
The VLDB Journal (2011) 20:643–669
DOI 10.1007/s00778-011-0236-8

SPECIAL ISSUE PAPER

Indexing in-network trajectory flows

Iulian Sandu Popa · Karine Zeitouni · Vincent Oria ·
Dominique Barth · Sandrine Vial

Received: 24 September 2010 / Revised: 7 April 2011 / Accepted: 14 May 2011 / Published online: 7 June 2011
© Springer-Verlag 2011

Abstract Indexing moving objects (MO) is a hot topic in
the field of moving objects databases since many years.
An impressive number of access methods have been pro-
posed to optimize the processing of MO-related queries.
Several methods have focused on spatio-temporal range que-
ries, which represent the foundation of MO trajectory que-
ries. Surprisingly, only a few of them consider that the
objects movements are constrained. This is an important
aspect for several reasons ranging from better capturing the
relationship between the trajectory and the network space
to more accurate trajectory representation with lower stor-
age requirements. In this paper, we propose T-PARINET,
an access method to efficiently retrieve the trajectories of
objects moving in networks. T-PARINET is designed for con-
tinuous indexing of trajectory data flows. The cornerstone
of T-PARINET is PARINET, an efficient index for histori-
cal trajectory data. The structure of PARINET is based on
a combination of graph partitioning and a set of composite
B+-tree local indexes. Because the network can be modeled
using graphs, the partitioning of the trajectory data makes

I. Sandu Popa (B) · K. Zeitouni · D. Barth · S. Vial
PRiSM Laboratory, University of Versailles Saint-Quentin,
45 avenue des Etats-Unis, 78035 Versailles, France
e-mail: Iulian.Sandu-Popa@prism.uvsq.fr

K. Zeitouni
e-mail: Karine.Zeitouni@prism.uvsq.fr

D. Barth
e-mail: Dominique.Barth@prism.uvsq.fr

S. Vial
e-mail: Sandrine.Vial@prism.uvsq.fr

V. Oria
Department of Computer Science,
New Jersey Institute of Technology,
University Heights, Newark, NJ 07102, USA
e-mail: Vincent.Oria@njit.edu

use of graph partitioning theory and can be tuned for a given
query load and a given data distribution in the network space.
The tuning process is built on a good quality cost model that
is supplied with PARINET. The advantage of having a cost
model is twofold; it allows a better integration of the index
into the query optimizer of any DBMS, and it permits tuning
the index structure for better performance. The tuning pro-
cess can be performed before the index creation in the case
of historical data or online in the case of indexing data flows.
In fact, massive online updates can degrade the index qual-
ity, which can be measured by the cost model. We propose
a specific maintenance process that results into T-PARINET.
We study different types of queries and provide an optimized
configuration for several scenarios. T-PARINET can easily
be integrated into any RDBMS, which is an essential asset
particularly for industrial or commercial applications. The
experimental evaluation under an off-the-shelf DBMS shows
that our method is robust. It also significantly outperforms
the reference R-tree-based access methods for in-network
trajectory databases.

Keywords Moving object database · Access method ·
In-network trajectory · Data flows

1 Introduction

With the proliferation of mobile devices capable of accurately
reporting their positions in time, it has become possible
to accumulate large amounts of trajectory data. Moreover,
the data acquisition can be made in real time by using the
ubiquitous wireless communication systems. A wide range
of applications in areas like transportation planning, traf-
fic management, location-aware services rely on these data.
Subsequently, an important research effort went into the
general field of moving objects databases (MOD). Most of

123

644 I. Sandu Popa et al.

these works can fit in one of the following two comple-
mentary classes: modeling spatio-temporal databases and
indexing techniques to efficiently process spatio-temporal
queries.

The performance issue has become critical in spatio-
temporal applications due to the large amount of data and
the computation cost of geometric operators. An impressive
number of access methods have been proposed for efficient
processing of moving objects (MO) queries. We can classify
these index methods from a temporal or a spatial point of
view. From the temporal perspective, some techniques aim
at indexing real-time application data with the objective of
minimizing the update and retrieval costs. Examples include
TPR*-tree [26], STRIPES [15], and ST2B-tree [3], to name
a few. Some other techniques focus on indexing complete
(past) trajectories of MOs and aim at reducing the retrieval
costs in large datasets. Several access methods such as the
MV3R-Tree [8,24] have been proposed in this context.

From the spatial perspective, most MO access methods,
e.g., [3,8,15,24,26], consider that the objects are moving
freely in the space. However, in several real-life applications,
the object movements are constrained (e.g., trains moving
along a railroad network or vehicles moving along a road net-
work). Taking into account, the network can lead to specific
models that are optimal for the data representation. A few
works [4,5,17] have proposed access methods for objects
moving in networks. We will present them in more detail in
the related work section, as this paper is situated in the same
context.

The existing indexing techniques for objects moving in
networks decompose the network into roads and then index
the spatio-temporal location of the MOs on each road with
a specific index, e.g., a 2D R-tree. One of the shortcomings
of this approach is the way the space is decomposed; it is
solely determined by the road network and takes neither into
account the distribution of the trajectory data nor the queries
on the data. Hence, more recent access methods for non-
constrained MOs, e.g., [1,3], have proposed to partition the
2D space according to the data distribution. Moreover, index-
ing both the spatial and the temporal dimensions for a given
road is not always useful, since the spatial dimension (i.e.,
relative positions) tends to be less selective than the temporal
one in most cases.

Another important observation in the case of MO trajec-
tory data is that the datasets can be very dynamic and can
span over very long periods of time, which are expanding
continuously. For example, it is not uncommon nowadays to
continuously monitor the traffic in certain road networks or
highway networks and also to record all these data for future
use. Indeed, numerous applications are based on analyzing
the historic (trajectory) data, e.g., for location-based services,
for traffic planning, for measuring the traffic impact on the
environment, for infrastructure developments, etc.

A more general problem suggested by the above-men-
tioned applications is to efficiently manage trajectory data
flows. The existing techniques for indexing the current and
near-future movements of MO focus on tracking the posi-
tions of a set of MO. The challenge for an index in this case
is the ability to continuously adapt to the spatio-temporal dis-
tribution of the data and to find a balance within the update
and query cost trade-off. These methods discard the historical
data. On the other hand, the methods that index past trajec-
tory data consider mostly static datasets that are known in
advance (since the data are historical) and that are subject to
little or no changes. The main issue in this case is to optimize
the retrieval cost of spatio-temporal queries. More recently,
Pelanis et al. [16] proposed an indexing technique for cap-
turing the positions of moving objects at all points in time
(past, present, and anticipated future). Nonetheless, the focus
of this work is on indexing the transition from present states
to recent-past states of the data, while indexing the whole
past is not a concern.

Therefore, in a more general context, it would be interest-
ing to have an access method that efficiently processes the
spatio-temporal queries over the recorded history, while con-
tinuously recording the trajectory updates up to the current
time. Note that in the general context, the focus is still on the
snapshot (spatio-temporal) queries, i.e., which are evaluated
only once.

In this paper, we propose T-PARINET, an efficient method
for indexing in-network trajectory data flows. The structure
of T-PARINET is based on PARINET, i.e., a PARtitionned
Index for in-NEtwork Trajectories. Thus, we first present
PARINET, an access method to efficiently retrieve the (past)
trajectories of objects moving in networks. Given a data set
of trajectories, PARINET proceeds by partitioning the data
and indexing the partitions with composite B+-trees. This
allows exploiting the built-in B+-tree, a robust and efficient
index structure that exists in every database system. Instead
of using a 2D grid as in the previous methods, the partition-
ing of the data is based on graph partitioning theory in order
to integrate the network topology. In addition, we proposed a
cost model that allows tuning correctly the index structure for
a given query load. The part of the work dealing with index-
ing constrained trajectory data has already been published in
Sandu Popa et al. [20]. Similar to the existing approaches,
the focus of that work was on indexing historical trajectory
datasets, i.e., where the data are known in advance and are
subject to little or no changes.

Then, we extend PARINET to solve the more general
problem, i.e., indexing trajectory data flows. The Tempo-
ral PARINET (T-PARINET) provides an optimized handling
of trajectory data flows. T-PARINET is configurable in a
dynamic environment and to fulfill its goal, T-PARINET uses
an online tuning process that creates periodically a new PAR-
INET to index the trajectory data from the current moment to

123

Indexing in-network trajectory flows 645

a future moment in time. The online tuning process is based
on monitoring a set of parameters indicating the quality of the
last built index in the structure of the T-PARINET. Hence, our
approach is to propose a smooth between static indexes for
continuous indexing of trajectory flows. More specifically,
the contributions of this paper are the following:

• We propose a novel access method called PARINET to
index datasets of in-network trajectories. PARINET is
based on graph partitioning and time interval indexing.

• We present a cost model that combines the statistics on
the data and the query workload to estimate the number
of disk accesses for a given index configuration.

• We show how PARINET can automatically choose a good
index configuration, based on the provided cost model,
the data distribution, and the query workload using well-
known graph partitioning algorithms.

• We also propose Temporal PARINET for indexing con-
tinuously and efficiently in-network trajectory data flows.
T-PARINET uses an online tuning process to automati-
cally determine the index evolution in time. The tuning
process is based on the cost model of PARINET adapted
to the context of indexing trajectory data flows.

• We characterize the query types in the network con-
strained MO context and provide different test scenarios.

• We have implemented PARINET and T-PARINET using
an off-the-shelf DBMS and validated our approach using
an extensive experimentation that shows their efficiency
and their scalability properties.

The rest of this paper is organized as follows: Sect. 2
presents the related work. Section 3 introduces the context for
T-PARINET by defining the network model, the data model,
and the query types. Section 4 contains the description of
PARINET along with the cost model and the tuning pro-
cess. Section 5 introduces T-PARINET to continuously index
in-network trajectory data flows. The experimental results
are given in Sect. 6. Finally, we conclude and discuss some
directions for future work in Sect. 7.

2 Related work

2.1 Indexing moving objects in networks

As pointed earlier, considerable attention has been paid to
indexing methods for moving objects. Most of these works
deal with indexing past, present, or near-future positions of
MOs that move freely in a two-dimensional space. There are
only a few methods for indexing (past) trajectories of MOs
in networks, which is the focus of this paper. The trajecto-
ries are represented with reference to a network, i.e., with

the relative positions of the MOs on network edges [7]. The
main idea in the previous works is to decompose a three-
dimensional problem in two subproblems in lower dimen-
sions and then use a combination of two-level R-trees to
index the trajectories.

The approach by Pfoser and Jensen [17] uses two 2D
R-trees: one for indexing road edges and the other for access-
ing 2D transformed trajectory segments. The 3D (x, y, t)
coordinates of a trajectory are mapped into a 2D (p, t) coor-
dinate space using a Hilbert curve to linearize the network
line segments. The same mapping is performed for queries.
However, this generally leads to multiple sub-queries and
may decrease the performances. For simplicity, we will refer
to this approach as PJ-tree in the rest of the paper.

The FNR-tree [5] utilizes a 2D R-tree to index road seg-
ments. For every leaf node in the 2D R-tree, there is a 1D
R-tree to index the objects whose trajectories cross the seg-
ments included in the leaf node at a certain period of time.
A major disadvantage of the FNR-tree is its limitation in tra-
jectory modeling. Since only the time intervals are stored
in the 1D R-tree, it is assumed that the objects cannot stop,
change speed or direction in the middle of a road segment.

This limitation is addressed in de Almeida [4] by the
MON-tree. The MON-tree is composed of a 2D R-tree (the
top R-tree) that indexes the network edges and a set of 2D
R-trees (the bottom R-trees) that index the object movements
along the edges. An additional hash structure used to map
each edge to its corresponding tree helps speed up inser-
tions. Given a 3D spatio-temporal query, the top R-tree is
used to find the precise intersection between the spatial part
of the query and the network. Based on this intersection, a
set of sub-queries is generated for each intersected part of
each edge involved. Then, the corresponding bottom R-trees
are accessed in order to respond to the sub-queries. MON-
tree can handle two network models: an edge-oriented model
and a route-oriented model (see Sect. 3.1). The experimen-
tal evaluation in de Almeida [4] of the MON-tree against the
FNR-tree shows that the first method always outperforms the
second. The MON-tree on a route-oriented network model
shows better results.

We also mention PIST [1] that indexes past positions of
MOs in a 2D space. Although the application domain is dif-
ferent, it shares some similarity with the PARINET index as
it combines partitioning and indexing as well. The data to be
indexed consist of 2D points associated with time intervals,
i.e., tuples (x, y, ts, t f) where x and y represent the coordi-
nates in the 2D space, ts and t f represent a time interval. The
type of queries considered is of spatio-temporal range type
defined by a 2D spatial region and a time range. First, the 2D
space is partitioned with a non-uniform grid, whose coarse-
ness depends on the data distribution, data size, and expected
query size. Then, the data corresponding to each grid cell is
indexed on (ts, t f) using a B+-tree. The experimental results

123

646 I. Sandu Popa et al.

show a good performance of the method in comparison with
R-tree-based indexes.

2.2 Indexing MO trajectory data flows

To the best of the authors’ knowledge, no work in the
MOD area considers the problem of continuously indexing
data flows of trajectories (for constrained or non-constrained
MOs) to optimize spatio-temporal queries. The closest works
we found are the ones that focus on continuously tracking a
set of non-constrained moving objects.

These works mainly index two types of queries. A first
group of methods, such as TPR-tree [19], TPR*-tree [26],
Bx-tree [9], or ST2-B-tree [3] have been proposed to opti-
mize snapshot spatio-temporal queries that refer to present
or near-future times. Typical examples of such queries are as
follows: “Which MOs are within 1km of my location right
now?” or “What will be the number of MOs in the city center
10min from now?”

A second group of methods, such as SINA [14], Q-index
[18], and CNN [25], optimize continuous spatio-temporal
queries. An example query in this context is “Continuously
report the hotels within 5km of my location”. Both the first
group and the second group of works mainly focus on spatio-
temporal range queries, but these approaches remain applica-
ble to a broader class of spatio-temporal queries, e.g., nearest
neighbor or aggregate queries.

In the above-mentioned works, only the current positions
(along with, in some cases, the current velocity vector used to
predict near-future positions) of the tracked MOs are indexed.
The past states representing the MOs’ trajectories up to the
current time are discarded. A few works deal with indexing
the movements of non-constrained MOs at all points in time.
These works inlcude the proposal of Sun et al. [23], the BBx -
tree [12] and the RPPF-tree [16]. A common feature in these
approaches is the focus on indexing the transition from pres-
ent states to recent-past states of the data, while indexing the
whole past is not a concern.

In [23], Sun et al. proposed a method to approximately
answer aggregate spatio-temporal queries at all moments in
time. The method is based on a multidimensional histogram
representing the spatio-temporal evolution of the distribution
of the moving objects. A main memory structure is used to
keep the distributions corresponding to the current time and
to the recent past. Older states of the histogram are migrated
to the secondary storage and are simply indexed using a sin-
gle packed B-tree or a 3D R-tree.

BBx-tree [12] is an extension of the Bx-tree [9] (see above)
and consists in an array of indexes that store the old phases
of a rotating Bx-tree. For the past states, each index cov-
ers a time interval equal to 1.5Tmax, where Tmax represents
the anticipated maximum duration between two consecutive
updates of any moving object. Also, the lifespans of two con-

secutive indexes overlap on an interval of length Tmax. Since
Tmax can be very small in comparison with the length of the
recorded history of the movements of moving objects, it is
expected to have a large number of indexes in the structure
of a BBx-tree even for relatively short periods of time (e.g.,
of a few weeks). Moreover, the short lifespan of an index and
the index overlap, make that normal range queries intersect
several indexes, which will increase the query processing
overhead. Another disadvantage of BBx-tree is that it does
not record the real position of the MOs but only estimations
of the MOs’ location.

RPPF-tree [16] is another proposal to index the positions
of non-constrained moving objects at all points in time for
timeslice queries. RPPF-tree is based on the TPR-tree [19].
Pelanis et al. applied the partial persistence paradigm to the
TPR-tree to enable it to retain and query past states of the
indexed data. The focus here is on the application of partial
persistence to the TPR-tree, which is not a trivial task. Once
more, a single R-tree-like structure is used to index all the
data spanning from the recording start instant in the past to
the current time. This may lead to an important degradation
of the index structure due to the high number of index entries.

3 The context of T-PARINET

The constrained movement requires a specific data repre-
sentation but also specific query models [7]. It is important
that the data representation be related to the network space
instead of the 2D space in the case of constrained movement
for several reasons. The first reason is that the 2D model
does not capture the relationship between the trajectory and
the network space, while this information is essential for the
trajectory analysis. Queries relative to a network space (e.g.,
where are the gas stations on the A6 highway) are more suited
to constrained moving objects. The second is the limit of the
trajectory representations, estimated by linear interpolations
between the reported positions, while the MO follows in fact
the geometry of the network. In addition, the constrained
model allows for dimensionality reduction by transforming
the network in a 1D space by juxtaposing all the line seg-
ments [17]. Taking into account, the network leads to a better
storage and query performance than with the free trajectory
model.

This section presents the context for T-PARINET. We first
introduce the network model, the data model, and the query
model. Then, we conclude by giving the hypotheses that
guided this proposal.

3.1 Network model

The network model defined for T-PARINET is similar to
those in de Almeida [4] and Frentzos [5]. We use two

123

Indexing in-network trajectory flows 647

S6

S7
S1

S2 S3 S4 S5

S7

S8

I

S9
S10

Fig. 1 Example of a geometric representation of a network

representations for the road network: a geometric view and
a topologic view. The geometric view (or 2D view) captures
the approximate geographic locations of the road network
components. This is the base view of the road network. The
topologic view uses a graph in order to represent the road
sections and the intersections. It is useful in the partitioning
of the network. The notations we use are similar to the ones
in Speicys and Jensen [22].

The geometric representation of a road network is given
by a tuple RN 2D = (S, C), where S is a set of segments
and C is a set of connections. A road segment s ∈ S is a 2D
line segment defined by (ps, pe), where ps = (xs, ys), pe =
(xe, ye), and ps �= pe; ps and pe are, respectively, the start
and end points of the segment. A connection c ∈ C is a tuple
(p, Sc), where p is a geographical point that represents the
location in the 2D space of the connection and Sc is a set of
segments that meet at the connection. The list of segments in
Sc should have p as one of their end points. Figure 1 gives
a simple example of a geometric representation of a road
network.

Definition 3.1 Given a road network RN 2D as described
above, we define a road in RN 2D as Road=(rid, Sc, start),
where rid is a unique identifier, Sc is a set of connected seg-
ments that form a non self-intersecting polyline in RN 2D

(which may be open or closed (a cycle)) and start is one of
the two endpoints of the polyline. Each segment belongs to
one road only.

Definition 3.2 Given a road network RN 2D as described
above, we define the set of junctions in RN 2D as Junctions={

j
∣
∣ j ∈ C ∧ card(c(S j)) ≥ 3

}
.

Different granularities can be superimposed to a road
resulting in different network models.

Definition 3.3 For a given road network RN 2D, we define
three possible network models:

• Segment-oriented network model: each segment corre-
sponds to a road.

• Edge-oriented network model: each road is defined as the
polyline between two junctions.

• Route-oriented network model: the complete roads are
considered without split. They can extend over the junc-
tions. Notice that several configurations are possible for
the route model on the same road network.

In the example in Fig. 1, we have:

• 10 roads (S1,…,S10) in the segment-oriented model;
• 4 roads: (S1, S2, S3), (S4, S5), (S6, S7), and (S8, S9, S10)

using the edge-oriented model;
• 2 roads: (S1, S2, S3, S4, S5) and (S6, S7, S8, S9, S10) in

the route-oriented model.

In the sequel, we will employ the general term road network
to denote a road network modeled as one of the three pos-
sible network models. When necessary, we will indicate the
specific network model for the given network.

Definition 3.4 Given a road network RN 2D, we define a
position in the network space as a pair (rid, pos), where
rid is a road identifier and pos ∈ [0, 1] is the relative posi-
tion on the road measured from the start end point of the
road.

This is closely related to the concept of linear referenc-
ing widely used in GIS for transportation and available in
DBMSs as Oracle Spatial or GIS tools as ArcGIS.

Definition 3.5 Given a road network RN 2D, we define a
road connection rc as a tuple (p, Rc) where p is the geo-
graphical point location in the 2D space of the road connec-
tion and Rc is the set of roads that meet at the connection.
p has the same coordinates as one of the two end points of
each road in the given connection.

Based on the 2D representation of a road network RN 2D,
we construct the topologic representation of the network. In
this representation, a network is defined as an undirected
weighted graph G = (V, E) with V a set of vertices and
E ⊆ V × V ×N a set of edges, where N is the set of natural
numbers. Each v ∈ V corresponds to one road connection in
RN 2D. Given v1, v2 ∈ V , there is an edge e = (v1, v2, w) in
G if there is a road in RN 2D between the corresponding road
connections. The weight w is given by the function W , which
depends on the data distribution and is defined in Sect. 4.3.3.
Notice that in our network model, the roads are non-oriented.
But taking into account, the traffic orientation is a straightfor-
ward extension that can be achieved by splitting the two-way
roads into two edges.

3.2 Data model

As mentioned earlier, we intend to index the trajectories
of the MOs in a network. An object moving on a road
network reports its position at different moments in time.

123

648 I. Sandu Popa et al.

We assume that such an update is issued each time the
MO changes its speed or passes on a different road in the
network. An update contains the identifier of the MO, the
network position (as given in Definition 3.4), and the asso-
ciated time instant: (moid, rid, pos, t). We define the tra-
jectory of a moving object as a non-regulated sequence
of units (i.e., the time intervals are not of equal size).
Each unit is a tuple defined by two consecutive updates:
(moid, rid, [pos1, pos2] , [t1, t2]); t indicates a time instant,
while pos gives the relative position on the road at the begin-
ning and the end of the time interval [4,7]. For each unit, it is
assumed that the MO moves at constant speed, i.e., a linear
interpolation is considered over each interval. Given a road,
the relative position on the road and the time can be viewed
as the two orthogonal axes of a 2D space. In this space, we
denote by unit segment the 2D line segment bounded by the
points (pos1, t1) and (pos2, t2).

3.3 Query types

There are several types of queries that have been studied
in the field of MOD, such as range queries, spatio-temporal
join, nearest neighbors, within distance (or e-distance join),
or skyline queries to name but a few. Among these query
types, the range [4,5] and the nearest neighbor queries [21]
are, probably, the most studied in the context of MOD. In
this paper, we consider these two types of queries and focus
on the range queries since the nearest neighbor queries can
be brought down to a succession of range queries [21].

The range queries are composed of a spatial part and a
temporal interval: Q = (Qs, Qt). The queries return either
all the MOs that have lied within the area of Qs , at a certain
time interval Qt , or only the pieces of the trajectories that
overlap the query. We consider two types of range queries:
2D queries and path queries. The difference between the two
types of queries lies in the spatial part Qs .

The spatial component of the first type of queries is a
2D region. Hence, the 2D queries represent the most com-
mon range queries [4,5,17]. Thus, Qs is a 2D region (usu-
ally a rectangle). In the rest of the paper, we will refer to
this type of queries as 2D queries. To support 2D queries,
a transformation of Qs is performed first. The exact inter-
section between the 2D region and the network is com-
puted. Then, the initial region in Qs is replaced with the
intersected network region. Formally, the new Qs is a set
of road sections: Qs = {rs1, rs2, . . . , rsn} where rsi =
(ridi , [posi

11, posi
12], [posi

21, posi
22], . . . , [posi

k1, posi
k2])

and {rsi �= rs j } and posi
m1 ≤ posi

m2 ∧ posi
m2 < posi

(m+1)1.
Each rsi represents a set of disjoint and ordered intervals on
one road [4]. Multiple intersection intervals with the query
region are possible when the road is a polyline, which is the
case for an edge or route network model. Usually, one can

use a 2D R-tree over the network to speed up the computation
of the mapping between a 2D region and a network region.

The constrained movement suggests another type of use-
ful query. For example, “find in a database all the MOs whose
trajectories intersect a given MO trajectory” or “find the num-
ber of MOs that traverse a given road section at a certain time
(interval)” are path queries that need to refer to the network.
Path queries represent a new type of range queries that we
introduce. In a path query, the spatial part, Qs , represents a
path in the network, i.e., a sequence of connected road sec-
tions. For this type of queries, no mapping is needed from
the 2D space to the network space and Qs has the same for-
malization as above.

Beside the range queries, the nearest neighbor (NN) que-
ries are another popular type of query in MOD. Moreover,
there are several types of NN queries, e.g., reverse NN,
aggregate NN, or continuous NN. T-PARINET is capable of
answering the conventional nearest neighbor queries. That
is, given a (static) position in the network space and a time
interval Qt , the query returns the k MOs that were closer
(w.r.t. the network distance, i.e., the shortest path between
two network positions) to the network location during Qt .

3.4 Observations

In this subsection, we give a short informal intuition of the
T-PARINET index structure. We use a filtering and refine-
ment approach. The main idea of our proposal is that an
approximate index search could deliver very good perfor-
mances in terms of computation time, while offering at the
same time good results in terms of physical accesses. The
overall performance of such an access method can surpass
the “exact” index search used in the existing methods.

Actually, in a network space, the spatial dimension is com-
posed of a discrete component (the road identifier) and a
continuous component (the relative position on the road).
T-PARINET is based on the four following observations:

Observation 1 The relative position dimension is usually
less selective than the temporal dimension. Using an index
on time for filtering candidates followed by a refinement step
should be more efficient than using an R-tree on the two
dimensions.

The MON-tree and the PJ-tree fully index the bi-
dimensional space (relative positions and time) with a 2D
R-tree. Nevertheless, it is expected to have an important
amount of overlapping of the indexed units in the spatial
dimension, because in general, trajectories traverse entirely
the road segments in their path. Moreover, except for que-
ries on very small regions, the usual queries cover many road
segments. Therefore, indexing only the temporal dimension
might be more efficient, since time is more selective in this
case. For this reason, we use a B+-tree combined with sorted

123

Indexing in-network trajectory flows 649

data on the time components. This offers an efficient sequen-
tial range scan of the tuples that intersect the temporal query
interval Qt .

Observation 2 The partitioning of the network space should
not be made only on a road identifier basis, as it is the case
for the existing methods. It should be based on the data dis-
tribution and the network topology.

Indeed, while the alternative of one index per road offers
the advantage of an exact filtering on one component of the
spatial dimension, it nevertheless has a few shortcomings.
The partitioning is strictly related to the static road view of the
network and does not consider the data statistics (distribution
of MOs over the network). This is an important aspect and is
even more relevant in a historical context. Moreover, the per-
formance of the existing methods, e.g., MON-tree depends
on the granularity of the employed network (section, edge, or
route-based model). Another argument is that a network can
contain several thousand roads and having a separated index
for each one could degrade the system performance even for
small datasets.

Instead, we propose an index structure that takes into
account the data distribution over the network and the net-
work topology. The network will be partitioned in-network
regions that will be balanced with respect to the amount of
data in each region. Therefore, the parts of the network with
less traffic (e.g., the peripheral ones) will have larger extents
than the busy zones (e.g., the central ones). Queries are most
of the time defined on regions where road segments are close
or connected. A general rule is to group together the objects
that are close, which will help return more results in a few
page accesses (for instance, R-trees are based on this rule).
Because we are dealing with a network, the grouping should
take into account the connectivity of road segments, i.e., the
network topology, in addition to the data distribution.

Observation 3 The access method should be supplemented
with a good quality cost model that will allow tuning the
structure for better performances.

Most of the existing methods offer an empirical evalu-
ation of the performance. Some of the recent works, e.g.,
[1,3], propose analytical cost models, which are useful for
the index (self)-tuning. Our objective is also to provide an
administration tool for tuning the index.

Observation 4 In the context of continuous indexing of tra-
jectory data flows, the access method should be able to adapt
to the variation in time of the data distribution and density.
Also, the access method should be efficient w.r.t. insertions
and robust to massive index updating.

Trajectory data are inherently divers in space and time
[3]. For example, the central part of a road network is more

circulated than the peripheral parts. Also, the traffic can be
denser during peak times on working days than during the
weekend. In the case of indexing trajectory data flows, the
access method should be able to adapt to these variations,
since different index configurations are near-optimal for dif-
ferent periods of time. Moreover, the update efficiency of
the index and its robustness to massive updates are essential
in this context. Once again, having an access method that is
based on the B+-tree index appears to be the right choice
due to the efficiency of the B+-tree in performing update
operations.

4 PARINET index

In this section, we introduce PARINET for indexing datasets
of in-network trajectories. PARINET constitutes the foun-
dation for T-PARINET (see Sect. 5). PARINET is capable
of answering two kinds of queries on historical constrained
trajectories, namely range and nearest neighbor queries. We
present first the index structure and its operations. Section 4.3
proposes a cost model based on query and data sizes and for-
malizes PARINET tuning in terms of a graph partitioning
problem. Finally, we show how one can automatically tune
PARINET for a better performance, given a road network,
the distribution of the data to be indexed, and an expected
query workload.

4.1 Index structure

Based on the above-mentioned observations, the intuition of
our approach is to create a B+-tree index on time intervals
for the set of roads in each partition (returned by the parti-
tioning phase) rather than creating an index for each isolated
road. The partitioning is based on both the data distribution
and the network topology (cf. Observation 2), i.e., the par-
titions are balanced in terms of the amount of data and the
partitions separate the network into regions (i.e., connected
or close roads are grouped in the same partition).

The discussion on how one can choose a good number of
partitions and how the partitioning is obtained is presented in
Sect. 4.3. For now, we assume that this aspect is solved and
a good partitioning can be obtained for a given network and
a given data distribution. As a result of this operation, each
road will be assigned to a certain partition (cluster).

Given a dataset D containing trajectories of MOs in a net-
work as a set of trajectory units: D = {

(moid, rid,
[

pos1,

pos2
]
, [t1, t2])

}
, the index is built in three steps: partitioning

the trajectory units based on their road identifiers, sorting the
partitions on the time intervals, and indexing each partition
using a composite B+-tree on (t1, t2) interval. Note that an
interval-based B-tree such as the RI-tree [11] could be used
for indexing time intervals, but we chose a simple B+-tree to

123

650 I. Sandu Popa et al.

RP

),(21 tt{ }mridP =4

RP

+

)(21 tt

),(21 tt

{ }ridP =2

{ }kridP =3
treeB+

),(21 tt

),(21 tt

it t t
{ }iridP =1

{ }j2

mint maxt

Fig. 2 Example of PARINET index structure

allow an easier implementation. The index structure is quite
simple. An example is given in Fig. 2. A table R P (Road
Partitioning) that contains one entry for each cluster keeps
some basic information on the partitioning: the list of road
identifiers for a cluster and a pointer to the B+-tree index
over the unit segments in the cluster. As we partition the data
according to the spatial dimension, the time (tmin, tmax) rep-
resents the entire spanning time of the indexed trajectories.
Therefore, only one RP table is necessary to report the rela-
tionship between the partition attribute (i.e., the rid) and the
partition index.

4.2 Query search processing

Given a (2D or path) spatio-temporal range query Q =
(Qs, Qt) where Qs = {rs1, rs2, . . . , rsn} and Qt = [ts, te]
(see Sect. 3.3), PARINET can find all the objects that have
traversed the road sections in Qs during the time interval
of Qt or simply return the trajectory units that intersect Q.
Data retrieval is performed in three steps. First, we identify
the partitions that contain the road identifiers in the query, i.e.,
the spatial filtering step. Then, we use the B+-tree indexes
of the selected partitions and look up candidate data, i.e., the
temporal filtering step. Finally, we perform an exact match
search among the candidates, i.e., the refinement step.

Based on the set of road identifiers {ridq1, ridq2, . . . ,

ridqn} in Qs and on the distribution table R P , we deter-
mine the set of partitions {Pp1, Pp2, . . . , Ppm} that include
all the roads in a given query. Note that m ≤ n, but in general,
we can have m � n as a result of the partitioning process
described in Sect. 4.3. This means that the total number of
searched partitions is much smaller than the total number of
accessed roads in general, as it is the case in a road-oriented
partitioning.

Then, for each accessed partition, we perform a range scan
by using the B+-tree index in order to find the data pages that
temporally overlap Qt (see Fig. 3). Note that this may lead to
false positives, because the filtering is based only on time and
does not consider the road identifiers or the relative positions
on the road. However, the capability of accessing groups of

),(21 tt

treeB+

… Nodes Leaf

……

Pages Data
AreaOverlapTime AreaOverlapTime

Fig. 3 Example of index range scan

roads that are likely to appear together in a query will lower
the number of false positives.

Finally, at the refinement step, for each candidate data, we
determine whether it truly intersects Q, i.e., the unit segment
intersects one of the sub-query windows. The actual inter-
section between the unit segment and the sub-query window
is computed only if the unit MBR is not completely covered
by the window.

The interested reader can refer to Sandu Popa et al. [21]
for a discussion about the processing of conventional NN
queries by PARINET.

4.3 Data partitioning

4.3.1 Problem statement

PARINET is based on the partitioning of the road network.
Moreover, the partitioning must take into account the data
distribution over the network (e.g., total number of unit seg-
ments for each road) and the network topology. It is clear that,
for a given query load, different partitioning of the same data
will lead to different performances. Our goal is to automati-
cally find the best partitioning scenario for a given query load.
This is possible as the network and the data to be indexed are
known in advance.

This section presents a cost model that estimates the num-
ber of disk accesses necessary to answer a query load, given
a certain configuration of the PARINET index. Then, using
the cost model, we will rewrite the partitioning problem as
an optimization problem and use a graph partitioning algo-
rithm to resolve it. We assume that the overall performance
(mainly the response time) of the index is directly related to
the number of disk accesses.

4.3.2 PARINET cost model

In this section, we present a cost model that estimates the
number of physical disk accesses for a given query and

123

Indexing in-network trajectory flows 651

Table 1 Notations

D AQ Total number of disk accesses for a query

I Ap Number of index accesses in a partition

I A f
p Number of fixed index accesses in a partition

I Av
p Number of variable index accesses in a partition

P Ap Number of page accesses in a partition

Np Number of units (tuples) in partition p

Pagesp Number of data pages in a partition

ρt
p Temporal data distribution in a partition

(percentage of Pagesp per time unit)

Tmax Maximum length of the unit time intervals in the dataset

BSi Index block size (number of entries) per index page

BSd Data block size (number of entries) per data page

index configuration. The notations used in this section are
explained in Table 1.

The total number of disk accesses for a given query is
the sum of the physical accesses in each accessed partition.
We consider that the table R P , which gives the distribution
of road identifiers in the partitions, is sufficiently small to
fit in main memory. For each accessed partition, we have
disk accesses for the range scan in that partition. A range
scan comprises the index search and the data page scan (see
Fig. 3). We obtain Formula (1) for the total number of disk
accesses:

D AQ =
∑

p∩ Qs

(I Ap + P Ap). (1)

The data access cost is the number of pages containing the
data that overlap with Qt . Given the distribution of the data
in time ρt

p, the number of pages read is as follows:

P Ap = Pagesp ×
∫

Qt+Tmax

ρt
p dt

= Np

BSd
×

∫

Qt+Tmax

ρt
p dt. (2)

For simplicity, we consider a uniform temporal distribution
such as ρt

p = ρp = const . In this case, Formula (2) becomes:

P Ap = Np

BSd
× (|Qt | + Tmax)× ρp, (3)

where |Qt | = te − ts .
Note that Tmax decreases the temporal selectivity of the

query by enlarging the query time interval. The problem of
long time intervals is well-known when indexing time-related
data. The usual solution is to decompose long time intervals
into several smaller intervals. The drawback is that this will
increase the dataset size. However, this is not a problem with
trajectory datasets because only a small percentage of the

time intervals are long, i.e., there are few MO that are mov-
ing very slowly and that issue very rare updates. In [1], for
example, they compute the optimal splitting of the long time
intervals of a dataset such as the dataset size does not increase
much. This kind of data preprocessing can also be applied
to PARINET before the index construction. In general, con-
strained MOs such as vehicles moving in a road network,
need to report their location frequently to have an accurate
view of their trajectories. Hence, Tmax is expected to be much
smaller than Qt and to have a limited impact on the query
cost.

The number of index accesses is composed of a fixed cost
and a variable cost. The fixed cost comprises the accesses
performed to reach the leaf nodes from the index tree root,
which is equal to the tree height. The height of a B+-tree is
equal to the number of levels in the tree including the root
level. This can be computed based on the number of index
entries and the tree fanout:

I A f
p =

⌈
logfan Np

⌉
. (4)

A typical value for I A f
p is 3 when fan ≈ 100 and the num-

ber of index entries is in the millions of tuples. The variable
index cost reflects the number of pages with leaf nodes that
overlap with Qt . Similar to P Ap, we obtain

I Av
p =

Np

BSi
× (|Qt | + Tmax)× ρp. (5)

From Formulas (1), (3), (4), and (5) we obtain

D AQ =
∑

p∩ Qs

[⌈
log Np

⌉+ Np (|Qt | + Tmax)

×ρp

(
1

BSi
+ 1

BSd

)]
.

For the sake of simplicity, we consider that Qt is implicitly
enlarged with Tmax in the following. The final formula for
the number of disk accesses is as follows:

D AQ=
∑

p∩ Qs

[
⌈

log Np
⌉+Np · |Qt | · ρp

(
1

BSi
+ 1

BSd

)]
.

(6)

One advantage of PARINET is that it allows a simple esti-
mation of the disk accesses for a given query load, based on
some statistics on the indexed data. This estimation can be
used to automatically tune the index for a better performance.
In short, we can modify the average area of network parti-
tions by changing the total number of partitions n. Intuitively,
given a query of a certain size, the number of disk accesses
needed to answer the query will decrease with the partition
size, because less false positives will be examined. However,
increasing the number of partitions after a certain point will
result in a performance loss. This is due to the fact that more
partitions need to be considered, which increases the fixed

123

652 I. Sandu Popa et al.

index physical accesses and query overhead. The cost model
is verified in the experimental evaluation presented in Sect. 6.

4.3.3 Using graph partitioning

Assuming that the above cost model is accurate, we can esti-
mate the performance of the PARINET for a given configu-
ration, without effectively constructing the index. Therefore,
we can search among some of the possible configurations
and materialize the best one with respect to the cost model.
A possible index configuration corresponds to a network par-
titioning into a given number of parts that respects some given
constraints (cf. Observation 2).

Graph partitioning is an important problem that has been
extensively studied in the last decades. The problem is to par-
tition the vertices of a graph in n roughly equal parts, such that
the number of edges connecting vertices in different parts is
minimized [10]. The problem was extended to graphs where
each node and each edge can have weights. Therefore, the
resulting partitions can be balanced in terms of node weights
instead of number of nodes, for example. The graph partition-
ing problem is NP-complete [6]. However, many algorithms
have been developed to find high quality partitions extremely
fast based on specific heuristics [10]. Public implementations
are also available, e.g., METIS [13].

As formulated in Sect. 4.1, the constraints imposed by
PARINET on the network partitioning can be entirely satis-
fied by the graph partitioning algorithms. The formalization
of the approach is the following: given an undirected network
graph G = (V, E) and a dataset D (as described in Sect. 3.2),
we compute the weight function of the graph roads W : E →
N. W associates for each road in G the number of units from
D on that road. Let L(G) be the line graph of G. W is a
node weight function of L(G). Let P = {P1, P2, . . . , Pn}
be the partitioning of L(G) in n parts, such that the parti-
tions are contiguous and balanced in terms of total weight.
Let QL = {Q1, Q2, . . . , Qk} be a query load. We define the
quality indicator of P over L(G) as:

Q I n
QL
=

k∑

i=1

D AQi , (7)

where D AQi is computed by (6).
The goal is to find the partitioning such that Q IQL is min-

imal (Algorithm 1). The idea is to implement a program that
is based on METIS [13] and that returns the partitions with
the best Q IQL by iterating through the possible index con-
figurations. METIS takes as input a weighted node graph
and a number m of parts (line 5 in Algorithm 1). It parti-
tions the input graph in m parts such that the partitions are
fairly balanced and contiguous (although this is not guaran-
teed, non-contiguous portions are exceptions), which is con-
form to our demands for the partitioning of the road network

(cf. Observation 2). By iterating with m from 1 to card(E),
we choose the partitioning with the best Q I for the materi-
alization of the index structure. Notice that our experimental
results showed that a step of 100 for m in the iteration is suf-
ficient because usually Q I m

QL
has small variations with m.

Thus, the computation time for the optimal partitioning takes
about 1 min on our testing machine, which is negligible com-
pared to the time necessary for testing several index configu-
rations. For example, it takes several minutes to index about
one million trajectory units. The time required to test the
index performance needs also to be considered. Notice also
that the partitioning algorithm can work with any network
granularity, i.e., segment, edge, or route (cf. Definition 3.3),
since a graph representation can be built for the road network
for each of the possible network granularities.

Algorithm 1: Determining index partitioning
Input: Network graph G = (V, E), trajectory dataset D, query
load QL = {Q1, Q2, . . . , Qk}
Output: Road Partitioning function R P : E → {1, 2, . . . , p}
1. Compute W : E → N given G and D
2. Compute L(G) of G

3. Q I optimal
QL

= ∞
4. for m = 1 to card(E) do
5. R Pm ← M ET I S(L(G), m)

6. Q I m
QL
=∑k

i=1 D Am
Qi

7. if Q I optimal
QL

> Q I m
QL

then
8. R P ← R Pm

9. Q I optimal
QL

= Q I m
QL

10 return R P

5 Temporal PARINET

Trajectory datasets can be very dynamic, i.e., characterized
by frequent updating. In general, the updates do not concern
the exiting data (although this type of update is possible, it is
less probable), but rather about inserting new (parts of) tra-
jectories to the dataset as time goes. New data can be added
continually either as periodical large batches of updates or
by continuously logging the individual updates coming from
tracking a group of moving objects. Typically, the newer data
are also the most recent from a temporal point of view.

In this context, a good access method should not only
offer a good performance in terms of querying the trajectories
dataset, but it should also perform efficiently the updates and
should have a robust performance in time (cf. Observation
4). Ideally, an index should be capable of integrating at a low
cost the continuous incoming updates, while allowing to pro-
cess queries over the complete dataset. Moreover, the query
and update performances of the index should not degrade in
time.

Clearly, using a single index structure is not an appropri-
ate solution for two main reasons. First, the performance of
most indexes degrades with the size of the dataset. The query

123

Indexing in-network trajectory flows 653

performance of the R-tree (frequently used in this context)
degrades with the number of indexed entries [27] due to an
increase in the number of overlapping MBBs. Also, any tree-
like index will continue to grow with the number of index
entries. Although the increase in the tree height is logarith-
mic, this aspect cannot be neglected in the case of virtually
infinite datasets such as trajectory datasets. Second, as indi-
cated in the previous section, trajectory data are inherently
divers in space and time. An index structure such as PARI-
NET can balance the spatio-temporal diversity by choosing
the best configuration for a given dataset, i.e., for a dataset
corresponding to a time interval. However, the spatial dis-
tribution of the data can change between the observed time
periods. Therefore, different index configurations are near-
optimal for different periods of time.

In this section, we propose Temporal PARINET
(T-PARINET) to continuously index the trajectories of in-
network moving objects. Given a road network, T-PARINET
periodically creates a new PARINET index that will span
over a certain temporal window. The structure of the new
index is determined based on an expected spatial distribution
of the data and an expected query size by using an extended
PARINET cost model. The construction of a new index is
triggered based on two parameters that are continuously mon-
itored, i.e., the current index degradation (due to the differ-
ence between the expected and the real data distribution and
query size) and the expected degradation (due to an increase
in the index height as the data accumulate).

This section is organized as follows: we introduce the
index structure and operations of T-PARINET in Sect. 5.1. In
Sect. 5.2, we propose a simple solution to optimize the cost
of the updates and thus, to increase the index throughput.
Section 5.3 presents the extended cost model and the online
tuning algorithm used to decide on the development of the
index structure in time.

5.1 T-PARINET structure and operations

T-PARINET consists of a sequence of PARINET indexes
that are associated with different time intervals covering the
index lifespan from t0, corresponding to the oldest data in
the trajectory dataset, to the current time (tc). An example
of T-PARINET is given in Fig. 4. Each component index
PARINETi is associated with a time interval Ti =

[
ti−1, ti).

The time intervals partition the lifespan [t0, tc) of the global
index. The time intervals of the component indexes are dis-
joint. A Time Partitioning table (TP) has one entry for each
component index, which contains the corresponding lifespan
and a pointer to the index.

There are two types of component indexes in a T-
PARINET. There is one current index, which is the compo-
nent index covering the data in the most recent time interval.
The current index is affected by both queries and massive

[)tt[)tt[)tt[)tt [)ctt ,3
TP

[)32 , tt[)21, tt[)10 , tt

ct0t 1t 2t 3t

PARINETPARINETPARINET

1T time
2T 3T1 2 3

indexes old index current

Fig. 4 Example of T-PARINET index structure

updates. The lifespan of the current index is continuously
expanding to the right with the current time. The rest of the
component indexes represent past indexes. A past index is
usually only queried and has a fixed lifespan. Updates are
rare.

5.1.1 Search algorithm

Given a spatio-temporal range query Q = (Qs, Qt), where
Qs = {rs1, rs2, . . . , rsn} and Qt = [ts, te], the query pro-
cessing for T-PARINET has two steps. First, the intersection
between Qt and the time intervals in the table TP is computed,
resulting in a set of time intervals

{
Q1

t , Q2
t , . . . , Qk

t

}
. Then,

the initial query is mapped to a set of k queries, where Qi =
(Qs, Qi

t) and i = 1, k. Each query Qi is then evaluated by
using the corresponding component index PARINETi, where
the search operation is described in Sect. 4.2. Note that the
number of mapped queries k is expected to be low, i.e., k = 1
or k = 2 in most cases, since the length of the query time
interval Qt is normally smaller that the lifespan of a compo-
nent index (see Sect. 5.3.2).

5.1.2 Index evolution in time

Given a dataflow of moving object updates (moid, rid,

pos, t) in a road network, we can build a T-PARINET to
index the historical trajectory data. At time t0 the structure
of the index is initialized with an empty PARINET and by
inserting the first time interval [t0, tc) in the TP table. As
presented in Sect. 4, the structure of a PARINET index is
determined based on the distribution (i.e., the temporal den-
sity of trajectories on each road) of the trajectory dataset that
we want to index and on an expected query load. In the case
of continuous indexing a dataflow of trajectories the data
(distribution) is not exactly known in advance. Hence, the
structure of a new component index in T-PARINET will be
computed based on an expected distribution of the data.

There are several ways of anticipating the spatio-temporal
distribution of the data. For example, this can be based on
statistics of the traffic from previous observations in the road
network. If this type of information is not available, one

123

654 I. Sandu Popa et al.

could consider, for instance, a uniform trajectory distribution
(although more elaborated models could be easily devised)
for the first component index. Then, as the time passes and
new component indexes are instantiated, the past distribution
of the data can be used to foresee a possible future trajectory
distribution. Nonetheless, the index should be robust w.r.t.
both the data distribution and the query size.

Once the current component index is instantiated, it will
be continuously updated with new trajectory units and also
queried. After a period of time, when the index degradation
due to the difference between the expected and the real data
distribution and density, exceeds a certain threshold, the con-
struction of a new component PARINET index is triggered.
This aspect is thoroughly discussed in Sect. 5.3 where the
temporal partitioning algorithm is provided. Also, the time
interval in the TP table is updated for the past index, e.g.,
from [t0, tc) to [t0, t1), and a new entry [t1, tc) is inserted for
the new current index. This process can then continue indef-
initely. Note that the initialization of a new component index
is not costly since only the declaration of the index configu-
ration is effectively processed and stored into the database.
Note also that a discussion about the index maintenance can
be found in Sandu Popa et al. [21].

5.2 Optimizing update operations

Given a T-PARINET structure that continuously stores and
indexes a flow of trajectory updates, only the current index in
the structure is modified by the updates. The current index,
which is a PARINET index, consists in a forest of B+-trees
over clusters of trajectory units (see Sect. 4.1). The trajec-
tory units in each cluster need to be kept sorted on the units’
time interval [t1, t2] to ensure an optimal query performance
of the index. This constraint is easy to preserve since the
updates are inherently chronologically ordered. However, an
in-memory buffer that stores all the updates in the time inter-
val [tc − Tmax, tc) is needed to be certain that the new trajec-
tory units are inserted sorted on the units’ time interval. The
reason is that the time intervals can have different lengths,
but insertions occur once t2 is known.

In the context of adding intensively and continuously new
trajectory units to the indexed dataset, the cost of the insert
operation becomes crucial for the index throughput. More-
over, the robustness of the index with regard to the insert
operation is also important. PARINET is based on the B+-tree
index. This type of approach has an important advantage over
the existing methods that are based on the R-tree index (see
Sect. 2.1). The index operations in a B+-tree (e.g., search,
insertion, and deletion) can be performed more efficiently
than in an R-tree. The difference in performance between
the two structures is even more significant in a concurrent
environment. This represents an essential aspect for real-
time applications, where frequent queries and updates arrive

simultaneously. Moreover, in our context the insert operation
can be performed even more efficiently, since the new data
can be directly appended to the existing data, i.e., the index
is expanding only to the right as seen on the time axis. In
addition, this type of append-only insertion will indirectly
provide good index robustness. This is not the case for the
related methods that are based on the 2D R-tree index (except
for the FNR-tree that uses a 1D R-tree to index only the time
interval).

Although we expect PARINET to offer a good perfor-
mance w.r.t. the cost of the insert operation, some simple
optimizations, yet having potentially an important impact on
the update cost, can still be considered in this context. Recall
that PARINET partitions the dataset over a number of clus-
ters (corresponding to network regions) that are each indexed
with a B+-tree. Let us consider a data page of updates buf-
fered in main memory that needs to be inserted into the index.
In the case of a non-partitioned index, the buffered data page
is copied to disk at the cost of one I/O operation and then
the index is updated at the cost of one or several I/O opera-
tions. On the other hand, since the index is partitioned in our
case, the buffered updates will generally fall in different par-
titions. Therefore, one page of buffered updates will require
several disk accesses to copy to disk, i.e., equal to the number
of involved partitions. Moreover, all the local indexes in the
affected partitions need to be updated, increasing even more
the insertion cost.

Hence, the partitioning used by PARINET, which greatly
improves the query performance in a static environment,
can have a reverse effect on the insertion operations. This
shortcoming can be easily avoided. Instead of buffering the
updates page-wise, i.e., gathering one page of updates before
copying to secondary storage, one could use a partition-wise
buffering, i.e., one in-memory data page for each partition. A
simple in-memory hash structure having one package (e.g.,
of a disk page size) for each partition can be used. The updates
are committed to disk only when a package overflow occurs.
The insertion of the trajectory units in a package will only
affect one partition, minimizing thus the operation cost.

5.3 Temporal partitioning

5.3.1 Problem statement

In the context of continuous indexing of trajectory data flows,
T-PARINET creates periodically a new PARINET structure
to handle the data that will be collected in a temporal win-
dow. Three main reasons explain this process. First, it per-
mits to better adapt the index structure to the possible spatio-
temporal diversity of the data in the dataflow and also to the
query size and query distribution over the road network. For
example, if we can anticipate the spatio-temporal distribution
of the data and the query size for a certain time period, based

123

Indexing in-network trajectory flows 655

on past observations, then we can build a PARINET index
that offers an optimal performance w.r.t. the cost model pre-
sented in Sect. 4.3. Second, it allows limiting the degradation
of the current index in a T-PARINET. Since the structure of
every component index is determined based on an expected
data distribution and an expected query size, the differences
between the actual and the expected data will lead to a degra-
dation of the index performance. However, by monitoring the
index performance loss, we can bind it to the process of peri-
odic indexing. Third, the same process has a positive effect on
the index maintenance. Given a past index in a T-PARINET
that has a degradation exceeding a certain accepted limit, we
can rebuild off-line the component index to a near-optimal
configuration. In this case, only the local index is concerned,
which greatly limits the cost of the operation.

Since the process of indexing a trajectory dataflow is con-
tinuous, the index should be able to determine automatically
when it is the best moment to trigger the construction of a new
component index. Therefore, a temporal partitioning model,
which considers the index degradation, is needed. At the same
time, the temporal partitioning model should include some
parameters such as the lifespan of a component index in addi-
tion to the degradation factor. The time interval covered by
a component index needs to be larger than the time interval
of the queries in general. Otherwise, the queries will overlap
several component indexes, which will lead to a degradation
of the query performance, since more indexes need to be tra-
versed to answer a query. These aspects are developed in the
following two subsections.

5.3.2 T-PARINET cost model

In this section, we revisit the cost model of PARINET pro-
posed in Sect. 4.3 in the context of T-PARINET. We define
the constraints and the parameters needed by T-PARINET
for an online tuning of the evolution of the index structure in
time. The main idea is that the construction of a new com-
ponent index is triggered whenever the degradation of the
current index exceeds a certain defined limit. However, the
time interval covered by each component index should not
be too small compared to the time interval of the queries as
indicated above.

Given a spatio-temporal query Q = (Qs, Qt) over a
T-PARINET index and assuming that the query time inter-
val Qt = [ts, te] is inside the lifespan of a component index
PARINETi, the number of disk accesses needed to answer
this query is

D AQ =
∑

p∩Qs

[⌈
log N i

p

⌉

+N i
p |Qt |

(
1

BSi
+ 1

BSd

) te∫

ts

ρi
p(t) dt

⎤

⎦ . (7)

N i
p and ρi

p have the same significance as Np and ρp defined
in Sect. 4.3.2 and they are measured relatively to the compo-
nent index PARINETi.

Assuming that the temporal interval of a query can be sit-
uated with equal probability at any instant within the lifespan
of the T-PARINET, we can use an average temporal data dis-
tribution instead of the local temporal distribution ρi

p(t). The
average temporal distribution is

ρ̃i
p =

∫ ti
ti−1

ρi
p(t) dt

|Ti | = 1

|Ti | ,
where |Ti | = ti − ti−1 is the lifespan of the local index.
Note that this assumption does not limit the generality of the
cost model. In the case of non-uniform temporal distribu-
tion of the queries, ρ̃i

p can be estimated based on the specific
distributions.

Then, Formula (7) can be rewritten as

D AQ=
∑

p∩ Qs

[⌈
log N i

p

⌉
+N i

p

(
1

BSi
+ 1

BSd

) |Qt |
|Ti |

]
, (8)

where |Qt | = te − ts . To simplify the formulas, we use the
notation σ

Qt
p = N i

p(
1

BSi
+ 1

BSd
)
|Qt ||Ti | representing the (aver-

age) temporal selectivity of a query in a partition. Using this
notation, the number of disk accesses for given a query is

D AQ =
∑

p∩Qs

(⌈
log N i

p

⌉
+ σ Qt

p

)
. (9)

Also, given a query load QL = {Q1, Q2, . . . , Qk}, the qual-
ity indicator of PARINETi is Q I i

QL
=∑k

j=1 D Ai
Q j

(cf. with
the cost model defined in Sect. 4.3.3).

We define the following parameters that measure the qual-
ity of a component index PARINETi in a T-PARINET.

Definition 5.1 The global cumulated degradation of a com-
ponent index PARINETi w.r.t. a query load QL is defined
as:

GC Di
QL
= Q I i

QL
− Q I i−optimal

QL

Q I i−optimal
QL

,

where Q I i−optimal
QL

represents the quality indicator of the
optimal configuration of PARINETi w.r.t. the cost model.

Definition 5.2 The local cumulated degradation of a com-
ponent index PARINETi w.r.t. a query load QL is defined
as:

LC Di
QL
=

SD
(

D Ai
QL

)
− SD

(
D Ai−optimal

QL

)

SD
(

D Ai−optimal
QL

) ,

where SD(D Ai
QL

) =
√

1
k ·

∑k
j=1

(
D Ai

Q j
− D A

i
QL

)2
and

D A
i
QL
=

∑k
j=1 D Ai

Q j
k .

123

656 I. Sandu Popa et al.

Definition 5.3 The load factor of a component index
PARINETi having m partitions is defined as:

L Fi =
∑m

j=1 N i
j

m · fan

⌈
h̃
⌉ ,

where fan is the fanout of the B+-trees indexes and

h̃ =
∑m

j=1

⌈
log N i

j

⌉

m
(10)

is the average height of the trees.

The defined parameters indicate the current degradation
of a component index (e.g., the current index or a past index)
or the expected index degradation. GC D measures the per-
centage of query performance loss of a component index
compared with the optimal index configuration w.r.t. the cost
model. This parameter offers a global view of the perfor-
mance loss, since it considers the aggregated cost over the
query load. LC D is a parameter intended to measure the
unbalance in the query cost across the indexed data space.
Recall that PARINET partitions the data into several clusters
that are balanced w.r.t. the amount of data in each cluster.
This will also help balancing the cost of queries. Due to the
difference between the expected and the real distribution of
the data, the partition weights can be unbalanced. LC D indi-
cates a local degradation, since it measures the unbalance in
the query cost.

The first two parameters measure a degradation that is
already presented in the index. L F indicates an imminent
degradation of the current index. A drop in the query perfor-
mance is also caused by an increase in the tree height of the
B+-trees since the data continuously accumulate. When L F
approaches 1, the average height of the B+-trees is expected
to augment to include the new entries. This will lead to an
increase in the query cost. However, the overhead can be
avoided by an earlier “closing” of the current index and trig-
gering the creation of a new current index.

Hence, by monitoring these parameters, the construction
of a new component index in a T-PARINET can be auto-
matically triggered whenever they exceed certain predefined
threshold values. Nevertheless, two conditions regarding the
lifespan of the current index need to be verified before cre-
ating a new index.

Lemma 5.4 Assuming the maximum time interval of the que-
ries

∣
∣Qmax

t

∣
∣, the lifespan of a component index should verify

the following inequality (11) in order to have sargable tem-
poral predicates in the queries.

|Ti | >
∣
∣Qmax

t

∣
∣ · BSi + BSd

BSi
. (11)

Proof Each partition in a PARINET index uses a B+-tree to
index the temporal dimension of the data. The query opti-
mizer will make use of these indexes only if the estimated

h
~ 1

~
h

PARINET

iT 1+iT

h
PARINET

time
iti 1+i

tQ
i

Fig. 5 Example of T-PARINET index structure

number of disk accesses for an index-based search is lower
than the number of disk accesses in a full partition data scan.
Therefore, building a B+-tree index in each partition is useful
only if
⌈

log N i
p

⌉
+ N i

p

(
1

BSi
+ 1

BSd

) |Qt |
|Ti | <

N i
p

BSd

(cf. with Formula (8)). Since
⌈

log N i
p

⌉
� Ni

p
BSd

, the above

inequality leads to Formula (11). ��
Lemma 5.5 Assuming the maximum time interval of the que-
ries

∣
∣Qmax

t

∣
∣, the creation of a new component index indicated

by the load factor of the current index is beneficial only if the
lifespan of the current index verifies the following inequality:

|Ti | >
∣
∣Qmax

t

∣
∣ · h̃, (12)

where h̃ is computed by (10).

Proof Let us consider the component index PARINETi in
Fig. 5, which has the lifespan Ti . At time ti , L Fi is close to
1 indicating thus an imminent increase in the average index
height. Therefore, a new component index is built for the data
arriving after ti . To keep the formulas tractable, we consider
that PARINETi+1 has the same configuration as PARINETi.
Creating a new index will keep the cost of the queries situ-
ated in the interval Ti from augmenting, except for the que-
ries having Qt overlapped with ti . For these queries, the cost
will increase since we need to visit two PARINET indices
to evaluate them. Globally, this is not too penalizing if the
percentage of queries in Ti that intersect ti is low. This per-
centage can be estimated as |Qt ||Ti | , conform with the temporal
uniformity assumption considered earlier. Hence, the aver-
age cost of a query in Ti is equal to:

D AQ =
∑

p∩ Qs

[(
1+ |Qt |
|Ti |

)
h̃ + σ Qt

p

]
. (13)

This is based on Formula (9) in which the cost of travers-
ing the index is increased with the probability that a query
overlaps two indexes.

Another option would be to continue indexing the data
arriving after Ti with the same index regardless of the increase
in the average index height. In this case, the average cost of
a query is

D A1
Q =

∑

p∩Qs

(
h̃1 + σ Qt

p

)
, (14)

123

Indexing in-network trajectory flows 657

where h̃1 = h̃+1. From Formulas (13) and (14), we conclude
that is beneficial to create a new index at ti only if |Qt ||Ti | h̃ < 1.

��
Corollary 5.6 The lifespan Ti of a component index in T-
PARINET has a minimum value of

max

{∣
∣Qmax

t

∣
∣ · BSi + BSd

BSi
,
∣
∣Qmax

t

∣
∣ · h̃

}
.

Proof This is directly deduced from Lemmas 5.4–5.5. ��
Proposition 5.7 The lifespan Ti of a component index in
T-PARINET has a minimum value of 2 · ∣∣Qmax

t

∣
∣.

Since the format of the trajectory units is known (see
Sect. 3.2), one can easily estimate the ratio BSi+BSd

BSi
being

approximately 1.6. On the other hand, due to the large amount
of data, which characterizes trajectory datasets, a minimum
average height h̃ of 2 appears to be reasonable for a PARINET
index (e.g., a PARINET with 100 partitions and h̃ = 1 can
index only up to 3 × 104 trajectory units, whereas at h̃ = 2
it can go up to 9 × 106). Therefore, the maximum value
defined by Corollary 5.6 representing the minimum lifespan
is expected to be 2 · ∣∣Qmax

t

∣
∣. Note that

∣
∣Qmax

t

∣
∣ refers to the

maximum size of the time interval of most of the queries.
This does not mean that the queries that have a time inter-
val larger than

∣
∣Qmax

t

∣
∣ will not be processed by the database.

Moreover, a minimum index lifespan above 2 · ∣∣Qmax
t

∣
∣ can be

considered to avoid component indexes with short lifespan
when

∣
∣Qmax

t

∣
∣ has small values.

5.3.3 Temporal partitioning algorithm

In the previous section, we extended the cost model of PAR-
INET in the context of T-PARINET, i.e., for continuously
indexing trajectory datasets. Proposition 5.7 gives the min-
imum lifespan of a component index in T-PARINET based
on the maximum expected query time interval. In addition,
we defined some quality factors, i.e., GC D, LC D, and L F ,
to measure the performance of a component index. By sim-
ply monitoring the evolution in time of these parameters in
the current index of a T-PARINET, an online tuning process
can automatically decide when is an appropriate moment to
trigger the construction of a new current index. Note that
these parameters only take into account the query cost since
the updates can be performed at approximately constant cost
regardless of the index configuration as discussed in Sect. 5.2.
Also, the instantiation of a new component index is consid-
ered to have a small cost and is neglected.

The online tuning process of T-PARINET is based on a
simple algorithm (Algorithm 2). The process computes and
continuously updates a few global statistics on the current
index. Then, it verifies based on these statistics wether the
index quality indicators are situated within some predefined

limits. A new component index is created when one of the
parameters exceeds a threshold value. The configuration of
the new index is determined based on an expected data distri-
bution and density. Note that the creation of a new component
index can be triggered only if the lifespan of the current index
is greater than a predefined value (cf. with Proposition 5.7).
Afterward, the tuning process continues monitoring the new
index in T-PARINET.

Algorithm 2: T-PARINET On-line Tuning
Input: Road Partitioning function R Pi of the current index
PARINETi, global statistics Stati of PARINETi, query load
QL={Q1, Q2, . . . , Qk} and

∣
∣Qmax

t

∣
∣, thresholds GCDth and LCDth

1. current index ci = i
2. while true
3. update Statci

4. if tc − tci−1 > 2 · ∣∣Qmax
t

∣
∣ then

if Statci .GC Dci
QL

> GC Dth

5. or Statci .LC Dci
QL

> LC Dth

or Statci .L Fi > 0.9 then
6. Create new index PARINETi+1
7. Compute Stati+1
8. current index ci = i + 1

Given a component index PARINETi, Stati includes the
following information on the index structure; the current
number of trajectory units for each road (needed to compute
L(G) in Algorithm 1) and the total current number of trajec-
tory units in each partition of PARINETi (used to estimate
D AQ and h̃). This is sufficient to compute GC Di , LC Di ,
and L Fi .

Note that the tuning process itself can be improved in cer-
tain cases. For instance, if good prediction models for the traf-
fic are available, an important change in the distribution and
the density of the data flow can be foreseen and the construc-
tion of a new current index can be triggered in advance, i.e.,
without having to wait for a degradation of the current index.

6 Experimental evaluation

In this section, we experimentally evaluate both PARINET
and T-PARINET. PARINET is devised to index (static) tra-
jectory data sets. T-PARINET extends PARINET in order to
optimize the handling of trajectory data flows. The two access
methods have several points in common, since T-PARINET
is a sequence of PARINET indexes. For example, the query
processing is quite similar for the two methods and thus, the
query performance is expected to be the same. Neverthe-
less, there are some particularities of one index compared to
the other index. For example, the update performance and
the index throughput are characteristics that are important
mainly in the context of T-PARINET. Since the experimen-
tal evaluation presented in this section covers the two indexes
in a uniform way and to avoid any confusion, we summarize
in the following the points that apply to each method. Thus,

123

658 I. Sandu Popa et al.

the comparison of the query performances in Sect. 6.2.1 is
valid for both PARINET and T-PARINET. The update per-
formances and the index throughput measures in Sects. 6.2.2
and 6.2.3 are applicable to T-PARINET. The in-depth query
performance evaluation (Sect. 6.3.1) and the cost model eval-
uation (Sect. 6.3.2) are valid for both methods. The index
robustness with the variations of the query size (first part
of the Sect. 6.3.3) is important in the context of PARINET.
The index robustness with the variations of both the query
size and the data distribution and density (second part of the
Sect. 6.3.3), is a feature of T-PARINET. Finally, Sect. 6.4
compares PARINET and T-PARINET to underline the ben-
efits of T-PARINET in a dynamic environment.

We compare our approach with the reference access meth-
ods for in-network trajectories, i.e., PJ-tree [17], MON-tree
[4], and FNR-tree [5]. As PARINET, PJ-tree, MON-tree, and
FNR-tree were devised to index trajectory data sets. Hence,
we use these methods directly for comparison with PAR-
INET for historical data. Since there is no other work, to
our knowledge, which deals with continuous indexing of
in-network trajectory data flows, we also use PJ-tree, MON-
tree, and FNR-tree as reference in a dynamic environment
for comparison with T-PARINET.

All the experiments were conducted under an off-the-
shelf DBMS implementation. We used Oracle 11g Enter-
prise Edition installed on a Pentium 4, 3.2 GHz machine
with 2.5 GB memory (note: the tests do not need so much
memory) running Windows XP. Implementing PARINET
under Oracle is straightforward using the available table par-
titioning mechanism. A given dataset is stored in a relational
table where each tuple represents a unit having the following
attributes: (moid, rid, pos1, pos2, t1, t2). The table is parti-
tioned based on the rid value. Each partition contains a list of
rid values. Oracle allows creating an index for each partition.
Table T that keeps the mapping between the road identifiers,
and the partitions is implicit because the DBMS internally
manages the partitions based on the table metadata.

The evaluation is divided in two parts. First, we com-
pare our method against the reference access methods for
in-network trajectories in Sect. 6.2. We test the query per-
formance, the update performance, and the throughput of
the three methods. Second, we lead a more elaborated set
of experiments on T-PARINET in Sect. 6.3. The second part
aims to validate the proposed cost model and to assess the
index robustness with the variation of the query size and the
(spatio-temporal) variation of the data distribution and den-
sity.

6.1 Datasets and queries

Available real trajectories data, such as the mobility traces
of taxicabs in San Francisco (http://crawdad.cs.dartmouth.
edu/epfl/mobility), are not representative enough in terms

Table 2 Tested datasets statistics for PJ-tree, FNR-tree, MON-tree and
T-PARINET

Dataset # of units # of MO # of time units # of MO created
name per time unit

Old 1 124,079 3,929 400 10

Old 2 273,543 8,890 600 15

Old 3 510,761 15,823 800 20

of trajectory variety and data size. Moreover, the underlying
road network required by the experimentation is rarely avail-
able free of charge. Therefore, we used the generator for mov-
ing objects in networks proposed in Brinkhoff [2] to create
synthetic datasets. The generator is available with several net-
work examples and we used two of them: the road networks
for the city of Oldenburg (Germany) and the city of Stockton
(San Joaquin County, CA). The networks are represented in
a segment-oriented model, i.e., each line segment represents
a road and has a unique identifier. This is the smallest gran-
ularity for a network representation. We used the networks
directly in this format for T-PARINET tests and transformed
Oldenburg for the comparison between T-PARINET and the
R-tree-based access methods. Oldenburg has 7035 segments
and 6105 nodes, while Stockton has 24123 segments and
18496 nodes. Stockton contains more than 3 times the num-
ber of roads of Oldenburg. With regard to the distribution
of the generated MOs, we set the generator for a region-
based distribution. In this approach, the network regions with
higher node density have a higher probability of containing a
starting point for a MO. The position of each MO is reported
each time it passes a node. We generated 10 classes of MOs,
each class corresponding to a maximum speed. The genera-
tor also simulates weather conditions or similar events that
impact the motion and speed of the MOs.

We have two collections of datasets. One collection is
composed of small datasets that we use to compare T-
PARINET against the R-tree-based indexes. The other one
consists of larger datasets and is used for a deeper analysis
of T-PARINET. The reason for having two different datasets
is that the R-tree-based indexes do not scale well for large
datasets. Table 2 presents the statistics for the first dataset
collection. They are all based on a transformed map of Old-
enburg (see Sect. 6.2). Table 3 gives the statistics for the
second dataset collection based on the original Oldenburg
and Stockton maps.

The datasets have different number of units, trajectories,
trajectory length or time span, and map size. In average, a
MO trajectory in Stockton has twice the number of units of a
trajectory in Oldenburg, because of the network size. Hence,
for the same number of units, we have twice as many MOs in
Oldenburg than in Stockton. This will allow testing the index
behavior according to the map and the dataset sizes in terms
of total number of units of MO and of trajectory length.

123

(http://crawdad.cs.dartmouth.edu/epfl/mobility)
(http://crawdad.cs.dartmouth.edu/epfl/mobility)

Indexing in-network trajectory flows 659

Table 3 Tested datasets statistics for T-PARINET

Dataset # of units # of MO # of time # of MO created
name units per time unit

Oldenburg 1 685,515 15,964 800 20

Oldenburg 2 3,489,751 79,785 800 100

Stockton 1 690,890 8,285 830 10

Stockton 2 3,448,008 41,475 830 50

We tested the two types of queries: 2D and path. For each
type of query and for each map, we generated three scripts,
each script containing queries of fixed size. The statistics for
the generated query sets are given in Tables 4 and 5. For the
2D queries, we first randomly generated a 2D square win-
dow and a time interval. The intervals have the same relative
size in all the dimensions. Then, we transformed the query as
presented in Sect. 3.3 and generated the final script. For the
path queries, we randomly selected some trajectories from
the dataset and used them to generate the spatial interval of
the queries. We generated queries where the size of the spa-
tial interval is 0.25, 0.5, and 1% respectively, of the total
number of roads in the network. Each road section in a query
contains the entire road segment. For each of the three spatial
windows, the time interval was fixed to 2.5, 5, and 10% of the
total time of the dataset. We chose a smaller spatial window
due to the large number of roads in a network. The temporal
interval is randomly chosen within the temporal interval of
the dataset.

For a given query set, dataset and index configuration, we
measured the average time per query and the average number

of disk accesses per query. Similarly, given a large batch of
updates that need to be executed, we measured the average
time and the average number of I/Os per one thousand pro-
cessed updates. We used the default page size in Oracle, i.e.,
8 KB. The resulted fanout is 340 for the B+-tree index. Ora-
cle logically implements the R-tree as a tree and physically
using tables inside the database. Hence, the fanout does not
depend on the page size. We used the default value of the
fanout, i.e., 35, for the R-tree under Oracle 11g, since the
R-tree index is already tuned for an optimal performance.
Oracle uses a LRU buffer cache. We set the size of the buffer
cache to 32 MB, which allows for good performances of the
tested indexes (e.g., the minimum allowed size of the buffer
cache under Oracle 11g is 8 MB). In all the tests that mea-
sure the query performance, we emptied the cache between
each query run to limit the influence of the cache on query
processing evaluations. In the tests that measure the update
performance (Sect. 6.2.2), we cleared the buffer cache and
committed after each 32 thousand processed updates. There
was no intervention on the cache memory for the tests that
measure the index throughput (Sect. 6.2.3).

6.2 PARINET versus PJ-tree versus MON-tree versus
FNR-tree

In this section, we compare PARINET with PJ-tree, MON-
tree, and FNR-tree. Implementing the reference access meth-
ods under Oracle is also straightforward, since Oracle offers
an R-tree index within the Oracle Spatial data cartridge.
PJ-tree uses a single 2D R-tree to index the data, which

Table 4 Tested 2D query
statistics Query set name Spatial interval in

each dimension (%)
Avg. # of intersected
roads by the queries

Temporal interval
(%)

of queries in the
set

Old 2D Q1 2.5 9.5 2.5 105

Old 2D Q2 5 34 5 64

Old 2D Q3 10 60.2 10 49

Sto 2D Q1 2.5 23.4 2.5 108

Sto 2D Q2 5 96.3 5 100

Sto 2D Q3 10 156 10 98

Table 5 Tested path query
statistics Query set name Spatial interval (%) # of roads in the

query
Temporal interval (%) # of queries in the

set

Old P Q1 0.25 17 2.5 84

Old P Q2 0.5 35 5 75

Old P Q3 1 70 10 63

Sto P Q1 0.25 60 2.5 71

Sto P Q2 0.5 120 5 66

Sto P Q3 1 241 10 34

123

660 I. Sandu Popa et al.

0

50

100

150

200

250

300

350

400

A
vg

. #
 o

f
d

is
k

ac
ce

ss
es

 p
er

 q
u

er
y PARINET vs. PJ-tree vs. MON-tree vs. FNR-tree

2D Queries

PARINET
PJ-tree
MON-tree
FNR-tree

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

A
vg

. t
im

e
p

er
 q

u
er

y
(s

)

PARINET vs. PJ-tree vs. MON-tree vs. FNR-tree
2D Queries

0

50

100

150

200

250

300

350

400

2D Q1
Old1

2D Q2
Old1

2D Q3
Old1

2D Q1
Old2

2D Q2
Old2

2D Q3
Old2

2D Q1
Old3

2D Q2
Old3

2D Q3
Old3

Query size & Data Size

PARINET
PJ-tree
MON-tree
FNR-tree

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

2D Q1
Old1

2D Q2
Old1

2D Q3
Old1

2D Q1
Old2

2D Q2
Old2

2D Q3
Old2

2D Q1
Old3

2D Q2
Old3

2D Q3
Old3

Query size & Data Size

500

600

700

800

PARINET vs. PJ-tree vs. MON-tree vs. FNR-tree
Path Queries

4

5

6

PARINET vs. PJ-tree vs. MON-tree vs. FNR-tree
Path Queries

0

50

100

150

200

250

300

350

2D Q1
Old1

2D Q2
Old1

2D Q3
Old1

2D Q1
Old2

2D Q2
Old2

2D Q3
Old2

2D Q1
Old3

2D Q2
Old3

2D Q3
Old3

Query size & Data Size

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

2D Q1
Old1

2D Q2
Old1

2D Q3
Old1

2D Q1
Old2

2D Q2
Old2

2D Q3
Old2

2D Q1
Old3

2D Q2
Old3

2D Q3
Old3

A
vg

. t
im

e
p

er
 q

u
er

y
(s

)
0

100

200

300

400

500

600

700

800

P Q1
Old1

P Q2
Old1

P Q3
Old1

P Q1
Old2

P Q2
Old2

P Q3
Old2

P Q1
Old3

P Q2
Old3

P Q3
Old3

A
vg

. #
 o

f
d

is
k

ac
ce

ss
es

 p
er

 q
u

er
y

Query size & Data size

0

1

2

3

4

5

6

P Q1
Old1

P Q2
Old1

P Q3
Old1

P Q1
Old2

P Q2
Old2

P Q3
Old2

P Q1
Old3

P Q2
Old3

P Q3
Old3

Query size & Data size

PARINET
PJ-tree
MON-tree
FNR-tree

PARINET
PJ-tree
MON-tree
FNR-tree

PARINET
PJ-tree
MON-tree
FNR-tree

PARINET
PJ-tree
MON-tree
FNR-tree

PARINET
PJ-tree
MON-tree
FNR-tree

PARINET
PJ-tree
MON-tree
FNR-tree

Fig. 6 Query performance comparison between (T-) PARINET, PJ-tree, MON-tree and FNR-tree

makes it easy to implement under an off-the-shelf DBMS
supplied with an R-tree. MON-tree and FNR-tree follow the
same technique as for PARINET with regard to data parti-
tioning. Note also that in the case of MON-tree, there is one
difference from the method presented in de Almeida [4]. The
MON-tree in de Almeida [4] uses a modified version of an
R-tree that is capable of handling multiple query windows in
one index scan. Oracle implements an R-tree index, but, to the
best of our knowledge, does not allow changes to the built-in
indexes. Besides, all the reference methods use a (top) 2D R-
tree to perform the mapping of the 2D queries (cf. Sect. 3.3).
In our tests, the mapping of the 2D queries is performed apart
and not considered in the index performances.

Moreover, as reported in de Almeida [4], the MON-tree
performs better on route-oriented network models. We con-
catenated the segments of the Oldenburg map and generated
longer routes. From the 3328 segments that constitute the
core of the Oldenburg network, we generated 186 routes,
i.e., an average of 17.892 segments per route. Then, three
datasets (see Table 2) were generated on this transformed
map. Note that the data generation was done as previously
explained, i.e., a MO reports its position each time it traverses
a segment node. This means that several units are generated
for a MO that traverses a route. This aspect is important for
the MON-tree and the PJ-tree, because the selectivity on the
relative positions on a route is significant for this network
model.

As the longer routes can be seen as segment clusters, we
consider them as separate partitions for PARINET. This kind
of partitioning also helps validate our first observation (see
Sect. 3.4). A proper partitioning based on the software ME-
TIS is used in the next section.

FNR-tree [5] can only be employed with a segment-ori-
ented network model. The 2D R-tree indexing the 3328 seg-
ments has 104 leaf nodes. Based on this clustering of the
network segments, we partitioned the datasets into 104 par-
titions and index each partition with a 1D R-tree on the unit
time intervals. The R-tree index implemented in Oracle can
index spatial data having the dimensionality in the interval
from two to four. To simulate a 1D R-tree, we create a 2D
R-tree over a data space that has the extent of the second
dimension equal to zero.

We measure first the query performance of the three tested
methods. In the context of T-PARINET, the update perfor-
mance becomes equally or even more important than the
query performance. Therefore, we also measure the update
performance and the throughput (i.e., including updates and
queries) in a concurrent environment.

6.2.1 Query performance

Figure 6 presents the comparative results for the three meth-
ods for Old 1, 2, and 3 datasets (see Table 2) and the two types
of queries. PJ-tree outperforms MON-tree for most of the

123

Indexing in-network trajectory flows 661

200

300

400

500

600

PARINET vs. PJ-tree vs. MON-tree vs. FNR-tree
Updates

PARINET opt.

3

4

5

6

PARINET vs. PJ-tree vs. MON-tree vs. FNR-tree
Updates

0

100

200

300

400

500

600

Old 1 Old 2 Old 3A
vg

. #
 o

f
d

is
k

ac
ce

ss
es

 p
er

 1
00

0
u

p
d

at
es

of updates

Old 1 Old 2 Old 3

of updates

PJ-tree opt.
MON-tree opt.
FNR-tree opt.
PARINET
PJ-tree
MON-tree
FNR-tree

0

1

2

3

4

5

6

A
vg

. t
im

e
p

er
 1

00
0

u
p

d
at

es
 (

s)

PARINET opt.
PJ-tree opt.
MON-tree opt.
FNR-tree opt.
PARINET
PJ-tree
MON-tree
FNR-tree

Fig. 7 Update performance comparison between (T-) PARINET, PJ-tree, MON-tree and FNR-tree

tests, except for the execution time of the largest 2D queries
and the largest dataset. Using several indexes as in MON-tree
instead of one as in PJ-tree leads to an increased overhead that
can be significant for small datasets. We observe that MON-
tree shows better performance than PJ-tree for 2D queries
on large datasets. The performance of the FNR-tree is dual.
On the one hand, FNR-tree requires the highest number of
disk accesses to answer a query among the tested methods.
On the other hand, the average execution time per query is
lower in general than the other R-tree-based indexes. We
think that this is due, similar to PARINET, to the sequential
type of disk accesses as only the time interval is indexed.
Nevertheless, this advantage is outbalanced by the signifi-
cant increase in the number of disk accesses for large queries
and large datasets.

The performance of PARINET is always better than the
R-tree-based indexes from both execution time and disk
access point of views. The difference increases with the query
size. The average time per query that is sometimes one order
of magnitude smaller for PARINET came as a surprise. This
is certainly due to the sequential type of disk accesses in
PARINET as the data is clustered and sorted.

6.2.2 Update Performance

The update performances of the three methods are presented
in Fig. 7. We proceeded by building first the index structures
without any data. Then, we inserted all the trajectory data
units available in Old 1, 2, and 3 datasets and measured the
total number of disk accesses and the execution time. The val-
ues in Fig. 7 are averaged over one thousand updates. More-
over, we also tested the method proposed in Sect. 5.2, i.e., to
optimize the update operation for PARINET and employed
it equally to optimize the update cost for the R-tree-based
methods.

As expected, PARINET offers excellent update perfor-
mance, since it is based on the B+-tree index (see Sect. 5.2).

PJ-tree, MON-tree, and FNR-tree are using the R-tree index
that is less efficient for update operations. Furthermore, the
update cost increases with the number of updates due to
the degradation of the index structure in time. This aspect
can be observed on PJ-tree that offers better update cost that
MON-tree and FNR-tree on Old 1 and Old 2 datasets, i.e., for
less than 273 thousand updates. However, the performance
degrades greatly for PJ-tree on Old 3 dataset, i.e., for 510
thousand updates and falls behind of MON-tree’s and of
FNR-tree’s update performances. MON-tree and FNR-tree
use a forest of R-trees, which can incur a higher update cost
locally, but will offer a higher robustness on the long run
since each local index is affected by only a fraction of the
total number of updates.

Another observation is that the simple method that we pro-
posed to optimize the update cost improves greatly the update
performances of PARINET, MON-tree, and FNR-tree (since
these methods are based on partitioning). It also has a positive
impact on the robustness of PJ-tree.

6.2.3 Throughput

An access method for continuously indexing MOs’ trajec-
tories (e.g., the current index in T-PARINET) needs to pro-
cess both queries and updates in a concurrent environment.
The throughput represents the average number of operations
executed in a unit time (e.g., each second). Several factors
influence the throughput. An important element is the query-
update ratio. Updates are normally less expensive than que-
ries. However, in real applications, the number of updates is
expected to be much larger than the number of queries. Also,
whereas several queries can be processed simultaneously
since they hold shared lock on the traversed nodes, the que-
ries will block the updates operating in the same index parts
and vice versa.

The number of concurrent operations that are executed at a
certain time is another important factor on the index through-

123

662 I. Sandu Popa et al.

10

100

1000

10000

100

200

300

400

500

600

700

800

T
h

ro
u

g
h

p
u

t

1

10

100

1000

10000

1 10 100 1000 10000

T
h

ro
u

g
h

p
u

t

Update/Query Ratio
Number of threads = 8

PARINET
MON-tree
PJ-tree
FNR-tree

0

100

200

300

400

500

600

700

800

2 4 8 16 32 64

Number of threads
Update/Query Ratio = 100

PARINET
MON-tree
PJ-tree
FNR-tree

Fig. 8 Throughput performance comparison between (T-) PARINET, PJ-tree, MON-tree and FNR-tree

put. Intuitively, the throughput will reduce with an increasing
number of concurrent operations being executed. This is due
to the fact that the same resources will be shared among
more execution threads and each thread will wait longer to
gain access to the index structure.

To evaluate the throughput, we implemented a multi-
thread program in Java, which connects to the database and
executes tasks from two task pools. One task poll contains
updates and the other contains queries. We varied the update–
query ratio from 1:1 to 10000:1 and the number of execution
threads from 2 to 64. Among the working threads, there is
one dedicated thread that executes tasks only from the update
pool. The rest of the threads execute the queries. The through-
put is measured from a point in time where each index con-
tains 510 thousand trajectory units (i.e., the data from Old
3). We use 2D and path queries (see Tables 3, 4) of differ-
ent sizes having the time interval randomly chosen from the
index creation time up to the current time.

The results are presented in Fig. 8. The curves in the first
graphic represent the throughput of the tested methods when
varying the update–query ratio with the number of threads
fixed to 8. The throughput increases with the update–query
ratio, since the update operations are less expensive than
the queries. Note that the throughput axis is logarithmic in
this graphic. FNR-tree, MON-tree, and PJ-tree have similar
throughput values. MON-tree shows a marginal advantage
over PJ-tree. FNR-tree has a slightly better throughput than
MON-tree for update-query ratios smaller than 100. As the
number of updates increases, MON-tree offers the highest
throughput among the R-tree-based methods. As expected
from the results presented in the previous two subsections,
PARINET has the largest throughput. The gain over the ref-
erence access methods is significant, being approximately
one order of magnitude greater in favor of PARINET.

The curves in the second graphic indicate the variation in
the throughput with the number of threads when the update–
query ratio is fixed to 100:1. All the tested indexes show a
maximum throughput for a number of 8 threads. The through-

put increases with the number of threads, i.e., from 2 to 8
threads and then decreases as the number of threads increases.

In this first part of the experimentation, we compared PAR-
INET with the reference R-tree-based access methods for in-
network trajectories. The experimental evaluation showed
that PARINET performs significantly better regarding both
the query processing and the update processing or their com-
bination in a concurrent environment. It also showed good
robustness under intense updating. Another important advan-
tage of PARINET is that it proposes a cost model that, if suf-
ficiently accurate, will allow tuning the index structure for
better performance for both historical data or in a dynamic
environment. This is studied in the following section.

6.3 Parinet in depth

In this section, we report the results of a more elaborated set of
experiments on PARINET and T-PARINET. The main objec-
tives are to evaluate the accuracy of the proposed cost model
and to test the index robustness with the variation in the query
size and the variation in the data distribution and density. We
used the largest datasets (see Table 3) for the tests. We use
METIS [13] for computing the partitions and generate the
indexes for 100, 200, 500, 1000, 1500, and 3000 partitions.
We analyze the index performance with respect to the map,
the dataset, and the query sizes. Then, we evaluate the pro-
posed cost model. Finally, we discuss the index robustness
with the query size and data size variations. Due to space con-
straints, we only present the graphics corresponding to the
larger datasets (i.e., Oldenburg 2 and Stockton 2). The com-
plete set of results can be found in Sandu Popa et al. [21].

6.3.1 PARINET query performance

Figure 9 presents the results obtained for 2D and path
queries over Oldenburg 2 and Stockton 2 datasets. The tests
confirm our second observation (Sect. 3.4), i.e., the index
performance depends on the dataset size, the query size, and

123

Indexing in-network trajectory flows 663

Oldenburg 2 vs. Stockton 2
2D Queries

0

20

40

60

80

100

120

140

160

100 200 500 1000 1500 3000

of partitions

100 200 500 1000 1500 3000

of partitions
100 200 500 1000 1500 3000

of partitions

100 200 500 1000 1500 3000

of partitions

A
vg

. #
 o

f
d

is
k

ac
ce

ss
es

 p
er

 q
u

er
y

Old. 2 2D Q1
Old. 2 2D Q2
Old. 2 2D Q3
Sto. 2 2D Q1
Sto. 2 2D Q2
Sto. 2 2D Q3

Oldenburg 2 vs. Stockton 2
2D Queries

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

A
vg

. t
im

e
p

er
 q

u
er

y
(s

)

Old. 2 2D Q1

Old. 2 2D Q2

Old. 2 2D Q3

Sto. 2 2D Q1

Sto. 2 2D Q2

Sto. 2 2D Q3

Oldenburg 2 vs. Stockton 2
Path Queries

0

200

400

600

800

1000

1200

A
vg

. #
 o

f
d

is
k

ac
ce

ss
es

 p
er

 q
u

er
y

Old. 2 P Q1
Old. 2 P Q2
Old. 2 P Q3
Sto. 2 P Q1
Sto. 2 P Q2
Sto. 2 P Q3

Oldenburg 2 vs. Stockton 2
Path Queries

0

1

2

3

4

5

6

7

8

9

A
vg

. t
im

e
p

er
 q

u
er

y
(s

)

Old. 2 P Q1
Old. 2 P Q2
Old. 2 P Q3
Sto. 2 P Q1
Sto. 2 P Q2
Sto. 2 P Q3

Fig. 9 (T-) PARINET query performance

the query type. A smaller number of partitions are necessary
for an optimal performance when dealing with smaller data-
sets [21]. For our datasets, 100–200 partitions offer the best
performances for the smaller datasets and 500–1000 parti-
tions are needed for the largest.

The index performance also depends on the query size and
the query type. For the 2D queries, when the query size is
large, we need to reduce the number of partitions in order
to maintain an optimal index performance. For example, the
optimal performance is obtained for 1000 partitions for the
small 2D queries over the Oldenburg 2 and Stockton 2 data-
sets and for 500 partitions for the largest query sets over the
same datasets. For the path queries, the opposite holds true.

The query type influences the index performance. Path
queries are more demanding than 2D queries, which is fore-
seeable considering the fact that they extend over more net-
work regions for a given partitioning scheme and a spatial
query size. The performance for the 2D queries depends on
the degree of data density over the network. We can see that
for the same amount of data (Oldenburg 2 and Stockton 2)
and similar queries, the indexes yields similar results. As
expected, the execution time depends on disk accesses. How-
ever, the execution time is more sensitive to the number of
partitions. For higher partition numbers, the variations for
the disk accesses are minor, but they can be significant for

the execution time. For instance, in Fig. 9, we observe small
variations in the disk access values for 500 partitions or more
(left part), whereas the execution time becomes worse (right
part). Therefore, since the cost model only estimates the disk
accesses, a good technique will be to choose a break point
where increasing the number of partitions becomes useless
in term of disk access.

Overall, we find that PARINET has a solid performance
record when correctly tuned and scales much better with
the data and query sizes than the R-tree-based methods. The
query performance remains good both for disk accesses and
execution times, for queries containing from 17 up to 150
road identifiers. Also, we did not observe any influence of
the number of MOs or the trajectory lengths on the query
performances. Only the query size and the number of units
in the dataset affect the performances.

6.3.2 PARINET cost model evaluation

The above tests on the PARINET performances confirm our
observations, i.e., given a dataset, only some configurations
of the index offer near-optimal performance for a query load.
The tuning of the number of partitions has a relatively small
impact on disk accesses needed to process a query, for rela-
tively small datasets and small query sizes. This aspect was

123

664 I. Sandu Popa et al.

Model Evaluation
Oldenburg 2 - 2D Queries

0

20

40

60

80

100

120

140

160

180

100 200 500 1000 1500 3000
partitions

100 200 500 1000 1500 3000
partitions

100 200 500 1000 1500 3000
partitions

100 200 500 1000 1500 3000
partitions

A
vg

. #
 o

f
d

is
k

ac
ce

ss
es

 p
er

 q
u

er
y

A
vg

. #
 o

f
d

is
k

ac
ce

ss
es

 p
er

 q
u

er
y

Real Q1
Estim. Q1
Real Q2
Estim. Q2
Real Q3
Estim.Q3

Real Q1
Estim. Q1
Real Q2
Estim. Q2
Real Q3
Estim.Q3

Real Q1
Estim. Q1
Real Q2
Estim. Q2
Real Q3
Estim.Q3

Model Evaluation
Oldenburg 2 - Path Queries

0

100

200

300

400

500

600

A
vg

. #
 o

f
d

is
k

ac
ce

ss
es

 p
er

 q
u

er
y

A
vg

. #
 o

f
d

is
k

ac
ce

ss
es

 p
er

 q
u

er
y

Model Evaluation
Stockton 2 - 2D Queries

0

20

40

60

80

100

120

140

160

180

Model Evaluation
Stockton 2 - Path Queries

0

200

400

600

800

1000

1200

Real Q1
Estim. Q1
Real Q2
Estim. Q2
Real Q3
Estim.Q3

Fig. 10 (T-) PARINET cost model evaluation

observed for Oldenburg 1 and Stockton 1 datasets where the
data density is smaller (i.e., 700 thousand units in approxi-
mately 800 time units) [21]. Nevertheless, choosing a near-
optimal number of partitions can significantly improve the
query execution time for large queries, even for small data-
sets. On the other hand, the number of partitions is important
for the query performance for large datasets. This aspect was
observed for Oldenburg 2 and Stockton 2 datasets where the
data density is larger (i.e., 3.5 million units in approximately
800 time units).

In Sect. 4.3.2, we presented a cost model that estimates
the number of disk accesses for a query load and a given
index configuration. The tests show that the execution time
of a query usually depends on the number of disk accesses.
Therefore, the cost model can estimate the performance of
our access method for a given configuration, without effec-
tively constructing the index. This is very important consid-
ering that the index creation is costly, i.e., it is not an option to
actually test all the possible configurations in order to choose
the best one. If the cost model is accurate, we can automat-
ically find and materialize a good configuration among all
the possible ones. Moreover, the cost model can be further
employed in the context of continuously indexing MOs tra-
jectories in order to optimize the index evolution in time (see
Sect. 5.3.2). In this case, its role is to permit monitoring the

efficiency of the current index and to compare it with a near-
optimal index configuration.

In this section, we experimentally evaluate the proposed
cost model. For all the tests presented in Sect. 6.3.1, we also
calculated the number of disk accesses by using Formula (6)
defined in Sect. 4.3.2. Practically, we implemented a program
that takes as input the network graph with the data distribution
for each road, a query load and a number of partitions, and
outputs an estimated number of disk accesses. We consider
a uniform temporal distribution of the data, which is a good
approximation for the generated datasets. For non-uniform
data distribution, the real temporal distribution must be used,
as in (2), in order to obtain a good estimation of disk accesses.

The results are presented in Fig. 10. As we can see from
the figure, the cost model offers a good estimation for the
number of disk accesses.

Another observation is that the cost model is more accurate
for the larger datasets and also offers good estimations for the
smaller datasets [21] when the number of partitions is smaller
or equal to 200. The reason the cost model is less accurate for
small datasets and large number of partitions lays in the way
the data partitioning is implemented under the Oracle server.
Each partition of a partitioned table has allocated a minimum
of eight data pages regardless of the amount of data in that
partition. For small datasets distributed over a large number

123

Indexing in-network trajectory flows 665

of partitions, the partitions become under occupied, i.e., they
contain less than eight pages of data. This will lead to an
increase in the number of disk accesses to answer a query.
The cost model can be easily adapted to take into account
this specific case. Nevertheless, for the sake of generality,
we used the cost model as initially proposed in Sect. 4.3.2.

In conclusion, the experiments show that the cost model
is good enough to be used for tuning the PARINET index.

6.3.3 Robustness of PARINET and T-PARINET

The access method proposed in this paper is devised to be
employed for two main (complementary) usages.

Firstly, PARINET can be used to index historical datasets.
In this case, the data are known in advance. Therefore, PAR-
INET can be automatically tuned for near-optimal perfor-
mance given a dataset and an expected query load. However,
even if the data is historical, it does not mean that the queries
are known in advance. Moreover, the queries at a given time
may differ a lot (different users may pose totally different
queries) and the queries may change across time (during the
day or week or month). In such cases, the index itself should
be able to handle very different queries at the same time and
should be able to adapt to changes over time. We are inter-
ested in a robust index structures whose performance that
does not degrade much with reasonable variations between
the expected and actual query sizes.

Secondly, the extended version of PARINET, i.e., T-
PARINET, is intended to efficiently and continuously index
trajectory data flows. In this case, the index structure is built
in advance based on anticipated values for the data distribu-
tion and data density and the query size. Hence, the index
should feature good robustness with the combined variation
in both the data size and the query size. In this section, we
analyze the index robustness for the two case scenarios.

• Query Robustness: Given a dataset of in-network trajec-
tories, PARINET can be tuned to offer near-optimal per-
formance with regard to a query load, e.g., containing
queries of a certain size and a certain spatio-temporal
distribution. However, as indicated above, the actual user
queries can be different from the expected queries and
can also cover a wide range regarding the query size.

To measure the index robustness with regard to the query
size, we use the tests in Sect. 6.3.1. We consider that the
index is tuned for the query load Q1. We observe that the per-
formance degrades when the query load changes to Q2 and
Q3, since different index configurations are near-optimal for
these query loads. For example, for a given dataset, 1500 par-
titions offer a near-optimal performance for Q1, while 1000
for Q2 and 500 for Q3 are near-optimal.

Table 6 PARINET query robustness

Query set
name

Avg. # of
intersected
roads by the
queries

Temporal
interval (%)

GCD (disk
accesses)

GCD (exec.
time)

Old 2D Q1 9.5 2.5 0 0

Old 2D Q2 34 5 0.055 0.062

Old 2D Q3 60.2 10 0.018 0.048

Old P Q1 17 2.5 0 0

Old P Q2 35 5 0.045 0.111

Old P Q3 70 10 0.016 0.027

Sto 2D Q1 23.4 2.5 0 0

Sto 2D Q2 96.3 5 0.038 0.041

Sto 2D Q3 156 10 0.032 0.087

Sto P Q1 60 2.5 0 0

Sto P Q2 120 5 0.026 0.084

Sto P Q3 241 10 0.051 0.093

We measure global cumulated degradation (GCD) in
query performance as:

GC DQL =
Q IQL − Q I optimal

QL

Q I optimal
QL

(see Definition 5.1 in Sect. 5.3.2). The results for Oldenburg 2
and Stockton 2 (largest datasets) are given in Table 6. In most
cases, the performance degradation is more than acceptable
(i.e., less than 10%), for a variation between the expected and
real query size that is important (up to 6 times more roads in
the spatial part of the query and 4 times larger the extent of
the time interval). The results indicate good robustness of
PARINET to query variations.

• Robustness with the variation in the data distribution and
density and the query size: T-PARINET creates period-
ically a new component index to manage the trajectory
data that will be gathered from the moment of construc-
tion to a future point in time. At building time there is no
data. Hence, T-PARINET creates a new index which is
optimized for a predicted data distribution and density and
an expected query load. Since the predictions might not
be accurate, we also need to study the index robustness in
this case scenario. Testing the robustness of T-PARINET
has two objectives. First, it gives an idea about actual
index degradation values (given as GCD and LCD values)
under different case scenarios. Second, it allows compar-
ing the real GCD/LCD values with their estimated values.
It is important to have fairly accurate estimations, since
the tuning process (Algorithm 2) is based on estimated
GCD/LCD values.

123

666 I. Sandu Popa et al.

To measure the index robustness with the variation in the
data density and data distribution, we proceeded as follows.
We created a new PARINET component index that is opti-
mized for a given data density (e.g., 700 thousand trajectory
units in 800 time units) representing the expected data. Also,
we considered that the distribution of the data is uniform
over the road network and use the query load Q2 as refer-
ence. Then, we used as real data a dataset that has differ-
ent characteristics from the expected values (e.g., the data
density is 3.5 million trajectory units in 800 time units and
the data distribution is non-uniform, i.e., the data density is
higher in the central part of the network than in the peripheral
parts). Finally, we measured the query performance for dif-
ferent query loads, including the reference query load, and
compared it with the near-optimal values.

Specifically, we used the Oldenburg network and created
an index optimized for a data density of 700 thousand tra-
jectory units in 800 time units, i.e., the smaller dataset, but
for a uniform distribution. Also, the index is optimized for
the query load 2D Q2. Then, we used as real data the larger
dataset thata has a data density 5 times greater than expected
and a non-uniform data distribution. We measured the query
performance for all the query loads (i.e., Q1, Q2 and Q3,
2D, and path) and computed the index degradation w.r.t. the
near-optimal index configuration. We did the same tests for
the Stockton network. The sole difference was to consider
the larger dataset as predicted data and to use the smaller
dataset as real data.

For all the tests, we measured both the global (GCD)
and the local index (LCD) degradation (see Sect. 5.3.2).
We also estimated the values for GCD and LCD by using
the cost model. The results are presented in Table 7. The
first observation is that the GCD values do not exceed 0.5.
This indicates that the average number of I/Os for a query
will increase with less than 50% w.r.t. the near-optimal con-
figuration when the real data density is different from the
expected data density with a factor of 5 and when the real
query size is different from the expected query size with a
factor of 2 in each dimension. Furthermore, the LCD val-
ues, which indicate the relative increase in the unbalance
of the query cost across the indexed data space, are lower
than 0.7 (i.e., 70%). The second observation is that the accu-
racy of the cost model is again confirmed. The estimated
values for both GCD and LCD are close to the real val-
ues. The negative values for the LCD indicate that in the
initial (predicted) index configuration, the query cost in a
query load is more balanced that in the near-optimal con-
figuration. Note also that this is more apparent for the path
queries (for 2D queries the values are very small). This is
not unusual since the path queries are not uniformly dis-
tributed over the network space, as for the 2D queries,
but are following the distribution of the trajectories (see
Sect. 6.1).

Table 7 T-PARINET robustness

Query set
name

GCD
(estimated)

GCD
(real)

LCD
(estimated)

LCD
(real)

Old 2D Q1 0.463 0.501 0.035 0.135

Old 2D Q2 0.419 0.339 0.196 0.256

Old 2D Q3 0.473 0.415 0.058 0.089

Old P Q1 0.355 0.315 0.495 0.697

Old P Q2 0.356 0.333 0.529 0.654

Old P Q3 0.452 0.393 0.339 0.558

Sto 2D Q1 0.231 0.221 0.04 −0.024

Sto 2D Q2 0.343 0.194 0.55 0.538

Sto 2D Q3 0.296 0.157 −0.038 −0.064

Sto P Q1 0.355 0.279 −0.285 −0.308

Sto P Q2 0.185 0.129 −0.352 −0.37

Sto P Q3 0.037 0.074 −0.22 −0.174

6.4 PARINET versus T-PARINET

To underline the benefits of T-PARINET over PARINET in a
dynamic environment, we compare the two methods in this
section. To this end, we employ the following scenario. We
consider a trajectory data flow having a data density, i.e., the
average number of trajectory units per time unit, which alter-
nates between two values every 800 time units. Alternating
the data density in the dataflow is intended to simulate the
changes in the real traffic, which also periodically oscillates
between high- and low-density values. In our scenario, these
values are of approximately 700 thousand trajectory units
in 800 time units and 3.5 million trajectory units in 800 time
units. They correspond to Oldenburg 1 and Oldenburg 2 data-
sets (see Table 3). We refer in this section to the time win-
dow of 800 time units having one of the two possible values
of the data flow density as a time interval. Then, for both
indexes, we need to create index structures in advance, based
on the expected data density and the expected query size.
Since the predictions are rarely accurate, we consider that
the index performance is inferior to the near-optimal index
performance. In our scenario, we randomly choose global
index performances that are inferior to the near-optimal per-
formance from 10 to 30%, i.e., the GCD of each generated
(component) index is in the interval [0.1; 0.3].

In the case of PARINET, a single index structure is
generated, which will be tuned for the lower data density.
Moreover, since the structure of PARINET is tuned to a con-
figuration close to a near-optimal configuration for the lower
data density, it means that the index structure of PARINET
will not be adapted to the data flow density only half of the
time. This makes the scenario fair for PARINET, since it
reduces the global index degradation w.r.t. the near-optimal
configuration.

123

Indexing in-network trajectory flows 667

PARINET vs. T-PARINET

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128
Number of elapsed time intervals

A
vg

. #
 o

f
d

is
k

ac
ce

ss
es

 p
er

 q
u

er
y

Near-optimal index
PARINET
T-PARINET

Fig. 11 PARINET versus T-PARINET

In the case of T-PARINET, the index evolution in time is
decided by the tuning process. The tuning process uses three
user-defined parameters, i.e.,

∣
∣Qmax

t

∣
∣ , GC Dth , and LC Dth .

When the lifespan of the current index exceeds 2 · ∣∣Qmax
t

∣
∣,

the tuning process continuously monitors the GC D, LC D,
and L F values and compares them with the threshold val-
ues. If one of these three parameters exceeds the user-defined
values, a new component index is created. For simplicity, we
considered in our scenario that 2 · ∣∣Qmax

t

∣
∣ is equal to the time

interval of the data flow. Consequently, the tuning process
will start verifying if a new component index needs to be
created every time a change in the data flow density occurs
(line 4 in Algorithm 2). Moreover, we set the value for the
GC Dth parameter to be zero, such as even a small degrada-
tion cumulated in the current index will trigger the creation
of a new component index (line 5 in Algorithm 2). By “forc-
ing” the creation of new component indexes, one can expect
to have a T-PARINET that approaches a near-optimal con-
figuration. Note that conform to the line 5 of the algorithm,
a single parameter (in this case GC D) is sufficient to trigger
the creation of a new component index, regardless of the val-
ues of the other two parameters (in this case LC D and L F).

Then, we compare the average query cost of the two index
structures at different moments in time, i.e., after a certain
number of elapsed time intervals. The results corresponding
to a simulation run are presented in Fig. 11. The query perfor-
mance of PARINET and T-PARINET is the same for the first
time interval since they use the same index configuration.
The near-optimal values represent the query performance of
a T-PARINET index with each component index having a
GCD equal to zero. The query cost is about 10% greater
than the near-optimal cost after the first time interval. The
average query cost increases after 2 time intervals due to an
increase in the data flow density in the second time interval.
However, the degradation for PARINET is more important
than the degradation presented by T-PARINET. This is due
to the fact that PARINET uses the same index structure to
index the data flow with a different data density in the second

time interval, whereas T-PARINET creates a new component
index each time interval.

The average query cost of T-PARINET changes after each
time interval since a new component index is added to index
the data in the next time interval. The average query cost
will decrease or increase in function of the quality of the
new component index w.r.t. the near-optimal configuration.
Clearly, this depends on the quality of the prediction of the
spatio-temporal density in the data flow. In our case, the
query cost will stabilize around 20% above the near-opti-
mal cost, because the considered degradation factors are ran-
domly generated in the interval [0.1; 0.3].

On the other hand, the query performance of PARINET
continues to degrade after 8 time intervals due to an increase
in the index height since the data accumulate continuously.
This type of degradation will continue to appear in the future
if the same index is used to index the data flow. Although the
increase in the index height is logarithmic with the data size it
cannot be neglected. Overall, after 8 time intervals, the degra-
dation of the query performance of PARINET is around 46%,
whereas T-PARINET presents a degradation of about 20%.

There are three observations that we can draw from this
scenario. First, when using PARINET in a dynamic context,
there are no guaranties regarding the index query perfor-
mance degradation. Since the index configuration is fixed, no
adaptation to the spatio-temporal distribution, and density of
the data is possible. T-PARINET corrects this shortcoming
by periodically creating a new component index. The degra-
dation of the query performance w.r.t. the near-optimal index
configuration will only depend on the quality of the predic-
tions of the spatio-temporal distribution and density of the
data. Second, with T-PARINET, we can also avoid a degra-
dation of the query performance due to massive accumulation
of the data. Third, even in the case of poor predictions of the
spatio-temporal distribution and density of the data, the index
structure of T-PARINET can be adjusted off-line since only
some component indexes will be affected. Those past com-
ponent indexes showing important degradation factors can be
replaced with component indexes having near-optimal index
configurations since the exact data distribution will be known
at the reconstruction time. This type of off-line maintenance
can be hardly performed for PARINET, because PARINET
has a single component index that is continuously modified
by the updates in the indexed data flow. Moreover, the cost
of the reconstruction will be much higher, since it will affect
all the indexed data up to the reconstruction time.

6.5 Summary of the experiments

We experimentally evaluated in Sect. 6 the proposed method
for indexing in-network trajectory data. The first part of the
evaluation (i.e., Sect. 6.2) focused on measuring the per-
formances of T-PARINET relatively to the reference access

123

668 I. Sandu Popa et al.

methods, i.e., PJ-tree, MON-tree, and FNR-tree. The exper-
iments showed that our approach is more efficient for both
the query processing (Sect. 6.2.1) and the update processing
(Sect. 6.2.2) or for processing a mix of queries and updates
in a concurrent environment (Sect. 6.2.3).

The second part of the evaluation consisted in a set of more
elaborated experiments on T-PARINET. T-PARINET is sup-
plied with a cost model that estimates the number of disk
accesses for a query load given a certain index configuration.
The experimental evaluation in Sect. 6.3.2 indicated that the
cost model has a good accuracy in estimating the number of
I/Os for a query load. Since the overall query performance
is directly related to the number of I/Os (cf. Sect. 6.3.1),
one can use the cost model to tune the index structure for a
near-optimal performance given an expected query size and
an expected data distribution and density. Nevertheless, in a
day-to-day usage scenario, some of the actual user queries
may be very different from the expected queries. In this case,
the index should be able to handle very different queries at the
same time. Moreover, the predictions on the data distribution
and density might not be accurate. Hence, the index should be
equally robust with regards to this factor. The experimental
results presented in Sect. 6.3.3 showed a good robustness of
T-PARINET with the variation in the above-mentioned fac-
tors. Also, T-PARINET was designed to continuously index
trajectory data flows. The benefits of the online tuning pro-
cess over the static version of the index were demonstrated
in Sect. 6.4.

7 Conclusions and future work

In this paper, we propose a new access method called T-PAR-
INET (Temporal PARtitionned Index for in-NEtwork Tra-
jectories) for efficient retrieval of the trajectories of objects
moving in networks. T-PARINET can be used as an access
method for either a classic situation, i.e., for indexing his-
torical data or in a dynamic context, i.e., for continuously
indexing trajectory data flows. The index structure is based
on graph partitioning and on indexing the partitions with
composite B+-trees, which are ubiquitous in the database
world. T-PARINET can be easily integrated into any DBMS,
which is an essential feature particularly for industrial or
commercial applications.

T-PARINET has two important advantages over the exist-
ing R-tree-based approaches. The first advantage lies on the
side of the performance. The experimental evaluation under
an off-the-shelf DBMS shows that our approach significantly
outperforms the reference R-tree-based indexes. T-PARINET
offers both superior query performance and update perfor-
mance. It also operates well in a concurrent and dynamic
environment. Furthermore, T-PARINET shows robust per-

formance with the query size, the data size, and under mas-
sive updating.

The second important advantage of T-PARINET is that it
is supplied with a good quality cost model. The benefit is
twofold. First, the cost model allows a better integration of
the index into the query optimizer of any DBMS. Second,
as discussed in the paper, it permits tuning the index struc-
ture for better performance both for historical data and in a
dynamic context by adapting the index structure to any data
distribution and query size.

As future work, we intend to work on an extension of
T-PARINET to handle queries about the current and near-
future position of objects moving in networks. Also, opti-
mizing continuous spatio-temporal queries for constrained
moving objects appears to be a challenging and useful task.
In addition, we plan to use a T-PARINET base access method
for indexing several data types related to in-network MO
trajectories. Indeed, we are currently extending an off-the-
shelf RDBMS to support spatio-temporal data generated
by objects with embedded sensors that move in networks.
T-PARINET is intended to be a base access method for sev-
eral data types defined in the system such as trajectories and
mobile sensor measures.

Acknowledgments This work was partially supported by grants from
Région Ile-de-France and partially supported by a grant from DoD-ARL
through the KIMCOE center of Excellence.

References

1. Botea, V., Mallett, D., Nascimento, M.A., Sander, J.: PIST: an effi-
cient and practical indexing technique for historical spatio-tempo-
ral point data. GeoInformatica 12(2), 143–168 (2008)

2. Brinkhoff, T.: A framework for generating network-based moving
objects. GeoInformatica 6(2), 153–180 (2002)

3. Chen, S., Ooi, B.C., Tan, K.L., Nascimento, M.A.: The ST2B-tree:
a self-tunable spatio-temporal B+-tree index for moving objects.
In: Proceedings of the ACM SIGMOD, pp. 29–42 (2008)

4. de Almeida, V.T., Guting, R.: Indexing the trajectories of moving
objects in networks. GeoInformatica 9(1), 30–60 (2005)

5. Frentzos, E.: Indexing objects moving on fixed networks. In: Pro-
ceedings SSTD, pp. 289–305 (2003)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide
to the Theory of NP-Completeness, New York (1990)

7. Güting, R.H., de Almeida, V.T., Ding, Z.: Modeling and querying
moving objects in networks. VLDB J. 15(2), 165–190 (2006)

8. Hadjieleftheriou, M., Kollios, G., Tsotras, J., Gunopulos, D.: Index-
ing spatiotemporal archives. VLDB J. 15(2), 143–164 (2006)

9. Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient B+-tree
based indexing of moving objects. In: Proceedings of the VLDB,
pp. 768–779 (2004)

10. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–
392 (1999)

11. Kriegel, H.-P., Pötke, M., Seidl, T.: Managing intervals efficiently
in object-relational databases. In: Proceedings of the VLDB (2000)

12. Lin, D., Jensen, C.S., Ooi, B.C., Saltenis, S.: Efficient indexing of
the historical, present, and future positions of moving objects. In:
Proceedings of the MDM, pp. 59–66 (2005)

123

Indexing in-network trajectory flows 669

13. METIS—Family of multilevel partitioning algorithms. [On-line].
Available: http://glaros.dtc.umn.edu/gkhome/views/metis

14. Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: scalable incremental
processing of continuous queries in spatio-temporal databases. In:
Proceedings of the SIGMOD, pp. 623–634 (2004)

15. Patel, J.M., Arbor, A., Chen, Y., Chakka, V.P.: STRIPES: an effi-
cient index for predicted trajectories. In: Proceedings of the ACM
SIGMOD, pp. 635–646 (2004)

16. Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the past, present,
and anticipated future positions of moving objects. ACM Trans.
Database Syst. 31(1), 255–298 (2006)

17. Pfoser, D., Jensen, C.S.: Indexing of network-constrained moving
objects. In: Proceedings of the ACM-GIS, pp. 25–32 (2003)

18. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch,
S.E.: Query indexing and velocity constrained indexing: scalable
techniques for continuous queries on moving objects. IEEE Trans.
Comput. 51(10), 1124–1140 (2002)

19. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Index-
ing the positions of continuously moving objects. In: Proceedings
of the ACM SIGMOD, pp. 331–342 (2000)

20. Sandu Popa, I., Zeitouni, K, Oria, V., Barth, D., Vial, S.: PARINET:
a tunable access method for in-network trajectories. In: Proceed-
ings of the ICDE, pp. 177–188 (2010)

21. Sandu Popa, I., Zeitouni, K, Oria, V., Barth, D., Vial, S.: Index-
ing in-network trajectory flows. Technical Report #539, 2011/31,
PRiSM Laboratory (2011)

22. Speicys, L., Jensen, C.S.: Enabling location-based services—
multi-graph representation of transportation networks. GeoInform-
atica 12(2), 219–253 (2008)

23. Sun, J., Papadias, D., Liu, B.: Querying about the past, the present
and the future in spatio-temporal databases. In: Proceedings of the
ICDE, pp. 202–213 (2004)

24. Tao, Y., Papadias, D.: MV3R-Tree: a spatio-temporal access
method for timestamp and interval queries. In: Proceedings of the
VLDB, pp. 431–440 (2001)

25. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor
search. In: Proceedings of the VLDB (2002)

26. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-
temporal access method for predictive queries. In: Proceedings of
the VLDB, pp. 790–801 (2003)

27. Theodoridis, Y., Stefanakis, E., Sellis, T.K.: Efficient cost mod-
els for spatial queries using R-trees. IEEE Trans. Knowl. Data
Eng. 12(1), 19–32 (2000)

123

http://glaros.dtc.umn.edu/gkhome/views/metis

	Indexing in-network trajectory flows
	Abstract
	1 Introduction
	2 Related work
	2.1 Indexing moving objects in networks
	2.2 Indexing MO trajectory data flows

	3 The context of T-PARINET
	3.1 Network model
	3.2 Data model
	3.3 Query types
	3.4 Observations

	4 PARINET index
	4.1 Index structure
	4.2 Query search processing
	4.3 Data partitioning
	4.3.1 Problem statement
	4.3.2 PARINET cost model
	4.3.3 Using graph partitioning

	5 Temporal PARINET
	5.1 T-PARINET structure and operations
	5.1.1 Search algorithm
	5.1.2 Index evolution in time

	5.2 Optimizing update operations
	5.3 Temporal partitioning
	5.3.1 Problem statement
	5.3.2 T-PARINET cost model
	5.3.3 Temporal partitioning algorithm

	6 Experimental evaluation
	6.1 Datasets and queries
	6.2 PARINET versus PJ-tree versus MON-tree versus FNR-tree
	6.2.1 Query performance
	6.2.2 Update Performance
	6.2.3 Throughput

	6.3 Parinet in depth
	6.3.1 PARINET query performance
	6.3.2 PARINET cost model evaluation
	6.3.3 Robustness of PARINET and T-PARINET

	6.4 PARINET versus T-PARINET
	6.5 Summary of the experiments

	7 Conclusions and future work
	Acknowledgments
	References

