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Abstract Query processing in the uncertain database has
played an important role in many real-world applications
due to the wide existence of uncertain data. Although many
previous techniques can correctly handle precise data, they
are not directly applicable to the uncertain scenario. In this
article, we investigate and propose a novel query, namely
probabilistic top-k star (PTkS) query, which aims to retrieve
k objects in an uncertain database that are “closest” to a sta-
tic/dynamic query point, considering both distance and prob-
ability aspects. In order to efficiently answer PTkS queries
with a static/moving query point, we propose effective prun-
ing methods to reduce the PTkS search space, which can
be seamlessly integrated into an efficient query procedure.
Finally, extensive experiments have demonstrated the effi-
ciency and effectiveness of our proposed PTkS approaches
on both real and synthetic data sets, under various parameter
settings.

Keywords Probabilistic top-k star query - Uncertain
databases - k-NN query - Moving object query

1 Introduction

Recently, query processing over uncertain data has become
increasingly important in many real applications like loca-
tion-based services (LBS) [13,29], sensor network monitor-
ing [15], object identification [4], and moving object search
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[8,10,27]. In many of these applications, data are inherently
uncertain and imprecise. For example, sensory data collected
from sensors are often noisy due to environmental factors,
network latency, or device failures. In other applications such
as LBS, the uncertainty of users’ locations is caused not only
by the accuracy of positioning devices (e.g., GPS, GSM, or
RFID), but also by human’s intentional injection (e.g., blur-
ring or distorting trajectory data) for the sake of privacy pre-
serving [32]. Therefore, it is essential for these applications
to efficiently and effectively handle uncertain data.

1.1 Uncertainty model

In the literature of uncertain database [6,9,36], uncertain
data objects are assumed to be definitely part of the data-
base, whereas their attributes are imprecise and uncertain.
Thus, each uncertain object can be modeled by an uncertainty
region with an uncertain interval on each attribute. Within the
uncertainty region, object distribution can be represented by
either discrete instances/samples [22,23,33] or continuous
probability density function (pdf) [6,11]. Practically, the pdf
function of an uncertain object is often unavailable explic-
itly [33]. In most cases, a set of discrete instances is used to
represent the distribution of an object.

Figure la illustrates an example of the uncertain data-
base in the mixed reality game, where 4 GPS-equipped play-
ers u, v, w, and x are located in a two-dimensional space.
Due to the inaccuracy of GPS devices, the positions of these
GPS players can be imprecise, which can thus be modeled
as uncertain objects. For example, player u (i.e., uncertain
object) has three different reported positions {u1, us, us},
and users v, w, and x have two possible positions each
(i.e., {v1, v2}, {wi, wa}, and {x1, x2}, respectively). These
reported positions exactly correspond to instances for each
uncertain object. Inferred from historical GPS data, we
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Fig. 1 An example of the mixed reality game. a Possible positions of
GPS users, b distances from instances to g

Table 1 Uncertain database in Fig. 1

Uncertain Instances Distances Appearance
object ¢ ti dist(q,t;) probability #;.p
u U 2 1/3

u 4 1/3

us3 7 1/3
v V] 1 1/5

V2 5 4/5
w wi 3 2/3

wo 6 173
X X1 8 172

X2 8 172

can obtain the accuracy of such reported locations. In
particular, as depicted in Table 1, we associate each possible
position (instance) #; of object ¢ with an appearance proba-
bility t;.p € (0, 1] indicating the probability that this object ¢
appears at the location of #; (e.g., object v appears at locations
v1 and v, with probabilities 1/5 and 4/5, respectively).
Following the convention of uncertain databases [10-12,
33], all instances #; of an uncertain object ¢ are considered to
be mutually exclusive to exist (e.g., object u cannot appear at
two locations u1 and u; at the same time); uncertain object ¢
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must appear at one location of some instance #; in reality (i.e.,
D vier ti-p = 1); moreover, uncertain objects are assumed
to be independent of each other.

1.2 Motivation example

In the previous example of the mixed reality game (as shown
in Fig. 1a), each player tends to attack other players (ene-
mies) nearby. Now assume that there is a query player ¢,
who wants to attack and meanwhile watch out for his/her
close players. This is because those players close to him/her
may potentially attack him/her. However, due to the uncer-
tain positions of players, it is not trivial for the query player
q to analyze players’ positions, and identify those enemies
who are the most dangerous to him/her.

Figure 1b illustrates the distances from positional
instances of players (in Fig. 1a) to query point ¢ on a horizon-
tal axis, where the appearance probability of each instance is
given in Table 1. In the figure, instance v; resides at a posi-
tion with the smallest distance to g (i.e., dist(q, v1) = 1)and
with the appearance probability 1 /5 (= v;.p). In other words,
within the circle centered at ¢ and with radius 1, object v
has the highest appearance probability, compared with other
objects.

On the other hand, although instance #; has the second
smallest distance to g (i.e., dist(q,u1) = 2 > dist(q, v1)),
its appearance probability is greater than that of object v,
that is, u1.p = 1/3 > vi.p = 1/5. In other words, within
the circle centered at ¢ and with radius 2, object u has the
highest existence probability (even if compared with v with
the smallest distance).

In the aforementioned example, there are two factors
involved for an uncertain object ¢ to be near to ¢, that is,
the distance, #;.dist, from its possible instance #; to ¢ and the
probability, #;.prob, that it appears within distance t;.dist
from ¢q. Intuitively, our desired answers are those players
having positional instances with small distances #;.dist to g
and high probabilities #;. prob, compared with other objects.
However, a trade-off between distance and probability, like
the example of players v and u above, is always possible
to occur. That is, v has closer distance to ¢ but with lower
appearance probability, whereas u has a bit larger distance
to g by with higher probability. In this case where uncer-
tain objects have conflicting qualities between distances to
q and existence probabilities, it is challenging to determine
which players are more likely to be dangerous (close) to query
player g.

Note that, this problem would not be simply solved by
setting up a probability threshold and returning objects with
probability above the threshold. This is because if we are
doing so, we might miss some important objects with prob-
abilities a little lower than the threshold. For example, in
Figure 1b, instance v; (with probability v;.p = 0.2) will not
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be counted to be near to g if we set the probability thresh-
old to 0.3. However, player v indeed has chance (i.e., 0.2,
though a bit smaller than 0.3) to be the closest one to g.
At least, within a circle centered at ¢ with radius 1, v is the
only probable player nearest to g (i.e., other players have
zero probabilities). On the other hand, even if players have
appearance probabilities above the threshold, we are still fac-
ing the same fuzzy situation mentioned above. That is, we
are not sure which player is the “nearest” (most dangerous)
one to query player g (e.g., v or u?) considering both distance
and probability dimensions.

Therefore, in this article, we propose a probabilistic
top-k star (PTkS) query over such uncertain data. In particu-
lar, given a query point ¢, we say an uncertain object ¢ is a can-
didate (called “star”) of the PTkS query result, if it has at least
one instance t; nearer to g and/or with higher confidence (to
be near ¢), compared with other objects’ instances. In other
words, if we conceptually convert all instances of objects into
a 2D distance-and-probability space (with respect to attri-
butes, distance #;.dist and probability #;. prob, dynamically
computed with g), then PTkS candidates are those objects
containing skyline points [5] (instances) in the 2D space. In
addition, we assign each PTkS candidate with a natural rank-
ing score. The actual PTkS answers are the top-k candidates
with the highest scores. This way, our PTkS query can cap-
ture both distance and probability aspects of an object to be
“closest” to ¢, rather than one attribute at a time.

Previous studies on PNN [10,11,23] retrieve uncertain
objects that are expected to be nearest neighbor of a query
point ¢ with probabilities greater than a threshold T),, which
is however non-trivial to specify. In the previous example of
Fig. 1, even if we set T;, = 0, there are many PNN players,
that is, v, u, and w, returned, which may exceed query player
q’s ability to monitor. Moreover, such PNN answers can only
give the expected results, while ignoring those important
answers with small probabilities, which may lead to attacks
from enemy players due to the taking of such an expecta-
tion. In addition, if we consider the expected distance for
each uncertain object, and conduct NN queries on the (cer-
tain) expected distance, then only player w is returned, which
however may miss some important result such as player v,
who indeed has some (though low) probability to be closest
to g. In contrast, when k = 2, our PTkS query will return
players v and w, who are the most dangerous (i.e., closest)
players to g.

While PTkS computes skylines with dynamic attributes
of both distance and probability, existing techniques for
dynamic skyline processing [7,14,31,35] can only deal with
dynamic distance attributes. Furthermore, previous studies
on static skyline processing [5,21,31,38] are not applicable
to our PT.S problem, since it is inefficient to materialize attri-
butes for all instances or online build an index from scratch
for the skyline retrieval. In this case, the materialization or

index construction has to scan the entire database, which
is very costly in terms of both computation and I/O costs.
Thus, this motivates us to design effective pruning methods
to reduce the PTkS search space and propose an efficient
approach for online skyline retrieval in a streaming fashion
(as discussed in Sect. 3).

1.3 Applications

The PTkS query has many practical applications, in which
the query point can be either static or dynamic (i.e., moving).

1.3.1 PTkS query with static query point

In location-based services (LBS), a mobile user may ask
“what is the nearest taxi from my current location?”. Since
taxis are moving around the city, their locations are uncertain
(due to the inaccuracy of positioning devices, movement, or
transmission delay). Naturally, the mobile user does not want
tomiss any (small) chance of catching his/her (actual) nearest
taxi, which can save much precious time. Therefore, a PTkS
query can be issued to find k£ “nearest” taxis considering both
their distances to user’s location and their existence probabil-
ities within such distances (i.e., including near-by taxis even
with low probability and a bit farther taxis with high probabil-
ity). Note that, these kK PTkS answers (taxis) are highly likely
to be nearest to the query point (i.e., the mobile user), and
they are all candidates for the mobile user to choose. Since
a PTkS taxi with higher score indicates higher confidence
that it is close to the mobile user, the mobile user can call
these taxi candidates (the calling service can be provided
by LBS application utilities) in descending order of their
ranking scores (until a taxi is available), and confirm their
availability. This way, the mobile user can efficiently find a
satisfactory taxi close to oneself, due to the order ranked by
scores.

In the coal mine surveillance application [43], sensors are
deployed in the tunnel to collect data such as density of gas,
oxygen, and dust, as well as temperature and humidity. Dan-
gerous events like fires or gas leakage usually correspond to
patterns (called contour maps [43]) in the collected sensory
data. Thus, a mine manager may ask questions like “which
sensor(s) report data matching with the fire pattern?”. In
order to keep the safety of workers, the manager cannot
ignore any highly similar pattern matching even with low
probability, or that with low similarity but high probabil-
ity. Note that, here we aim to retrieve the “nearest” sensor
data to the query fire pattern . Thus, the PTkS answer set
should include those sensor data with instances having either
better distance or better probability dimension (i.e., with
instances not dominated by others). Previous studies [10,11,
23] that retrieves PNN objects cannot be used in such emer-
gency applications, since they only consider the expected
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probability which may ignore dangerous events with small
probabilities and cause loss of lives. Thus, this scenario
exactly corresponds to the PTkS problem which can iden-
tify dangerous events on noisy sensor data.

In the mixed reality games (e.g., Botfighters [20]), due to
the movement of players, GPS inaccuracy, or the latency
of the server, only imprecise locations of players can be
obtained. Thus, one can conduct a PTkS query to find out
“what are the nearest enemies to me?”. This is because those
enemies nearest to the player (even with small probability)
may potentially attack the player, and they should be watched
out for.

1.3.2 PTKkS query with moving query point

One interesting extension of the applications above is to con-
sider the PTkS problem with a moving query point instead of
static one. For example, in LBS, a mobile user walks toward
a direction, and s/he may occasionally ask for the “closest”
taxis around himself/herself. In the battlefield, the troop may
also move to a target while being on guard against the sur-
rounding enemies. In the mixed reality games, the player
may also move to a target while being on guard against the
surrounding enemies.

1.4 Contributions

In this article, we formulate and tackle the problem of the
PTkS query and make the following contributions.

— We identify and formalize the PTkS query in the context
of uncertain databases which retrieves k uncertain objects
in the database that are “nearest” to a static/dynamic query
object, with the consideration of both distance and prob-
ability.

— We propose effective pruning methods to reduce the
search space of the PTkS query with a static query point,
which can be seamlessly integrated into our efficient
query procedure.

— We extend the proposed solution with static query point
to that with continuously moving query object.

— Last but not least, we conduct extensive experiments
to verify the efficiency and effectiveness of our prun-
ing methods and PTkS query procedures under various
parameter settings.

The rest of the article is organized as follows. Section 2
formally defines our PTkS problem. Sections 3 and 4 propose
effective pruning methods and efficient query processing
approaches to answer PTkS queries, with static and dynamic
query objects, respectively. Section 5 demonstrates the PTkS
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query performance. Finally, Sect. 6 reviews related works,
and Sect. 7 concludes this article.

2 Problem definition

In this section, we formally define the probabilistic top-k
star (PTkS) query over uncertain data. Specifically, assume
we have a d-dimensional uncertain database D containing N
uncertain objects. Each uncertain object t € D consists of
|f| instances t1, t2, .. ., and #|;|, where each instance #; (1 <
i < |t]) is associated with an appearance probability t;.p
satisfying le:l] t;.p = 1. Note that, in this article, we con-
sider each uncertain object consisting of discrete instances.
Our proposed approaches, however, can be easily extended
to the case where pdf is known by sampling the continuous
pdf [36].

As mentioned in Sect. 1.2, in the uncertain database,
there is a trade-off between distance t#;.dist and probabil-
ity t;. prob for an uncertain object to be nearest to a query
point g. Therefore, we can conceptually convert all instances
of uncertain objects into a two-dimensional distance-and-
probability space. In particular, for each instance #; of an
object ¢, we transform it to a 2D point (#;.dist, 1| — t;.prob)
in a converted space, where the distance-axis, t;.dist, cor-
responds to the Euclidean distance from ¢ to #;, denoted as
dist(q, t;), and the probability-axis, (1 —t;.prob), is defined
as the cumulative probability that uncertain object ¢ has dis-
tance to g greater than t;.dist (formally, 1 — t;.prob =
1— Pr{dist(q,t) <t .dist}). Note that, there are two types
of probabilities, appearance probability 7; . p of instance #; and
cumulative probability ¢;. prob. In the distance-and-probabil-
ity space, we consider the latter #;. prob, since larger ¢;. prob
can indicate higher (cumulative) probability that object 7 is
within ¢;.dist distance from g, compared with other objects.
Moreover, since our problem aims to obtain objects with
small #;.dist and large t;.prob, for the sake of consistency
and following the “the smaller, the better” convention of sky-
line computation [5] mentioned later, we convert the second
coordinate of #; into (1 — t;.prob) instead of ;. prob.

Let us take Fig. 1 as an example. We can convert each
instance in Fig. 1 into a 2D pointin a distance-and-probability
space, as shown in Fig. 2. Specifically, instance v is mapped
to a 2D point (1, 4/5), since v;.dist = dist(g,v;) = 1 and
1—vi.prob = 1—v1.p = 4/5. Similarly, instance v; is trans-
formed to a point (5, 0), since vo.dist = dist(q, v2) = 5Sand
I —va.prob =1— (vi.p + v2.p) = 0 (i.e., the probability
that dist(q, v) is greater than 5 equals to zero). The conver-
sion of other instances are similar.

In Fig. 2, we say an instance #; is important, if its dis-
tance, t;.dist, and/or probability, (1 — #;.prob), attributes
are smaller than others. As a simple example, instance v;
is clearly better than x1, since both distance and probability
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Fig. 2 Illustration of star instances and objects

attributes of v, are smaller than those of x; (i.e., vy is closer
to ¢ than x1, and vy has higher confidence than x; to be close
to q). Following the terminology of skyline [5], we say that
point v dominates! point x1. Moreover, since v; is not dom-
inated by other points, v, is called a skyline point in this 2D
space (other skylines are vy, u1, and wi). Note that, these
skyline points correspond to instances that are more impor-
tant than others, in terms of both distance and probability.
Therefore, we call them star instances in our problem below.

Definition 1 (Star instance) Given a query point g and
an uncertain database D, let t;.dist and (1 — t;.prob) be
the two attributes of an instance #; € D in the converted
2D space, where t;.dist = dist(q,t;) and t;.prob =
2 v eindisi(q.))<dist (q.i;) Li-P- Then, an instance ¢; is a star
instance, iff it is a skyline point in the converted 2D space
(i.e., its 2D attribute vector is not dominated by others).

In the example of Fig. 2, since instances vy, u#1, wy, and
vy are skyline points in the converted space, they are thus
called star instances.

Intuitively, for any star instance #; € ¢, if we draw a cir-
cle centered at ¢ with radius ¢;.dist, then uncertain object
t would have the highest probability to reside in this circle,
compared with other objects in the database. Thus, we say
that the corresponding object ¢ is also important, as defined
below.

Definition 2 (Star object) An uncertain object ¢ is a star
object, iff object ¢ has at least one star instance.

Based on Definition 2, we can identify whether or not an
object ¢ is a star object by verifying its individual instances.
In particular, if there exists one star instance #; in ¢ (closer to
q and/or with higher confidence to be near to ¢ than others),
then ¢ itself is a star object. In the example of Fig. 2, since
v and vy are star instances, object v is thus a star object.
Similarly, since uncertain object u (w) has a star instance u
(wy), it is also a star object. In contrast, x is not a star object,
since none of its instances are star instances.

I we say that a point x(x[1],x[2]) dominates another point
y(y[1], y[2]), if it holds that: (1) x[i] < y[i]forall 1 <i <2, and (2)
there exists at least one dimension j € {1, 2} such that x[j] < y[j].

Given a query point, there might exist many star objects in
the database (e.g., varying from a few to a hundred). In this
case, users may only care about “the most important objects”
with a controllable size (e.g., k). Motivated by this, we pro-
vide a natural ranking on these star objects. In particular, in
the converted 2D space, we can determine the rank of a star
object ¢ by score:

score(t) = Z

VS_,‘ E'D/\(Hl‘[ Wi <qu)

Sj.pPs (1)

where s; is any instance in D, and #; <, s; means 2D attri-
bute vector of instance #; dominates that of s;. That is, the
score, score(t), of a star object ¢ is the expected number of
objects that are inferior to (i.e., dominated by) some instance
in ¢.

The score, score(t), for an uncertain object ¢ is given by
Eq. (1). Its semantic meaning is the confidence weight that
other uncertain objects are inferior to 7, that is, having both
larger distances to query point g and lower probabilities in
the 2D converted distance-probability space. This score is
actually counting the expected number of objects that can
be dominated by ¢ in the best case (i.e., having both larger
distance to g and lower residing probability within the circle
mentioned above than some instance of object ¢). In other
words, we always sum up existence probabilities of those
instances dominated by 7, and use it as a measure to rank
object t. As long as the score is larger, it indicates higher
confidence weight (i.e., the object is “better”” than more other
objects).

Naturally, if an object ¢ is better than (i.e., dominates) a
large number of objects in the database, then it would have
high score (or rank). In Fig. 2, we have score(u) = x1.p +
xp.p = 1, since x1 and x, are both dominated by u3. Simi-
larly, we can obtain score(v) = 4/3, score(w) = 5/3, and
score(x) = 0.

We now formally define the static PTkS query.

Definition 3 (Static PTkS query) Given a static query point
¢ and an uncertain database D, a static PTkS query retrieves
k star objects t € D that have the highest scores score(t) as
given in Eq. (1).

The semantics of our static PTkS query in Definition 3
can be viewed in two aspects. First, we require that the static
PTkS answers should be star objects, thatis, uncertain objects
having instances being skylines in the 2D distance-probabil-
ity space. Intuitively, the semantics of a star object ¢ is that
there exists at least one instance #; of uncertain object ¢, such
that object ¢ has higher probability, ;. prob, to appear in a
circle centered at query point ¢ and with a radius dist(q, t;),
than other objects. Second, PTkS obtains those important
objects, where the importance of objects is imposed by the
query semantics, that is, some instance of objects should not
be dominated by others in the 2D distance-probability space.
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Thus, those objects that are close to star objects but are dom-
inated by them will not be considered as PTkS answers since
they are inferior to star objects. Third, in case the number
of such star objects is more than k, we should rank them
according to their scores defined w.r.t. their distances to ¢ and
object existence probabilities. Here, the score is defined as
the summation of existence probabilities for those instances
dominated by (instances of) object ¢ in the 2D converted
space. This score indicates the confidence weight that other
uncertain objects are inferior to object ¢, that is, having larger
distances to g and lower probabilities. Thus, by ranking star
objects with their scores, we can obtain k star objects with
high confidence weights.

In the example of Fig. 2, a PT2S query (k = 2) would
return star objects v and w with scores 5/3 (higher than u
and x). Note that, in a special case where multiple objects
have the same score as the kth largest score, we will return
all these objects as our answers (since we cannot distinguish
them simply via scores).

In addition to the static PTkS query, we also consider the
dynamic case where query object ¢ moves from source g4 to
destination gp along a line segment g4¢p, and occasionally
asks forits PTkS answers (i.e., with its location as query point
at the query time). In this case, our problem is to efficiently
find all possible PTkS candidate answers on the path of ¢
from g4 to gp, and thus reduce the search space to obtain the
exact PTkS answer for a particular pointg € g4gp. As men-
tioned in Sect. 1.3, this problem is useful for moving users
(e.g., mobile users or troops) to find nearest and potentially
important uncertain targets. The dynamic PTkS query with
moving query point can be formalized below.

Definition 4 (Dynamic PTkS query) Denote the answer set
of a PTkS query with static query point ¢ as PTkS(gq, D).
Given an uncertain database D and a line segment gagp
along which query object ¢ moves, a dynamic PTkS query
retrieves star objects 7 such that ¢ € UVq cqaqn PTkS(q, D).

The semantics of dynamic PTkS query in Definition 3 is
similar to that of static PTkS query in Definition 4, which
obtains all the star objects with respect to a moving query
point g on a line segment g4gp. Table 2 summarizes the
commonly-used symbols in this article.

3 Static PTkS query

Clearly, one straightforward way to answer PTkS queries is
based on its definition. That is, for instances of each uncer-
tain object, we sequentially scan the entire database D, and
check whether or not this uncertain object contains any star
instance (defined in Definition 1). Once a star instance is
found, its corresponding object will be the star object (as
given in Definition 2). Then, among all the star objects,
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Table 2 Meanings of notations

Symbols Descriptions

D The uncertain database of size N

d The dimensionality of the data set

q,9A9B The user-specified static/dynamic query point
1,8, U, v, W, X The uncertain object

t] The number of instances for uncertain object ¢
ti The instance of an uncertain object ¢

ti.p The appearance probability of instance #;
dist(-, ") The Euclidean distance between two points

Procedure PTkS_Framework {
Input: a d-dimensional uncertain database D, a query point g,
and an integer k
Output: the PTkS query result
(1) construct a multidimensional index Z over D
// indexing phase
(2) perform the pruning through index Z and obtain a candidate
set Scand // pruning phase
(3) refine candidates in Scqnq and return the answer set
// refinement phase

}

Fig. 3 The general framework for PTkS queries

we compute their ranking scores (as given in Eq. (1)) and
find out k objects with the highest scores as query answers.
This method, however, incurs quadratic I/O and CPU pro-
cessing costs, with respect to the number of instances in the
database, which is obviously not efficient. Thus, instead of
the sequential scan, in this article, we explore fast PTkS query
processing with the help of spatial indexes.

Figure 3 illustrates a general framework for our PTkS
query processing, which consists of three phases, indexing,
pruning, and refinement. In the first phase (line 1), we insert
uncertain objects into a multidimensional index, on which
PTkS queries can be processed. In the second pruning phase
(line 2), we traverse the index and reduce the search space of
the PTkS query. After this phase, a PTkS candidate set S.q4
is returned. Finally, in the refinement phase (line 3), for each
candidate in S.4,4, we refine it by computing its score given
in Eq. (1), and return k star objects with the highest scores.
Note that, this framework is applicable not only to the static
PTkS query, but also to the dynamic case with moving query
point, which will be discussed in Sect. 4.

3.1 Indexing uncertain data

Without loss of generality, in this article, we index uncer-
tain objects using one of the most popular indexes, R-tree
[17] and its variants (R*-tree [2]). Specifically, an R-tree
index recursively groups spatially close points /regions with a
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Fig. 4 R-tree construction over uncertain database

minimum bounding rectangle (MBR) until finally one node
(i.e., root) is obtained.

Figure 4 illustrates an example of R-tree construction over
uncertain objects. In particular, for each uncertain object
(e.g., u) in the database, we group all its instances (e.g., u
and u,) with an MBR. Then, we insert each MBR into an
R-tree index (using standard insertion operator of R-tree).
Each entry in the leaf node of R-tree represents an uncer-
tain object # and contains a pointer pointing to a list of
instances #; € t (as well as their appearance probabilities
t;.p). These instances from uncertain objects in the same
leaf nodes are stored sequentially on disk pages. Note that,
the list of instances may span across a few, say By, disk
pages, which correspond to B; groups G1(¢t), G»(t), .. ., and
G B, (1), respectively. For the sake of clear illustration, in the
sequel, we first assume no extra data structures except lists
are used to store instances, and later we will consider opti-
mization techniques via pre-computation to achieve good
query efficiency. Further, we use R-tree to index uncertain
data on the object level, rather than the instance level. This
is because by directly indexing uncertain objects in the leaf
nodes, we can enable the pruning in intermediate nodes of
the R-tree, by utilizing minimum/maximum distances from
nodes to query point. In contrast, if we index instances in
the R-tree, instances of an uncertain object may be scattered
in different leaf nodes of the R-tree. As a result, we cannot
compute distance bounds, that is, the minimum/maximum
distance bounds from any uncertain object in the node to a
query point g, simply derived from either non-leaf or leaf
nodes to facilitate the pruning, before we completely visit all
the instances of an object.

3.2 Pruning heuristics

In this subsection, we illustrate the rationale of reducing the
search space of PTkS queries. As mentioned in Sect. 2, in
order to answer the PTkS query, we need to equivalently
obtain skyline points in a converted distance-probability
space. However, in contrast to traditional skyline computa-
tion [5] where attributes are static, in our PTkS problem, both
distance, t;.dist, and probability, (1 — t;.prob), attributes
of each instance #; are dynamically computed with respect
to query point g. Therefore, it is quite inefficient, in terms
of both CPU time and I/O cost, to online materialize attri-
butes of instances before the skyline computation. Observ-
ing this, in the sequel, we will only perform the concep-
tual space conversion, that is, we do not explicitly transform
all instances in the database to 2D points. Instead, we still
process objects/instances through the index in the original
d-dimensional space, however, we answer PTkS queries in a
way that implicitly executes the skyline computation in the
2D converted space.

Specifically, from Definition 1, since those star instances
are skyline points (i.e., not dominated by other instances)
in the converted space, we can thus safely discard instances
that are dominated by others. As in the previous example of
Fig. 2, instances x; and x» can be safely pruned, since they
are dominated by instance v, (or wy) and they are not star
instances. We have the pruning lemma below.

Lemma 1 (Pruning Rule 1) Instance t; can be safely pruned,
iff there exists an instance s such that s; <4 t;, that is, (1)
sj.dist < tp.dist, (2) 1 —sj.prob < 1 —t;.prob, and (3)
two equalities in (1) and (2) do not hold at the same time.

Since we use a spatial index like R-tree to facilitate query
processing, we also need to design rules for pruning an inter-
mediate node in the R-tree.

As illustrated in Fig. 4a, uncertain object x corresponds
to a rectangle bounding two instances x; and x;. There-
fore, we can compute the minimum and maximum dis-
tances from query point g to (rectangle) x, denoted as
mindist(q, x) and maxdist(q, x), respectively. This way,
we can also obtain a rectangle with distance-axis within
[mindist(q, x), maxdist(q, x)] in the 2D converted space
(see dotted rectangle in Fig. 2). In this case, even without
knowing the exact interval of rectangle along the probabil-
ity-axis, we can conclude that x does not contain any star
instances, since any point within the rectangle is dominated
by point v;.

From this observation, we have the node pruning lemma:

Lemma 2 (Pruning Rule 2) Let g be a query point, e be
an MBR node or an uncertain object (or instance), and
t be an uncertain object that we have seen. Without loss
of generality, assume that instances ty,tp, ..., and t); of t
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satisfy the condition that dist(q, 1) < dist(q,tr) < --- <
dist(q, t;y)). Then, e can be safely pruned, if it holds that
dist(q, t;) < mindist(q, e), where mindist(q, e) is the
minimum distance from q to MBR/object/instance e.

Proof For instance f};, since it has the farthest distance
to g among all instances of ¢, we have f,.prob = 1.
Thus, the converted 2D point of instance #|;| is given by
(dist(q, t)), 0). Furthermore, from the lemma assumption,
dist(q,ty) < mindist(q,e), for any instance s; € e,
we have dist(q,t;) < mindist(q,e) =< dist(q,s;).
That is, both conditions dist(g,t;) < dist(q,s;) and
1 — ty.prob = 0 < 1 — s;.prob hold. From Lemma 1,
it holds that any instance s; in e can be safely pruned (i.e., e
can be pruned). O

3.3 Identifying k star objects

In this subsection, we discuss how to efficiently obtain star
instances/objects (i.e., skyline points in 2D converted space)
by accessing each instance at most once. In the sequel, we
first focus on identifying star instances while we are sweep-
ing along the distance-axis in the 2D converted space. Then,
we consider computing scores for uncertain objects in order
to obtain k star objects.

3.3.1 Identification of star objects

Recall from Definition 2, that any star object must have at
least one star instance. Therefore, in order to identify star
objects, we have to obtain star instances first. Our basic idea
is to scan the instances in ascending order of their distances
to g (i.e., along the distance-axis in the 2D converted space;
this can be achieved by accessing the R-tree index, which
will be described later in Sect. 3.4), and meanwhile identify
star instances by checking the probability-axis.

Specifically, for each candidate object ¢, we maintain a
variable ¢. prob, which is initially set to 0. In particular, var-
iable z.prob stores the cumulative appearance probability
(CAP) for instances of ¢ that we have seen so far. Below, we
illustrate our rationale of identifying star instances using the
example in Fig. 2.

Example 1 As shown in Fig. 2, we access instances in the
order of distances to ¢, thatis, vy, uy, wy, uz, v, .. ., and so
on. When the first instance v; is encountered, we increase its
CAP, v.prob, by vy.p. That is, v.prob = v.prob 4+ vi.p =
1/5. Since v. prob now becomes the highest CAP among all
CAPs of candidates (others are 0), no other instances can
dominate vy (as 1 — v.prob is the lowest). Thus, vy is a star
instance, and v is a star object.

Similarly, when we access the next instance u, we
increase u.prob by ui.p. That is, u.prob = u.prob +
u1.p = 1/3. Since u.prob is greater than v.prob (i.e.,
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Procedure Identify_Star_Obj {
Input: instances t; in ascending order of dist(q,t;)
Output: set Star_Obj_Set containing star objects
// initialization
(1) Star-Obj_Set = ¢; max_-CAP = —o0;
// variable max_C AP is the highest CAP for objects
// that we have seen
(2) let all candidates t have initial values t.prob = 0
(3) while next instance t; is not Nil and maxz_CAP # 1
// in a streaming fashion
(4) set t.prob = t.prob + t;.p
(5) if t.prob > max _CAP // ti is star instance
(6) Star_Obj_Set = Star_Obj_Set U {t}
(7) max_CAP = t.prob
(8) return Star_Obj_Set
}

Fig. 5 Procedure of identifying star objects

1/3 > 1/5) as well as CAPs (i.e., 0) of other candidates,
u1 is another star instance and u is a star object. For the third
instance w; we encounter, w. prob is updated to 2/3 which
becomes the highest CAP. Thus, w is a star instance and w
is a star object.

The fourth instance we visit is u. We increase u.prob by
uy.p. That is, u.prob = u.prob 4+ uz.p = 2/3, which is
equal to w.prob. However, this time u> is not considered as
a star instance, since its distance to ¢ is greater than wj.

Finally, we access instance v», and increase v.prob by
vy.p. That is, v.prob = u.prob + vy.p = 1. Since no
other candidates can have CAPs greater than 1, instance vy
is clearly a star instance. Based on Lemma 2, any instance
having distance to g greater than dist(q, vy) can be safely
pruned. Therefore, we terminate the procedure of identifying
star instances/objects.

Figure 5 illustrates the details of identifying star instances/
objects by scanning instances for one pass. The parameter
max_CAP is a threshold we maintain to decide whether or
not an instance #; is a star instance on the probability-axis
(line 5).

3.3.2 Calculating scores of candidates

As given in Definition 3, in order to obtain PTkS query
result, we need to calculate scores for star objects. That is,
for star object ¢, its score, score(t), is given by summing up
appearance probabilities of instances that are dominated by
t’s instances in the 2D space. Since directly computing the
score is costly (i.e., almost scanning the entire database), in
the sequel, we give a more efficient approach, which only
involves objects we have seen so far and computes the scores
in a streaming fashion.

One interesting observation is that, the probability sum-
mation of all instances in the 2D space is fixed (i.e.,
D vieD 2vier ti-p = N, where N is the total number of
uncertain objects in the database). Based on this fact, calcu-
lating score score(t) is equivalent to the one of computing
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Fig. 6 Tllustration of calculating score’(¢)

score'(t) = N — score(t), where score’(t) can be obtained
by summing up appearance probabilities of instances that are
not dominated by #’s instances.

Thus, by using score’(t), our problem is reduced to the
one that obtains k star objects with the smallest score’ ().
In other words, when computing score’ (1), we do not have
to access those instances that are dominated by instances
of object ¢ (e.g., above or to the top-right of #’s registered
regions), and only need to care about instances in registered
regions of #. One advantage of such reduction is that we can
easily obtain score’(t) by visiting each instance once in a
streaming fashion.

Example 2 Figure 6 illustrates an example of calculating
score'(t), where each instance #; (s j) of object t (s) has
appearance probability 1/3 (1/4). In particular, when we
access an instance, for example 71 in the figure, we record
a probability threshold 1 — t;.prob = 2/3. The region
filled with sloped lines is called registered region of ti,
within [dist(q, t1), dist(q, t2)] x [0,2/3]. Note that, any
instance s; falling into this region needs to update score’ (1)
(initially 0) by adding s;.p. In the example, score’(r) =
s2.p = 1/4.

The registered region of #; is canceled when 7, is visited.
In this case, #; registers a new region within [dist(q, t2),
dist(q,t3)] x [0, 1/3], as shown in the figure (filled with
vertical lines). Similarly, any instance falling into this region
should update score’(t) with its appearance probability.

Finally, the registered region of #, is canceled when
instance 73 is encountered. This way, we can obtain score’(t)
for object 7.

In summary, whenever an instance #; is encountered, we
need to create/update its own registered region as well as
updating other registered regions. Figure 7 illustrates pro-
cedure Calculate_PTkS_Obj in detail, which calculates
scores of candidates meanwhile identifying star objects.
Note that, after the “while” loop (lines 3—12") in Fig. 7,
we obtain all PTkS candidates (star object) ¢ in the set
Star_Obj_Set, however, their score’(r) values might not
involve all instances #; of ¢. Thus, in order to compute the
actual scoreé’(¢) values, we need to further access the remain-
ing instances via registered regions (line 13”). Finally, k can-

Procedure Calculate_ PTES_Obj {

Input: instances ¢; in ascending order of dist(g,t;)

Output: set Star_Obj_Set containing k star objects with the
highest scores

Identical to Procedure Identify_Star_Obj except: line 8 is replaced

with:

(8”) if t; is not first encountered instance of ¢

(9%) cancel the previously registered region

(10’) register a region within [dist(q, t;), *] X [0,1 — t.prob]
// = is the farthest distance we have seen so far

(117) if t; falls into any registered region of an instance s; ¢ t

(127) score’(sj) = score’(sj) + ti.p

(13”)compute the actual score’(t) for candidates ¢ in Star_Obj_Set

(14’)return k objects in Star_Obj_Set with the smallest score’(-)

}

Fig. 7 Procedure of calculating PTkS answers

didates in Star_Obj_Set with the smallest score’(-) are
returned as PTkS answers (line 14’).

3.4 Query processing over the index

In this subsection, we discuss the PTkS query processing
over R-tree index in detail. We will illustrate how to obtain
an ordered sequence of instances (in ascending order of their
distances to query point g) by traversing the spatial R-tree
index. In addition, R-tree index can also facilitate reducing
the search space of PTkS queries (i.e., we can prune some
nodes such that objects under these nodes are not necessary
to access, as given in Lemma 2).

3.4.1 Facilitating data structures

Figure 8 illustrates the pseudo code of PTkS query procedure,
namely Static_PTkS_Processing, which traverses the
R-tree index in a best-first manner and meanwhile computes
k nearest star objects. Specifically, the query procedure main-
tains two minimum heaps H and G (both are initially empty),
which contain entries in the form (e, key) (line 1). In particu-
lar, heap H contains entries where e corresponds to uncertain
object or MBR node, and key is defined as the minimum dis-
tances from ¢ to e. In contrast, heap G stores entries with
instances (rather than objects/nodes in H) and key is defined
as the distance from ¢ to instance e. In brief, heap H is used
to traverse the R-tree index, whereas heap G serves like a
“buffer” such that instances are output from G in ascending
order of their distances to g.

In addition to the two heaps, we also keep an initially
empty set Star_Obj_Set storing star objects, and a thresh-
old min_UB_dist (with an initial value +00) indicat-
ing the smallest maximum distance from ¢ to uncertain
objects that we have seen so far (line 2). Note that, thresh-
old min_U B_dist can be used to perform the pruning (by
Lemma 2).
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Procedure Static.PTkS_Processing {
Input: R-tree Z constructed over D, a query point ¢,
and integer k
Output: the PTES query result
(1) initialize min-heaps H and G accepting entries in the
form (e, key)
(2) Star-Obj_Set = ¢; min_UB_dist = +o0;
(3) insert (root(Z),0) into heap H
(4) while H is not empty
(5) (e, keyn) = de-heap H
(6) while G is not empty and keyy > top(G).key
(1) (ti, keyg) = de-heap G
(8) access t; by invoking lines 4-7 and 8-12’ of procedure
Calculate_lPTkS_Obj // Figure 7
9) if maz_CAP =1 in procedure Calculate_.PTkS_Obj
(10) terminate the loop of line 4;
(11) if e is an uncertain object // rename e to t
// if t can be pruned as in Section 3.4.3, then continue;

(12) for each instance t; in ¢t

(13) if dist(q,t;) < min_.UB_dist // Lemma 2
(14) insert (t;, dist(q,t;)) into heap G

(15) if e is a leaf node

(16) for each uncertain object ¢ in e

(17) if mindist(q,t) < min_.UB_dist // Lemma 2
(18) if maxdist(q,t) < min_UB_dist

(19) min_UB_dist = maxzdist(q,t) // update
(20) insert (t, mindist(q,t)) into heap H

(21) if e is a non-leaf node

(22) for each entry e; in e

(23) if mindist(q,e;) < min_.UB_dist // Lemma 2
(24) insert (e;, mindist(q,e;)) into heap H

(25) compute the actual score’(.) for candidates in Star_Obj_Set
(26) return k objects in Star_-Obj_Set with the smallest score’(-)

}

Fig. 8 Static PTkS query processing

3.4.2 Query procedure

The basic idea of our query procedure is to retrieve instances
in ascending order of their distances to query object g by
traversing the R-tree index, and meanwhile compute star
instances (objects) in a streaming fashion by invoking proce-
dure Calculate_ PTkS_Obj (as mentioned in Sect. 3.3.2).

We traverse the R-tree index by first inserting the root
root(Z) into heap H (line 3). Then, we want to access a
node/object/instance in either H or G that may potentially
contain/be instance with the smallest distance to ¢ among all
instances we have not seen so far. In particular, each time we
pop out the top entry (e, keyy) from heap H (line 5). Note
that, keyy of e is the smallest key (i.e., minimum possible
distance to ¢) in H. Moreover, let keyg (or top(G).key) be
the smallest key in heap G. If it holds that keyg < keyy, then
there must exist some instance #; in heap G with the smallest
distance to g among all instances that we have not seen. In this
case, we de-heap entry (#;, keyg) from G, and invoke lines
4-7 and 812’ of procedure Calculate_PTkS_Obj to pro-
cess instance ¢;, that is, identifying whether or not #; is a star
instance and updating scores of objectsin set Star_Obj_Set.
In case max_CAP = 1 indicating that all PTkS candidates
have been seen, we terminate the while loop of line 4 (lines
6-10).

The loop of lines 6-10 aborts when keyy < top(G).key
holds, which shows that entry e with key keyy may con-
tain instances with the smallest distances to ¢ among the
unseen instances. Thus, we need to access the children of
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entry e (lines 11-24). There are three possible types of entry
e, uncertain object, leaf node, or non-leaf node, whose chil-
dren correspond to instances, uncertain objects, and nodes,
respectively. For each child of e, we check whether or not it
can be safely pruned by Lemma 2 (lines 13, 17, and 23). If
we cannot prune a child, then we need to add it to heap G or
‘H for instance and object/node types, respectively (lines 14,
20, and 24).

The query procedure terminates when either heap H is
empty (line 4) or we have seen all PTkS candidates (line
10). After the tree traversal, we can obtain a number of star
objects, which were inserted into set Star_Obj_Set during
the call of procedure Calculate_PTkS_Obj (i.e., inserted
when the first instance of an object is encountered; line 8).
Moreover, each star object in Star_Obj_Set is associated
with a score, score’(+), which is also updated when invok-
ing procedure Calculate_PTkS_Obj. Therefore, as men-
tioned in Sect. 3.3.2, we first obtain the actual score’(-) for
star objects in set Star_Obj_Set by accessing their unseen
instances (in pruned nodes/objects), and report k objects with
the smallest score’(-) as PTkS answers (lines 25-26).

Discussions on time and space complexities. As illus-
trated in lines 13, 17, and 23 of query procedure Static_
PTkS_Processing, in the filtering phase (lines 1-24),
those instances/objects/nodes can be effectively pruned by
Lemma 2, if their minimum distances to g are greater than
the threshold min_U B_dist, where min_U B_dist is the
smallest maximum distance from ¢ to uncertain object we
have seen so far. Thus, in the filtering phase, we only need
to access objects with instance distances to g smaller than
min_U B_dist, which also form a superset of star objects in
Star_Obj_Set. Note that, since we visit objects in ascend-
ing order of keys (i.e., minimum distances to g) in heap H,
we can quickly shrink threshold min_U B_dist and achieve
high pruning power, as given in lines 18—19. Thus, the num-
ber, |Star_Obj_Set|, of star objects in Star_Obj_Set is
much smaller than the database size N in practice.
Furthermore, in procedure Calculate_PTkS_Obj of
Fig. 7, each star object in the set Star_Obj_Set corre-
sponds to one registered region (note: in lines 8'-9', we
cancel the previous region for an object ¢ if it exists).
Thus, the total number of registered regions at any time
is bounded by |Star_Obj_Set|, and the space complexity
of set Star_Obj_Set is O(|Star_Obj_Set|). Moreover,
let Ins_Num_Visited be the total number of instances
that we need to visit to identify star objects and com-
pute their scores, that is, the count of instances that we
need to access during both filtering and refinement phases
(lines 1-25). As our procedure visits instances in the reg-
istered regions, and computes score’(r) for star objects,
the time complexity of our query procedure is given by
O(Ins_Num_Visited-|Star_Obj_Set|) in the worst case.
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Fig. 9 Illustration of pruning with groups

From our experimental results later in Sect. 5.1 (Fig. 16), we
will see that the number of final candidates is small, and the
number of visited instances (close to query point) is thus also
small. As discussed above, since |Star_Obj_Set| < N, the
time and space costs of maintaining set Star_Obj_Set are
thus low on average.

3.4.3 Optimization

As given in line 13 of procedure Static_PTkS_Processing
(in Fig. 8), when we encounter an uncertain object ¢ in heap
'H, we need to access all its instances f;, and compute dis-
tances dist(q, t;) from ¢; to query point g. Since the number
of instances per uncertain object can be rather large (e.g., a
few hundred), it is thus inefficient to compute the distance
dist(q, t;) forevery instance ¢;. In order to reduce the compu-
tation cost, we propose a pivot-based approach below, which
partitions instances of an uncertain object into groups, and
selects pivots in groups to reduce the cost of distance com-
putation.

Specifically, as mentioned earlier in Sect. 3, when the
number of instances in object ¢ is large, it may go across
B; pages (groups) G1(t), G2(2), ..., and G, (t). We illus-
trate the basic idea of our optimization, that is, pruning
with groups using an example in Fig. 9. Assume we have
seen an uncertain object s, which can be divided into three
groups G1(s), Ga(s), and G3(s). As shown in the figure,
each group G;(s) of instances is bounded by a rectangle in
the 2D converted space. Now we encounter a new object
t with two groups G1(¢t) and G;(¢) (bounded by rectan-
gles as well). Let Sy,,4, denote the top-right corner of rect-
angle of G2(s), Timin (Tomin) be the bottom-left corner of
G1(t) (G2(1)), and S35, be the bottom-right corner of group
G3(s). Obviously, since Syuqx and S35, dominate Tqpy,
and T5,i,, respectively, we can conclude that ¢ is not a
star object (since all its instances are dominated by oth-
ers). Note that, such object ¢ can be safely pruned accord-
ing to the definition of star object. Thus, our optimization
is to prune earlier with groups before line 12 of procedure
Static_PTkS_Processing.

Next, we discuss how to efficiently obtain the rectangles
bounding groups in the 2D converted space. In brief, we pres-
ent a pivot-based approach, named after adopting the idea of
triangle inequality via pivots to reduce the computation cost.

In particular, let piv; be a representative instance (pivot) in a
group G;(t). If we have offline pre-computed the distances
dist(piv;, 0;) from pivot piv; to any instance o; € G;(¢),
then by the triangle inequality, we have:

dist(q, pivi) — dist(piv;,0;)| < dist(q,o0;)
<dist(q, piv;) +dist(piv;, 0;). 2)

Let maxdist(piv;, G;(t)) be the maximum distance
from pivot piv; to any instance in group G; (). Therefore, we
can bound the distance dist(q, G;(t)) from query point g to
any group G; (¢) by [max{0, dist (q, piv;) —maxdist(piv;,
Gi(t))}, dist(q, piv;) + maxdist(piv;, G;(t)], denoted as
interval [LB_dist;, UB_dist;]. Once we have obtained
the distance interval for each group, we can compute the
probabilistic interval [L B_prob;, U B_prob;] for instances
in each group G;. In particular, we have U B_prob; =
2.9G ;(1).LB_distj<UB_disy; O j(1)-agg; similarly, we have
LB_prob; = ZVGj(z),UB_distj§LB_dist,- Gj(1).agg, where
Gj(t).agg is the summed appearance probability for all
instances in group G (7).

Cost model for grouping. One remaining issue to be
addressed is how to select the pivot piv; in each group G, (¢).
Intuitively, we want to select pivots such that the bound-
ing rectangles of groups are as tight as possible, which can
achieve high pruning power.

In addition, from the example of Fig. 9, we find that, when
distance bounds of G (s) do not intersect with those of other
groups (e.g., G2(s) or G3(s)), its probability bounds are sim-
ply [0, 1/3] (probability bounds of its instances); in con-
trast, group G3(s) intersects with G, (s) on distance bounds
and we have to underestimate its probability lower bound
by decreasing 1/3 due to the intersection. Thus, this larger
probability bound interval may decrease the pruning power.
Based on observations above, in order to obtain tight prob-
ability bounds, it is highly desired that distance bounds of
groups are disjoint. Thus, we propose a cost model to for-
malize the disjoint quality of distance bounds, which can
guide the selection of pivots.

Specifically, as given in Eq. (2), distance from g to any
instance o; is bounded by an interval. We model the qual-
ity of distance bounds, Pg;s;oins, by the summed probability
that any two pair of instances o; and o; have their intervals
intersecting with each other. That is,

Paisjoint = Y > Pridist(q, pivi) +dist (pivi, 0;)
i ji
< |dist(q, piv;) —dist(pivj,o0;)|}
= ZZPr{(dist(q, piv;) + dist(piv;, 0;)
i ji
< dist(q, pivj) — dist(pivj,0}))

@ Springer



830

X. Lian, L. Chen

U (=(dist(q, pivi) +dist(pivi, 0;))
> dist(q, piv;) — dist(piv;j,0)))} 3

Since it holds that PriM{ UMy} = Pr{M}+ Pr{Ms} —
Pr{Mi; N M}, we can rewrite Eq. (3) as:

Paisjoint = D, D, Pr{ldist(q, piv;) — dist(q, piv;)
i j
+dist(piv;, 0;) +dist(pivj,0;)) < 0}
+ZZ Pr{(dist(q, piv;) +dist(q, pivj)
i
+dist(piv;, 0;) —dist(pivj,0;)) <0} (4)

In the sequel, we only present how to quickly obtain the
first term in Eq. (4) and the method of computing the second
term is similar. In particular, we consider (dist(q, piv;) —
dist(q, piv;)) as a variable X, dist(piv;, o;) as a variable
Y,anddist(pivj, 0;) as variable Z. Since i < j holds, vari-
ables X and Y are obtained from two different groups, which
can be considered as independent of each other. Moreover, X
and Y (Z) is also independent, since the distance difference
between ¢ and pivots is unrelated to the distance from pivot
to other instance. Thus, we can apply the Central Limit Theo-
rem (CLT) to the first term of Eq. (4). Note that, although CLT
assumes a summation of large number of random variables,
there are some studies [16, 19] indicating that 3 variables can
also achieve a good approximation of the probability.

Assume means of X,Y, and Z are uy, uy, and uyz,
respectively; variance of X, Y, and Z are 0,2(, a)%, and a%,
respectively. For simplicity, let variable W be X + Y +
Z(= dist(q, piv;) — dist(q, pivj) + dist(pivi, 0;) +
dist(pivj, 0;)). Thus, the first term in Eq. (4) can be simpli-
fied as Pr{W < 0}, which, by applying CLT, can be further
rewritten as:

W —(ux +py +uz) - —(ux +py +p1z)

/2 2 2
oy toy+oz

_ ®<—(Mx+uy+ﬂ-z)) (5)

2 2 2
\JOx + oy +05

where @ (-) is the cumulative density function (cdf) of a stan-
dard normal distribution, and (uy + iy + nz) and (0)2( +
o% + a%) are the mean and variance of W, respectively. The
case of the second term in Eq. (4) is similar.

Thus, we can compute the probability Pgjsjoins in Eq. (4)
based on statistics of variables (e.g., X). The selection of
pivots is somewhat like k-means algorithm [30] which itera-
tively swaps pivot with a non-pivot. The only differences are
that, the cost formula is replaced with Pyisjoin; in Eq. (4),
and we aim to obtain a pivot set that maximizes Pyisjoin:-

Pr{w <0} = Pr

2 2 2
oy t+oy+oz
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Fig. 10 A PTkS with moving query point

4 Dynamic PTkS query

In this section, we further investigate the dynamic PTkS
query, where query point g moves along a line segment gagp.
As given in Definition 4, our goal is to find a union of PTkS
answer sets for every possible position of ¢ € gagp.

4.1 Pruning heuristics

Figure 10 illustrates an example of dynamic PTkS query,
where we have instances of uncertain objects u, v, w, x, and
an MBR node e. Without loss of generality, we use a sphere
to bound instances of each uncertain object. Clearly, when
query point g resides at point g4, uncertain object u has
the smallest maximum distance (i.e., maxdist(ga, u)) to g
among all objects. We draw a circle, ©(g4, u), centered at g4
with aradius maxdist (qa, u). From Pruning Rule 2 (Lemma
2), we can see that any MBR node/instance e that completely
falls outside this circle can be safely pruned (since it holds
that maxdist(qa, u) < mindist(qa, e)).

Similarly, we can draw another circle, ©(gp, u), centered
at gp with radius maxdist(qp, u), as depicted in the figure.
From Lemma 2, it also holds that any MBR node/instance e
that is completely outside circle, can be safely pruned (since
it holds that maxdist(qp, u) < mindist(qp, e)).

Next, we will prove in the following lemma that, for
any query point g on the line segment g4¢p, those nodes/
instances completely falling outside ©(g4, u) U O(gp, u)
would not be the answer to dynamic PTkS query.

Lemma 3 (Pruning Rule 3) For any uncertain object u €
D and a query line segment qaqp, we draw two circles
O(qa,u) and O(qp, u) centered at g4 and qp, with radii
maxdist(qa,u) and maxdist(qp, u), respectively. Then,
any node/instance e (or t;) completely falling outside these
two circles can be safely pruned (in other words, e or t; is
not PTkS answer with any query point q € qAqg).

Proof Please refer to Appendix I. O

Lemma 3 indicates that only those objects/nodes that inter-
sect with ©(g4, u) or ©(gp, u) are candidates for dynamic
PTkS query.
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node or
instance e

Fig. 11 Reducing size of PTkS candidate set

From the example of Fig. 10, we find that circle ©(gp, u)
is very large, which may include many false alarms. Moti-
vated by this, we propose a method to reduce the number of
candidates. In particular, since object w is fully contained
in the circle ©(gp, u), instead, we can use a smaller cir-
cle ®(gp, w) centered at gp with radius maxdist(gp, w),
as illustrated in Fig. 11. Clearly, if query point g resides
at ¢p, any objects/MBRs that completely fall outside circle
®(gp, w) can be safely pruned. However, in order to guar-
antee no false dismissals for any query point on line segment
qAqB,weneed to draw a third circle, denoted as ©(qc, u, w),
which is centered at some point gc on gagp and tangent to
both object # and w.

This way, we can reduce the number of candidates by
including a new circle. The following corollary can guar-
antee that, by doing this, we will not introduce any false
dismissals.

Corollary 1 Let O(qc, u, w) be a circle centered at qc €
qaqp with radius maxdist(qc,u)(= maxdist(gc, w)),
and circles ©O(qa, u) and ©(qp, w) refer to Lemma 3. Then,
any node /instance e (or t; ) completely falling outside circles
Oqa,u), ©@c, u, w), and ©(gp, w) can be safely pruned.

Proof Please refer to Appendix II. O

Therefore, in a general case, as long as there exists an uncer-
tain object (e.g., w in the example above) that is fully con-
tained in a circle we have obtained so far (e.g., ©(gp, u)),
we can reduce this circle by drawing a smaller circle via this
object (e.g., ©(gp, w)). Moreover, in order to guarantee no
false dismissals, we may need to add one additional circle
(e.g., ®(gc, u, w)). This process continues until there are no
objects fully contained in the obtained circles.

4.2 Dynamic query processing

In this subsection, we present the procedure of answering
dynamic PTkS query over the R-tree index. Specifically,
given a line segment g4¢p, the basic idea of our query pro-
cedure is to retrieve all the possible PTkS candidates when
query point ¢ moves along g4gp. Then, given a particular

Procedure Dynamic_PTkS_Processing {
Input: R-tree Z constructed over D, a query line segment qagp,
a set of query
points ¢ C gagp, and integer k
Output: dynamic PTkS candidates
(1) initialize min-heap H accepting entries in the form (e, key)
(2) Scand = ¢; max_UB_dist = +o0;
(3) insert (root(Z),0) into heap H
(4) while H is not empty
(5) (e, keyr) = de-heap H
(6) if keyg > max_UB_dist, terminate the loop; // Lemma 3
(7) if e is a leaf node

(8) for each object t in e (sorted on maxzdist(t,qaqp))

9) if t is fully contained in some circle in Scand

(10) update the splitting points and circles in Scand

(11) set max_UB_dist to the maximum radius of circles
in Scand

(12) if t intersects with some circle in Scqna

(13) add ¢ to the candidate list of this circle

(14) else // intermediate node

(15) for each entry e; in e

(16) if mindist(qagp,e;) < maxz_-UB_dist // Lemma 3

(17) insert (e;, mindist(qaqg,e;)) into heap H

// for any query point g € gags
(18) obtain two candidate lists of circles ®(¢x, ) and ®(gqy, ),

for ¢ € gxqy C qagm
(19) Identical to Procedure Static.PTkS_Processing except: line 3
is replaced with:
(3’) insert entry (¢, mindist(q,t)) into heap H, for all
} t € (O(gx, ) UO(gy,))

Fig. 12 Dynamic PTkS query processing

user-specified query point on gagp, the exact PTkS answer
can be obtained by applying the static PTkS techniques (dis-
cussed in Sect. 3) over the retrieved candidate set of a much
smaller size (compared with total database size). Clearly, this
method is much more efficient than issuing static PTkS que-
ries on the index from scratch every time a query point is
specified, in terms of both I/O and CPU costs.

Figure 12 illustrates the detailed procedure of dynamic
query processing. In particular, we maintain a minimum heap
‘H containing entries (e, key), where e is tree node and key
is defined as the minimum distance from a line segment
qaqp to e [3] (line 1). Intuitively, the closest nodes to gagp
are more likely to be the dynamic query results. In addi-
tion, we keep a candidate set S.,,q storing circles and their
candidates (objects intersecting with circles), and a variable
max_U B_dist recording the radius of the largest circle in
Scand (line 2).

Similar to the static case, we traverse the R-tree by first
inserting the root root (Z) into heap H (line 3). Then, each
time we pop out an entry with the minimum key (lines 4-5).
The loop terminates when the key is already greater than var-
iable max_U B_dist, indicating no nodes in the heap would
contain qualified PTkS query answers via Lemma 3 (line
6).

To traverse the R-tree, we verify whether or not the
children of node e with either object or node type need
to be visited. For a child ¢ of e with object type, if
it is fully contained in some circle in Sg4,q, then we
can update Sc;,q as mentioned in Sect. 4.1, as well as
the maximum radius max_U B_dist of circles in Scqnd
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(lines 7-11). If ¢ intersects with some circles, then it is
a candidate and we add it to the candidate list of this
circle (line 12). For a child e; of e with node type, we
apply the pruning rule to e;, as mentioned in Lemma 3.
If e; cannot be pruned, then we need to insert e; into
heap H with key mindist(qaqp, e;) for further refinement
(lines 14-17).

Finally, set S.4nq includes all possible PTkS candidates
when g moves from g4 to gp. When a specific query point
q on gaqp is given, we can conduct the refinement over a
smaller candidate set, instead of querying over R-tree index
from scratch. Specifically, assume ¢ is located on line seg-
ment gxqy < qaqp, where gx and gy are two consecutive
splitting points on g4gp. We can obtain candidate lists of
two circles ®(gyx, -) and O(qy, -) (line 18), and invoke the
static PTkS query procedure Static_PTkS_Processing in
Figure 8 (line 19). The only difference from the static case is
that, line 3 is replaced with line 3’, that is, we insert uncer-
tain objects ¢ in the two candidate lists ©(gy, -) and O(gqy, -)
into heap H, in the form (¢, mindist(q,t)). This way, the
retrieval of PTkS answers for a query point ¢ € gagp can be
efficiently conducted on a small data set, which incurs much
lower cost than query processing on the index from scratch.

5 Experimental evaluation

In this section, we demonstrate the efficiency and effec-
tiveness of both static and dynamic probabilistic top-k star
(PTkS) query processing. We conduct the experiments on
both real and synthetic data sets. Specifically, we use 2D
geographical data sets, LB and RR, which contain bound-
ing rectangles (MBRs) of 53,145 Long Beach county roads
and 128,971 Tiger/Line LA rivers and railways, respectively.
Here, each MBR can be considered as an uncertainty region
of an object’s location. These two data sets are available at
url: [http://www.rtreeportal.org/]. Furthermore, we also use
GPS data set, which contains 12 days’ trajectories (with 2
dimensions latitude and longitude) between home and office
of people. The uncertainties in GPS data result from many
reasons such as clock errors, ephemeris errors, atmospheric
delays, and multipathing and satellite geometry. In order to
describe such GPS uncertainties, we take 10-50 positions
at consecutive timestamps in trajectories as independently
and identically drawn random samples to represent the loca-
tion distribution of an uncertain object. For synthetic data
sets, we produce each uncertain object ¢ as follows. First,
we randomly select a center location C; for object ¢ in a
d-dimensional space U = [0, 1000]d. Then, we decide a
random radius r; € [Fmin, Fmax] such that instances of ¢
fall into a circle (denoted as U R(t)) centered at C; and
with a radius r;. Finally, we randomly generate instances
t; of object ¢ within UR(t), as well as their appearance
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probabilities. For brevity, we denote data sets with loca-
tion C; of Uniform (Skew, skewness=0.8) distribution as
LU (IS); similarly, denote data sets with radius r; of Uni-
form (Gaussian with mean W and variance “mesTmin )
distribution as rU (rG). Thus, we can obtain four types of
datasets, [UrU,lUrG,I[SrU, and [SrG, which are indexed
by R-tree [2] as mentioned in Sect. 3.1 where page size is
set to 1K [41] (note: for 2D, 3D, 4D, and 5D data, each
page contains 50, 36, 28 and 23 entries, respectively; the
results of other page sizes are similar). For all the real/syn-
thetic data sets, we produce instances of uncertain object ¢
uniformly distributed in U R(¢) and their appearance proba-
bilities #; . p following Gaussian distribution (we assign prob-
ability in (0, 1] with mean 0.5 and variance 0.2 to each
instance and normalize them such that th:l] ti.p = 1).
Note that, for other data sets (e.g., with a different skewness
for C;, different mean and variance of r;, or distributions of
instances or probability #;.p), the experimental results are
similar. Thus, we only present the results over data sets men-
tioned above.

In order to evaluate PTkS query processing, we randomly
generate query points ¢ in the data space /. Moreover, we
test the query performance using two measures, wall clock
time and speed-up ratio compared with linear scan. In partic-
ular, the wall clock time consists of two parts, CPU time and
1/O cost, during query processing over the index, where we
incorporate the cost of each page access (i.e., [/O) by penal-
izing 10ms, similar to [40,41]. Moreover, the speed-up ratio
is defined as the wall clock time of the linear scan method
divided by that of our approaches. To our best knowledge,
no previous work studies the PTkS problem in the uncertain
database. Therefore, we compare our approach with the only
available method, (lightweight) linear scan (note: the nested-
loop one mentioned in Sect. 3 is more costly), which utilizes
Pruning Rule 2. That is, we sequentially access instances of
each uncertain object, obtain all instances (candidates) that
have their distances to g smaller than or equal to the min-
imum maxdist(q,t) for some object ¢ that we have seen,
and finally refine the candidates by finding k actual star
objects.

Without loss of generality, in subsequent experiments, we
generate 10-50 instances for each uncertain object, which
are divided into 2-5 groups. The trends with different num-
bers of instances or groups are similar, and we do not present
all of them. Table 3 summarizes the parameter settings we
tested. In particular, the values in bold font are default values.
Each time we vary value of one parameter while fixing other
parameters to their default values.

In the sequel, Sects. 5.1 and 5.2 illustrate the query per-
formance of static and dynamic PTkS queries, respectively.
All our experiments are conducted on a Pentium IV 3.2 GHz
PC with 1G memory. The reported results are the average of
100 queries.
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Table 3 The parameter settings

Table 4 PTkS query performance on real data sets

Parameter Values Real data sets Wall clock time (s) Speed-up ratio
[Fimins max] [0, 5], [0, 101, [0, 20], [0, 30], [0, 50] LB 0.25261 495.014
k 3,5,10, 15,20 RR 0.101975 2,452.49
d 2,3,4,5 GPS 1.18 105.941
N 200K, 300K, 500K, 800K, 1M
lgags| 5,10, 15,20
Fig. 14 Effect of pruning rules no. of candidates 1 Pruning Rule 1

5.1 Performance of static PTkS query

In the first set of experiments, we verify the correctness of our
proposed cost model for grouping, as mentioned in Sect. 3.4.
Specifically, we vary the number of groups per uncertain
object from 2 to 5, and compare the estimated measure
Pyisjoins in Eq. (4) with the actual value. Figure 13a shows
the experimental results with data set /U r U . From figure, we
can see that although there are about 10-20% relative errors
between the actual and estimated Pgjsjoins, the trend of the
estimated Pyjsjoins for different group numbers remains sim-
ilar to that of the actual one. The same phenomenon occurs
with other real/synthetic data or parameters which are omit-
ted. Therefore, the trend of estimated Py;yjoin: can reveal that
of the actual one, which is useful for our pivot selection. This
indicates that we can use our cost model (i.e., estimated one)
to iteratively evaluate the quality of the selected pivots (as
mentioned in Sect. 3.4.3), and obtain groups with the actual
Pyisjoint as large as possible.

As a second step, Fig. 13b evaluates our PTkS query pro-
cessing approach with and without optimizations (as men-
tioned in Sect. 3.4.3) over four types of synthetic data sets,
where the number of groups per uncertain object is set to 2,
and other parameters are set to default values. Recall that,
our optimization techniques utilize pivots (selected based on
cost model) to reduce the computation cost. Thus, the wall
clock time of PTkS with optimizations is smaller than that of
PTkS without optimizations (by randomly selecting pivots),
which shows the effectiveness of our proposed optimization

P gisioine

lu?!f clock time (sec)

PTKS with aptimizations
PTES witheur optimizations

i i i 0.5 |
2 3 4 5 Wrl WrG  ISPU ISHG
the number of groups data sets
(@) (b)

Fig. 13 Model verifications. a Actual versus estimated Pyigjoin:,
[UrU, b PTkS with and without optimizations

751 Pruning Rule 2
versus data sets. a [UrU and lh uning Rule

lUrG,blSrU and [SrG

21y

20

1

ey ISel7 ISry
data sets

o LB
et

techniques based on the cost model. In the subsequent exper-
iments, we will always show the query results by applying
the optimization techniques.

Next, Table 4 illustrates the results of static PTkS on real
data sets LB, RR, and G P S, where the required wall clock
time is small (i.e., < 1.18s) and the speed-up ratio is by
2-3 orders of magnitude, compared with linear scan. Note
that, the time cost for G P S data is higher than that of L B and
RR.Thisis because G P S data are obtained from trajectories
which have many overlaps of objects’ uncertainty regions,
and it thus takes more time to prune false alarms. Neverthe-
less, our PTkS approach can still achieve high speed-up ratio
by about 2 orders of magnitude.

For synthetic data sets, before we report the efficiency of
static PTkS query processing with different parameters below
(e.g., radius range [r,in, 'max], parameter k, dimensionality
d, and data size N), we first show in Fig. 14 the pruning
effects of Pruning Rules 1 and 2 mentioned in Lemmas 1
and 2, respectively, in terms of the number of remaining can-
didates, on synthetic data sets, where parameters are set to
default values. Specifically, we can see that for each data set,
compared with the total data size N = 500K, the number
of candidates after pruning rules is small (i.e., 10-30). Prun-
ing Rule 2 is applied on both node and object levels, and
the remaining objects are candidates for star objects; Prun-
ing Rule 1 has higher pruning power than Pruning Rule 2,
since it can obtain the actual star objects. In our PTkS query
procedure, we use Pruning Rule 2 to quickly filter out false
alarms on the node level, and then the remaining candidates
can be efficiently filtered by Pruning Rule 1.

Figure 15 presents the performance of our static PTkS
query over four types of synthetic data sets, by varying the
radius range from [0, 5] to [0, 50]. In figures, the numbers
over columns represent the speed-up ratios of our approach,
compared with the linear scan. Large radii of uncertain
objects indicate instances of objects scatter in a large region.
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Fig. 16 Comparison between static PTkS and PNN (No. of Candidates
Versus [Fmins Fmax])- alUrU and [UrG, b [SrU and [SrG

Thus, more candidates are expected to become star objects,
and the retrieval of them from the index requires more efforts,
in terms of wall clock time, as confirmed in figures. More-
over, the speed-up ratios are about 3 orders of magnitude,
which shows good efficiency of our method.

We also compare the PNN query [10,11,23] mentioned
in Sect. 1 with our PTkS query. In particular, in order to
avoid false dismissals, we set the probabilistic threshold 7),
of PNN to O (i.e., retrieving uncertain objects with nonzero
probabilities to be NN), and show the number of PNN can-
didates returned. Moreover, we report the number of star
objects after the index filtering in our PTkS query. We test
four types of synthetic data sets in Fig. 16, by varying radius
range [Fmin, 'max] from [0, 5] to [0, 50], where other param-
eters are set to their default values. From the experimen-
tal results, we can see that the number of PNN candidates
increases with wider radius range (since more objects are
possible to be NN of query point), and in the worst case, this
number can be as large as 311. Note that, too many candi-
dates may be meaningless for users to choose. Moreover, the
refinement of these candidates by computing the PNN prob-
ability integration (i.e., using numerical methods [10]) will
incur high computation cost. Thus, it is not suitable for appli-
cations (requiring fast response) like coal mine surveillance.
In contrast, our PTkS queries result in much fewer candi-
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Fig. 17 Static PTkS versus parameter k. a [UrU and [UrG, b [SrU
and [SrG

dates, that is, star objects. Note that, the refinement does not
involve the costly integration like PNN and can be efficiently
accomplished in a streaming fashion (as shown in Fig. 15).
Finally, only those important star objects with highest ranks
are returned as the query answers. Thus, our proposed PTkS
is more efficient and suitable than PNN for applications that
require small response time (e.g., coal mine surveillance).
The results with real data sets are similar and thus omitted.
The effectiveness comparison of PTkS with PNN will be later
discussed in Sect. 6.

Figure 17 illustrates the experimental results with differ-
ent values of k. From figures, we find that the wall clock time
of our approach remains approximately the same when k is
varied. The reason is that, the identification (traversing index)
and ranking (in memory) of star objects are not sensitive to k
value. The only difference is that we return & star objects with
the highest ranks for different k values. The speed-up ratio
of our approach remains high (i.e., 3 orders of magnitude).

Figure 18 studies the effect of dimensionality d on the wall
clock time and speed-up ratio of static PTkS query process-
ing. In particular, when the dimensionality increases from 2
to 5, the wall clock time of our approach first decreases and
then increases. This is due to the effects of two aspects, data
density and index efficiency. Since our data size N is fixed
(i-e., 500K), the density of data objects in the data space
would become smaller with the increasing dimensionality,
which leads to fewer PTkS candidates to retrieve and pro-
cess. On the other hand, when the dimensionality is high (e.g.,
5D), the query efficiency of R-tree index would degrade [42].
Thus, these two factors together determine the trend shown in
figures. Similar to previous results, for all the tested dimen-
sionality, our method has high speed-up ratio (i.e., 3 orders
of magnitude) compared with linear scan.

Figure 19 presents the PTkS results of scalability test on
data sizes. Specifically, the wall clock time of our approach
increases smoothly when the data size N becomes larger.
Furthermore, the speed-up ratio also increases with respect
to the increasing data size, which indicates a good scalability
on data size with our approach.
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5.2 Performance of dynamic PTkS query

In this subsection, we test the performance of dynamic PTkS
query processing, where query point moves along a line
segment gaqp. In particular, we randomly generate line
segments g4gp in the data space with arbitrary directions.
Assume that the query object issues 10 queries when it moves
along line segment g 4 ¢ g. The experimental results with other
numbers (e.g., 20) of queries are similar and omitted. We
test the wall clock time of our approach, which first finds out
PTkS candidates for all query points on g4gp at a time and
then searches PTkS answers among candidates for each of
the 10 queries. In contrast, the linear scan method retrieves
PTkS results from scratch for each query. In the subsequent
experiments, we show the total wall clock time and speed-up
ratio (compared with linear scan) for 10 queries.

Figures 20,21, and 22 illustrate the experimental results on
synthetic data by varying radius range [7in, Fmax], dimen-
sionality d, and data size N, respectively. The trends of wall
clock time in figures are similar to those in the static case.

Figure 23 demonstrates the effect of query length |gagp|
on our dynamic PTkS query performance. In particular, since
longer line segment would result in more candidates, the
wall clock time of our approach increases with the increas-
ing query length, as confirmed in figures. Furthermore, our
approach is much better than linear scan by about 4 orders of

Fig. 20 Dynamic PTkS versus radius range [rmin, Fmax]- @ lUrU and
IUrG,blSrU and ISrG
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Fig. 21 Dynamic PTkS versus dimensionality d. a [UrU and [UrG,
b SrU and ISrG
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Fig. 22 Dynamic PTkS versus datasize N.a/UrU and[UrG,blSrU
and [SrG

magnitude. The results on real data, L B and RR, are similar
and omitted.

In summary, extensive experiments have verified the effi-
ciency and effectiveness of our proposed methods for answer-
ing both static and dynamic PTkS query, in terms of wall
clock time and speed-up ratio compared with the linear scan.

6 Related work

In real-world applications, uncertainty is either inherently
contained in data [4,8,10,15,27] or intentionally injected
[13,29]. Thus, it has recently become crucial to explore how
to answer various queries over uncertain data effectively and
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Fig. 23 Dynamic PTkS versus query length |gagp|. a [UrU and
IUrG,b[SrU and [SrG

efficiently. While the focus of our study is on uncertain dat-
abases, there are also some other studies on probabilistic
databases [1,44,18,34,37] under possible worlds semantics.
Since traditional query processing methods usually
assume precise data, they are not directly applicable to
handling uncertain data. Therefore, many query types in
the uncertain database have to be re-defined in order to
obtain accurate results from uncertain data, including range
query [6,11,12,39], nearest neighbor query [9-11,23], sky-
line query [33], reverse skyline query [24], ranked query [25],
top-k dominating query [26], and similarity join [22,28].

Comparison between PTD [26] and PT%S. The top-k dom-
inating (PTD) query [26] retrieves k uncertain objects that are
expected to dynamically dominate the most numbers of other
objects in the original data space. In contrast, our PTkS query
obtains k star objects that are “close” to a query point consid-
ering both distance and probability aspects in a 2D converted
(distance-probability) space (rather than the original space),
where distance is defined as the Euclidean distance from data
instance to query point, and probability is the (non-)existence
probability of an instance.

Thus, PTD and PTkS have different semantics w.r.t. def-
initions, which can be used in different applications. For
example, PTD is used in applications where attributes can
be of various types (as dominance are considered on sepa-
rate attributes) and users want to obtain the average results
over all possible instance combinations; PTkS is applicable
to those scenarios that have a meaningful distance function
w.r.t. attributes (such as Euclidean distance in LBS appli-
cations), and return important star objects (e.g., those even
with small existence probabilities). Note that, in some appli-
cations such as LBS where attributes of uncertain objects are
coordinates of locations, PTD that considers the dominance
relationship among objects’ coordinates is not meaningful,
and thus we should use PTkS in this case.

While the solutions to PTD reduce the problem to the
one that condenses instance combinations and conduct the
query by directly traversing the R-tree in the original data
space, PTkS has to online compute star objects (or skylines)
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in the 2D converted space in a streaming fashion (by visit-
ing instances of uncertain objects in the R-tree, in ascending
order of their distances to query point). The pruning methods
for PTD utilize the lower/upper score bounds of objects to
enable the pruning. This is different from our PTkS query
that accesses instances for one pass, and apply pruning rules
based on the object dominance in 2D ad-hoc converted space.
In addition, our PTkS query also considers the dynamic case
where the query point moves along a line segment. There-
fore, previous techniques proposed for PTD cannot be used
in our PTkS problem.

The most related works to our PTkS problem are probabi-
listic nearest neighbor (PNN) query in the uncertain database
[10,11,23], which only considers the expected probability
(greater than or equal to a threshold 7), > 0) that an object is
a nearest neighbor of query point g. However, in many criti-
cal applications like coal mine surveillance, considering the
expected probability alone is not sufficient. This is because
carelessly ignoring dangerous events with a bit smaller prob-
abilities than threshold 7, may cause loss of lives.

Comparison between PNN [10,11,23] and PT%S. As an
example in Fig. 1, assume that objects u, v, w, and x are
uncertain data collected from different sensors in the coal
mine surveillance application [43], and their instances rep-
resent the data distributions. We take object u as an example
to illustrate how to calculate the expected PNN probability
[10,11,23] that u is the nearest neighbor (NN) of g. We first
consider instance u; of u. From figures, u is the nearest
neighbor of ¢ only if object u resides at u, v at vo, w at w
(or wyp), and x at x1 (or x3). Thus, the expected probability
that u; is NN can be calculated by the formula shown in
Table 5, that is, with the PNN probability %. Similarly, from
Table 5, we have the probability that u; is NN equal to %,
and that of u3 is 0. Thus, the PNN probability, Ppyy (1), of
uncertain object u is given by a summation of probabilities
of uy, uy, and us, that is,

4 4 16
PPNN(M):E+E+O=E

In the same way, from Table 5, PNN probabilities of v, w,
13 16

and x can be calculated as 73, 7z, and 0, respectively. There-
fore, if users set threshold 7', in the PNN query to %, then

only objects u and w are returned (i.e., reported dangerous
events like fires). However, we can see from Fig. 1a, that we
have missed a very important object v, which has the PNN
probability i—g a bit smaller than %, however, indeed has
1/5 chance to be NN of ¢ (indicating a site on fire) once it
resides at vy . Thus, this PNN definition would not report such
a dangerous event. In contrast, our PTkS results will include
object v.

On the other hand, in order to avoid missing important
answers, one possible remedy is to assign a small PNN
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threshold 7, or in the extreme case let 7, = 0 [11]. How-
ever, the number of the resulting candidates might be too
large. For the coal mine surveillance, the mine manager either
needs to filter out false alarms manually, which may delay
the precious time for evacuation, or asks workers to evacuate
the mine whenever a potential danger is detected, which will
waste millions of dollars for each false alarm. Thus, the PNN
query is not suitable for such scenario. In contrast, our PTkS
query computes the skylines in the distance-and-probability
space, and can obtain important answers.

Given another example, Table 6 shows 3 uncertain objects
a, b, and ¢, with existence probabilities of of their instances
and distances to query point g. In this example, when k = 2,
the PTkS answers are objects ¢ (with score 1) and a (with
score 2/3). In contrast, the PNN query will rank the top-2
objects as a (with probability 10/27) and b (with probabil-
ity 6/27). However, we can see that object b has an instance
by which is the farthest from ¢ (among all instances) and
with high appearance probability 2/3, whereas object ¢ has
approximately the same (close) distances to ¢ (i.e., 3 and 5)
with high probabilities (i.e., 1/3 and 2/3, respectively). This
indicates that object ¢ in our PTkS results is more probable (at
least not less probable) to be close to ¢ than object b (within
circle centered at ¢ with radius greater than 3 = dist(q, c1)).
The high ranking of object b in the PNN query is mainly due
to the expectation of probabilities. Thus, our PTkS answers
make more sense, compared with that of PNN.

Comparison between NN with the expected distance and
PTkS. If we consider the expected distance from query object
to uncertain objects and retrieve NN of query object g, we
may still miss some important results. For example, in the
example of Fig. 1, the expected distance from ¢ to object u
is given by:

1 1 1
2x = +4x = +7x = =433;
><3+ ><3+ ><3

Table S The NN probabilities of object instances for PNN
Instance The NN probability

ui up.p-v2.p- (Z[Z:l wi-P) : (Ziz:l Xi‘P) = %
uy M2P~U2P~wzp'(2i2:1xi.l?)=%

u3 u3p00(zllx,p) 0

vy v1.p~(zl-3:1ui.p)~( Wi p) ( 1 Xi.p ) %
v V2.p - U3.p WP - (Z,z | X P) =

w) wy.p - (Z?:z ui-p) v.p- (22 17) 2
wy wz.p~u3.p-0~(zl»2=1x,'.p)20

X1 x1.p-0-0-0=0

X2 x2.p-0:-0-0=0
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Table 6 An example for comparison between PNN and PTkS
Uncertain Instances Distances Appearance
object ¢ ti dist(q,t;) probability #;.p
a aj 1 1/3

as 4 173

a3 6 173
b by 2 173

by 7 2/3
c cl 3 1/3

2 5 2/3

similarly, the expected distances from g to v, w, and x are
4.2,4 and 8, respectively. Thus, w is the returned result,
whose instances are however the third and sixth closest to
q. As a result, v is still missing in the NN result, which is
important in applications like coal mine surveillance, and in
contrast returned by PTkS.

Therefore, the work studied in this article proposes a novel
point of view for queries in uncertain databases, that is, there
exists a trade-off between query predicate measure (distance
in our example) and probabilistic confidence, which is dif-
ferent from previous studies that only consider the expected
measure or probabilistic confidence, and may miss some
important results in critical applications like coal mine sur-
veillance. For example, previous studies on NN (using the
expected distance from query object to uncertain data) can
indeed obtain the nearest neighbor of query object. How-
ever, we may neglect some important objects since we ignore
the uncertainty of object positions. In contrast, our PTkS
query not only considers the distance but also the probabil-
ity with respect to this distance. To achieve this, we propose
techniques specifically designed for PTkS such as one-pass
approach to retrieve and rank star objects, which cannot be
solved by traditional NN method.

Moreover, previous studies on PNN retrieve objects that
have expected NN probabilities greater than a threshold.
Thus, techniques are designed to obtain PNN candidates and
refine them. In contrast, our PTkS queries have completely
different semantics, which considers online computing the
skyline in a converted distance-and-probability space. There-
fore, specific to our PTkS problem, we propose our own query
procedure, called Static_PTkS_Processing, that correctly
outputs instances of uncertain objects in ascending order of
their distances to query point g, which is not required by pre-
vious studies, via two minimum heaps H and G. To retrieve
star objects (or star instances), we designed an efficient one-
pass approach that can achieve this goal in a streaming fash-
ion. Furthermore, to compute scores and rank the star objects,
we also integrate the solution of computing scores into the
one-pass retrieval process of star objects.
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In addition, we also provide optimization techniques to
enhance the query performance via pivots, whose selection
is guided by our specifically designed cost model. From
the above comparisons of PTkS and previous studies with
expected distance or probability, we can see that techniques
used in previous studies cannot be directly applied in our
PTkS problem.

Previous studies on skyline can be classified into two cat-
egories, static and dynamic skylines, in which attributes of
objects are fixed and dynamic, respectively. Existing stud-
ies on static skyline processing include BNL [5], D&C [5],
bitmap and index [38], NN [21], and BBS [31]. Moreover,
the dynamic skyline has been studied in different scenar-
ios, where dynamic attributes are defined as distances from
objects to query points in the Euclidean space [31,35], road
network [14], or generic metric space [7]. In contrast, our
PTkS problem needs to obtain dynamic skyline, where not
only distance but also probability attributes are dynami-
cally calculated with respect to query point. Thus, existing
techniques in dynamic skyline solely dealing with distance
attributes (e.g., [7,14,31,35]) cannot be directly used in our
problem involving probability attribute.

7 Conclusions

Query processing on uncertain data is very important in many
applications due to the existence of uncertainty in real-world
data. In this article, we study the problem of identifying
uncertain objects that are “closest” to a query point. Specifi-
cally, we propose a novel concept, namely star object, which
considers both distance and probability aspects with respect
to the query point. We also define a probabilistic top-k star
(PTkS) query aiming to retrieve k star objects from the data-
base, and design effective pruning methods for PTkS query
processing. Furthermore, we extend the proposed solution
to the dynamic case where query point is moving toward a
direction. Extensive experiments have verified the efficiency
and effectiveness of our proposed approaches.
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and NSFC Grant No. 60736013, 60803105, 60873022, and 60903053.

Appendix
1. Proof of Lemma 3
Proof As illustrated in Fig. 24, it is sufficient to consider

point ¢; that is outside circles ©(qa, u) and O(gp, u) (the
case of node e can be easily extended).

@ Springer

perpendicular bisector
of points F and 1;

Fig. 24 Proof of Lemma 3

We prove the lemma by contradiction. We assume that
there exists a position g on line segment g4¢p such that cir-
cle ©(q, u) centered at g withradius maxdist (g, u) contains
point ¢; (i.e., assume ¢#; is a candidate).

Let point F be an intersecting point of two circles
O(ga,u)and ©(gp, u),and angle L Fgpq be 6. In the sequel,
we first prove that dist (g, F) is the maximum distance from
g to any point in the intersection of ©(g4, ) and ©(gp, u).

From the law of cosines, we have distz(q, F) =
dist*(qg, F) +dist*(qg, q)—2-dist(qp, F)-dist(gp, q)-
cosO. Since dist(qp, F) and dist(qp,q) are constants,
dist(q, F) decreases with the decreasing 6 value (note:
0 € [0, w]). In other words, for point F’ which is also on cir-
cle ©®(gp, u) like point F (i.e.,dist(qp, F) = dist(qp, F'))
and LF'qpq < 0, we have dist(q, F') < dist(q, F). That
is, dist(q, F) is the maximum distance from ¢ to any point
in ©(qa, u) N O(gp, u)-

Since O(q, u) intersects with u at one point and u is
completely contained in O(ga,u) N O(gp, ), we have
maxdist(q,u) < dist(q, F). According to our assumption
that #; is in ©(q, u), we have dist (g, t;) < maxdist(q,u) <
dist(q, F). Thus, point g mustbe on the halfplane containing
t;, which is obtained by the perpendicular bisector of points
Fandy.

Furthermore, based on the lemma assumption, we have
dist(qa, F) < dist(qa,t;)anddist(gp, F) < dist(qp, t;),
which indicates g4 and gp are on the halfplane containing
F.Since g ison gaqp, q is also in the same halfplane. How-
ever, this is contrary to the previous result that g is on the
halfplane containing ;. Hence, our initial assumption is not
correct, and ¢#; can be safely pruned. O

II. Proof of Corollary 1

Proof We consider circles ©(ga,u) and O(gc, u, w), as
illustrated in Fig. 11. From Lemma 3, we know that no mat-
ter where query point ¢ is located on line segment gaqc,
we can safely pruned nodes/points fully outside ©(g4, u) U
O(gc, u, w). Similarly, we can prune nodes/points fully
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outside O(gc, u, w) U ©(gp, w) when ¢ is on line seg-
ment gcgp. Thus, for any query point on line segment g4¢p
(= g949c YU qcqp), nodes/points can be safely pruned if they
are located outside ©(ga,u) U Ogc, u, w) U O(gp, w),
which completes our proof. O
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