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Abstract A large number of web pages contain data struc-
tured in the form of “lists”. Many such lists can be further
split into multi-column tables, which can then be used in
more semantically meaningful tasks. However, harvesting
relational tables from such lists can be a challenging task. The
lists are manually generated and hence need not have well-
defined templates—they have inconsistent delimiters (if any)
and often have missing information. We propose a novel tech-
nique for extracting tables from lists. The technique is domain
independent and operates in a fully unsupervised manner.
We first use multiple sources of information to split indi-
vidual lines into multiple fields and then, compare the splits
across multiple lines to identify and fix incorrect splits and
bad alignments. In particular, we exploit a corpus of HTML
tables, also extracted from the web, to identify likely fields
and good alignments. For each extracted table, we compute
an extraction score that reflects our confidence in the table’s
quality. We conducted an extensive experimental study using
both real web lists and lists derived from tables on the web.
The experiments demonstrate the ability of our technique to
extract tables with high accuracy. In addition, we applied our
technique on a large sample of about 100,000 lists crawled
from the web. The analysis of the extracted tables has led
us to believe that there are likely to be tens of millions of
useful and query-able relational tables extractable from lists
on the web.
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1 Introduction

The World Wide Web is a large, but as yet under-utilized,
source of structured data. Consequently, managing struc-
tured data on the web has recently become the focus of
many research efforts (e.g. [1,8,13,23,25,31]). Solutions
have been proposed to find, extract, and integrate structured
data. Building web scale structured data stores, and expos-
ing them offers many advantages, e.g., more sophisticated
querying of web data and performing table search to boot-
strap other data management tasks. In addition, the analysis
of large amounts of structured data on the web has enabled
features such as schema auto-complete and synonymy dis-
covery [8].

In recent work, Cafarella et al. [8] have shown that HTML
tables are a particularly rich source of structured data. Their
results indicate that there are more than 150 million HTML
tables containing relational data on the web. In this paper, we
consider a complementary, and equally plentiful, source of
relational data—lists on the web.

The key challenge concerning HTML lists is that there is
no clear notion of columns or cells, as is the case with tables.
Each line in the list is largely unstructured text. Delimiters
are typically very inconsistent, if at all existent, and hence
cannot be relied upon to split each line into the correct fields.
Moreover, information might be missing on some lines, and
hence, not all lines can be split into the same number of fields.

For example, consider the cartoon listing in Fig. 1. Each
cartoon has a serial number, the cartoon name, the production
company, and the production year. Some cartoons are miss-
ing information, such as “6. Gertie The Dinosaur”, where
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210 H. Elmeleegy et al.

Fig. 1 List of the 50 greatest cartoons: an example of Web lists that
contain structured data that can be extracted into relational tables

the production year is not specified. While it might seem that
the list is uniformly delimited, a closer examination reveals
several inconsistencies. First, a period is used both to sep-
arate the serial number from the cartoon name and to ter-
minate abbreviations (e.g., the production company “Warner
Bros.”). Second, while the delimiter between the produc-
tion company and year is typically a single slash (“/”), when
abbreviations are used, the delimiter sequence is a period and
a slash (“./”). Third, the slash also appears in the name of one
of the cartoons (“Duck Dodgers in the 24 1/2th Century”).
Finally, for cartoon “6. Gertie The Dinosaur”, the slash delim-
iter is absent (along with the production year). These incon-
sistencies, while fairly easy for a human observer to detect,
can be very confusing for an automated system.

The above example also demonstrates that the problem of
segmenting lists is different from the traditional information
extraction problem of wrapper generation [1,2,10,11,13,16,
19,20,22,29–31]. The typical assumption in wrapper gener-
ation is that web pages (or parts of web pages) are automati-
cally generated for each record in an underlying table using
an HTML template. Thus, the layout of each record can be
assumed to be consistent (with different data fields being sep-
arated by HTML tags), and hence, they can be inferred from
multiple examples.

This paper proposes a technique for extracting tables from
lists, ListExtract, which addresses the above challenges.
Given an input list, ListExtract searches for the best pos-
sible table that the list can be segmented into. ListExtract

is designed to be completely domain independent and hence,
apply to any list found on the web.

The over-arching idea underlying ListExtract is that
finding the best table involves interleaving local decisions
within each line in the list and table-oriented decisions across
lines of the list. Within the lines, ListExtract uses some
typical signals such as the data types, syntax, and delimiters.
ListExtract also uses two new sources: (1) a large-scale
language model (e.g., like in [6]) that records word co-occur-
rence scores and (2) a large corpus of automatically extracted
HTML tables [8]. The language model is used to identify can-
didate phrases that should not be split within a line, and the
table corpus identifies phrases that occur elsewhere in table
cells.

When looking across lines of the list, ListExtract iden-
tifies splitting errors by considering the cohesion of val-
ues across the column of the resulting table. Here too, the
table corpus is helpful because it identifies values that have
appeared in the same column in other tables. In addition,
when a splitting error is found by ListExtract, it realizes
that the error must affect a streak of values occurring to the
left or to the right of the value. As we describe, ListExtract
operates in several phases that interleave these two types of
decisions.

In summary, we make the following contributions:

1. We present a novel technique for extracting tables from
lists that is both domain independent and is completely
unsupervised. These qualities are essential in making the
technique applicable on a web scale.

2. We describe how language models, and a corpus of tables
can be used to identify segments in lines that are well
suited to be cell values in tables. We also show how the
table corpus is instrumental in aligning segments across
different lines in a list.

3. We present the results of an extensive experimental study
based on real web lists, in addition to synthetic lists
derived from HTML tables. The experiments demon-
strate the effectiveness of our technique and the impact
of its various components. We also show that existing
information extraction techniques cannot be applied to
our problem effectively.

4. We take a first step toward estimating the number of
high-quality tables that can be extracted from lists on the
web. From a sample of 100,000 web pages selected at
random, we show that ListExtract can extract between
1,400 and 9,700 tables with more than one column from
HTML lists, depending on the required quality thresh-
old. The distribution of the number of columns in the
extracted tables can be found in [15].

We note that to complete relational table extraction, we
also need to assign column headers to the columns of output
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tables. However, we only focus on the task of splitting the
list’s lines into the table’s columns. Finding meaningful col-
umn headers is an area of future work, and some of the tech-
niques in [9,28] can be directly applied.

This paper extends a previous conference publication [15]
in the following ways: (1) we discuss the implementation
challenges of ListExtract (Sect. 6), (2) we describe appli-
cation scenarios for ListExtract (Sect. 8), (3) we provide
additional details for the alignment phase (Algorithm 4.3)
and the effects of selecting our line splitting algorithm
(Sect. 7.8). We also updated our discussion of recent related
work.

The rest of the paper is organized as follows. Section 2
presents our problem formulation and an overview of our
approach. Sections 3, 4, and 5 describe the three phases of
our algorithm-splitting, alignment, and refinement. Section 6
outlines our implementation of ListExtract while Sect. 7
presents an experimental evaluation. Section 8 discusses
application sof ListExtract, Sect. 9 discusses related work,
and Sect. 10 concludes.

2 Problem statement and overview

We begin by stating the problem we address and giving an
overview of our solution.

2.1 Terminology and problem statement

Consider a list L of n lines, where the i th line li consists
of mi words 〈wi1, wi2, … , wimi 〉. Our goal is to extract a
table T that contains n rows and some number of columns,
say k.

We refer to each line in the list (that becomes a row in
the table) as a record and each cell value as a field. Thus, the
i th record in T contains the k fields 〈 fi1, fi2, . . . , fik〉. The
field fi j consists of mi j successive words 〈wi pi j , wi(pi j +1),
… , wi(pi j +mi j −1)〉, where pi j is the position of the first
word in fi j . We use the term field candidate to refer to a
sequence of words that is being considered as a potential
field.

In this work, we only consider records that are formed by
a non-overlapping and complete splitting of a line in the list,
i.e., each field is assumed to be disjoint and all words are
assigned to some field.

Given a list L , our goal is to extract a table T that is the
most likely representation of the underlying relational data.
It is important to note that there is not necessarily a single
right answer to the table extraction problem. Solutions may
differ on how many columns they identify and how they deal
with irregularities in the data. Ultimately, solution quality is
subjective.

2.2 Algorithm overview

Our ListExtract technique executes as a sequence of oper-
ations over the input list (see Fig. 2). The underlying opera-
tions can be grouped into three main phases: an independent
splitting phase, an alignment phase, and a final refinement
phase. We use two scoring functions to decide where to split
individual records. We use a field quality score, F Q( f ), to
measure the quality of an individual field candidate f , and
a field-to-field consistency score, F2FC( f1, f2), to measure
the likelihood of two field candidates f1 and f2 being in
the same column. Both the scores take into consideration
multiple sources of information.

Figure 3 shows the intermediate results of applying our
technique on the first 17 rows in the cartoons list in Fig. 1.

Phase 1 (Splitting): Each line in the input list is split into
a multi-field record. The splitting is performed indepen-
dently hence the obtained records do not necessarily have
the same number of fields.
As shown in Fig. 3a, after the independent splitting
phase, 13 out of the 17 lines are correctly split into records
of four fields representing the sequence number, cartoon’s
name, production company, and production year. Line 6
is also split correctly, though into a record of three fields
only, as it is missing the year information. However, lines
4, 15, and 17 (highlighted) were incorrectly split. Interest-
ingly, the cartoon’s name in line 17 had two very common
substrings (“Popeye the Sailor” and “Sinbad the Sailor”),
which lead the splitting algorithm to assign high scores to
them and thus, treat each of them as a separate field.

Splitting All 
Lines into 
Records

Deciding 
the Number 
of Columns

Aligning Short 
Records

(Null Insertion)

Detecting 
Inconsistent

Fields

Re-Merging and 
Re-Splitting

Detected Field 
Streaks

Re-Aligning 
Detected 

Field Streaks 
(Null Insertion)

Re-Merging and 
Re-Splitting

Long Records

Independent
Splitting Alignment Refinement

Fig. 2 ListExtract proceeds as a sequence of operations that can grouped into the independent splitting, the alignment, and the refinement
phases
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212 H. Elmeleegy et al.

Fig. 3 Applying the
ListExtract technique on the
cartoons list in Fig. 1 (a) After
independent splitting phase.
(b) After re-splitting records
given the number of columns.
(c) After alignment phase
(initial table TI ). (d) After
refinement phase (final table T)
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Phase 2 (Alignment): An initial candidate table (TI ) is con-
structed by first determining a single number of likely col-
umns in the output table. Records with too many fields are
re-merged and re-split to make sure that they fit into the
output table. Records with too few fields are expanded by
inserting fields with a null value. The fields are aligned
into columns so as to ensure consistency among fields in
the same column. Since the splitting decisions in the first
phase were made independently for each record, the TI can
still have some incorrect fields.
In our example, the number of columns in the output table
is set at four (the most common number of fields across
all records). Since record 17 has more than four fields, it
is merged and re-split to force it to have no more than
four fields. As shown in Fig. 3b, it re-splits into exactly
four fields. However, the split between the first and sec-
ond fields was inaccurate, again because the common sub-
string “Sinbad the Sailor” is recognized as a separate field
candidate.
In the initial table TI (Fig. 3c), note that a null field was
correctly placed for the missing year in record 6. More-
over, the fields, which were correctly split in records 4 and
15, were also correctly positioned in TI . In particular, the
production year of record 4, and the serial number and
production year for record 15 were placed in their correct
columns.

Phase 3 (Refinement): The field assignments in TI are ana-
lyzed to detect and fix those that are likely to be incorrect.
This is done by marking fields that seem inconsistent with
other fields in the same column. We observe that bad split-
ting decisions do not occur in isolation, but are likely to
affect one or more adjacent fields. Hence, we detect streaks,
i.e., sequence of fields in a single record, of such inconsis-
tent fields that are then merged together and re-split.

Unlike the independent splitting in the first phase, split-
ting a re-merged streak of fields during refinement takes
into account other fields occurring in the columns of TI

spanned by the streak. This enables us to identify higher-
quality fields, which are consistent with their respective
columns, and hence ultimately generate a higher-quality
table, T .

In our example, in the result of the refinement phase, all
the highlighted cells in Fig. 3c are correctly detected as fields
that are inconsistent with their columns, by virtue of their low
consistency scores with the other fields in their columns. The
corresponding streaks are merged and re-split. This results
in the correction of most of the fields, except for the cartoon
name and production company in record 17. This is again
attributed to the high popularity of the substring “Popeye the
Sailor”, which was also a good match for the cartoon name
column.

We now look at each phase in detail.

3 Independent splitting phase

The first phase of ListExtract considers each line in a list
independently and splits it into a record with multiple fields.

In order to measure the quality of a particular candidate
field (as a cell value), we use the field quality score (F Q) for
each candidate. We describe how we compute F Q shortly. In
principle, every subsequence of words in a line l is a field can-

didate. For a line with m words, there are

(
m + 1

2

)
possible

field candidates (the number of choices for the start and end
words of the sequence).

We considered three alternate methods to select the best
split for a line given the F Q scores of its candidate fields.
Recall that we only consider splits that result in non-
overlapping fields that together include all the words in the
line.

The first method determines the best split to be the one
that maximizes the sum of the F Q scores of the selected
fields, while the second method maximizes the average F Q
score. The third is a greedy method that at each step selects
the field candidate with the highest score, while eliminating
those that overlap with the selected field.

We found that maximizing the sum of F Q scores results
in aggressive splitting, i.e., each line is split into too many
fields. This is because increasing the number of fields typi-
cally leads to a larger sum. Maximizing the average F Q score
on the other hand avoids such aggressive splitting, but is com-
putationally expensive. While the sum can be maximized
using a standard O(m2) dynamic programming segmenta-
tion algorithm [4], the average cannot be. Unlike sum, the
average is not a decomposable objective function—in sim-
ple terms, “sum” can always be expressed as “sum of sums”,
while “average” cannot always be expressed as “average of
averages”. Hence, an exhaustive search is necessary.

In the interest of efficiency, we instead use a greedy
method that does not result in aggressive splitting. Our greedy
line splitting algorithm, SplitLine, is outlined in Algorithm 1
below. We create C f , a ranked list of all field candidates
sorted in descending order of their FQ scores. In each itera-
tion of the loop, the candidate with the highest score, ftop, is
removed from the ranked list and marked as selected (added
to the output set r ). All candidates that overlap with ftop

are then removed from C f to ensure that no two overlapping
fields are selected. This process terminates when Cf becomes
empty.

Surprisingly, in our experiments, we found that Split-
Line generally yielded better results even compared to the
“average” method. In particular, as reported in Sect. 7, we
compared SplitLine against “average” implemented using
exhaustive search and found it to have an average f -measure
improvement of .05 over our data sets. It is likely that Split-
Line is more re-silient to incorrect field scores that might
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Algorithm 1 SplitLine(l: line)

1: r = {}
2: extract all subsequences from l as field candidates.
3: calculate F Q for each field candidate.
4: C f = field candidates sorted in descending order of F Q.
5: while C f is not empty do
6: remove ftop , the field candidate with the highest F Q in C f .
7: add ftop to r .
8: remove field candidates overlapping with ftop from C f .
9: end while
10: return r

occur in practice. For example, consider that a correct field
candidate f was given a low F Q score due to insufficient
information, but there are other high scoring non-overlap-
ping field candidates in the record. SplitLine will first pick
the other candidates based on better information, thereby
delaying the decision on f . At a later stage, f could be the
best remaining candidate to fill the gap between previously
selected fields. In effect, SplitLine delays the selection of f
until it gains enough knowledge about its surrounding fields.

3.1 Field quality score

We now describe how we calculate the field quality score,
F Q( f ), for a given field candidate f . One of the important
aspects of ListExtract is that we compute these scores
based on multiple sources of information. In our discussion
below, we assume the candidate field, f , is composed of m
words, 〈wi , …, wi+m−1〉.

We obtain scores from three sources of information: type
support (denoted Sts( f )), language model support (Slms)
and table corpus support, (Stcs). We assign each information
source a weight, atss, alms , and atcs , respectively, and com-
pute F Q( f ) as their weighted combination:

F Q( f ) = ats × Sts( f ) + alms

×Slms( f ) + atcs × Stcs( f ) (1)

We now explain how each of the individual components
is computed.

Type Score (Sts): The type score reflects whether the field
candidate can be recognized as a member of a type that
commonly occurs in separate table columns. Our imple-
mentation currently recognizes numeric values, date-time
values, currency values, URLs, emails, phone numbers,
and zip codes. Type recognition is performed by match-
ing f against regular expressions, which capture most
of the possible instances of the considered types. We
set Sts( f ) to 1 if the type of f is recognized and to 0
otherwise.

Language model score (Slms): A language model records
the probability of occurrences of sequences of words. The

probabilities are computed from the analysis of a large
corpus of documents in that language, e.g., web pages
resulting from a web crawl. Specifically, if w1, . . . , wi is
a sequence of words, we use the language model to com-
pute the conditional probability of Pr(wi |w1, . . . , wi−1),
i.e., the probability that the word wi follows the sequence
w1, . . . , wi−1.
Intuitively, we want the sequence of words within the cell
to have a high probability and the sequence of words that
span cells to have a low probability. We capture these intu-
itions with the internal cohesiveness score and the external
in-cohesiveness score:

– internal cohesiveness score, Sic, measures how likely
a sequence of words is a single cell value. Specifically,
it computes the average conditional probability of each
word given the words before it.

Sic( f ) =
∑m−1

h=1 Pr(wi+h |wi , . . . , wi+h−1)

m − 1
(2)

– external in-cohesiveness score, Sei , computes the
inverse of the average probability of the boundaries
of the field: Pr(wi |wi−1) (the probability that the first
word in f follows the last word in the earlier field), and
Pr(wi+h+1|wi+h), (the probability of the first word in
the next field following the last word in f ).

Sei ( f ) = 2

Pr(wi |wi−1) + Pr(wi+h+1|wi+h)
(3)

The language model score is the weighted average of the
internal cohesiveness and external in-cohesiveness scores:

Slms( f ) = aic × Sic( f ) + aei × Sei ( f ) (4)

where aic and aei are in the range [0, 1] and aic +aei = 1.

Table corpus support score (Stcs): The table corpus sup-
port score reflects how well f is supported in a corpus
of web tables [8]. Let tc_support is the number of times
f occurs as a cell value in the table corpus. We use a
simple scheme, where we set Stcs to 1 if tc_support is
greater than some threshold value min_tc_support and
0 otherwise. This simple scheme proved to perform quite
well (as discussed in Sect. 7).

Before calculating F Q and Slms , we normalize and scale
the component scores Sts, Sic, Sei , and Stcs . In order to
bias the scores to prefer longer field candidates, the scores
are scaled by the number of words in the sequence. In order
to ensure that all the scores are between 0 and 1, each score is
then divided by the maximum corresponding score achieved
across all field candidates in L .

To see the benefit in preferring longer candidates, consider
the two candidates: “Theodore Roosevelt” and “Theodore
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Roosevelt, Jr.”. Although both candidates would be recog-
nized as likely fields, it is clear that the presence of “, Jr.”
immediately after “Theodore Roosevelt” makes the second
candidate the more likely one.

4 Alignment phase

The second phase in ListExtract is alignment. The inde-
pendently split records from the first phase are put together
into an initial table that is then aligned.

Before a table can be assembled, we must address a cru-
cial problem: what are the number of columns in the resulting
tables? Since the lines were split independently, it is possi-
ble the resulting records have different numbers of fields.
We use a simple majority voting scheme to determine the
number of columns—suppose the first phase splits the row
ri into ki fields. We pick the ki that occurs the most number
of times in the list. Observe that we are in essence assuming
that a large number of the lines have in fact been split into
the correct number of fields. This is a reasonable assumption
provided the underlying relational tables that we are trying
to extract are not sparse (do not have many null fields). Our
experiments indicate that this is in fact the case.

Once the number k has been determined, records with
exactly k fields are trivially aligned. However, there might
be records with more than k fields and also those with fewer
than k fields. In Sect. 4.1, we describe how we address longer
records by re-splitting them with constraints on the number
of fields. In Sect. 4.2, we consider shorter records and align
them by inserting null fields that are appropriately placed
between the non-null fields. In Sect. 4.3, we describe how
we finally assemble the initial table and describe how we
maintain field summaries that make the alignment process
more efficient. Finally, in Sect. 4.4, we describe the field-
to-field consistency score that we use during the null field
insertion and alignment operations.

4.1 Aligning long records

We re-split the lines with more than k fields such that the
new records have at most k fields. The re-split is achieved
by the BoundedSplitLine algorithm, a modification of the
original SplitLine algorithm. In addition to the input line,
l, Bounded SplitLine takes an upper bound, kmax, for the
number of fields the output record r may contain.

The upper bound, kmax, is enforced as follows: Before we
include the field candidate ftop into r , we first ensure that it
does not lead to a violation of the upper bound constraint.
For this, we calculate the minimum number of fields that
r will have if ftop was included in r , which we denote by
min_ f ields(r, ftop). We calculate min_ f ields(r, ftop) as
the sum of the number of fields already included in r (assum-

ing ftop was added) and the number of “gaps” remaining in
r , i.e., sequences of words in line l that are yet to be covered
by r or ftop. ftop is included in r only if min_ f ields(r, ftop)

does not exceed kmax.

Algorithm 2 BoundedSplitLine(l: line , kmax : upper bound)

1: r = {}
2: extract all subsequences from l as field candidates.
3: calculate F Q for each field candidate.
4: C f = field candidates sorted in descending order of F Q.
5: while C f is not empty do
6: remove ftop , the field candidate with the highest F Q in C f .
7: estimate min_ f ields(r, ftop), i.e., the minimum number of fields

if ftop were included in r .
8: if min_ f ields(r, ftop) ≤ kmax then
9: add ftop to r .
10: remove field candidates overlapping with ftop from C f .
11: end if
12: end while
13: return r .

4.2 Aligning short records

We now have lines with k or fewer fields. Note that the re-
splitting described above can, in theory, lead to a record with
fewer than k fields. We address the problem of missing infor-
mation by inserting null fields into short records. In order to
decide where to insert the nulls, we need to identify the loca-
tion of the missing information.

Suppose that we already have a partial table that includes
records that have exactly k fields (and hence can be trivially
aligned). The best alignment for a short record r with the
partial table is one in which each non-null field aligns with
the column it is most similar to and preserving the relative
ordering of the non-null fields.

We use an adapted version of the classic Needleman–
Wunsch dynamic programming algorithm, for sequence
alignment [26] to align short records against a partial table.
Algorithm AlignShortRecord describes the steps in align-
ing a record r with k− fields 〈 f1, . . . , fk−〉 with a partial table
T with columns 〈c1, . . . , ck〉 (k > k−).

As with a typical dynamic programming approach, we
define a recursive objective function for the cost of the best
possible alignment. The dynamic programming proceeds by
computing a k−×k cost matrix M . Suppose Fi represents the
sequence of first i fields in r i.e., 〈 f1, . . . , fi 〉, and C j repre-
sents the sequence of first j columns in T , i.e., 〈c1, . . . , c j 〉,
then M[i, j] represents the cost of the best alignment of
the fields in Fi with the columns in C j . Let A[i, j] be the
alignment corresponding to M[i, j]. Note that the cost of
the best possible complete alignment is M[k−, k], and the
corresponding alignment is A[k−, k].
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We observe that A[i, j] can be constructed from the best
alignments the subsequences of Fi and C j . In fact, A[i, j]
can be constructed recursively, by just considering three pos-
sibilities: (1) fi aligns with c j and rest of the alignment is
the same as A[i − 1, j − 1], (2) fi is un-matched and the
rest of the alignment is the same as A[i − 1, j], and (3) c j

is un-matched and the rest of the alignment is the same as
A[i, j − 1].

Step 10 in Algorithm 3 specifies the corresponding recur-
sive definition for M . Steps 2–7 address boundary conditions.
UnMatched(c j ) is the cost assigned to not matching column
c j with any field, i.e., inserting a null field; UnMatched( fi )
is the cost assigned to not matching field fi with any column,
and Matched( fi , c j ) is the cost assigned to aligning the fi

with the column c j .

Algorithm 3 AlignShortRecord(r : record with k− fields, T : partial

table with k columns)
1: M[0, 0] = 0
2: for i = 1 to k− do
3: M[i, 0] = M[i − 1, 0] + UnMatched( fi )
4: end for
5: for j = 1 to k do
6: M[0, j] = M[0, j − 1] + UnMatched(c j )
7: end for
8: for i = 1 to k− do
9: for j = 1 to k do

10: M[i, j] = max

⎛
⎝ M[i, j − 1] + UnMatched(c j ),

M[i − 1, j] + UnMatched( fi ),

M[i − 1, j − 1] + Matched( fi , c j )

⎞
⎠

11: end for
12: end for
13: return best alignment A[k−, k] by re-tracing the computation of

M[k−, k] back to M[0, 0].

Since every field in the record r must match a column in the
table, UnMatched( f ) is set −∞. To obtain a simple formu-
lation, we would like to set UnMatched(c) to be a constant C
for all columns c. In such a case, all possible valid alignments
will have exactly k − k− un-matched columns and hence, a
fixed additional cost of (k − k−) × C . Thus, UnMatched(c)
can be set to any fixed value. Of course, a more sophisticated
model might be possible where each column is assigned a
different cost for being un-matched.

The term Matched( f, c) measures how well the field f
aligns with other fields already in the column c, with a
higher value indicating a better match. We use the field-to-
field consistency score, F2FC , to estimate the quality of this
match. Specifically, if f c is a value that is already known to
be in the column c (from rows that have been aligned), then
F2FC( f, f c) estimates the consistency of f and f c being
in the same column. We discuss how we compute F2FC
shortly. We define F2FC( f, c) as follows, where f c

1 , . . . , f c
n

are the values already known to be in c:

Matched( f, c) = F2FC( f, c) = 1

n
×

n∑
i=1

F2FC( f, f c
i )

(5)

Finally, to obtain the alignment A[k−, k], we trace the
decisions taken in computing M[k−, k]. The tracing process
is done in reverse, i.e., from M[k−, k] back to M[0, 0].

4.3 Constructing the initial table TI

Algorithm CreateTable summarizes how we compute the
initial aligned table TI . At a high level, we first split the
longer records. Then, we consider all the records in descend-
ing order of the number of fields (ties broken by descending
average field scores F Q for the records). All the records with
k fields (and appear at the top of the sorted order) are aligned
trivially into TI . AlignShortRecord is then invoked on each
of the shorter records.

Our technique can be thought of as an iterative Multi-
ple Sequence Alignment (MSA) technique [3]. MSA is a
well-known hard problem, for which several approximate
techniques were proposed (see [14,27] for surveys). Most
such techniques are designed for the alignment of biological
sequences, where each sequence is treated symmetrically. In
our context however, we have a different level of confidence
for each record (manifested in its average FQ score and the
number of null fields). The iterative method allowed us to
align records with high confidence first. Then, such records
are used to align the ones with lower confidence and so on.

Observe that AlignShortRecord, as described in Sect. 4.2
compares each field against all the fields in the partial
table TI . This can be a fairly expensive operation, espe-
cially in lists with many lines. Hence, in the interest of effi-
ciency, we maintain a table of field summaries for each of the
columns in TI . The field summary maintains representative
fields that have already been aligned with that column. The
configurable parameter max_n_reps determines the number
of representative values in a field summary. The AlignShort-
Record method only considers the field summaries (and not
the entire TI ) while computing Matched( f, c) in Eq. 5. Note
that as additional records are aligned, the field summaries are
updated.

The main idea of the algorithm UpdateFieldSummaries
is to select the field representatives such that they are approx-
imately the most coherent set of values (measured by the
average pairwise F2FC scores) within a column. The ratio-
nale is that correctly extracted fields in the same column are
expected to exhibit a high level of coherency.

Note that field summaries are maintained independently
for each column. Thus, the field summaries for different col-
umns can include fields from different records.
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Algorithm 4 CreateTable(R: list of records)

1: for ri in R do
2: if number of fields in ri > k then
3: AlignLongRecord(ri , k)
4: end if
5: end for
6: TI = {}
7: SF = {}
8: sort R in descending order of the number of fields.
9: for ri in R do
10: if number of fields in ri < k then
11: ri = AlignShortRecord(ri , SF)
12: end if
13: add ri to TI .
14: SF = UpdateFieldSummaries(ri , SF)
15: end for
16: return TI

Algorithm 5 UpdateFieldSummaries(ri , SF)
1: for j = 1…k do
2: Add fi j to SFj
3: if |SFj | > max_n_reps then
4: min_score j = ∞
5: worst_rep j = null
6: for h=1…|SFj | do
7: score jh = F2FC(SFjh, SFj )

8: if score jh < min_score j then
9: min_score j = score jh
10: worst_rep j = SFjh
11: end if
12: end for
13: remove worst_rep j from SFj
14: end if
15: end for
16: return SF

Table 1 Field summaries for the cartoons example

Column 1 Column 2 Column 3 Column 4

11 Steamboat Willie Disney 1943

10 Rabbit of Seville MGM 1935

15 Three little pigs Disney 1949

The fields for each column can be drawn from different lines in the list

Continuing with the cartoons example, if max_n_reps =3,
then the field summaries for the four columns at the end of
the alignment phase (shown in Fig. 3c) are as in Table 1. As
desired, our selection method managed to find high-quality
fields to serve as field summaries.

In Sect. 7, we consider the question of the size of the field
summaries, i.e., max_n_reps. We found that the best value
for real web lists in general was 3, but it can vary across
domains.

4.4 Field-to-field consistency score

The field-to-field consistency score, F2FC( f1, f2), mea-
sures the similarity between a pair of fields or of field candi-

dates f1 and f2. As, with the field quality score, it is computed
from multiple sources. In particular, the F2FC has four com-
ponents: type consistency Stc, table corpus consistency Stcc,
syntax consistency Ssc, and delimiter consistency Sdc. The
F2FC is a linear combination of these factors.

F2FC( f1, f2) = atc × Stc( f1, f2) + atcc × Stcc( f1, f2)

+asc × Ssc( f1, f2) + adc × Sdc( f1, f2)

(6)

where atc, atcc, asc, and adc are weights (in the range [0, 1])
assigned to each component, such that they sum to 1. We now
consider each component in turn.

Type consistency score (Stc): If the two fields f1 and f2

have the same type, then Stc is set to 1. Otherwise, it is set
to 0. The types recognized are the same as those for the
type score (Stq ) component of F Q.

Tables corpus consistency score (Stcc): Fields f1 and f2

are said to have high table corpus consistency if there are
many columns in the table corpus in which the both f1

and f2 co-occur. For instance “Barack Obama” and “Nic-
olas Sarkozy” can have a high Swc score, while “Barack
Obama” and “France” would have a very low score. For-
mally, Stcc( f1, f2) is calculated as the average of the two
conditional probabilities Pr( f1| f2) and Pr( f2| f1).

Syntax consistency score (Ssc): The syntax consistency
measures if two fields have the same “appearance” (though
they might not belong to the same recognized type or occur
in the same column in the table corpus).

To calculate Ssc( f1, f2), we first extract several numerical
features from the strings forming both f1 and f2. The fea-
tures we consider are as follows: (1) number of letters, (2)
percentage of lower case letters, (3) percentage of upper
case letters, (4) percentage of digits, and (5) percentage
of punctuation.
Consistency scores are computed separately by compar-
ing each of the above syntax features. Suppose v1 and v2

are the values for a particular feature for fields f1 and f2,
then the corresponding feature consistency score is as fol-
lows: 1− |v1−v2|

max(v1,v2)
. The feature consistency scores are all

in the range [0, 1]. Ssc is the average of all the individual
feature consistency scores.

Delimiters consistency score (Sdc): Delimiters consis-
tency measures the similarity in the field delimiters.
Sdc( f1, f2) is set to 1 when the delimiters on both sides
are identical for f1 and f2; to 0.5 when they are match on
one side only; and to 0 otherwise.

Until now, we have not considered delimiters as being a
part of fields (or field candidates). We assume delimiters to
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belong to the set of letters “ ,;:./\()<>&|#!?”, and they are
used to separate sentences into words (fields are sequences of
words). A special class of delimiters are the different HTML
tags that are encountered while processing web pages.

For example, the two fields (with their leading and trailing
delimiters) <b>Barack Obama</b>, will have a higher
value for Sdc when compared with <b>Nicolas Sar-
kozy</b>, than when compared with<i>France</i>.

5 Refinement phase

So far, the only information being passed between lines of
the list is the number of likely fields that was used in the
Bounded SplitLine algorithm to prevent the excessive split-
ting of some lines. However, our goal is to split an entire
list of lines that are supposedly related to each other. In this
section, we describe how we exploit the collective nature of
our splitting task to fix errors resulting from the independent
splitting.

Our algorithm is based on two observations. First, assum-
ing that the number of correctly split fields is many more
than incorrectly split ones, collective analysis of the records
enables us to detect incorrectly split fields: such fields will
align poorly with other fields in the initial table TI . Sec-
ond, incorrectly split fields do not occur in isolation within
a record. By definition, if a field was incorrectly split, then
one of its adjacent fields within the same record has to be
incorrectly split. Thus, incorrect splits occur in streaks.

5.1 Detecting inconsistent streaks

We can detect incorrectly split fields by identifying those that
are poorly aligned with their columns in TI . We call such
fields inconsistent, and we detect them using their F2FC
scores when compared to other fields in the same column.
Rather than comparing each field with all the other fields in
its column, we re-use the field summaries computed in the
alignment phase. The field summaries are compact, yet rep-
resentative of their columns and hence enable the efficient
detection of inconsistent fields.

Specifically, for every field, fi , in column ci of TI , we cal-
culate its F2FC score against its corresponding field sum-
mary, i.e., F2FC( fu, SFi ), where SFi is the field summary
for the column ci (Eq. 5). We sort the fields in descending
order of their consistency scores. We consider the fields in the
bottom Pinc% to be the ones that are likely to be inconsistent.
Pinc is a configurable parameter that reflects the percentage
of inconsistent fields in TI .

We consider all null fields to be inconsistent, i.e., they
have F2FC scores of zero. Thus, they are candidates for
refinement. This is because the alignment phase might have

inserted nulls between two adjacent fields that were incor-
rectly split.

Having detected individual inconsistent fields, we group
them into streaks: a sequence of inconsistent fields within
a single record. We ignore streaks that only consist of null
fields. We also ignore streaks that only include a single field.
This is consistent with our observation that incorrect splits
do not occur in isolation. We denote a streak in record i that
spans from the field in column j1 to column j2 as F(i, j1, j2).

In our experiments, we found a Pinc value of 50% to work
well. Note that this does not mean that we refine the splitting
decisions for half the fields in the table. A number of streaks
contain only nulls or have only one non-null field and are
hence ignored.

5.2 Correcting inconsistent fields

For every detected streak of inconsistent fields F(i, j1, j2),
we apply the following three operations in sequence:
re-merge, re-split, and re-align.

Re-merge: All fields within F(i, j1, j2) are merged into a
single field.

Re-split: The contents in the merged field are re-split
using the BoundedSplitLine algorithm (Algorithm 2).
The parameter kmas is set as the number of columns
spanned by F(i, j1, j2), i.e., j2 − j1 + 1.
The splitting in this phase differs from the earlier splitting
operations in one significant way. We exploit the collec-
tive nature of the splitting task by including an additional
component in the computation of the field quality scores
(F Q). The additional component, called the List Support
Score Sls, biases that field quality scores in the favor of
field candidates that are more consistent with the columns
spanned by the streak. We describe it in Sect. 5.3 below.

Re-align: The number of fields generated after the
re-splitting step may be smaller than the number of col-
umns spanned by F(i, j1, j2). Therefore, we re-align the
fields with their corresponding columns, placing nulls in
the appropriate positions within the re-split fields. Align-
ment is achieved using the AlignShortRecord algorithm.
We only consider the re-split fields. Further, we do not
need to maintain or re-compute the field summaries, which
can be simply re-used from the alignment phase.

Finally, we note that the refinement phase can be run
repeatedly until the output table converges. In each invoca-
tion, some of the incorrect splits might be fixed, eventually
leading to a stable split and alignment. However, our exper-
iments indicate that a single invocation of the refinement
phase typically suffices.

123



Harvesting relational tables 219

5.3 Field quality score—revisited

In order to exploit the collective nature of the splitting task,
we consider an additional component in the field quality score
for this phase. The List Support Score, Sls( f ), of a field can-
didate f measures the consistency between f and the fields
extracted from other lines in TI .

Suppose f is a field candidate while re-splitting the streak
F(i, j1, j2). We compare the consistency of f against each of
the columns between j1 and j2. The field f is deemed to have
strong list support if it is consistent with any of the columns
between j1 and j2. As before, we use the field summaries to
estimate the consistencies.

Sls( f ) = j2
max
h= j1

F2FC( f, SFh)

Note that the list support score is only applicable in the
refinement phase because we have the initial table TI that
facilitates targeted consistency comparisons. Equation 1 for
F Q( f ) is updated to include the list support score.

5.4 Table extraction score

Once a table T is extracted from the list L , we calculate its
Table Extraction Score, T E(T ), by computing the average
field quality score of all the fields in the table.

T E(T ) =
n∑

i=1

k∑
j=1

F Q( fi j ) (7)

where fi j is the field score of the j th field in the i th record.
Null fields are assigned a field score of zero.

When applying the extraction algorithm to a large collec-
tion of lists, the T E score becomes very useful in ranking
the extracted tables based on how well we think they were
extracted. In fact, our experimental results show that our T E
is able to accurately reflect the relative extraction quality of
the lists into tables, and hence, can be used by applications
that employ ListExtract.

6 Implementing ListExtract

ListExtract was implemented as described in the earlier
sections as a Java library. It can be invoked on individual lists
one at a time, e.g., to support a table extraction service or in a
map-reduce where a large corpus of web pages is processed in
parallel to extract potentially useful tables. We found one of
the main challenges was in deploying and accessing the table
corpus and the language model. Each of these was deployed
as service backed by about 500 machines on a shared Google
data center.

Table Corpus: We use the table corpus [8] to compute the
table corpus support (in F Q) and the table corpus consis-
tency (F2FC). The corpus includes 154 million tables.
From the raw table corpus, we computed a single lookup
table that had two kinds of entries. For each field value that
occurred in some table in corpus, it had the count of the
number of tables it occurred in. Likewise, for each pair of
field values that co-occurred in a column in some table, it
had the count of the number of such tables. The resulting
lookup table was about 220 GB. When we restricted the
entries to those that occurred in at least two tables, the
resulting lookup table was about 44 GB.
To enable fast lookups to the table corpus, we use one
of two alternative methods. First, we can reduce the
size of the corpus by filtering tables based on quality
measures such as the page rank of the web page and
increasing the minimum occurrence count for entries
(min_tc_support). Reducing the footprint of the cor-
pus to below 10 GB will ensure that it can be loaded
directly into memory, thereby enabling fast access. How-
ever, reducing the size of the corpus can lead to a loss in
extraction quality.
We instead implemented the table corpus as a distributed
service. The lookup table was partitioned into 500 parts
using a hash function on the field/field pairs. Each of the
partitions was served by a separate process. To compute
the Stcs and Stcc scores, the occurrence counts for the field
or field pair are looked up by making an RPC to the cor-
responding server (identified by the same hash function
used for splitting).

Language model: We used a language model that
recorded the number of occurrences of each word sequence
in a crawl of many million web pages [6]. The language
model was served by a Google-wide service that is used by
a number of services. The service uses a splitting scheme
similar to the one outlined above for the table corpus.

Making RPCs to access the table corpus and language
model services can be very expensive. Take the table corpus
for example: given a table with n lines each with m terms,

there may be as many as n

(
m + 1

2

)
field count lookups, and

if there are c columns, as many as n×c2 ×max_n_reps field
pair co-occurrence lookups. If the RPCs are made serially,
then for a list with 10 lines each with 10 terms that is even-
tually split into 3 columns, this amounts to almost 800 RPC
calls. Given that there are 500 servers for the lookup table,
we make the calls more efficient by (1) grouping together the
requests that are sent to the same server and implementing a
batch lookup at each server and (2) by sending all requests
to the different servers in parallel.
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Table 2 Statistics about the WLists and TDLists data-sets

WLists TDLists

Range Avg SD Range Avg SD

Rows [7, 120] 52.16 26.18 [10, 50] 22.15 12.21

Columns [2, 10] 4.28 1.84 [2, 7] 3.12 1.26

Words/Row [2, 24] 7.54 2.87 [2, 34] 6.76 4.29

%Nulls [0, 18] 4.76 6.72 [0, 43] 3.05 7.78

7 Experiments

We conducted an experimental study evaluating the perfor-
mance of ListExtract. The goal of the study was to (1)
understand in absolute terms the ability of our technique to
correctly extract relational tables from lists, (2) understand
the contributions of the various constituents in ListExtract,
and (3) compare ListExtract with information extraction
systems. Additional results estimating the potential for har-
vesting relational tables from the web at large are presented
in [15].

7.1 Experimental setup

We start by describing our data sets and our general experi-
mental setup.

Data sets: We considered two distinct data sets: one con-
sisting of HTML lists from the web and the other consist-
ing of lists constructed from tables. In both cases, we only
consider English language lists.
Web Lists (WLists): This is a collection of 20 HTML lists
spanning 20 different domains, which we manually col-
lected from the web. The lists span varied domains such
as cartoons, airlines, lawsuits, and Emmy Award winners.
We manually constructed tables from the list contents and
used those tables as ground truth.
Tables-Derived Lists (TDLists): This is a collection
of 100 lists derived from 100 randomly selected HTML
tables from the web. Note that these tables are not part
of the web corpus we use in our experiments. We derived
lists from tables by collapsing all the cells in a row into a
single line (with white spaces separating the words). The
original tables are used as the ground truth in our evalu-
ation. Table 2 provides some statistics characterizing the
two data sets.
Evaluation: We note that a direct comparison of the tables
extracted by ListExtract and the corresponding ground
truth can be tricky. In part, this is due to the fact that there
may be more than one acceptable solution. For exam-
ple, the data in a column, cg , in the ground truth could

be present in two columns c1 and c2 in the table out-
put by ListExtract. Similarly, we may see that about
half of the cells in cg match exactly those in c1, another
half match exactly those in c2, and a small number match
neither.

We use the following rating method. First, we match the
columns of the generated table T and the ground truth Tg

based on the overlap between the values in their cells. We
then consider the pair of columns c (from T ) and cg (from
Tg) with the highest overlap. We declare the fields in c that
match exactly with those in cg (same row and same con-
tents) to have been extracted correctly. The two columns c
and cg are excluded from further analysis. Then, we consider
the pair with the second highest overlap, and so on, until
either the columns of T or Tg are exhausted. We note that
this is a rather conservative notion of correctness and hence,
is likely to under-estimate the true utility of the extracted
tables.

Let T total and T total
g be the total number of cells in T and

Tg , respectively, and let T correct be the number declared to
have been extracted correctly.

We estimate the precision (P), recall (R), and f -measure
(F), as below:

P = T correct

T total
R = T correct

T total
g

F = 2 × P × R

P + R

In the rest of this section, we only report the f -measure.
In all our experiments, we observed that the number of col-
umns in T and Tg is typically identical and occasionally off
by only ±1. Thus, the values of precision and re-call are very
close to each other. For this reason, we found it sufficient to
report the f -measure in our experiments. We compute the
f -measure separately for each list and report the average
f -measure over the entire data set.

Ranked performance curves: In the rest of the sec-
tion, we present our results as follows. Recall that for
every extracted table, T , we computed a score T E(T )

(Sect. 5.4). First, we rank the tables extracted in descend-
ing order of their T E scores. Then, we present perfor-
mance curves in which we report the average f -measure
for the top X% of the tables (X -axis), i.e., a point 〈x, y〉
on the curve indicates that the top x% of the tables sorted
by their T E scores has an average f -measure of y. This
analysis is interesting because it indicates that T E are in
fact, closely related to the actual table quality.

System parameters: Unless otherwise specified, we apply
the following strategy in all our experiments. F Q and
F2FC scores consider all their components (as described
in Sects. 3.1 and 4.4). We assign equal weights to the dif-
ferent score components used in each case. The threshold

123



Harvesting relational tables 221

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100

Top percentage of extracted tables

F
-m

ea
su

re

Wlists TDLists

Fig. 4 Overall performance results for the WLists and TDLists data
sets

min_tc_support used in calculating the table corpus sup-
port score (Stcs) is set to 1. In the alignment phase, for
the WLists data set, we maintain field summaries with
max_n_reps as 3, while for the TDLists data set, we set
it to 6. Finally, in the refinement phase, the fraction of
fields considered inconsistent (Pinc) is set to 50%.

In general, the default values for the above parame-
ters were set by conducting sensitivity analysis experiments
(mostly reported in this section) to determine their best
values.

7.2 Overall performance

Figure 4 shows the performance results for the WLists and
TDLists data sets. The f -measure for WLists ranges from
0.90 to 0.65, while for TDLists it ranges from 0.95 to 0.75.
Observe that for both the data sets, the f -measure decreases
as we consider more lists whose extractions have poor T E
scores. This indicates that T E is in fact a reasonable measure
of the quality of table extraction. Thus, the T E scores can
serve as a useful signal for any application that consumes
tables automatically extracted from lists: Applications that
need more precise extractions can restrict themselves to only
those with very high T E scores.

The poorly performing lists in the WLists data set are
the ones that have very inconsistent structure. For example,
in the list titled Complete list of Emmy Award winners, the
lines do not have parallel sentence structure: some awards
are for performers, while others are for series; some men-
tion character names, while others do not; and not all the
lines mention the network name. The better performance
on the TDLists data set is likely due to the fact that the
underlying data were always constructed from a relational
table.

Looking at our technique’s performance from a different
perspective, we made this observation: About one-third of all
columns in WLists and more than half of TDLists’ columns
had over 90% of their fields correctly extracted.

7.3 Field quality score components

Figure 5a, b shows the performance for different configura-
tions of FQ. Each configuration has a different combination
of the component scores in FQ. All configurations include
the list support score, Sls, since it is essential in the refine-
ment phase. T, LM, and WT, respectively, consider only type
support, language model support, and table corpus support;
All includes all the components. The configuration All—T,
All—LM, and All—WT consider all components except the
type, language model, and table corpus support, respectively.

For both data sets, combining all components achieves the
highest f -measure. The most significant individual compo-
nent appears to be the table corpus support. WT outperforms
T and LM, while All—T and All—LM outperform All—WT.
This clearly demonstrates that looking up other tables on the
web helps identify field candidates that are more likely to be
good cell values.

Interestingly, the language model performs very poorly
when considered in isolation. However, All out-performs
All—LM by as much as 20%. A closer look suggests that this
is because the language model provides very sparse positive
signals, i.e., for most field candidates it reports a low score.
However, when it does report a high signal, it is very reli-
able positive signal and is able to complement type and table
corpus support effectively.

7.4 Field-to-field consistency components

Figure 6a, b show the performance for different configu-
rations of F2FC . Each configuration considers different
components: only type consistency (TC), only table cor-
pus consistency (WC), only syntax consistency (SC), and
only delimiter consistency (DC). The other configurations
are defined in the same spirit as in Sect. 7.3.

As with F Q, we note that, in general, combining multiple
score components gives better results for both data sets. How-
ever, we note that including the delimiters consistency com-
ponent sometimes leads to the degradation of the results. This
is especially true in the TDLists data set. This is likely due
to the fact that while deriving the lists from the table corpus,
we uniformly insert white spaces as delimiters between adja-
cent fields. Hence, relying on the delimiters turns out to be
misleading.

7.5 Effect of refinement

Figure 7a, b compare the performance with and without the
refinement phase. For the WLists data set, the improvement
is quite significant and ranges from 10 to 20%. Interestingly,
the improvements are more in the top 20% and top 40%
extracted tables. This is probably because in such cases a
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larger number of fields are correctly split and hence, they are
able to effectively aid in fixing errors.

On the other hand, the improvement for the TDLists is not
as significant. In fact, the improvement is never more than
5%. This difference might again lie in the fact that the lists
are derived from tables and hence the separation between
fields are likely to be easier to detect even in the independent
splitting phase.

7.6 Effect of field summaries

Figure 8a, b compare the performance of table extraction for
different values of max_n_reps, that parameter that deter-
mines the size of field summaries maintained for each column
(and used in the alignment and refinement phases).

For the WLists data set, smaller values of max_n_reps
(i.e. 1 and 2) result in lower f -measure. However, as we
increase max_n_reps to 3 and above, we get a significant
improvement in f -measure. However, setting it to values
higher than 3 does not seem to significantly improve the
results. The results obtained for values 6 and 7 are marginally
better when considering the entire data set. For the TDLists
data set, the best results are obtained when max_n_reps is set
to 7, but again the performance converges as max_n_reps

increases. The results indicate that even small summaries
suffice, thus making it un-necessary to perform expensive
exhaustive comparisons.

7.7 Comparison with RoadRunner

Wrapper generation systems have the goal of extracting struc-
tured data from web pages. However, they typically assume
that the data were created according to some template, and
the goal of the system is to learn the template. We now com-
pare ListExtract to one such system, RoadRunner [13],
which is widely used in the research community, and show
that ListExtract indeed offers superior performance. We
were not able to obtain implementations of other wrapper
generation systems [1,10,30].

RoadRunner makes three key assumptions: (A1) the tem-
plate consists of only HTML tags, (A2) the template is con-
sistent across all records, and (A3) data fields are separated
by template elements.

We applied RoadRunner only on WLists. In TDLists, the
fields are separated by white spaces, making them unsuitable
for processing. To enable RoadRunner to learn templates,
each list is presented as a set of web pages (one per line in
the list).
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Fig. 6 Effect of different configurations for the F2FC score on a WLists and b TDLists
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Fig. 9 Effect of line splitting search method on TDLists

Table 3 shows the precision, recall, and f -measure
achieved by RoadRunner and ListExtract. As can be seen,
ListExtract performs better. To understand RoadRunner’s
poor performance, consider the following: of the 20 lists, (1)
all fields are correctly extracted in the 3 lists that had rich
and consistent HTML tags; (2) no fields were extracted in
9 lists. Of those, in 5 lists there were no HTML tags, vio-
lating assumption A1 (e.g. cartoons in Fig. 1), and in 4 lists
the tags were inconsistent, violating assumption A2 (some
lists emphasize certain fields by formatting them differently;
e.g. [21]); and (3) only a partial set of fields were extracted in
the remaining 8 lists because some fields were not separated
by HTML tags, violating assumption A3.

Table 3 Precision, recall, and f -measure for ListExtract and Road-
Runner when applied to WLists

Precision Recall F-measure

ListExtract 0.64 0.63 0.63

RoadRunner 0.39 0.28 0.32

There are other wrapper generation systems (though not
publicly available for comparison) that do not make all of the
three assumptions. For instance, ExAlg [1] does not restrict
the template elements to HTML tags, but still makes assump-
tions A2 and A3. DEPTA [30] can tolerate some inconsis-
tencies across records as they are reconciled by means of a
partial tree alignment algorithm. However, assumptions A1
and A3 still must hold for DEPTA to work properly. Thus,
neither of them is likely to work well across all the lists in
our dataset.

7.8 Effect of the line splitting search method

The goal of this experiment is to evaluate the greedy method
we use to search for the best split for each line in the list.
For this purpose, we compare the greedy search method with
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an exhaustive method whose objective is to maximize the
average F Q scores of the extracted fields after the line split.

For this particular experiment, we only used the TDLists
data set, and we ensured that the selected tables have at most
10 words per line. This way, we could run the exhaustive
search method in a reasonable time.

As we discussed in Sect. 3, besides being more efficient,
our greedy method proved superior to the exhaustive method.
This is illustrated in Fig. 9, where an improvement of up to
11% is achieved when considering 100% of the extracted
tables.

8 Applications of ListExtract

ListExtract is a generic technique that is usable in several
contexts of Web data management. In this section, we briefly
outline some of these contexts.

Question answering: Search engines try to provide factual
answers when relevant (e.g., “Who was the American presi-
dent in 1966?” and “When was the ‘King Size Canary’ car-
toon produced?”). To answer such queries, the search engine
needs to extract facts from the web, and many of these are
embedded in lists.

Deep web crawling: Surfacing the deep web involves filling
in web forms with guessed values and indexing the result-
ing HTML pages [23]. A key challenge in this approach is
to surface as many hidden pages with as few form submis-
sions as possible, and having access to high-quality guessed
values is critical. HTML tables generated by ListExtract
provide an excellent source of such guessed values. In par-
ticular, once some initial set of values is determined to be
suitable for filling in a given web form (using the techniques
described in [23]), this set can then be used to search for
similar sets of suitable values in the table corpus.

Integration for the relational web: Integrating data from
structured sources on the web require a workbench that also
supports integrated search, extraction, and cleaning [7]. One
of the important tasks such a workbench needs to support is
creating tables from HTML lists (the split operator in [7]).
For example, consider the task of creating a table of all the
PC members of VLDB in the last 10 years. The data exist in
lists spread out on 10 different web sites.

Table extraction web service: In addition to extracting tables
from lists on the web, ListExtract can also be made avail-
able as a service for data management products such as
Fusion Tables [17]. Users often upload data that is tabu-
lar but available to them only as lists. Hence, the ability to
extract tables from these lists (which in some cases amounts

to splitting fields into their subfields) is a valuable function
of a data cleaning component of such systems.

9 Related work

In principle, extracting tables from lists is an information
extraction task. The most closely related information extrac-
tion problem is that of wrapper generation, where fields
are extracted from HTML documents [1,2,10,11,13,16,19,
20,22,29–31]. In most cases, wrappers are used to encap-
sulate dynamically generated pages, where a collection of
such pages would all have a fixed template and some varying
data fields whose values are obtained from a back-end data-
base. The wrapper should be able to identify the template and
hence, extract the data fields from any new pages having the
same template.

Supervised learning approaches such as WEIN [19],
Stalker [2], Wrap [22], WL2 [11,16], and [31], require a
labeled set of web pages from which a template can be
inferred. Our methods are intended to apply at web scale,
and therefore, creating labeled training sets is infeasible.

Unsupervised approaches such as RoadRunner [13],
ExAlg [1], DEPTA [30], IEPAD [10], DeLa [29], and [24]
typically rely on the repetitive patterns in the HTML tags
across multiple pages, or multiple records within the same
page, to detect the template. In [20], it is assumed that every
detected record in a web page is linked to a detail page.
The co-occurrence of terms in a record and in its detail
page is used to distinguish between terms in the template
and the varying record-specific terms. All these approaches
assume that the pages are dynamically generated, and hence,
an underlying template exists.

Lists in static web pages, on the other hand, are not
expected to be heavily structured using HTML tags. At
best, the list items may contain a few delimiters and simple
formatting tags. As already discussed, web lists are mostly
hand-crafted and hence have inconsistent (or no) formatting,
tagging, or field separation.

Some systems do not assume that their input data are struc-
tured with HTML tags (e.g. [5,12,18,25]). DataMold [5] uses
domain-specific vocabulary and training examples to learn
a Hidden Markov Model (HMM). The model can then be
used in extracting fields from documents in a specific domain
(e.g. publication lists or mailing addresses). However, this
approach requires human supervision.

The WWT system [18] takes a few example data records
as input and augments them with additional new records,
extracted from a large corpus of lists on the web. The system
starts by finding the most relevant lists to the input records.
Then, an extraction algorithm based on conditional random
fields (CRF) is used to extract more records from each such
list. During extraction, WWT relies on the overlap between
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lists. In particular, if previously extracted records also occur
in a new list, then those records are used in training the extrac-
tion model for that new list. The set of extracted records is
finally consolidated and augmented to the input table.

While similar to ListExtract in the notion of extracting
tables from web lists, the goals of ListExtract and WWT
are different. WWT quickly focuses on a few lists given a
query. Our goal is to create a corpus of extracted tables, and
hence, we consider all the lists that may be useful. As a result,
they get to prune many lists immediately, whereas we do
not. Moreover, while it is fairly easy to leverage the over-
lap between lists in ListExtract(similar to WWT), it is
not necessarily desirable in our case. In particular, we can
directly add every extracted table to the table corpus used
by ListExtract, and hence, it can potentially help in the
extraction of new tables from lists. However, since we already
have access to a very large table corpus whose accuracy is
expected to be higher than the tables extracted from lists, it
is safer to only rely on those tables originally present in the
corpus.

The system in [25] extracts data fields from text “posts”,
such as those on Craigslist, another example of hand-crafted
content. The approach is unsupervised and does not depend
on HTML tags. A collection of reference sets is used to rec-
ognize candidate fields. However, six reference sets are used
for six specific domains. Similarly, the ONDUX system [12]
relies on the use of a reference set for each domain with a
small number of attributes in each set (ranging from 5 to 18
in their experiments). The system first attempts to identify
field values in the input list and then matches each individual
field to one of the few attributes in the reference set used. In a
final “reinforcement” step, it builds a graphical model to ver-
ify (and potentially correct) the assignment of attribute labels
to each field—which is comparable to our refinement phase.
We note, however, that extending these approaches [12,25]
to each new domain involves constructing a new reference
set. On the other hand, ListExtract does not incur any per-
domain costs as it relies on a corpus of many million raw
HTML tables that span almost all conceivable domains.

10 Conclusions

In the quest to extract and leverage structured data on the
web, we considered lists as a rich source of structured data.
We addressed the key technical challenge concerning lists—
splitting list entries into table rows. Our ListExtract is a
completely unsupervised method and does not assume any
domain knowledge. As such, it can be applied to lists on the
web at large. ListExtract uses multiple sources of informa-
tion to make splitting decisions within a line and across lines
of the list. We described a set of experiments that validated
the quality of tables that are created by ListExtractand

suggested that a large number of high-quality lists can be
extracted from the web.
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