threshold τ , the clue-aware
trajectory similarity from Ti to Tj is defined below:

C AT Sε,τ (Ti , Tj ) = 1

|Ti | ×
∑

pi,�∈Ti

scoreε,τ (pi,�, Tj ).

For example, let ε = 4 and τ = 4. The arrows in Fig. 6a
show the mapping relationships from each data point of T1

to data points of T2. Consequently, the clue-based similarity
measurement from T1 to T2 is derived as C AT S4,4(T1, T2) =
1
9 × (score(p1,1, T2)+ score(p1,2, T2)+ · · · + score(p1,9,

T2)) = 0.58. The algorithmic form for CATS is listed in
Algorithm 1.

Algorithm 1: CATS: Clue-Aware Trajectory Similarity
Algorithm

Input : Trajectories: Ti , Tj ; Thresholds: ε, τ

Output: CATS value: C AT Sε,τ (Ti , Tj )

T otalScore← 0;1
foreach pi,k ∈ Ti do2

foreach p j,� ∈ Tj do3
ClueScore← 0;4
if |ti,k − t j,�| ≤ τ then5

ClueScore← max(ClueScore, fε(pi,k , p j,�);6

T otalScore← T otalScore + ClueScore;7

return T otalScore
length(Ti )

;8

Time complexity: Let |Ti | and |Tj | be the number of data
points in two trajectories Ti and Tj . For every point in Ti ,
it is necessary to compute the ClueScore with all the possi-
ble matching points in Tj . Therefore, in the worst case, the
time complexity for computing the CACT value for these two
trajectories is O(|Ti ||Tj |).
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4.3 Properties of clue-based similarity measurements

From the definition of clue scores, both ε and τ thresholds
are used to overcome spatial and temporal biases. Moreover,
these two thresholds could deal with both the spatial and tem-
poral shiftings. Since noisy data result in a larger distance
value, our spatial decay function can easily filter out noises.
For the mapping scheme, our clue-based similarity measure-
ment allows many data points to map to the same data point
on the reference trajectory. Consider the clue-based similar-
ity from Ti to Tj as an example. It is possible that some data
points of trajectory Ti map to the same data point on Tj if
the mapped data point of Tj is not filtered by both the spatial
and temporal thresholds ε and τ . This mapping scheme is
referred to as n-to-1 mapping (abbreviated as n − 1). If data
points on Ti have higher clue scores to Tj than vice versa, the
data points of Ti in fact provide more detailed information
about the movement behavior than Tj does. Thus, these data
points are very helpful for dealing with the silent duration
in Tj . Furthermore, via the spatial and temporal thresholds,
data points of Ti may not get mapped to any data point on
Tj . In that case, the clue score is 0. Given two trajectories of
different lengths that have some clues, our CATS may still
derive a high clue score for these two trajectories, showing
that CATS is able to overcome silent durations of trajectories.

Note that CATS has an asymmetry property. For exam-
ple, in Fig. 6, C AT S4,4(T1, T2) = 0.57 is not equal to
C AT S4,4(T2, T1) = 0.65. In Fig. 7, it can be seen that T3

provides only a limited number of clues for the movement
behaviors. On the other hand, with a large CATS values, tra-
jectory T4 provides more detailed movement information for
T3. Hence, this asymmetry property of CATS is helpful for
identifying relationships between two trajectories. Based on
our observations, there are two relationships between two
trajectories: the first one is that both of the two trajectories
can provide sufficient clues to each other. The second case
is that from the perspective of Ti , trajectory Ti is likely to
provide some detailed sub-trajectories to trajectory Tj , but
from the perspective of Tj , Tj does not have a similar move-
ment behavior with Ti . This asymmetry property reflects two
kinds of relationships between two trajectories. The first rela-
tionship usually happens when the silent durations of two
trajectories are distributed in a similar way and the two tra-
jectories have only some spatial and temporal shifting. For
the first case, these two trajectories can be recognized as hav-
ing the same movement behavior. Figure 6 illustrates such a
case. Figure 6a shows that C AT S4,4(T1, T2) = 0.58 and
Fig. 6b shows that C AT S4,4(T2, T1) = 0.65. These two val-
ues show that both T1 and T2 have almost the same number of
clues to each other. Thus, the two trajectories are very likely
to follow the same movement behavior. For the second rela-
tionship, one trajectory may be part of the other trajectory.
For example, in Fig. 7, the actual movements of T3 and T4

T3

T4

(a)

T3

T4

(b)

Fig. 7 An example to show the asymmetric property of CATS.
a C ACT4,4(T3, T4). b C ACT4,4(T4, T3)

are the same (i.e., the underlying gray lines). Figure 7a shows
that the mapping data points of T4 have clues to T3. However,
in Fig. 7b, most data points of T3 have no clues to T4. In this
case, we can see that by compensating T3 with the data points
of T4, the movement behavior can be revealed in more detail.

With the design of clue-aware trajectory similarity, we are
able to compute the pair-wise clue-aware similarity values for
a set of trajectories. Due to silent durations of trajectories,
though trajectories have strong clues, trajectories are likely to
represent some partial movement behavior. One should fully
utilize clues among trajectories to infer the complete trajec-
tory route. Thus, in the next section, we propose a clue-aware
trajectory clustering algorithm to cluster similar trajectories
into groups, where each group represents one frequent move-
ment behavior.

5 Clue-aware trajectory clustering algorithm

In this section, we describe the Clue-Aware Trajectory Clus-
tering (CATC) algorithm for clustering trajectories based on
CATS (clue-aware trajectory similarity) values.

5.1 Design of clue-aware trajectory clustering algorithm

Algorithm CATC consists of three phases: (1) clue-graph
generation phase, (2) core set identification phase, and (3)
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Fig. 8 An illustrative example
for CATC

cluster discovery phase. Explicitly, in the clue-graph gen-
eration phase, a graph structure is used to represent CATS
values among every pair of trajectories. In the core set iden-
tification phase, we cluster trajectories that have sufficiently
large CATS values to each other as core sets. According to the
core sets derived, in the cluster discovery phase, the core sets
are merged as clusters. As such, each cluster represents one
movement behavior. Clusters that have a sufficient number
of supporting trajectories are identified as frequent move-
ment behaviors. The details of the algorithm are described as
follows:

Phase 1: Clue-graph generation phase
Given a set of trajectories, the CATS values between any

two trajectories can be computed pairwisely. Then, a graph
structure can be used to represent their clue-aware trajectory
similarities. The definition of a clue-graph is given below:

Definition 7 Clue-graph: Given a set of trajectories T =
{T1, T2, . . . , Tn} and a threshold λ, a clue-graph is a weighted
directed graph G = (V, E). In the clue-graph G, a set
of vertices V = {v1, v2, . . . , vn} represents the set of
all trajectories and a set of edges is defined as E =
{(vi , v j )|C AT Sε,τ (vi , v j ) ≥ λ} where an edge (vi , v j ) is
weighted as C AT Sε,τ (vi , v j ).

Figure 8 shows a clue-graph with λ = 0.4. A clue-graph
is used to represent the strength of clues between trajectories.
There is no edge between two vertices if the CATS values
between them is smaller than a threshold λ. Once two ver-
tices have no edge in the clue-graph, these two trajectories
do not have enough clues (i.e., the spatially and temporally
co-located points) to show they follow the same movement
behavior. On the other hand, once the CATS values of two
vertices exceed the threshold λ, the corresponding trajecto-
ries can be viewed as having enough clues to show that they

follow the same movement behavior. In this case, two trajec-
tories are called to have strong clues between them. In the
clue-graph, we could further define a directly clue-reachable
relationship among trajectories as follows.

Definition 8 Directly clue-reachable: A vertexvi is directly
clue-reachable to a vertex v j , denoted as vi � v j , if
(vi , v j ) ∈ E .

Phase 2: Core set identification phase
In light of the clue-graph and Definition 8, in this phase,

we aim to derive core sets in which trajectories in the core
set have strong clues to each other. Note that with our clue-
aware similarity measurement, if the CATS values of two
trajectories exceed a threshold in both directions, these two
trajectories likely infer the same movement behavior. In other
words, these two trajectories are directly clue-reachable to
each other in the clue-graph, i.e., they are one-hop neigh-
bors. To capture trajectories with strong clue correlations,
we define the notion of core set as follows.

Definition 9 Core set: Given a clue-graph G = (V, E), a
core set is a directed complete subgraph of G, where any two
vertices vi and v j in a core set are directly clue-reachable to
each other.

Each vertex in the core set has high clue values with respect
to other vertices, indicating that these vertices in this core
set capture the same movement behavior. Clearly, these core
sets are viewed as seeds and these seeds could further merge
with nearby seeds in the clue-graph. The detailed merging
procedure among core sets is presented later. According to
Definition 9, core sets could be perceived as cliques in the
clue-graph. Thus, we may adopt a clique-covering algorithm
to derive core sets. Since most clique-covering algorithms are
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executed in an undirected graph [12], to facilitate the genera-
tion of core sets by using existing clique-covering algorithms,
a Strong Clue-Graph (abbreviated as SC-G) from clue-graph
G is defined as follows.

Definition 10 Strong clue-graph: Given a clue-graph G =
(V, E), a Strong Clue-Graph, denoted as SC-G, is an
undirected graph, represented as SC-G= (V, E ′), where
(vi , v j ) ∈ E ′ if both (vi , v j ) ∈ E and (v j , vi ) ∈ E .

By performing an existing clique-covering algorithm in
SC-G, a set of core sets is derived. Then, vertices in the same
core set are labeled in the clue-graph as well. Figure 8 shows
an example of trajectories with their CATS values and a set of
cliques {C1, C2, C3, C4}, where vertices in the same shaded
region belong to a clique. As such, these cliques are viewed
as core sets. The trajectories of each core set intend to rep-
resent similar movement behaviors because they have many
co-located points to each other. For example, in the core set
C1, all of the data points of T1 and T2 are at the beginning
of the movement route (in gray underline). Therefore, in the
same core set, these two trajectories are likely to represent
the same movement behavior.

Phase 3: Cluster discovery phase
Although each core set refers to one movement behavior,

the movement behaviors of some core sets may be merged
into a more complete movement behavior. For example, con-
sider the core sets C1 and C3 in Fig. 8. The core set C1 indi-
cates that this user moves at the beginning of the route (i.e.,
most of the data points of these trajectories in C1 are at the
beginning of the route), whereas the core set C3 represents
the movement behavior that this user tends to exhibit at the
end of the route. In this case, once we could merge the move-
ment behaviors of C1 and C3, we can derive one movement
behavior that is much closer to the actual route. Therefore,
in this phase, the main goal is to use clues between core sets
to infer which core sets can be merged into a cluster that
represents the same movement behavior.

Core sets may be merged with other core sets as candidate
clusters if two core sets have some reachable relationships,
where candidate clusters are likely to infer one complete
moving behavior. Since a core set may have reachable rela-
tionships with more than one other core set, one should
judiciously decide which core sets are selected for merging.
To infer whether two core sets capture the same movement
behavior or not, the number and the weights of edges between
two core sets should be considered. Intuitively, if both the
number of edges among the vertices of two core sets and
the edge weights are large, these two core sets are likely to
reflect the same movement behavior. Furthermore, two core
sets may still have clue-reachable relationships via other core
sets between them. To define the clue-reachable relation-
ship among two core sets (referred to as clue-connected),

we should define a clue-reachable relationship between two
vertices as follows.

Definition 11 Clue-reachable: A vertex u is clue-reachable
to a vertex v, denoted as u �∗ v, if there exists a chain of
vertices v = v1, v2, . . . , vn = u such that vi � vi+1 for all
i = 1, 2, . . . , n − 1.

With the definition of clue-reachable, we could define the
clue-connected relationship between two core sets as follows.

Definition 12 Clue-connected: Given two core sets Cu and
Cv , Cu can clue-connect to Cv , denoted as Cu ⇒ Cv , if there
exists a core set Cw, possibly coinciding with some of Cu or
Cv , such that x �∗ y for all x ∈ Cu and for some y ∈ Cw,
and y′ �∗ z for all y′ ∈ Cw and for some z ∈ Cv .

For example, in Fig. 8, C1 can clue-connect to C2. Let
Cv = C1, Cw = C1, and Cu = C2. We have all of the verti-
ces in C1 clue-reachable to some of the vertices in C1 since
C1 is a core set, and v1 �∗ v3 and v2 �∗ v3. Two clue-con-
nected core sets demonstrate the same movement behavior if
these two core sets have connected core sets between these
two core sets. Clearly, if two core sets have a clue-connected
relationship, they should be grouped in the same cluster.

Thus, the result of algorithm CATC is a set of clusters
consisting of core sets and the number of vertices in each
cluster is larger than min_sup. To facilitate our presentation,
a candidate cluster is used to represent our merging results
of core sets. Initially, each core set is viewed as one can-
didate cluster. We iteratively merge candidate clusters until
no further merge operation is needed. One criterion for stop-
ping this merge operation is to measure the quality of cluster
results. Traditional clustering algorithms use cohesion and
separation to evaluate the quality of clusters. However, since
our clustering algorithm is performed on the clue-graph, we
develop clue-cohesion and clue-separation as follows.

Definition 13 Clue-cohesion: Given a candidate cluster K ,
the clue-cohesion of K , denoted by CC O H(K ), is defined
as the minimum weight that for every core set Ci ∈ K , there
exists a core set C j ∈ K such that Ci ⇒ C j .

Definition 14 Clue-separation: Given two candidate clus-
ters Km and Kn , the clue-separation from Km to Kn , denoted
C SE P(Km, Kn), is defined as the total weight of all edges
from Km to Kn .

For example, consider C2 and C4 in Fig. 8. If we want to
make C4 ⇒ C2, two extra edges (e.g., (v8, v3) and (v10, v5))
with the total weight 2 × λ = 0.8 should be added since
there already exists an edge (v9, v4) from C4 to C2. Thus,
if a cluster K contains C2 and C4, the clue-cohesion of this
cluster can be derived as CC O H(K ) = 0.8. The clue-sepa-
ration value is C SE P(C4, C2) = 0.4 since there is one edge
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(v9, v4) from C4 to C2 with the total weight λ = 0.4. Note
that the clue-cohesion CC O H(Km, Kn) is zero if Km can
clue-connect to Kn . As such, if two core sets from different
candidate clusters have a clue-connected relationship, these
two candidate clusters are likely to be merged. By merging
these two candidate clusters, a larger candidate cluster has
more trajectories for inferring the whole frequent trajectory
route.

With the definitions of clue-cohesion and clue-separation,
we intend to derive a set of clusters such that the cluster
result should have smaller clue-cohesions and clue-separa-
tions among clusters. In other words, trajectories within the
same cluster have as many clues as possible and trajectories
from different clusters have as few clues as possible. There-
fore, the desired cluster result is defined as follows:

Definition 15 Objective function for clusters: Given a
clue-graph G = (V, E), the clustering algorithm aims
to derive a set of clusters K = {K1, K2, . . ., Km} such
that (1) Ki contains a set of core sets, (2) minimize
(
∑

Ki∈K CC O H(Ki ) + ∑
Ki ,K j∈K C SE P(Ki , K j )), and

(3) |Ki | ≥ min_sup for all Ki ∈ K .

Based on the above objective function for clustering, we
design a benefit function to evaluate whether merging two
candidate clusters is able to reduce the value of the objective
function or not. The benefit function is formulated as follows.

Definition 16 Benefit function: Given two candidate clus-
ters Km and Kn , the benefit function is defined as Bene f i t
(Km, Kn) = DesC SE P(Km, Kn)− I ncCC O H(Km, Kn).
DesC SE P(Km, Kn) = (C SE P(Km, Kn) + C SE P
(Kn, Km))/2 and I ncCC O H(Km, Kn) = CC O H(Km)+
CC O H(Kn) +∑

Ci∈Km
minC j∈Kn {I (Ci , C j ) × λ}, where

I (Ci , C j ) denotes the number of vertices that have no edge
from core set Ci to C j and λ is the threshold used in the
clue-graph.

Generally speaking, merging two candidate clusters will
increase the clue-cohesion while decreasing the clue-sepa-
ration. Intuitively, if merging two candidate clusters could
lead to a greater decrease in clue-separation than increase in
clue-cohesion, the merging operation is able to minimize the
objective function, which brings the benefit of achieving a
better clustering result. Consequently, the benefit function is
to evaluate whether merging two candidate clusters is able
to reduce the value of the objective function (i.e., the sum of
the clue-cohesion and the clue-separation after merging two
candidate clusters). Assume that we intend to derive the ben-
efit of merging two candidate clusters Km and Kn . The first
term of the benefit function (i.e., DesCSEP) represents how
much clue-separation could be reduced by merging Km and
Kn . The average of the clue-separations between two candi-
date clusters aims to prevent the scenario in which only one

cluster has many edges to the other, but there is no edge in
reverse. For example, in Fig. 8, assume that four core sets are
candidate clusters and a candidate cluster set, denoted as K,
K = {K1 = C1, K2 = C2, . . . , K4 = C4}. Then, we illus-
trate how to derive Bene f i t (K2, K3). It can be derived that
C SE P(K2, K3) = 0.7 since the only edge which crosses
from K2 to K3 is (v4, v7) with weight 0.7. Similarly, we can
obtain that C SE P(K3, K2) = 0.8. Thus, after merging K2

and K3, two edges (v4, v7) and (v7, v4) are in the same cluster
such that the clue-separation is decreased by 0.7+0.8 = 1.5.
Thus, the value of DesC SE P(K2, K3) can be derived as
1.5/2 = 0.75. The second term of the benefit function (i.e.,
IncCCOH) is to evaluate the amount of increase in clue-cohe-
sion by merging Km and Kn . For the two candidate clusters
Km and Kn , they need CC O H(Km) and CC O H(Kn) to
make their core sets clue-connected. The last term of Inc-
CCOH refers to the minimum weight that every core set in
Km can clue-connect to some core set in Kn . Specifically, if
a core set Ci is required to clue-connect to the other core set
C j , every vertex in Ci should have an edge to some vertex in
C j . One could imagine that the cost of adding an edge is λ

since there is an edge between two vertices if the CATS value
between them is at least λ. Therefore, to make Ci clue-con-
nect to C j , the total cost can be derived by multiplying λ and
the number of vertices that have no edge from core set Ci to
C j . Recall the example above where two candidate clusters
K2 = {C2} and K3 = {C3} are given. Since these two can-
didate clusters contain only one core sets, we can obtain that
CC O H(K2) = 0 and CC O H(K3) = 0. If we consider the
case that K2 needs to clue-connect to K3, extra two edges
from C2 to C3 need to be added (e.g., adding (v5, v6 and
(v3, v6)). Therefore, the total increase in the clue-cohesion
value is I ncCC O H(K2, K3) = 0+0+2×λ = 0.8. Finally,
Bene f i t (K2, K3) = 0.75−0.8 = −0.05, which shows that
by merging K2 and K3, there is no benefit to minimizing the
objective function.

By exploiting this benefit function, algorithm CATC itera-
tively selects two candidate clusters with the maximum ben-
efit value until the value of the benefit function is smaller than
zero. Once the merge operation is finished, candidate clus-
ters that have more than min_sup vertices will become final
clusters. The reason for having at least min_sup vertices is
that each cluster represents one frequent movement behav-
ior. Note that the computation of the benefit function could
be implemented by dynamic programming. Since candidate
clusters are expanded in a bottom-up fashion, the clue-co-
hesions and clue-separations of any two candidate clusters
are computed in the previous rounds. Therefore, we explore
a dynamic programming strategy in algorithm CATC. The
algorithmic form of CATC is shown in Algorithm 2. The
time complexity of CATC is analyzed as follows:
Time complexity: Let N be the number of trajectories
(vertices). In line 1, CATC constructs a clue-graph that
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Algorithm 2: CATC: Clue-Aware Trajectory Clustering
Algorithm

Input : Trajectories: T = {T1, T2, . . . , TN }; Thresholds:
λ, min_sup

Output: Set of clusters: K
Construct a clue-graph G = (V, E) by T and λ; //*1
Step 12
Construct a Strong clue-graph SC-G = (V, E ′) from G; //*3
Step 2 C = {C1, C2, . . . , C�} ← a clique cover of SC-G;4
K← C ;5
foreach (Km , Kn) ∈ K×K do6

CC O H [Km ] ← 0;7
C SE P[Km , Kn] ← total weights from Km to Kn ;8
Compute I (Km , Kn);9

//Step 3
repeat10

Bene f i t ←∞;11
foreach (Km , Kn) ∈ K×K do12

r ←−1;13
Des ← (C SE P[Km , Kn] + C SE P[Kn, Km ])/2;14
I nc← 0;15
foreach Ci ∈ Km do16

q ←∞;17
foreach C j ∈ Kn do18

q ← min(q, I (Ci , C j ));19

I nc← I nc + q;20

I nc← CC O H [Km ] + CC O H [Kn] + q;21
Bene f i t ← Des − I nc;22
if Bene f i t > r then23

(S, T )← (Km , Kn);24
Bene f i t ← r ;25

if Bene f i t > 0 then26
K← K ∪ {S ∪ T } − S − T ;27
Update CC O H and C SE P;28

until Bene f i t < 0;29
Keep Km ∈ K if Km contains more than min_sup vertices;30

requires O(N 2). In line 2 to line 3, a clique-covering algo-
rithm is performed in a clue-graph, which takes O(N 2) [12].
In line 5 to line 8, initializing table CCOH, CSEP, and I costs
O(N 2). The outer loop from line 9 to line 27 depends on
the benefit values. The worst case is that every single ver-
tex is a clique such that this loop executes at most N − 1
times. From line 11 to line 24, there is a nested loop. From
line 14 to line 18, all pairs of core sets are enumerated
such that there are totally C(�, 2) combinations. From line
24 to line 26, updating the CCOH table needs O(1)-time,
and updating the CSEP table requires O(�)-time. Therefore,
the outer loop from line 7 to line 27 totally takes at most
C(N − 1, 2)+ C(N − 2, 2)+ · · · + C(2, 2) = O(N 3). To
sum up, the time complexity of CATC is at most O(N 3).

5.2 Running example for cluster discovery phase

The execution of CATC can be best illustrated by Fig. 8. In
this figure, T1 to T7 capture the first movement behavior and

T8 to T10 record the second movement behavior. Note that
there are edges from v4 to v9, and from v7 to v9. The reason
is that they have some nearby points as shown in the dashed
square such that there are some clues between them. At the
beginning, CATC finds four core sets C = {C1, C2, C3, C4}
and the vertices in the same shaded area are in the same
clique. Each clique is a candidate cluster in K, i.e., K =
{K1 = C1, K2 = C2, . . . , K4 = C4}. To evaluate whether
two candidate clusters can be merged, we first compute the
benefit values for each pair of candidate clusters. For exam-
ple, it could be computed that Bene f i t (K1, K2) = (0.5 +
0.6)/2 + 0 = 0.55 (since all vertices in K1 are clue-reach-
able to v3), Bene f i t (K3, K2) = (0.7+0.8)/2−0.4 = 0.35
(since v6 in K3 is not clue-reachable to any vertex in K2),
and Bene f i t (K4, K2) = (0.4 + 0.4)/2 − 2 × 0.4 = −0.4
(since v8 and v10 in K4 are not clue-reachable to any vertex
in K2). Since the Bene f i t (K1, K2) is the maximum, two
candidate clusters K1 and K2 are merged into one larger
candidate cluster K ′1 = {K1, K2}. Next, CATC continues to
compute the benefit values between all pairs of candidate
clusters. Specifically, if we intend to merge K3 to K ′1, we
could first derive DesC SE P(K3, K ′1) = (0.7 + 0.8)/2 =
0.75. Then, C3 ∈ K3 needs the cost 1 × 0.4 = 0.4 to
clue-connect to C2 ∈ K ′1. Thus, I ncCC O H(K3, K ′1) =
CC O H(K3) + CC O H(K ′1) + 0.4 = 0 + 0 + 0.4 = 0.4.
Since Bene f i t (K3, K ′1) is the maximum, CATC merges K3

and K ′1 into a new candidate cluster K ′1 = {C1, C2, C3}.
Finally, since all the benefit values are negative, CATC ter-
minates. Assume that the threshold min_sup is 4, then K4 is
deleted since the number of trajectories in K4 is smaller than
4. Finally, one cluster K ′1 = {C1, C2, C3} is found.

6 Clue-aware trajectory aggregation algorithm

For each given cluster, we intend to derive hot regions in
order to compose trajectory patterns. As mentioned earlier,
each hot region has its representative line segment. In this
section, we propose a Clue-Aware Trajectory Aggregation
algorithm (abbreviated as CATA) to derive a set of represen-
tative line segments. Accordingly, a representative trajectory
is determined for each core set. Representative trajectories
from different core sets will then be aggregated as a sequence
of representative line segments.

6.1 Determine a representative trajectory of a core set

Trajectories in the same core set have mutually high clues
to show that these trajectories capture the same movement
behavior. As such, for each core set, the corresponding rep-
resentative trajectory (i.e., a sequence of representative data
points) will be determined. To determine the data points of a
representative trajectory, for core set Ci , a set of data points
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(a) (b) (c) (d)

Fig. 9 An example of generating candidate line segments in a core set. a Two trajectories of core set Ci . b P Si after merging two trajectories.
c An example of point-clusters in P Si . d Representative trajectory of core set Ci

derived by aggregating the data points of the trajectories
within Ci is denoted as P Si . Among the trajectories in Ci , a
base trajectory is first selected and all of its points are then
added into P Si . The remaining trajectories contribute their
data points to P Si if these data points from other trajecto-
ries satisfy both spatial and temporal constraints. Finally,
all points in P Si are utilized to derive the representative
trajectory.

The base trajectory has the most clues from the other
remaining trajectories compared to the other trajectories in
a core set. Therefore, in a core set Ci , the trajectory with
the maximum sum of incoming edge weights is selected as a
base trajectory. After selecting the base trajectory, data points
of the other trajectories are considered for inclusion into the
point set P Si . To identify whether or not a point p from
another trajectory should be included in P Si , the location
of p should be close to one of the line segments derived by
two consecutive data points of the base trajectory. Specif-
ically, let two consecutive data points s and e be from the
base trajectory where ts > te, and se is the line connecting
(xs, ys) and (xe, ye).4 Given a data point p and its closest line
se in the base trajectory, if dist(p, se) < ε, then p satisfies
the spatial constraint and its occurrence time will be further
investigated. If tp ∈ [ts − τ, te + τ ], the data point p will be
included in P Si and the occurrence time of data point p is
revised as tp = ts + (te − ts) × dist(s,p)

dist(s,p)+dist(p,e) . If not, the
point p is discarded. Consider the example in Fig. 9a, where
the dotted line is a base trajectory and the data points of the
other trajectories are marked as gray points associated with
their occurrence time. As illustrated in Fig. 9a, gray point y
is eliminated, as dist(y, cd) > ε. Gray points w, x , and z
are close to the base trajectory. We should further investigate
their occurrence time. Suppose that τ = 2 and the distance
between a and w equals that between b and w. As the time of
w is between [2− 2, 6+ 2], w is included, and the time of w

is revised as 2+(6−2)× dist(a,w)
dist(a,w)+dist(w,b)

= 4. On the other

4 To facilitate our presentation, a data point p can be represented as a
triple (x p, yp, tp) where (x p, yp) is the coordinate at time tp .

hand, although data point x is close to the base trajectory, the
time of x is not within the interval [6− 2, 8+ 2]. Thus, data
point x is discarded. Given two trajectories in Fig. 9a, the
point set P Si is shown in Fig. 9b.

After examining the data points of the trajectories in core
set Ci , we obtain our final point set P Si . The next step is to
determine a representative trajectory from P Si . The deter-
mination of a representative trajectory consists of two steps:
(1) to group spatially nearby points as clusters (referred to
as point-clusters), and (2) in each point-cluster, the represen-
tative data point with its time stamp is determined. The first
step is achieved by DBSCAN with decomposition proposed
in [15], where DBSCAN is first used to find point-clusters.
The point-clusters that are too large in size will then be par-
titioned into smaller clusters. The DBSCAN with decompo-
sition is able to derive groups with spatially nearby points.
Each point-cluster determines a representative point with its
location and time stamp as the average of the coordinates and
the time stamps of all points in this point-cluster. The repre-
sentative trajectory is represented as < r p1, r p2, . . . , r pn >,
where r pk is the representative point of the k-th point-cluster.
For example, Fig. 9c shows an example of point-clusters in
the point set P Si . In the first cluster, the time stamp of the
representative point can be calculated as (2+2.5+3+4)/4 =
2.875. The representative trajectory is derived similarly, as
illustrated in Fig. 9d.

6.2 Generate a trajectory pattern from a cluster

After generating the representative trajectories of core sets,
the next task is to aggregate them into one final representative
trajectory. Since our representative trajectory is viewed as a
sequence of lines, given this final representative trajectory,
we adopt DP* [24]5, a line simplification algorithm, to derive
representative line segments.

5 Note that algorithm DP* in [24] is developed to derive a set of lines
from a given set of spatial-temporal data points.
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Since a cluster contains a set of core sets, and each core
set has its own representative trajectory, these representative
trajectories should be aggregated into one aggregated trajec-
tory. Our idea is to first select one representative trajectory
of a core set as a base trajectory. Then, we iteratively select
representative trajectories of the other core sets and use them
to compensate this base trajectory. Explicitly, the base tra-
jectory is from the core set that has clue relationships with
the most core sets. Once the base trajectory is determined,
we then select other core sets one by one to aggregate their
representative trajectories. Note that the order of aggregat-
ing trajectories is the same as the order of merging candidate
clusters in algorithm CATC. Recall that the merging order
is guided by the benefit function. For two candidate clusters
Ki and K j , the maximum bene f i t (Ki , K j ) indicates that Ki

can add the fewest number of edges to clue-connect to K j . In
other words, Ki is the candidate cluster that can provide the
most detailed movement information to K j . Given two can-
didate clusters Ki and K j , let the representative trajectories
of Ki and K j be RTi and RTj . To aggregate two represen-
tative trajectories of Ki and K j , the representative trajectory
Ki should be added to the representative trajectory of K j . For
example, consider the cluster K ′1 = {C1, C2, C3} in Fig. 8.
As per the example in Sect. 5.2, in the first round, C1 first
merges to C2 such that a candidate cluster K ′1 = {C1, C2} is
obtained. In this round, the representative trajectory RT ′1 is
generated by using RT2 as the base trajectory and aggregat-
ing points in RT1 into RT2. In the second round, C3 merges
to K ′1 such that K ′1 = {C1, C2, C3}. Thus, RT ′1 is the base
trajectory and RT3 will be aggregated into RT ′1. The final
representative trajectory RT ′1 is used to derive hot regions
for the trajectory pattern in this cluster. Note that for each
round, we need to compute the benefit values for two candi-
date clusters. This order list could be determined in algorithm
CATC and by referring to the order list, algorithm CATA
could quickly perform the aggregation of the representative
trajectories.

Once the final representative trajectory is obtained, a spa-
tiotemporal compression technique (i.e., DP* [24]) is used
to determine the representative lines. Given a sequence of
spatio-temporal points, DP* compresses these points into
a sequence of lines such that the distance between each
point to the compressed line is not farther than ε. Given the
final representative trajectory (p1, p2, . . . , pn), by explor-
ing DP* in [24], a sequence of k representative lines C L =
{(�1, T I1), . . . , (�k, T Ik)} is derived. Each representative
line is viewed as a hot region, and the trajectory pattern of a
cluster is then discovered. The details of algorithm CATA are
presented in Algorithm 3, and the time complexity of CATA
is discussed below.

Time complexity: Let |T | be the maximum trajectory length
among all trajectories. The loop from line 2 to line 13

Algorithm 3: Clue-Aware Trajectory Aggregation algo-
rithm

Input : A set of clusters: K
Output: Trajectory pattern: R
for each cluster K� ∈ K do1

for each core set Ci ∈ K� do2
BS← the trajectory with highest sum of incoming edge3
weights in Ci ;
Add BS into P Si ;4
for each other trajectory T in Ci do5

Eliminate points of T with intolerable location and6
time stamp to Tr ;
Add remaining points of T into P Si ;7

end8
PC ← point-clusters by execute DBSCAN with9
decomposition on P Si ;
for each point-cluster in PC do10

p← representative points;11
Add p into r pi ;12

end13

end14
R P ←⋃

i
r pi ;

15

while |R P| > 1 do16
Remove r pi and r p j from R P according to the merging17
order of candidate clusters;
r p′ ← Aggregate r pi into r p j ;18
Add r p′ into R P;19

end20
Execute DP* for the representative trajectory in R P;21

end22

executes |K�| times, where |K�| is the number of core sets
in K�. In this loop, line 3 needs a linear scan to find the
base trajectory BS, which costs O(|Ci |) time. The inner
loop from line 5 to line 8 needs a linear scan for each tra-
jectory for adjusting the location and time stamp, which
spends O(|Ci ||T |)-time. Line 9 needs O(|P Si |log|P Si |) =
O(|Ci ||T |log(|Ci ||T |)) to execute DBSCAN with decompo-
sition. Line 10 to line 13 computes the average locations and
time stamps for selecting representative points. Thus, it needs
at most O(|P Si |). Therefore, from line 2 to line 13, it spends
O(|Ci ||T |log(|Ci ||T |)). Note that the size of R P is |K�|.
Therefore, line 16 to line 19 takes O(|K�||T |). Finally, the
time executing DP* algorithm needs O(|T |log|T |). There-
fore, the total time complexity should be

∑
� O(|K�||T | +

|K�||T |lg(|K�||T |)) = O(|K ||T |log|K ||T |), where |K | is
the number of clusters.

7 Performance evaluation

A series of experiments have been conducted to evaluate
the proposed algorithms using both real and synthetic data-
sets. In Sect. 7.1, the experimental settings are presented.
Performance comparisons of our clue-aware similarity mea-
surement and clue-aware clustering algorithm with previous
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works are described in Sects. 7.2 and 7.3, respectively.
Moreover, trajectory patterns mined by our CACT and other
works are analyzed in both qualitative and visualized man-
ners in Sect. 7.4. Finally, the performance of CACT is inves-
tigated in Sect. 7.5.

7.1 Experimental environment

To validate and evaluate the techniques proposed for our
trajectory pattern mining framework, both real and syn-
thetic datasets are used. The experimental results are mainly
obtained using the real datasets, whereas the sensitivity test-
ing of the proposed algorithms also uses the synthetic data-
sets. The real dataset consists of trajectories obtained from
the CarWeb platform [22]. Through the CarWeb dataset, we
have access to the ground truth of user movement behaviors,
which makes the quality evaluation of the discovered trajec-
tory patterns feasible. We select trajectories capturing four
types of frequent movement behaviors (as shown in Fig. 10).
Note that both Type 2 and Type 4 have similar movement
paths, but their times are different. Trajectories of Type 2
present a movement behavior happening on an early morn-
ing, whereas trajectories of Type 4 capture another movement
behavior in the late afternoon. Table 2 summarizes some sta-
tistic information of the selected trajectories, including the
number of trajectories, the length of the trajectories, and the
time duration of the trajectories. While some existing tra-
jectory datasets, e.g., hurricane and animal datasets used in
[19], are available, evaluating the quality of mining results
using them is difficult due to the lack of domain knowledge
and ground truth in these datasets. Moreover, some trajec-
tory datasets, e.g., the Australian Sign Language dataset that
captures hand-writing trajectories [4,31], are not generated
by position acquisition devices (e.g., GPS loggers) and thus
are not suitable for our experiments.

To test the impact of the trajectory characteristics on the
proposed algorithms, we use a synthetic trajectory dataset,
generated from a given set of seed trajectories. Each seed tra-
jectory has 3,000 to 6,000 data points, which is much longer
than the length of real trajectories in CarWeb dataset. Rather
than the shorter trajectories in CarWeb dataset, the longer
seed trajectories can provide an other scenario to examine the
effectiveness and the efficiency of the compared approaches.
For each seed trajectory, we simulate a number of synthetic
trajectories with spatial and temporal bias. Specifically, for
data point p from a seed trajectory, a data point will have a
probability of being a bias data point. The probability value
is set to Pbias. If the data point generated is a bias data point,
the location of this bias data point will be shifted from the
location of p for at most r meters and its occurrence time
is shifted for at most t units of time (minutes in our dataset)
from the occurrence time of p. Accordingly, we randomly

Fig. 10 Trajectories in CarWeb dataset. a Type 1. b Type 2. c Type 3.
d Type 4

Table 2 Statistical information about the selected trajectories in
CarWeb dataset

Type 1 Type 2 Type 3 Type 4

Number of trajectories 14 13 5 13

Average length 634 128 341 142

Standard deviation in lengths 130.14 28.39 185.95 30.21

Average time duration 62 12 49 14

Standard deviation in time durations 9.27 1.98 42.26 2.1

generate synthetic trajectories with spatial and temporal bias
from a seed trajectory.

To investigate the effect of silent durations, two parame-
ters are used to control the distribution of silent durations: the
sampling interval SI and the clue probability Pclue. Explic-
itly, a seed trajectory contains a detailed movement path of a
user. To generate trajectories with silent durations, we select
some data points from a seed trajectory and eliminate other
data points. For each data point selected, this data point has
Pclue to be included in the synthetic trajectory. The gener-
ation of synthetic trajectories could be best understood by
Fig. 11. Figure 11a shows a seed trajectory, where the num-
ber associated with each point is its time stamp. Figure 11b
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Fig. 11 Generation of trajectories with silent durations. a Seed.
b SI = 10. c Pclue = 0.7

shows a trajectory generated by setting SI as 10 s, i.e., a
data point is selected from the seed trajectory for every 10 s.
A larger SI results in a trajectory with a longer silent dura-
tions. Figure 11c shows the synthetic trajectory generated by
setting Pclue = 0.7 and SI = 10, where Pclue = 0.7 controls
the percentage of data points selected from the seed trajectory
to be 70%. The default setting of additional parameters used
in our experiments are λ = 0.3, τ = 300 s (which is decided
by averaging the length of silent durations of all trajectories),
ε = 100 m, min_sup = 0.1, r = 300 m, and t = 300 s. All
the experimental results are reported by averaging the results
of 50 trails that vary in SI and Pclue.

7.2 Performance comparison of similarity measures

In this section, we evaluate the performance of our clue-aware
trajectory similarity (denoted as CATS in the figures) in com-
parison with a number of well-known similarity measures,
including LCSS, DTW, wDF, and EDR. The spatial threshold
is set as 100 m and temporal threshold threshold is set as 300 s
(as needed in all compared similarity measures). To compare
the performance of distance functions, the same as in [7,28],
we utilize one Nearest Neighbor (abbreviated as 1NN) clas-
sifier [7]. Explicitly, given a training dataset in which data is
labeled, 1NN classifier tries to predict the label as that of its
nearest neighbor in the training set. Since different distance
functions may have a different scale range in their similarity
values, 1NN classifier could avoid this scale range problem.
Moreover, in our real dataset, each trajectory is labeled as one
of four types of trajectories. Thus, by exploring 1NN classi-
fier, given one distance function and a trajectory, the label of a
given trajectory is predicted by the label of its nearest neigh-
boring trajectory. Therefore, the effectiveness of the distance
functions can be reflected by the prediction accuracy for the
label of the given trajectories. Due to the asymmetric prop-
erty of CATS, it is necessary to define the nearest neighbor
for CATS. Assume that we want to find the nearest neighbor
of a trajectory Ti . All other trajectories would be mapped in a
two-dimensional (2D) plane. Explicitly, a trajectory Tj could
be represented as a point (C AT S(Ti , Tj ), C AT S(Tj , Ti )) in
this 2D plane. Then, the nearest neighbor of a trajectory Ti

in CATS is the skyline point Tj with the maximum value of
(C AT S(vi , v j )+C AT S(v j , vi )). The reason is that among
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Fig. 12 Average error rates with k varied. a 3 types. b All types

the skyline points, we choose the trajectories that have the
strongest clues with Ti as the closest neighbor of Ti . It is
possible that multiple skyline points exist. In this case, we
randomly select one skyline point and use its label for pre-
diction.

The classification error rate is defined as the ratio between
the number of incorrect predictions and the total number of
trajectories. Because the performance of the 1NN classifier
is highly sensitive to the given similarity measurement, the
classification error rate could directly reflect the effectiveness
of similarity measurements. Based on the 1NN classifier, we
adopt the cross-validation approach in [7] in which training
data are randomly divided into k subsets. Then, one subset
is selected for testing and the other of k − 1 subsets are used
as training sets. Finally, the average error rate of the 1NN
classifier over the k cross-validation is reported.

Figure 12 shows the experimental results based on differ-
ent similarity measures. This experiment tests the average
error rate by (1) three types of trajectories (Type 1 to Type
3) and (2) all types of trajectories. To examine the impact
of the time sensitivity of the distance function, we should
include Type 2 and Type 4 trajectories that follow the same
movement behavior with different times. Figure 12a depicts
the experimental results with three types of trajectories (i.e.,
Type 1, Type 2, and Type 3). This figure shows that CATS and
EDR have lower average error rates than others. Specifically,
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Fig. 13 Average error rates with varying the distribution of silent
periods

wDF and LCSS fail to predict the correct labels because most
trajectories pass many nearby locations. DTW does not per-
form effectively due to the large standard deviations of Type
1 and Type 3 trajectories. Because EDR accounts for not
only common sub-trajectories but also gaps between trajec-
tories, EDR can clearly distinguish trajectories with different
types. Moreover, the average error rates of EDR are slightly
smaller than CATS. If Type 4 trajectories are included, CATS
can outperform EDR. Note that Type 2 and Type 4 trajecto-
ries have similar movements with different occurring times.
Due to time sensitivity, CATS can easily distinguish Type
2 and Type 4 trajectories compared with EDR. This experi-
ment also shows the advantage of CATA in which movement
behaviors with different times are distinguished.

Next, the effects of silent durations are investigated. First,
we study the scenario where the silent durations are evenly
distributed in trajectories. Figure 13a shows the results when
the SI is set to 10, 20, and 30 s. In all cases, CATS and
LCSS outperform the other approaches. Except for wDF
and DTW, the average error rates of the other approaches
remain almost constant when SI increases. Because the map-
ping schemes of DTW and wDF require locating the nearest
mapping points, silent durations significantly affects them.
Now, we investigate the impact of Pclue on the randomness of
silent durations. Figure 13b shows that, when Pclue is 70%,
the average error rates of DTW and wDF increase slightly
and those of CATS, LCSS and EDR decrease slightly in

comparison with the setting of Pclue = 100%. However,
when Pclue decreases to 50%, the average error rates of all
similarity measurements significantly decrease. The reason
could be that there are many nearby locations in all types
of trajectories, especially those places around the starting
points, making all similarity measures predict inaccurately.
When Pclue decreases, the number of these nearby locations
may be reduced due to silent durations. This phenomenon
benefits all similarity measures in distinguishing different
types of trajectories.

7.3 Performance comparison of clustering algorithms

Here we compare our proposed clustering algorithm CATC
with the traditional clustering algorithms (i.e., DBSCAN and
Hierarchical clustering) and the existing trajectory clustering
algorithms (i.e., PISA [25] and TraClus [19]).

To evaluate the quality of clustering, two common met-
rics, entropy and purity, are used. Since our real dataset is
labeled, entropy is a function to estimate the distribution of
class labels in clusters, and purity is a function of the rela-
tive size of the largest class in the resulting clusters. Ideally,
a desirable cluster should contain trajectories with the same
class label. However, in practice, a derived cluster may con-
tain trajectories with several class labels. Entropy and purity
are used to reflect how far the derived cluster to the desir-
able cluster is. If a derived cluster contains trajectories with
fewer class labels, the entropy value of this cluster will be
small. On the other hand, to label the class of a cluster, the
major class of trajectories is used as the class of this cluster.
Thus, a desirable case is that most trajectories in the same
cluster have the same class. Purity is used to measure the
proportion of the largest class trajectories in a cluster. For-
mally, given a particular cluster, Sr , of size nr , the entropy

of this cluster is defined as E(Sr ) = − 1
log(q)

∑q
i=1

ni
r

nr
log ni

r
nr

,

where q is the number of classes in the dataset, and ni
r is the

number of trajectories of the i th class that are assigned to the
r th cluster. The entropy of the overall clustering result is then
defined as

∑k
r=1

nr
n E(Sr ). In general, the smaller the entropy

value, the more favorable the clustering result is. Similarly,
the purity of a cluster is defined as P(Sr ) = 1

nr
maxi (ni

r ).
Thus, the overall purity of the clustering result is formulated
as

∑k
r=1

nr
n P(Sr ). The larger the value of purity, the more

favorable the clustering result is.
There are two kinds of approaches that can achieve the

goal of clustering trajectories: the first one is to apply CATS
with traditional clustering algorithms (i.e., DBSCAN and
hierarchical clustering)6; the second one is to use exist-
ing trajectory clustering algorithms, such as PISA [25] and

6 Note that the distance function used in DBSCAN and hierarchical
clustering is required to be symmetric. We adopt the average similarity
of measured trajectories to address the issue of asymmetry in CATS.
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Fig. 14 Performance comparison of clustering algorithms via the real
dataset

TraClus [19]. PISA uses its proposed distance function and
then applies OPTICS (a self-tuning DBSCAN) to cluster tra-
jectories. TraClus aims to discover clusters of “sub-trajec-
tories”, which does not align to our goal. Thus, we slightly
modify the TraClus algorithm as follows. Suppose that the
set of all sub-trajectory clusters is {sc1, sc2, . . . , scn}, which
can be treated as features of trajectories. Thus, each trajec-
tory Ti could be represented as a vector−→vi =< x1, . . . , xn >,
where x j = 1 if Ti passes sc j . Accordingly, cosine similar-
ity can be employed to measure the similarity of two vectors.
Finally, DBSCAN is used to cluster trajectories. The follow-
ing experimental results are the best results by fine tuning the
parameters of the corresponding algorithms.

Figure 14 shows the entropy and purity values of all clus-
tering algorithms. It can be seen that the approaches that
apply CATS with traditional clustering algorithms have the
highest entropy and the lowest purity values. We observe that
DBSCAN and hierarchical clustering tend to form large clus-
ters of both Type 1 and Type 2 trajectories (which have many
close neighboring regions) and thus not do perform well.

7.4 Impact of silent durations on trajectory pattern mining

In this experiment, we study the impact of silent durations
on trajectory pattern mining. Here we compare our CACT
framework with two existing trajectory pattern mining tech-
niques: Spatio-temporal Frequent Pattern mining (SFP) [2]
and Trajectory Pattern Mining (TPM) [11].7 Note that SFP,
similar to CACT, uses representative line segments as hot
regions to form trajectory patterns, and TPM is a state-of-
the-art algorithm for trajectory pattern mining.

We argue that the inferior performance of SFP and TPM
compared to our CACT framework is due to (i) imprecise
hot regions generated by SFP and TPM, and (ii) impact of
silent durations. Obviously, CACT addresses (i) pretty well

7 The clue-aware trajectory aggregation (CATA) algorithm in our
framework is based on the clustering generated by our clue-aware trajec-
tory clustering (CATC) algorithm. Thus, it is not evaluated separately.

Fig. 15 Visualized results of SFP (a), TPM (b) and CACT (c)

because our framework, based on our observation and analy-
sis, has chosen to cluster trajectories before mining trajectory
patterns. To further study the impact of silent durations on
trajectory pattern mining, we eliminate the factor (i) from the
dataset by using trajectories of the same types in the exper-
iments. Now, we present the visualized results of the com-
petitors. In this experiment, all trajectories in the dataset are
used. Figure 15 shows the results of SFP, TPM, and CACT.
Figure 15a shows that SFP cannot derive the hot regions that
fully describe the frequent routes. Since our dataset is gen-
erated by a user who drives on the road, and the derived hot
regions are not aligned on the road, that is not a desirable
result. Similarly, Fig. 15b shows that the sizes of the derived
hot regions are too large such that these regions cross many
regions without any roads. On the other hand, as shown in
Fig. 15c, our mining result could infer the route of a user very
well.

Because our trajectory datasets contain silent durations,
linear interpolation and cubic spline interpolation are applied
to estimate the missing points for SFP and TPM in order
to better compare the mining results generated by SFP,
TPM, and CACT. Linear and cubic splines pass through
these points with piecewise linear and cubic polynomials,
respectively. Low-order polynomials are usually used for
interpolation because they can reduce not only the com-
putational costs but also the numerical instabilities arising
with high-degree curves. As reported in [32], cubic polyno-
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Fig. 16 Comparison of TPM,
SPF, and CACT. a Ground truth.
b SFP-L. c SFP-C. d TPM-L.
e TPM-C. f CACT

mials are commonly used because no low-degree polyno-
mial allows a curve to pass through two specified endpoints,
guaranteeing continuous first and second derivatives across
all polynomial segments. Thus, these piecewise cubic poly-
nomials can be connected smoothly. For ease of presenta-
tion, we use SFP-L (SFP-C, respectively) to represents that
we apply the algorithm SFP to linear-interpolated (cubic-
interpolated, respectively) trajectories. Similarly, we denote
TPM-L (TPM-C, respectively) as the algorithm TPM with
linear-interpolated (cubic-interpolated, respectively) trajec-
tories. Moreover, since SFP and TPM derive trajectory
patterns without clustering the trajectories, the Type 1 trajec-
tories are selected for these two approaches to further investi-
gate whether the derived trajectory patterns can fit the ground
truth more precisely.

Figure 16b–f show the trajectory patterns derived by all
approaches. Figure 16b shows trajectory patterns derived
by SFP-L. Because silent durations fragment trajectories,
the trajectory patterns discovered by SFP-L have large hot
regions. Even though the cubic spline interpolation attempts
to form trajectories more smoothly, trajectory patterns mined
by SFP-C are of higher quality than those of SFP-L. As shown
in Fig. 16b, c, some regions are not found, as compared to
the ground truth in Fig. 16a. Figure 16d, e show trajectory
patterns discovered by TPM-L and TPM-C. Algorithm TPM
uses a set of neighboring grids as hot regions. To “smoothen”
the hot regions, linear regression is also used to further con-

nect two nearby hot regions. Consequently, Fig. 16d shows
that TPM-L generates many large hot regions when trajecto-
ries are linearly interpolated. Some of the hot regions even
cover areas that a user will never pass by. On the other hand,
when trajectories are smoothed by cubic spline interpolation,
Fig. 16e shows that there are more hot regions located on the
roads. Compared with the ground truth, this trajectory pat-
tern does not describe the movement behavior (i.e., type 1)
effectively. Figure 16f shows the trajectory patterns mined by
CACT. Compared with the ground truth in Fig. 16a, CACT
derives trajectory patterns that are almost identical to the
original trajectory path. Obviously, some less frequent hot
regions cannot be discovered when trajectories have certain
silent durations. Some experiments are also conducted based
on each type of trajectories. Similar to this experiment, the
hot regions derived by the competitors are not well-aligned
on the roads even though some interpolations are used for
completing silent durations of trajectories. Due to the space
limitation, we do not show all the similar results of trajecto-
ries with different types.

To evaluate the mining results of trajectory patterns, two
performance metrics, precision and recall, are used. Since
both SFP and CACT are able to derive a sequence of hot
regions, smaller regions are more precise in describing move-
ment behaviors. To quantify the precision of the mining
results, a number of road segments covered by hot regions
are used. Note that the trajectories are obtained while a
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Fig. 17 Precision and recall of SFP-L, SFP-C, TMP-L, TMP-C and
CACT with Pclue varied

user moves along particular road segments. Thus, trajec-
tories can be represented as sequences of road segments.
Using frequent itemset mining, a set of frequent road seg-
ments, denoted as F , can be obtained. Consequently, the
precision is defined as follows. Let C be the road segments
covered by the derived regions and F be the frequent road
segments derived by frequent itemset mining. The precision
is formulated as L(C ∩ F)/(L(C ∩ F)+ L(C ∩ F̄)), where
L(·) represents the total length of the roads. A higher pre-
cision value means that the derived region tends to cover
more frequent road segments. On the other hand, the recall
measures the number of frequent road segments within the
derived hot regions. As such, the recall is formulated as
L(C ∩ F)/(L(C ∩ F) + L(C̄ ∩ F)). A higher recall value
indicates that more frequent road segments are covered by
the derived regions.

Figure 17a shows that CACT leads to the highest precision
among all approaches. The precision of CACT is higher than
70% in all cases. Because the hot regions of SFP are rectan-
gular, SFP achieves a higher precision than TMP. Figure 17b
shows the recall values of all approaches. CACT outperforms
all the other approaches as well. Since the hot regions of TMP
are much larger than those of SFP, they cover a lot of road
segments. Thus, the recall of TMP is higher than that of SFP.
In summary, CACT handles silent durations very well when
Pclue > 50%. For the other approaches, Pclue is the most

Table 3 Execution time (in seconds)

CACT SFP-L SFP-C TPM-L TPM-C

CarWeb 7.24 2.12 2.23 1.42 1.57

Synthesis: short 27.4 5.31 5.51 4.76 4.82

Synthesis: long 32.3 5.84 6.23 5.22 5.23

critical factor for the precision, whereas using interpolation
on trajectories does not increase the precision considerably.

Finally, we compare the efficiency of CACT with SFP
and TPM. Table 3 shows the execution time of all approaches.
Three datasets are used in this experiment, including CarWeb
dataset, short synthetic dataset (the average length of trajecto-
ries is 1,000) with 100 trajectories, and long synthetic dataset
(the average length of trajectories is 4,000) with 100 trajecto-
ries. The execution time of CACT takes longer than the other
approaches because CACT first clusters trajectories and then
generates trajectory patterns, whereas the other approaches
do not cluster trajectories first. However, this tradeoff makes
a significant improvement in the precision and the recall of
the trajectory patterns and thus is worthwhile.

7.5 Performance study of CACT framework

We evaluate the execution time by varying the number of
trajectories. The unit of execution time is 1 s in the follow-
ing experiments. Two synthetic trajectory datasets are used.
One consists of short trajectories of 2,000 points on aver-
age, while the other one consists of long trajectories of 6,000
points on average. The number of trajectories in these two
synthetic datasets is ranged from 100 to 5,000 to evaluate the
execution of CATC. The execution time includes three parts:
(1) computing similarities between trajectories (CATS), (2)
clustering trajectories (CATC), and (3) generating trajectory
patterns (CATA). Figure 18 plots the execution time of var-
ious components in CACT in log-scale. Overall, the execu-
tion time increases as the number of trajectories increase.
However, the proportion of the clustering phase and the
aggregation phase are not the same under different kinds of
trajectories. In the short trajectories, as shown in Fig. 18a, the
clustering phase takes more execution time than the aggrega-
tion phase does. On the contrary, Fig. 18b shows that CACT
spends most of its execution time deriving the hot regions
when long trajectories are considered. Longer trajectories
needs more time to aggregate the information and execute
the Douglas-Peucker line simplifier.

8 Conclusions

In this paper, we propose the CACT framework to discover
trajectory patterns and routes. In addition to spatial and
temporal bias, we observe that trajectories usually contain
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Fig. 18 Execution time under a short and b long trajectories

silent durations, during which detailed movement informa-
tion is missing. Furthermore, since users may have multiple
movement behaviors, trajectories should be clustered before
hot regions are identified for trajectory pattern mining. Exist-
ing trajectory clustering techniques do not deal with trajec-
tories with silent durations. Notice that clues about the same
movement behavior are usually left in the trajectories sam-
pled from this movement behavior. We argue that clues of a
movement behavior are usually reflected by spatially and
temporally co-located data points in trajectories. Thus, we
formulate a clue-aware trajectory similarity and a clue-
aware clustering algorithm to cluster similar trajectories into
groups. For each group, CACT aggregates trajectories in the
group to identify hot regions and to discover trajectory pat-
terns. We have evaluated CACT using both real and syn-
thetic datasets in experiments. Experimental results show that
CACT is able to effectively discover trajectory patterns even
if trajectories only capture fragments of movement behav-
iors.

For future works, the computation of CACT could be fur-
ther improved. Specifically, we intend to derive the upper
bound of CATS by approximating trajectories into a sequence
of bounding boxes and propose some pruning rules to avoid
the expensive pair-wise computation in CATS. As for the
aggregation of trajectories, points in a trajectory are added
into the base trajectory one by one and then clustered to form
the final trajectory route. The above computations could be
reduced by indexing the trajectories. Even though prior works

have proposed index structures for moving objects [13,27],
we aim to devise an index structure for trajectories with silent
durations in order to facilitate efficient mining of trajectory
patterns and routes.
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