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Abstract Web archives preserve the history of born-
digital content and offer great potential for sociologists, busi-
ness analysts, and legal experts on intellectual property and
compliance issues. Data quality is crucial for these pur-
poses. Ideally, crawlers should gather coherent captures of
entire Web sites, but the politeness etiquette and complete-
ness requirement mandate very slow, long-duration crawling
while Web sites undergo changes. This paper presents the
SHARC framework for assessing the data quality in Web
archives and for tuning capturing strategies toward better
quality with given resources. We define data quality mea-
sures, characterize their properties, and develop a suite of
quality-conscious scheduling strategies for archive crawl-
ing. Our framework includes single-visit and visit–revisit
crawls. Single-visit crawls download every page of a site
exactly once in an order that aims to minimize the “blur” in
capturing the site. Visit–revisit strategies revisit pages after
their initial downloads to check for intermediate changes.
The revisiting order aims to maximize the “coherence” of
the site capture(number pages that did not change during the
capture). The quality notions of blur and coherence are for-
malized in the paper. Blur is a stochastic notion that reflects
the expected number of page changes that a time-travel access
to a site capture would accidentally see, instead of the ideal
view of a instantaneously captured, “sharp” site. Coherence
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is a deterministic quality measure that counts the number of
unchanged and thus coherently captured pages in a site snap-
shot. Strategies that aim to either minimize blur or maximize
coherence are based on prior knowledge of or predictions for
the change rates of individual pages. Our framework includes
fairly accurate classifiers for change predictions. All strat-
egies are fully implemented in a testbed and shown to be
effective by experiments with both synthetically generated
sites and a periodic crawl series for different Web sites.

Keywords Web archiving · Data quality · Blur ·
Coherence · Crawls strategies

1 Introduction

1.1 Motivation

The Web is in constant flux. Eighty percentage of the
pages change within a half a year. To prevent the con-
tent from disappearing, national libraries (e.g., www.loc.gov,
www.webarchive.org.uk, netarkivet.dk, www.bnf.fr, www.
webarchiv.cz, etc.,) and organizations like the Internet
Archive (archive.org) and the European Archive
(europarchive.org) are collecting and preserving the ever
changing Web. These archives not only capture the history
of born-digital content but also reflect the zeitgeist of differ-
ent time periods over more than a decade. The captured Web
content is a gold mine for sociologists, politologists, media,
and market analysts, as well as experts on intellectual prop-
erty (IP, e.g., at patent offices) and compliance with Internet
legislation (e.g., for consumer services). For example, when
a company is accused of violating IP rights (regarding inven-
tions or trademarks), it may want to prove the existence of
certain phrases on its Web pages as of a certain timepoint
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in the past. Conversely, an Internet-fraud investigation may
aim at proving the absence of certain phrases (e.g., proper
pricing statements or rights of withdrawal) on a Web site.
Clearly, these scenarios entail that Web archives need to be
maintained with a high standard of data quality.

Crawling the Web for archiving substantially differs
from crawling performed by major search providers. Search
engines aim at broad coverage of the Web, target the most
important pages, and schedule revisits of the pages based on
their individual freshness and importance. It may even be suf-
ficient to see the href anchor in order to index a page with-
out ever visiting the page itself. In contrast, archive curators
are interested in a complete capture of a site either at rea-
sonably regular timepoints (weekly, monthly, quarterly) or
in aftermaths (natural disasters, political scandals, research
projects).

During a site crawl, pages may undergo changes, result-
ing in a blurred snapshot of the site. We borrow the terms
blur from photography to denote the quality of the snap-
shot. Similarly to photography, the longer the exposure time
(time span of the entire site crawl), the higher the risk of
blurring the capture (archiving pages in different states of
the site). In contrast, if the site’s pages did not change at all
(or changed insignificantly) during the crawl, we say that
the pages are sharp and the snapshot is coherent (or almost
coherent).

Avoiding blurred captures is important for the quality
assurance of the Web archive and its professional usage. Ide-
ally, a user should get mutually consistent pages. In case
mutual consistency of pages cannot be fully assured, there
should ideally be guarantees about data quality. Consider an
analyst who studies a politician’s behavior and success dur-
ing an election campaign based on weekly or daily crawls of
the corresponding party’s Web site (which may include user-
provided contents in associated wikis or blogs). Suppose one
page of the site covers a television debate with the politician,
pointing to other pages with “opinion barometers” for the
politician and her opponents in the debate. Each of these
“barometer pages” in turn points to recent public appear-
ances of the featured politician. As these pages frequently
change, the archived snapshot contains page versions as of
different timepoints. Now, already an incoherence by a few
hours difference between the captures of these interrelated
pages can lead to misinterpretations and wrong conclusions
by the analyst. For example, the analyst may see a brilliant
performance of the politician on the debate page and then fol-
low the pointer to a barometer page with unfavorable public
opinions, simply because the barometer was captured earlier.

As a real-life case in point, an archive of a Web site was
disapproved as evidence in a lawsuit about intellectual prop-
erty rights [32] because the judge considered the archive as
having insufficient quality and no guarantees about the con-
sistency of its content. In such cases, a strategy for getting

coherent site captures or precisely stating the level of consis-
tency would make a big difference.

The simplest strategy to obtain a coherent capture of a Web
site and avoid anomalies would be to freeze the entire site
during the crawl period. This naïve approach is impractical as
an external crawler cannot prevent the site from posting new
information on its pages or changing its link structure. On the
contrary, the politeness etiquette for Internet robots forces the
crawler to pause between subsequent HTTP requests, so that
the entire capturing of a medium-sized site (e.g., a university)
may take many hours or several days. Long crawl duration is
an issue for search engine crawlers, too, but it is more severe
for archive crawlers as they cannot stop a breadth-first site
exploration once they have seen enough href anchors. So
slow but complete site crawls drastically increase the risk of
blurred captures.

An alternative strategy that may come to mind would be
to repeat a crawl that fails to yield a coherent capture and
keep repeating it until eventually a blur-free snapshot can
be obtained. But these repetitions are an unacceptably high
price for data quality as the crawler operates with limited
resources (servers and network bandwidth) and needs to care-
fully assign these to as many different Web sites as possible.

Web site masters can help to make archiving easier by pro-
viding additional information about the site: its structure, its
typical change patterns, hints about where and when changes
occur, and so on. The recently introduced sitemaps protocol
[35] can provide a list of URLs and metadata about page
(or sub-directory-level) modifications so that crawlers can
more intelligently process the site. However, sitemaps alone
are merely hints that can guide a crawl strategy (e.g., toward
pages with high likelihood of having changed so that, for
example, a search engine robot should obtain a fresh ver-
sion). Sitemaps are not a solution for ensuring data quality.
The framework developed in this paper integrates sitemaps
for quality-conscious Web archiving.

1.2 Contribution

While the issue of Web archive quality is obvious, it is unclear
how to formalize the problem and address it technically. This
paper provides a framework for quality assurance of Web
archives. It develops a model of quality properties as well as
a suite of algorithms for crawling that allow us to assess and
optimize site-capturing strategies.

Our framework, coined SHARC for Sharp Archiving of
Web-site Captures, introduces two measures of data quality
for site captures:

– Blur is a stochastic notion that reflects the expected num-
ber of page changes that a time-travel access to a site cap-
ture would accidentally see, instead of the ideal view of
a instantaneously captured, “sharp” site. We assume that
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the timepoints to which analysts will later refer for snap-
shot analysis are uniformly distributed over time; hence,
the stochastic approach.

– Coherence is a deterministic quality measure that counts
the number of unchanged and thus coherently captured
pages in a site snapshot. Here, “unchanged” denotes pages
that are definitely known to be invariant throughout some
time window, ideally the entire crawl. The setting allows
us to guarantee mutual consistency across several pages in
a snapshot that are logically interrelated (e.g., a television
debate and the “barometer” pages about the participating
politicians).

The SHARC framework needs estimates for the frequen-
cies at which changes occur in a Web site. In line with
the prior literature [1,11,30], we model site changes by
Poisson processes with page-specific change rates. We show
that these rates can be statistically predicted based on page
types (e.g., MIME types), depths within the site (e.g., dis-
tance to site index pages), and URLs (e.g., manually edited
user homepages vs. pages generated by content management
systems).

We then devise crawl strategies that aim to optimize our
archive quality measures. While stochastic guarantees like
blur are good enough for explorative use of the archive (while
keeping crawl costs low), access that aims to prove or dis-
prove claims about interrelated contents in site snapshots
needs deterministic guarantees like coherence and would
accept higher crawl costs. For explorative use of the archive,
it is sufficient to visit each page once. The order of the down-
loads is a degree of freedom for the crawl scheduler. For
deterministic guarantees, we introduce crawl strategies that
visit pages twice: a first visit to fetch the page and a later
revisit to validate that the page has not changed. The order
of visiting and revisiting pages is a degree of freedom for the
crawl scheduler. For very large Web sites, it is unrealistic to
obtain a coherent capture for the entire site. In this case, we
opt for smaller subsites of interrelated pages and derive these
via the sitemaps protocol.

SHARC provides a suite of novel algorithms for archive
crawling:

– SHARC-offline assumes a priori knowledge of all URLs
and their specific change rates and arranges downloads in
an organ-pipe manner with the hottest pages in the mid-
dle. It minimizes blur and provides stochastic guarantees
about data quality.

– SHARC-online drops these assumptions and operates
with an estimate of the number of pages on the site but
without prior knowledge of any URLs other than the
crawl’s entry point. The algorithm aims to approximate

the organ-pipe shape, but can lead to suboptimal sched-
ules.

– SHARC-revisits visits pages twice aiming to minimize the
stochastic blur and allowing change detection during the
crawl.

– SHARC-selective, similarly to SHARC-revisits, visits
pages twice to detect changes during the crawl, ordering
the visits, and revisits in such a way that maximizes the
coherence. The algorithm automatically detects very hot
pages that are almost continuously changing and adjusts
the scheduling of visits and revisits so that the other, not
so hot, pages have a higher chance of getting coherently
captured.

A preliminary version of the SHARC framework has been
presented in the conference paper [19]. This paper extends
the framework and provides additional contributions: (1)
the new SHARC-selective strategy, which can cope with
sites that contain very hot pages in a self-adapting manner
(making the SHARC-threshold strategy of [19,36] obsolete);
(2) a fairly accurate classifier for predicting change rates
of pages from features like URL, MIME type, etc.; (3) the
integration of sitemaps in our architecture; (4) a full-fledged
implementation based on the Heritrix crawler and compre-
hensive experiments on additional, richer datasets.

Our experimental studies are carried out with both syn-
thetically generated Web sites and repeated crawls of dif-
ferent-sized domains, including mpi-inf.mpg.de (MPII),
dmoz.org (DMOZ), and sites from the .uk.gov collection
(UKGOV). For change prediction, we use standard machine
learning algorithms, such as Naive Bayes and C4.5 classi-
fiers. The experiments demonstrate the practical viability of
our approach and the advantages of our algorithms compared
to more traditional crawl strategies.

The paper is organized as follows. Section 2 reviews
related work and the state of the art in archive crawling.
Section 3 introduces our computational model for Web
archiving and site capturing. Section 4 through 7 present
our crawl algorithms: the single-visit offline, the single-visit
online, and the visit–revisit strategies that minimize stochas-
tic blur; the visit–revisit strategy minimizes the deterministic
coherence metric. Section 8 presents our system architecture,
a prototype implementation based on the open source archive
crawler Heritrix, and the integration of sitemaps. Section 9
presents our experimental evaluation.

2 Related work

The book on Web archiving [20] gives a thorough over-
view on issues, open problems, and techniques related to
Web archiving. The most typical Web archiving scenario is a
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crawl of all pages for a given site done once (or periodically)
for a given starting time (or given periodic starting times).
The book draws a parallel between a photograph of a mov-
ing scene and the quality of the Web archive; however, the
issue is left as an open problem. Mohr et al. [27] describe
the Heritrix crawler, an extensible crawler used by Euro-
pean Archive and other Web archive institutions. By default,
Heritrix archives sites in the breadth-first order of discovery
and is highly extensible in scheduling, restriction of scope,
protocol-based fetch processors, resource usage, filtering,
etc. The system does not offer any tools or techniques to
measure and optimize crawling for coherence. We integrate
applicable techniques from the SHARC framework into the
Heritrix crawler and use the implementation in the experi-
ments.

Data caching is the most related work in the field of dat-
abases. Data caching stores copies of the most important data
items to decrease the cost of subsequent retrievals of the item.
Key issues are distribution of the load of data-intensive Web
applications [21,37], efficiency issues in search engines [4],
performance-effective cache synchronization [16,31]. Latest
research in the area is caching in cloud databases [18]. It is
realistic and typical to assume notifications of change. Data
quality for Web archiving raises different issues. The Web site
cannot notify about the changes of Web pages, the archive
does not synchronize changed pages, and archives should
optimize for coherence while the perfect consistency is a
prerequisite in data caching.

Crawling the Web for search and indexing received a lot
of attention. Key issues here are efficiency [12,25], freshness
[7,30], temporal analysis [17,34], importance [28,39], rele-
vance to keyword queries [8,10,13,14], seed selection [2],
focused crawling [5], page collections that have large cover-
age and little redundancy [40]. Different weights of impor-
tance are assigned to the pages on the Web and resources are
reserved (frequency of crawls, crawling priority, etc). The
freshness, age, PageRank, BackLink, and other properties
are used to compute the weights.

Metrics to measure when and how much of the individ-
ual pages has been changed have been proposed as well
[29,1]. Web change models characterizing the dynamics of
Web pages have been developed [26]. Typically, the changes
of the page pi are modeled with a Poisson process [10] with
the average change rate λi . The number of changes per time
unit � is distributed according to Poisson distribution with
parameter λi iff

P[number of changes of pi in � is k] = e−λi � (�λi )
k

k! .

It is equivalent to postulate that the time between two suc-
cessive changes of page pi is exponentially distributed with

parameter λi :

P[time between changes of pi is less than �] = 1 − e−λi �.

Mathematically, the change rate λi is the limit of the number
of changes per time unit � as � approaches to zero. We use
standard machine learning techniques to predict change rates
with URL features [6,23] and Web page features [33].

Olston and Pandey [30] have designed a crawling strategy
optimized for freshness. In order to determine which page to
download at timepoint t , Olston and Pandey compute the util-
ity function Upi (t) for each page pi based on its full change
history. The utility function is defined such that it gives pri-
ority to those pages whose changes will not be overwritten
by subsequent changes for the longest time span. We opti-
mize the coherence of entire captures and not the freshness
of individual pages.

Chen et al. [9] investigated how to reduce the overall data
transfer without significantly affecting the freshness of the
archive. A history of Web archives of a site is assumed, and
association rules are computed to predict changes of Web
pages and optimize a crawler for freshness of a partial site
capture. Our goal is quite different though. We aim to down-
load the entire Web site and optimize quality measures like
sharpness (absence of blur) or coherence.

3 Web archiving model and terminology

The Web archive, or archive for short, periodically crawls a
large number of sites, e.g., on a weekly or monthly basis. Each
site is covered by a series of versions, called (site) captures.
Each crawl aims to obtain a complete capture of the entire
site. Crawling must observe the politeness requirements of a
site, with pauses of several seconds or even a minute between
successive HTTP requests. Thus, an entire site capture may
span several days. (The crawler may crawl many sites in par-
allel for high throughput.) When a new site crawl starts, we
assume that either the URLs of all pages are known upfront
(from a previous crawl or a sitemap) or at least one entry page
is known from which the crawl can explore the site’s page
graph. The former is an assumption made by the offline strat-
egies and is relaxed by the online strategies. We may assume
that the total number of pages in a site can be estimated when
a crawl starts, based on site properties such as domain name
or attributes obtained by the HTTP reply when fetching the
site’s entry page.

Note that pages may change during a crawl. The longer
the crawl duration, the more likely it is that a non-negligible
fraction of the site’s pages changes once or several times.
Figure 1 illustrates this situation for single-visit crawls. The
timepoints when a page is downloaded are marked by a bullet,
the timepoints when a page changes are marked by a cross.
The figure shows two crawls, each yielding a separate capture
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Fig. 1 Sharp versus blurred pages with single-visit crawling

that will be stored in the Web archive for later retrieval by
analysts and other users. Note that the figure shows “blurred”
captures, as the page versions in a capture refer to to different
states of the Web site.

The archive is accessed by time-travel queries, asking for
the site as of a given timepoint of interest to the user. Fig-
ure 1 shows two such requests, denoted by vertical arrows,
for timepoints T1 and T2 which fall before the capture and the
interval between page-capturing timepoints t2 and t3, respec-
tively. The archive may not have versions of the pages as
of the exact requested time. The user’s request for time T
is then mapped either to the most recent available capture
whose timestamp does not exceed T or to the nearest cap-
ture in the past or future (whichever is closer to T ). This
mapping defines for each capture an observation interval:
the capture is returned for all time-travel queries that fall into
the observation interval. Figure 1 shows a possible choice
for the observation intervals of the two captures. Observa-
tion intervals based on the most recent available capture cor-
respond to the simplest standard semantics in temporal data-
base systems [3]. Observation intervals based on the closest
capture may appear non-standard, but make sense in our Web
archive setting because the user’s timepoint of interest may
often be fuzzy or a crude estimate for exploration purposes.
For example, when a sociologist wants to investigate opin-
ions of a social group on a particular topic using the content
of a site as of May 2001 (which could technically be inter-
preted as mid May, i.e., May 15, if a real timepoint is needed),
she may be equally happy with a capture from April 28 or
June 3 if the site was not captured during May.

For individual time-travel queries, some of the pages are
“blurred” and some are “incoherent”. By blur, we refer to
the magnitude of change in the timespan between the query
timestamp and the time of the actual page capture. The far-
ther the two points are apart, and the more the page changes
(on average), the more blurred the page would appear to the
user. For example, if the time-travel request is for May 15, a
page that was captured on May 10 would appear less blurred

than a page that was captured on May 1 or May 31. Figure 1
illustrates this notion of blur by waving lines (more waving
means higher blur). We will formalize this measure in Sect. 4.
By incoherence, we refer to the page changes between the
query timestamp and the page capture. If a page has changed
between these two timepoints, it may appear incoherent with
respect to other pages. Conversely, if we manage to cap-
ture a set of potentially interrelated pages such that there
is no change at all between their capturing points and the
timestamp of user request, then this set would be perfectly
coherent. The pages jointly appear as if they were instan-
taneously captured in the very same state of the Web site.
Figure 1 illustrates this notion of coherence by solid lines.
Pages without any changes in the critical timespan are coher-
ent and indicated by solid lines. We will formalize the notion
of coherence in Sect. 7.

In the SHARC framework, we want to either minimize
the blur or maximize the coherence of captures. This goal
entails two difficulties:

– First, the timepoints of the users’ time-travel queries are
not known at the time of crawl.

– Second, the exact timepoints of page changes are not
known. We may not know whether there was a page
change between the timestamps of a user’s access request
and a page capture.

To overcome the first difficulty, we assume that the time-
stamps of user requests are uniformly distributed in the obser-
vation interval, and we will aim for a stochastic notion of
archive quality.

To overcome the second difficulty, we visit each page
twice, where the second visit serves to check for changes.
This visit–revisit approach is illustrated in Fig. 2. The figure
shows a strategy where all the revisits of pages follow all
visits. Even if HTTP protocol information does not reliably
indicate whether a page is modified or not, we can now easily
compare two versions of the same page and test for invariance
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Change Page Capture Coherent Page Incoherent Page
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Fig. 2 Coherent versus incoherent pages with visit-revisit crawling

(perhaps ignoring insignificant changes such as banner ads
or auto-generated footers). If for a given set of pages (ideally
the entire site), none shows any changes between visit and
revisit, then this entire set is coherent—as if it were instan-
taneously captured in the middle of the crawl—denoted as
“reference time” in the figure. In this paper, we will consider
only strategies with this two-phase structure: all revisits fol-
lowing all visits. Note, however, that the order in which indi-
vidual pages are visited in each phase is an important degree
of freedom in optimizing the crawl schedule.

Single-visit strategies have lower crawl cost than visit–
revisit strategies and are good enough to minimize the sto-
chastic notion of blur. However, an archive user cannot be
sure if an individual page is sharp or not (i.e., did not or did
change between query timestamp and page capture). This
uncertainty is not a problem for exploratory usage of the
archive. However, in use cases where we need to be sure that
an archived snapshot reflects a Web site as of a specific time
in the past (e.g., for legal purposes), we need to employ the
visit–revisit method.

In devising suitable strategies for scheduling the visits of
a site’s pages, we need to have some information about how
often, and perhaps even when, a page typically changes. To
this end, we employ statistical prediction models. Follow-
ing the state of the art [10,15,24,38], we assume that pages
undergo changes according to a Poisson process with change
rate λ. We can then train a classifier to predict the specific
rate of a page, based on features of the page: its MIME type,
depth in the site graph relative to the entry point, URL string,
and so on. The classifier allows us to predict the probability
or “risk” that there will be a change of a page in the timespan
between capturing it and a time-travel access, and also the
expected number of changes in that interval or a quantile for
the number of changes.

The Web archiving model is quite different from the crawl
models of search engines. Search engines aim at broad cov-
erage of the most important pages in the Web (not necessar-
ily entire sites), recrawling the pages and optimizing their
freshness (the most recent version compared as of now).
In contrast, Web archives should capture all (or specifically

Page Change Rate λ
p0 0
p1 1
p2 2
p3 3
p4 4
p5 5

(a) Change Rates

p0

p1

p3 p4

p2

p5

(b) Web Graph

Fig. 3 Example of a Web site with change rates

selected) pages (at regular crawl timepoints) of the entire
site and return the most appropriate version of a page (or
page set) for a given time-travel query. Optimization crite-
ria for crawling are also different. Search engines optimize
for up-to-date indexes that reflect the freshest version of the
important pages. In contrast, Web archives aim to obtain and
present coherent snapshots as of the requested timepoint.

4 SHARC-offline

In this section, we establish the stochastic metric blur for a
given site capture and develop SHARC-offline, the optimal
crawling strategy for Web archiving in an ideal environ-
ment. SHARC-offline is not a feasible solution in a realistic
run-time setting, but it is a useful baseline for develop-
ing practically viable algorithms and assessing their qual-
ity. We assume that the Web archive consists of Web pages
p0, . . . , pn (all URLs are known in advance), which change
according to the Poisson distribution with change rates
λ0, . . . , λn (the mean number of changes in a time unit).
For ease of presentation, we assume that the identifiers
(subscripts) of the pages are chosen so that λ0 ≤ · · · ≤ λn .
We denote the least frequently changing page p0 as the cold-
est page, and the most frequently changing page pn as the
hottest page. We assume that the download timepoints of the
pages are equidistant with politeness delay � in between the
downloads (the most typical scenario). To simplify mathe-
matical expressions, we assume that the crawl starts at time
0, and the observation interval coincides with the capture
interval: [os, oe] = [cs, ce] = [0, n�]. Later, in Sect. 4.4,
we generalize the equations and omit the assumption.

Figure 3 presents an example that we use throughout the
section. Change rate λ = 0 means virtually no changes for
p0. Strictly mathematically, this is not possible, since Pois-
son model requires λ > 0. Here, we assume a negligible
small change rate 0 < ε � 1.

4.1 Blur

The blur of a page and the blur of an entire site capture are
key measures for assessing the quality of a one-visit Web
archive.
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Definition 1 (Blur) Let pi be a Web page captured at time
ti . The blur of the page is the expected number of changes
between ti and query time t , averaged through observation
interval [0, n�]:

B(pi , ti , n,�) = 1

n�

n�∫

0

λi · |t − ti |dt

= λiω(ti , n,�)

n�
, (1)

where

ω(ti , n,�) = t2
i − ti n� + (n�)2

2
. (2)

is the download schedule penalty.
Let P = (p0, . . . , pn) be Web pages captured at times

T = (t0, t1, . . . , tn). The blur of the archived capture is the
sum of the blur values of the individual pages:

B(P, T, n,�) = 1

n�

n∑
i=0

λiω(ti , n,�). (3)

The blur indicates how many expected changes the
explorer of the archive sees if she visits all the pages in the
archive. We define the average blur as the average number of
the expected changes explorer sees per page:

B̄(P, T, n,�) = 1

n(n + 1)�

n∑
i=0

λiω(ti , n,�). (4)

The blur of a Web page in the capture is the product of
its change rate and ω(ti , n,�). ω(ti , n,�) depends on the
download time and the length of the capture interval n� and
does not depend on the page. Therefore, ω(ti , n,�) can be
interpreted as the penalty of downloading page pi at time ti .

Example 1 (Blur) Consider the Web site in Fig. 3 with down-
load time ti for page pi (for example page p3 is downloaded
at time t3 = 3). The blur of p1 is

B(p1, 1, 5, 1) = 1 · (12 − 1 · 5 · 1 + (5 · 1)2/2)

5 · 1
= 1.7.

Similarly, B(p0, 0, 5, 1) = 0, B(p2, 2, 5, 1) = 2.6, B(p3,

3, 5, 1) = 3.9, B(p4, 4, 5, 1) = 6.8, B(p5, 5, 5, 1) = 12.5.
The blur of the archive is

B(P, T, 5, 1) = 0 + 1.7 + 2.6 + 3.9 + 6.8 + 12.5 = 27.5

The average blur per page is B̄(P, T, 5, 1) ≈ 4.58.

Properties of the download schedule penalty allow us to
reason about the blur of the capture for different delay inter-
vals.

Theorem 1 (Properties of the schedule penalty)
The blur is proportional to download delay �, i.e.,

B(P, T, n,�) = �B(P, T, n, 1). (5)

Proof The proof follows from the definitions of schedule
penalty, blur, and quadratic function of penalty. ��

Fig. 4 Organ-pipes
arrangement
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4.2 Optimal download schedule

Different download schedules result in different values of
blur. We now investigate the optimal download sched-
ule for archiving. Mathematically, for the given Web site
p0, . . . , pn , we will identify the optimal schedule t0, . . . , tn ,
(a permutation of 0, �, . . . , n�) that minimizes the blur of
the archive (cf. Eq. (3)). In particular, we show that the pages
that change most should be downloaded in the middle of the
crawl.

Example 2 (Optimal Download Schedule) Consider
again Example 1. The optimal download schedule is t0 = 0
and t1 = 5 (the outermost points of the interval) for the cold-
est (least changing) pages p0 and p1, t2 = 1 and t3 = 4 (the
next outermost points) for the second and third least chang-
ing pages p2 and p3, followed by t4 = 2 and t5 = 3 for the
hottest pages p4 and p5. The blur of the capture with optimal
download schedule is B(P, T ′, 5, 1) = 22.7.

Figure 4 illustrates the optimal download schedule where
the change rate of the scheduled download is visualized as a
line of length proportional to the change rate. The visualiza-
tion resembles an organ-pipes arrangement with the highest
pipes allocated in middle.

Theorem 2 (Optimal Download Schedule) Let p0,

p1, . . . , pn be the Web site such that λ0 ≤ λ1 ≤ · · · ≤ λn.
Then, the optimal download schedule t0, . . . , tn is defined by
the following

ti = i

2
if i is even and ti = n − i − 1

2
otherwise (6)

for i = 0, 1, . . . , n.

Proof The proof of Theorem 2 is based on three observa-
tions:

(i) λi are ordered increasingly: λi ≤ λi+1,
(ii) Equation (6) orders ω(ti , n,�) decreasingly: ω(ti , n,

�) ≥ ω(ti , n,�),
(iii) Equation (3) is minimized when λi are ordered

decreasingly and ω(ti , n,�) are ordered increasingly.

λi are scheduled increasingly because of the assumption
of the theorem, and therefore, case (i) is true.

Function ω(t, n,�) is quadratic in t , with its minimum at
tmin = (n�)/2. Equation (6) schedules ti s in such a way that
ω(tn, n,�) is smallest. The greater the index i , the closer to
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the middle ti is allocated. Therefore, ω(ti , n,�) are sched-
uled decreasingly, and Case (ii) is true.

The proof of Case (iii) is given in Lemma 1 below. ��
Lemma 1 Let λ0 ≤ λ1 ≤ · · · ≤ λn and ω(t0, n,�) ≥
ω(t1, n,�) ≥ · · · ≥ ω(tn, n,�). Let j0, . . . , jn be a
permutation of 0, . . . , n. Then

n∑
m=0

λmω(tm, n,�) ≤
n∑

m=0

λim ω(t jm , n,�). (7)

Proof Indeed, let i0, . . . , in be the optimal permutation
of 0, . . . , n such that (λi0 , . . . , λin ) and (ω(t j0 , n,�), . . . ,

ω(t jn , n,�)) minimize the right-hand side of Eq. (7).
The largest element of λs must be multiplied by the small-

est element of ω(til ), otherwise the solution is not optimal.
We prove this step by contradiction. Let

(λi0 , . . . , λik
, . . . , λil

, . . . , λin )

(ω(t j0 , n, �), . . . , ω(t jk
, n, �), . . . , ω(t jl

, n,�), . . . , ω(t jn , n, �))

be the optimal schedule; however, λik = λ0 (the smallest
among all λi s) and ω(t jl , n,�) = ω(t0, n,�) (the larg-
est among all ω(ti , n,�)s). Then, we can show that the
by swapping λik with λil (or alternatively ω(tik , n,�) with
ω(til , n,�)), we can further decrease the sum in Eq. (7).
Indeed, the sum without the swap is as follows:∑
m=1,...,n
m 	=l,m 	=k

λim ω(t jm , n,�) + λ0ω(t jk , n,�) + λil ω(t0, n,�)

(8)

The sum with the swap is as follows:
∑

m=0,...,n
m 	=l,m 	=k

λim ω(t jm , n,�) + λ0ω(t0, n,�) + λik ω(t jl , n,�) (9)

Since the first sums in Eqs. (8) and (9) are the same we reach
the contradiction if we prove that

λ0ω(t jk , n,�) + λil ω(t0, n,�)

> λ0ω(t0, n,�) + λik ω(t jl , n,�). (10)

The left-hand side (LHS) of Eq. (10) is as follows:

L H S = λ0ω(t jk , n,�) + λil ω(t0, n,�)

= λ0
(
ω(t0, n,�) + (

ω(t jk , n,�) − ω(t0, n,�)
))

+λil ω(t0, n,�)

= λ0ω(t0, n,�) + (
λil + (λ0 − λil )

)
× (

ω(t jk , n,�) − ω(t0, n,�)
)

+λil ω(t0, n,�)

= λ0ω(t0, n,�) + λil ω(t jk , n,�)

+ (
λil − λ0

) (
ω(t0, n,�) − ω(t jk , n,�)

)
= RH S + strictly positive number,

since λ0 is the smallest among λi s, and ω(t0, n,�) is the
largest among ω(t j , n,�)s.

The proof of lemma follows with the help of mathematical
induction. The induction basis is trivial. The optimal solution
for n reduces to the optimal solution for n−1 elements, since
the λ0 must be multiplied with ω(t0) in the optimal solution.��

4.3 SHARC-offline algorithm

Algorithm 1 depicts the algorithm of SHARC-offline. Since
all the pages are known and sorted in advance, we need to
scan all the pages only once to schedule the downloads.

input : sorted pages p0, . . . , pn
output: download schedule pD

0 , . . . , pD
n

begin1
for i = 0, 1, . . . , n do2

if i is even then pD
i = pi/23

else pD
i = pn−(i−1)/24

end5
end6

Algorithm 1: SHARC-offline

4.4 General observation interval

In this section, we generalize the notion of blur and the opti-
mal download schedule for the case when the observation
interval [os, oe] does not coincide with the capture interval.
Then, the blur of a page is

B(pi , ti , n,�)= 1

oe − os

oe∫

os

λi · |t − ti |dt = λiω(ti , os, oe)

oe − os
,

where

ω(ti , os, oe) = t2
i − ti (os + oe) + o2

s + o2
e

2

is the generalized download schedule penalty, and the blur
of the archived capture is the sum of the blur values of the
individual pages (cf. Eq. (3)).

Theorem 2 schedules the hottest pages in the middle of the
capture interval (point n�/2). In case the observation inter-
val does not coincide with the capture interval and there are
no restrictions for the start of the capture interval, we should
schedule the most changing pages around the middle of the
observation interval (point (os + oe)/2). We formalize it in
the following theorem.

Theorem 3 Let t0, . . . , tn be the optimal download schedule
for Web site with [0, n�] observation interval. Then,

ti + oe + os − n�

2

is the optimal download position for page pi with [os, oe]
observation interval.
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When the observation interval and the capture intervals
are fixed, the hottest pages should be allocated as close as
possible to the middle point of the observation interval.

5 SHARC-online

The SHARC-offline strategy assumes that all URLs of the
Web site are known in advance. In this section, we relax the
assumption and introduce SHARC-online, the archive crawl
optimization strategy with no or limited knowledge of the
Web site. Starting with a given set of seeds SHARC-online
incrementally extract the URLs of other pages from the down-
loaded pages and schedules the pages for download so the
blur is minimal. We organize this section as follows. First, we
explain the incremental detection of the Web site structure
and discuss most common crawl strategies in Sect. 5.1. We
develop the SHARC-online strategy by example in Sect. 5.2.
Finally, we formally define the SHARC-online strategy and
present the algorithm of the strategy in Sects. 5.3 and 5.4.

5.1 Discovery of the Web graph

Typically, crawlers do not know the URLs of the pages in
the crawled site. The archive crawlers start with the down-
load of a given set of URLs (seeds of the crawl), extract the
URLs of the downloaded pages, and continue the process
until all the documents are downloaded and no new URLs
are detected. At any iteration, the crawler keeps Downloaded-
Detected lists (DD-lists) of URLs. The downloaded list of
URLs consists of all URLs that are already crawled, while
the detected list comprises the extracted from the downloaded
pages but not yet downloaded URLs. Different crawl strat-
egies schedule the URLs in a different manner. Below we
demonstrate the most popular crawl strategies: depth-first
(DFS) and breadth-first (BFS) on the example Web graph in
Fig. 3.

Table 1 depicts the detection and downloads of Web pages
of the depth-first strategy. The strategy starts with the seed
page p0 and inserts it into the detected part of the DD-list
(cf. p0 in the iteration I = 0 in Table 1). Then, it downloads
the page (p0 is moved to the downloaded part of the DD-list,
cf. I = 1 in the table) parses the HTML page and inserts
detected URLs p1, p2 into the detected part of the DD-lists.
The depth-first strategy inserts newly detected pages at the
beginning of the detected list; thus, the newly detected pages
have higher priority for download (cf. iteration I = 2 in the
table). In contrast, breadth-first strategy appends newly dis-
covered pages, assigning a higher priority for early detected
pages (cf. Table 2).

Table 1 Depth-first crawl strategy (DFS)

I DD-list

Downloaded |Detected

0 |p0
1 p0 |p1, p2
2 p0, p1 |p3, p4, p2
3 p0, p1, p3 |p4, p2
4 p0, p1, p3, p4 |p2
5 p0, p1, p3, p4, p2 |p5
6 p0, p1, p3, p4, p2, p5 |

Table 2 Breadth-first crawl strategy (BFS)

I DD-list

Downloaded |Detected

0 |p0
1 p0 |p1, p2
2 p0, p1 |p2, p3, p4
3 p0, p1, p2 |p3, p4, p5, p5

. . . | . . .
6 p0, p1, p2, p3, p4, p5 |

Table 3 SHARC-online crawl strategy

I DD-list

Downloaded |Detected

0 |p0
1 p0 |p1, p2
2 p0, p1 |p2, p3, p4
3 p0, p1, p4 |p2, p3
4 p0, p1, p4, p3 |p2
5 p0, p1, p4, p3, p2 |p5
6 p0, p1, p4, p3, p2, p5 |

5.2 SHARC-online strategy by example

At any given iteration, the crawler does not know all pages,
but only the pages of the Web site in the DD-list. Our
SHARC-online strategy optimizes the download and detec-
tion of the Web pages incrementally. Given the (estimated)
size of the Web site, the SHARC-online produces a download
schedule that resembles the schedule of the SHARC-offline
strategy.

Table 3 illustrates the SHARC-online strategy for the run-
ning example. The SHARC-online crawl starts with p0 page
as a seed and the estimated number of pages in the site
n +1 = 6. The crawl downloads page p0 and detects another
two pages p1, p2. The algorithm is in its ascending phase,
and therefore, it schedules the downloads in increasing sched-
ule of the change rate λi . In the I = 2 iteration, the algo-
rithm downloads p1 and detects additional pages p3 and p4.
The number of detected and downloaded pages exceeds the
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middle of the interval and the algorithm switches to the mid-
dle phase to preserve the middle of the organ-pipes arrange-
ment. The algorithm downloads p4 and p3 in the middle
phase. Then, the number of downloaded pages exceeds the
middle the algorithm finishes in the descending phase with
the downloads of p2 and p5.

5.3 Formalization of SHARC-online

SHARC-online schedules the detected pages of the DD-lists
for downloading. The strategy aims to resemble the schedule
of the SHARC-offline strategy. Due to the limited knowl-
edge of the detected pages, the algorithm has three phases:
ascending, middle, and descending phases.

The SHARC-online strategy maintains the list of detected

pages
(

pE
0 , pE

1 , . . . , pE
nE −1

)
(sorted in ascending order

according to the change rates), the number of downloaded
pages nD , the number of detected pages nE , and an approxi-
mated overall number of the pages n+1. The SHARC-online
strategy expresses the next page to be downloaded pD

nD in
terms of these three variables.

5.3.1 Ascending phase

The ascending phase resembles the beginning of the organ-
pipes and is applied when the number of downloaded and
detected pages is below the estimated middle point of the
crawl. During this phase, the algorithm implements the cold-
est-first strategy. Equation (11) formalizes the ascending
strategy.

pD
nD = pE

0 . (11)

The ascending strategy is executed as long as the number
of downloaded and detected pages is less than half of the size
of the site:

nD + nE ≤ n + 1

2
. (12)

Example 3 (Ascending Phase) Consider I = 1 step in
Table 3. The number of downloaded pages nD = 1, the num-
ber of detected pages nE = 2, and the list of detected pages
sorted in ascending order according to the λs is

(
pE

0 , pE
1

) =
(p1, p2). Lets assume that the estimated number of pages in
the crawl is n + 1 = 6. Since nD + nE = 1 + 2 ≤ 3 = n+1

2 ,
therefore, the algorithm is in the ascending phase, and the
next download element is pD

1 = pE
1 = p2.

5.3.2 Middle phase

The middle phase schedules the next download so the sym-
metry around the middle of the organ-pipes is preserved as
much as possible. For each downloaded page on the ascend-
ing part, we reserve an appropriate page on the descending

part of the organ-pipes. The strategy is applied when the
overall number of downloaded and detected pages exceeds
the half of the number of the pages, but the number of down-
loaded pages has not reached the middle of the crawl. Equa-
tion (13) formalizes the phase.

pD
nD =

{
pE

nD if nD < nE ,

pE
nE −1

otherwise.
(13)

Equation (14) formalizes the conditions when the middle
phase is applied.

nD + nE >
n + 1

2
, nD ≤ n + 1

2
. (14)

Example 4 (Middle Phase) Lets continue Example 3 with
I = 2 step. The number of downloaded pages nD = 2, the
number of detected pages nE = 3, and the list of detected
pages sorted in ascending order according to the λs is(

pE
0 , pE

1 , pE
2

)
= (p2, p3, p4).

Since

nD +nE =2+3 > 3= n + 1

2
and nD =2 < 3= n + 1

2
,

therefore, the algorithm is in the middle phase, and the next
download element is

pD
2 = pE

2 = p4.

5.3.3 Descending phase

The descending phase resembles the ending of the organ-
pipes and is applied when the number of downloaded pages
is more than the half of the (estimated) number of pages.
During this phase, the algorithm implements the hottest-first
strategy. Equation (15) formalizes the descending strategy.

pD
nD = pE

nE −1 (15)

The descending phase is executed as soon as the number
of downloaded pages exceeds the middle of the organ-pipes
arrangement and until all detected URLs are downloaded:

nD >
n + 1

2
, nE 	= 0. (16)

Example 5 (Descending Phase) Lets continue Example 4
with I = 4 step. The number of downloaded pages nD = 4,
and the number of detected pages nE = 1. Since nD = 4 >

3 = n+1
2 , therefore, the algorithm is in the descending phase,

and the next download element is pD
5 = pE

0 = p2.

5.4 SHARC-online algorithm

Algorithm 2 depicts the SHARC-online algorithm. At each
iteration (lines 4–12), the algorithm inspects the sizes of
downloaded and detected lists and identifies whether the
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algorithm is in the ascending (line 5), middle (line 6), or
descending (line 8) phase and computes the index of the next
download.

input : sorted seeds (p0, . . . , pm),
estimated size of the crawl n

output: download schedule (pD
0 , . . . , pD

n )

begin1

PD = (pD
0 , . . . , pD

nD ) = (), nD = 02

PE = (pE
0 , . . . , pE

nE ) = (p0, . . . , pm), nE = m3

while PE 	= ∅ do4

if nD + nE ≤ (n + 1)/2 then pos = 05

else if nD ≤ (n + 1)/2 then6

pos = nD < nE ?pE
nD : pE

nE −17

else pos = nE8

append(PD, pE
pos),remove(PE , pE

pos)9

add_sort(PE ,urls(pE
pos))10

nD++, nE−−, nE = nE + |urls(pE
pos)|11

end12
end13

Algorithm 2: SHARC-online

6 Worst-case analysis

In this section, we investigate the worst-case scenario for
the SHARC-online strategy. In SHARC-offline, the hottest
pages are scheduled in the middle of the crawl interval. Since
SHARC-online does not possess the full knowledge about the
URLs of the site, it may download pages at positions differ-
ent from those of the SHARC-offline strategy. To analyze the
complexity of the task, we assume that SHARC-online can
schedule (n+1)−k downloads optimally. However, k down-
loads do not follow the SHARC-offline (k-misplacements).
The worst k-misplacements are if we placed the k hottest
pages in the k outermost positions. Example 6 illustrates this
case.

Example 6 (Worst- case blur) Consider a Web site of
n + 1 = 10 pages with λ0 = λ1 = 1, λ2 = λ3 = 2, λ4 =
λ5 = 3, λ6 = λ7 = 4, λ8 = λ9 = 5. Let k = 4 be the num-
ber of pages that may not follow the SHARC-offline strategy.
The optimal SHARC-offline strategy of this site is illustrated
in Fig. 5a with the worst-case scenario in Fig. 5b.

The highest schedule penalty positions in the crawl are the
first and the last download slots: ω(0, 10, 1) = ω(9, 10, 1) =
40.5, and downloads of the hottest pages (p8 and p9 with
λ8 = λ9 = 5) at these positions maximize the blur of the
archive. The next two highest schedule penalty positions are
ω(1, 10, 1) = ω(8, 10, 1) = 32.5, and the next hottest pages
p6 and p7 are scheduled there. The remaining positions are

p0

1
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2

p4

3

p6

4

p8

5

p9

5

p7

4

p5

3

p3
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(a) SHARC-Offline

p8
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4
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p2
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p5

3

p3

2

p1

1

p7

4

p9

5

(b) Worst Case with k 4

Fig. 5 Example of worst-case blur scenario with n = 9 and k = 4

scheduled according to SHARC-offline strategy resulting in
an organ-pipes-like middle part of the download schedule.

The increase in the blur for the worst-case scenario is

2(5 − 1)ω(0, 10, 1) + 2(4 − 2)ω(1, 10, 1) − 2(3 − 1)ω

(2, 10, 1) − 2(4 − 2)ω(3, 10, 1) − 2(5 − 3)ω(4, 10, 1)

= 145.

Since now, the blur of the SHARC-offline is 2 ·∑4
i=0 i(i) =

755, and the relative increase in the blur of the worst case is
145/755 ≈ 20%.

The following theorem states the increased blur of the
worst-case scenario with k-misplacements. For simplicity,
we assume that the number of pages n + 1 and the number
of misplacements k are even numbers.

Theorem 4 Let the number of pages in the site n +1 be even
with such change rates of the pages: λ0 = λ1 ≤ λ2 = λ3 ≤
· · · ≤ λn−1 = λn. Let k be the even number of pages that
can be misplaced in the optimal SHARC-offline strategy and
� be the delay between two downloads. In the worst case,
the blur of the crawl increases by:

2
k/2−1∑

i=0

(λn−2i − λ2i )ω(i�, n,�)

−2
(n+1−k)/2∑

i=0

(λk+2i − λ2i )ω

((
k

2
+ i

)
�, n,�

)
. (17)

Proof The proof follows from similar arguments as in The-
orem 2. ��

The actual increase in the blur that SHARC-online exhib-
its over SHARC-offline depends on the characteristics of the
Web site, especially on the size of the site (number of pages)
and the skew in the distribution of the pages’ change rates.

Skew has the larger impact, as illustrated in (Fig. 6a). Here,
we modeled the skew with λ2i−1 = λ2i = 100/ i skew, i =
0, . . . , n/2, n = 101. The increase in the skew by one
increases the blur by an order of magnitude. The misplace-
ment of the hottest pages incurs the highest amount of addi-
tional blur (see the steep increase for k =0–10 in Fig. 6a). As
the more and more pages are misplaced (k = 20, . . . , 100),
the increase slows down.

Increasing the size n + 1 of the Web site, illustrated in
Fig. 6b, leads to high additional blur for small n (cf. n = 101
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Fig. 6 Worst-case blur for different values of skew and size

and n = 102 in the figure), while further increasing the num-
ber of pages changes the resulting blur only slightly (n = 102

and n = 103 in the figure).

7 Visit–revisit strategies

In this section, we investigate the crawling strategies where
each page is downloaded twice: after all the pages are vis-
ited (first download at tvi ), we revisit them (second download
at tr

i ). This approach allows us to deterministically reason
about the state of the archive as of the middle point of the
crawl. We call a page coherent if its versions at visit time
and revisit time are identical. The coherence of an entire site
capture is the number of coherent pages. In the following,
we present two strategies: SHARC-revisits, which aims at
minimizing blur, and SHARC-selective which aims at max-
imizing coherence.

Definition 2 (Coherence) A page in a site capture is coher-
ent if it did not change between its visit and revisit. The coher-
ence of a site capture is the number of pages in the archived
capture that did not change between their visit and revisit
timepoints.

7.1 SHARC-revisits

Given Web pages p0, p1, . . . , pn and the change rates λ0 ≤
λ1 ≤ · · · ≤ λn , the task is to find the timepoints (download

slots) for the initial visits tv0 , tv1 , . . . , tvn and for the revisits
tr
0 , tr

1 , . . . , tr
n such that the blur of the site capture is mini-

mized. Since the archive now consists of two versions of the
page, we return the version of the page that is closer to the
given query time t (cf. min{|tvi − t |, |tr

i − t |} in the definition
below).

Definition 3 (Blur of page with revisits.) Let pi be a
Web page with visit time tvi and revisit time tr

i . The blur of
page pi is

B
(

pi , tvi , tr
i , n,�

)

= 1

(2n + 1)�

2n�+1∫

0

λi min{|tvi − t |, |tr
i − t |}

= 1

(2n + 1)�
λi

⎛
⎜⎝

(tvi +tr
i )/2∫

0

|tvi − t | dt

+
(2n+1)�∫

(tvi +tr
i )/2

|tr
i − t | dt

⎞
⎟⎠

= 1

(2n + 1)�
λiω(tvi , tr

i , n,�), (18)

where

ω(tvi , tr
i , n,�) = (tvi )2 − (tvi + tr

i )2

4
+ (tr

i )2 − tr
i (2n+1)�

+ (2n + 1)2�2

2
(19)

is the download schedule penalty for downloads with
revisits. The blur of an archived capture with revisits is the
sum of the blur values of the individual pages:

B
(
P, T v, T r , n,�

) =
n∑

i=0

B
(

pi , tvi , tr
i , n,�

)
, (20)

where T v = (
tv0 , . . . , tvn

)
are the visit, and T r = (

tr
0 , . . . , tr

n

)
are the revisit times of pages P = (p0, . . . , pn). The average
blur is B̄ (P, T v, T r , n,�)=1/n

∑n
i=0 B

(
pi , tvi , tr

i , n,�
)
.

Example 7 (Blur with Revisits) Consider the Web site
in Fig. 3 with tv0 = 0, tv1 = 1, . . . , tv5 = 5 visit and tr

0 =
6, tr

1 = 7, . . . , tr
11 = 11 revisit times. The blur of page p1 is

B(p1, 1, 7, 5, 1) = 1 · ω(1, 7, 5, 1)

2 · 5 + 1
= 12 − (1 + 7)2

4
+ 72

−7(2 · 5 + 1) + (2 · 5 + 1)2

2
= 35/22.

(21)

Similarly, B(p0, 0, 6, 5, 1) = 0, B(p2, 2, 8, 5, 1) = 62/22,
B(p3, 3, 9, 5, 1) = 93/22, B(p4, 4, 10, 5, 1) = 140/22,
B(p5, 5, 11, 5, 1) = 215/22, and the blur of the archive is

B(P, T v, T r , 4, 1) = 0 + 35

22
+ 62

22
+ 93

22
+ 140

22
+ 215

22
≈ 24.77.
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Fig. 7 Optimization of crawling with revisits

The derivation of the optimal visits tv0 , . . . , tvn and revisits
tr
0 , . . . , tr

n for minimum blur is similar to the analysis of the
optimal download schedule without revisits (cf. Theorem 2).

Again, we need to schedule pages in ascending order of λ

values and descending order of download schedule penalties
ω(pi , tvi , tr

i , n,�), so that the product of these factors min-
imizes the overall sum in Eq. 18. Similarly to the download
schedule penalty without revisits, the penalty with revisits is
always an elliptic paraboloid w.r.t. tvi , tr

i , with one minimum
(cf. Fig. 7a). The equation suggests the following strategy
toward minimizing blur. We schedule the visit and revisit
of the hottest page in the download slots with the small-
est penalty (tv0 , tr

0 ) (cf. Fig. 7b). Then, we mark all points
(tv0 , t) and (s, tr

0 ) as invalid and search the next valid posi-
tion with smallest penalty, and so on. This strategy results in
visit–revisits forming a diagonal line in the visit–revisit plane
(cf. filled circles in Fig. 7a.

The strategy is greedy: at each step, we aim to assign
the hottest change rate at the lowest penalty position. While
the strategy yielded an optimum in the single-visit case, this
is not necessarily the optimum for the visit–revisit case. To
obtain an optimum schedule, we would need to scan all pos-
sible parabola of visits–revisits in the elliptic paraboloid and
check for which the sum of the factors of change rates and
penalty positions yield the smallest blur.

Definition 4 (SHARC- revisits) Let P = (p0, . . . , pn) be
the Web site such that λ0 ≤ · · · ≤ λn . The pair

(tvi , tr
i ) =

{ ( i
2 , n + 1 + i

2

)
if i is even and(

n − i−1
2 , 2n + 1 − i−1

2

)
otherwise

defines the greedy strategy for the visit and revisit times of
page pi .

Example 8 (SHARC- revisits) Let us continue Example 7.
The greedy visit and revisit times for pages p0, . . . , p5 are(
tv0 , tr

0 ) = (0, 6
)
,
(
tv1 , tr

1

) = (5, 11),(
tv2 , tr

2

) = (1, 7),
(
tv3 , tr

3 ) = (4, 10
)
,
(
tv4 , tr

4

) = (2, 8),(
tv5 , tr

5

) = (3, 9). The blur of the greedy schedule is approx-
imately 22.59.
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Fig. 8 Shapes of schedules

7.2 SHARC-selective

Overview of the analysis and outline. SHARC-selective
schedules all visits before the revisits so that intervals
between visit and revisit have a non-empty intersection. With
this approach, the ideal outcome would be that all pages
are mutually coherent if they individually did not change
between their visits and revisits.

Mathematical analysis of the optimal strategy that maxi-
mizes coherence is hard. Ultimately, one needs to try out all
possible schedules of visit–revisit intervals (((n + 1)!)2 in
total) and opt for the strategy that has the highest expected
coherence. Two extreme choices of visit–revisit intervals
are equidistant schedule where all intervals have the same
lengths, as shown in Fig. 8a), and pyramid-like schedule,
shown in Fig. 8b, where the intervals are centered around
a joint “axis”. To reduce the complexity of the problem,
we consider only the family of pyramid-like visit–revisit
schedules centered around the middle point. The rationale
behind this choice is the higher expected coherence for
pyramid-like compared to equidistant schedule where the
change rates of the pages are the same. Allocation of pages
(change rates) to the intervals is the degree of freedom of
the SHARC-selective algorithm. Intuitively, one could allo-
cate the hottest pages to the shortest intervals greedily max-
imizing each page expected coherence. However, in certain
cases, it is better to “give up” extremely hot (hopeless) pages,
by assigning them to longer visit–revisit intervals so that
other (hopeful) pages get shorter visit–revisit intervals and,
therefore, have higher chances of getting coherently cap-
tured.
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(a) (b)

Fig. 9 Example with hopeless pages

In summary, SHARC-selective employs three principles:

1. Visit–revisit intervals form a pyramid.
2. Greedily assign the hottest hopeful pages to the shortest

intervals.
3. Greedily assign the hottest hopeless pages to the longest

intervals.

We organize the section in the following. First, we define
the expected coherence of a schedule. Second, we show that
for the same change rates, pyramid is better than equidistant
schedule. Third, we define the hopeless pages and give the
SHARC-selective offline and online algorithms.

Expected coherence of a schedule is the key concept to
define hopeless page and SHARC-selective schedule.

Definition 5 (Expected coherence of a schedule)
Let λi , . . . , λk be the change rates scheduled so the lengths of
their visit–revisit intervals are Ii , . . . , Ik . Then, the expected
coherence is

EC ((λi , Ii ), (λi+1, Ii+1), . . . , (λk, Ik))

= e−λi Ii + · · · + e−λk Ik .

Example 9 (Expected coherence of a schedule)
Consider the schedule in Fig. 9a. There the change rates
0.40, 0.35, 0.30, 0.25, 0.20 are scheduled on the intervals
0, 2, 4, 6, 8 (hottest to shortest), and the expected coherence
is

EC ((0.40, 0), (0.35, 2), (0.30, 4), (0.25, 6), (0.20, 8))

= e−0.40·0 + e−0.35·2 + e−0.30·4 + e−0.25·6 + e−0.20·8 ≈ 2.22.

Therefore, expected coherence is 2.22 pages (out of maxi-
mum five coherent pages).

Pyramid is better than equidistant schedule in terms of
expected coherence for the case when all pages have the
same change rates. Below we formalize this result.

Theorem 5 (Pyramid is better than Equidistant)
Let λ0 = · · · = λn = λ. Then, the expected coherence is
higher for the pyramid schedule compared to the equidistant
schedule for large enough n(n ≥ 1 + 1/(eλ� − 1)).

Proof The proof is by induction. Assume that the theorem is
true for the schedules of length n:

expected-coherence(pyramid(n))

= EC ((λ, 0) . . . , (λ, 2(n − 1))

= 1 + e−2λ� + e−4λ� + · · · e−2(n−1)λ�

≥ 1 + (n − 1)e−nλ�

= EC ((λ, n) . . . , (λ, n))

= expected-coherence(equidist(n)).

We need to prove that

expected-coherence(pyramid(n+1))

≥ expected-coherence(equidist(n+1)).

Since

expected-coherence(pyramid(n+1))

= expected-coherence(pyramid(n)) + e−2nλ�

and

expected-coherence(equidist(n))

= expected-coherence(equidist(n-1))

+ne−(n+1)λ� − (n − 1)e−nλ�,

it suffices to show that

e−2nλ� ≥ ne−(n+1)λ� − (n − 1)e−nλ�.

This follows from the fact that

ne−(n+1)λ� ≤ (n − 1)e−nλ�. (22)

Indeed, taking the logarithm of both sides in Eq. (22):

log(n) − (n + 1)λ� ≤ log(n − 1) − nλ�

⇔ log(n) − log(n − 1) ≤ λ�,

which is true for all large enough n. ��
A hopeless page is such an extremely hot page that it pays

off to sacrifice the page and assign a long visit–revisit inter-
val to it in order for the other pages to enjoy shorter intervals
and increase the overall expected coherence of the capture.

Definition 6 (Hopeless page) Let λi ≤ · · · ≤ λk be the
change rates and Ii < · · · < Ik be the lengths of the visit–
revisit intervals. Page pi is hopeless (change rate λi is hope-
less) iff

EC ((λk, Ii ), (λk−1, Ii+1), . . . , (λi , Ik))

= e−λk Ii + e−λk−1 Ii+1 + · · · + e−λi Ik

≤ e−λk+1 Ii + e−λk+2 Ii+1 · · · + e−λi Ik−1 + e−λk Ik

= EC ((λk−1, Ii ), (λk−2, Ii+1), . . . , (λi , Ik−1), (λk, Ik)).

Otherwise, we call page pi (change rate λi ) hopeful.
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Fig. 10 SHARC-selective
schedule for change rates in
Fig. 9a

Example 10 (Hopeless page) Let λ1 = 0.20, λ2 = 0.25,

λ3 = 0.30, λ4 = 0.35 and I1 = 2, I2 = 4, I3 = 6, I4 = 8
(cf. Example 9). Then, change rate λ1 is hopeless. In order
to verify this statement, we need to compare

EC ((0.35, 2), (0.30, 4), (0.25, 6), (0.20, 8)) ≈ 1.22

(expected coherence for schedule in Fig. 9a) with

EC ((0.30, 2), (0.25, 4), (0.20, 6), (0.35, 8)) ≈ 1.27

(the expected coherence for schedule in Fig. 9b). Since
2.22 < 2.27, therefore, λ3 is hopeless.

Algorithms. The SHARC-selective (offline) employs the
three principles to schedule the pages: (i) pyramid intervals,
(ii) hottest hopeful pages to shortest interval, and (iii) hottest
hopeless pages to the longest intervals.

Example 11 (SHARC- selective.) Let us continue Exam-
ples 9 and 10.

Any page allocated the zero-length interval is always
hopeful. Therefore, λ5 = 0.4 is hopeful and allocated at
the zero-length interval. This completes the first iteration.

Example 9 shows that λ3 = 0.35 is a hopeless page for
change rates (λ3, λ2, λ1, λ0) = (0.35, 0.30, 0.25, 0.20) and
intervals (I1, I2, I3, I4) = (2, 4, 6, 8) and is allocated for
interval I4 = 8. This completes the second iteration.

Since

EC ((λ2, I1), (λ1, I2), (λ0, I3)) ≈ 1.21 < 1.22

≈ EC ((λ1, I1), (λ0, I2), (λ3, I3))

therefore λ2 is also hopeless and is scheduled for the second
largest interval I3. This completes the third iteration.

Since

EC ((λ1, I1), (λ0, I2)) ≈ 1.06 > 1.04

≈ EC ((λ2, I1), (λ1, I2)) ,

therefore, λ1 is a hopeful change rate and is allocated for the
shortest interval I1. This allocates the last (hopeful) change
rate λ2 to I2. The schedule is illustrated in Fig. 10.

Algorithm 3 presents the SHARC-selective offline algo-
rithm. We check the page whether it is hopeless or hopeful,
appending it to the corresponding queue (cf. Lines 5–6). Once
all hopeless pages H and hopeful pages F are identified, we
visit all the hopeless pages H to allocate the longest intervals
to H. Then, hopeful page follows and gets shorter intervals.
The revisits are in the reverse order.

input : sorted pages p0, . . . , pn
sorted intervals I0, . . . , In

output: visit–revisit schedule pv
0 , . . . , pv

n , pr
0, . . . , pr

n
hopeless pages H

hopeful pages F

Initialize hopeless pages H = ()1
Initialize hopeful pages F = ()2
begin3

for i = 0, 1, . . . , n do4

if EC
(
(λn−i , I|F|), . . . , (λ0, In−|H|))

) ≥5

EC
(
(λn−i−1, I|F|), . . . , (λn−1, In−|H|))

)
then

F = F ∪ pi
else H = H ∪ pi6

end7
visit H; visit F8
revisit F; revisit H9

end10

Algorithm 3: SHARC-selective Offline

SHARC-selective offline schedules the pages from hottest
to coldest around the middle point of the crawl. Consequently,
the first Web page in the visit–revisit schedule is either the
first detected hopeless page or the coldest page if there are
no hopeless pages.

To turn the offline strategy into an online strategy, instead
of scanning the pages from hottest to coldest, we scan from
the coldest page to the hottest one. The strategy detects
on-the-fly new Web pages and schedules the visits of the
hopeless pages as early as possible (so these pages get the
longest available visit–revisit intervals). This is shown in
Algorithm 4. We start with the set of seeds (Line 2) and
identify hopeful and hopeless pages. If there are hopeless
pages (Line 4), we download the hottest hopeless page so it
gets the longest visit–revisit interval (Line 5–6). Otherwise,
we download the coldest hopeful page ( we are at the bottom
of the pyramid). Then, we detect new pages and again iden-
tify the hopeful and hopeless pages (Line 11). The process
is continued until all pages are downloaded. The algorithm
concludes with downloads of all pages according to their
scheduled revisits.

8 Prototype implementation

8.1 Architecture

We have implemented all SHARC strategies in an exper-
imental testbed, and we have integrated selected SHARC
strategies into the Heritrix archive crawler [27]. The SHARC
prototype consists of three main components: scheduler,
multi-threaded downloader, and database. The scheduler
dispatches pages for downloading, driven by configurable
options for our SHARC strategies. In the original Heritrix
crawler, the scheduling is based on a breadth-first strategy;
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input : sorted seeds (p0, . . . , pm)

predicted Web size n
output: visit–revisit sequence (pv

0 , . . . , pv
n , pr

0, . . . , pr
n)

begin1
(H, F)=Selective-Offline (p0, . . . , pm , 2m, . . . , 2n)2
while F 	= ∅ and H 	= ∅ do3

if H 	= ∅ then4
Download the hottest p ∈ H5
H = H \ p6

else7
Download the coldest p ∈ F8
F = F \ p9

end10
D = urls(p) ∪ F ∪ H11
(H, F) = Selective-Offline (D, 2|D|, . . . , 2n)12

end13
revisit the pages in the opposite order14

end15

Algorithm 4: SHARC-selective Online

search engines, on the other hand, employ techniques that
optimize for freshness, importance of pages, and scope
(news, blogs, Deep Web). Given the schedule, the down-
loader aims to fetch as many pages as possible, within the
limits of the available network bandwidth. The downloader
runs multiple threads in parallel, one for each crawled site,
and parses the downloaded pages to discover new URLs.
To avoid downloading, the same page more than once, the
downloader normalizes the URLs and employs de-duplica-
tion techniques. Newly found URLs are returned back to the
scheduler for planning, while fully downloaded Web pages
are stored and indexed in a database (PostgreSQL in our
case).

We have integrated selected SHARC strategies into the
Heritrix software (within the limitations given by the origi-
nal Heritrix architecture, hence not all strategies). Figure 11
depicts the integrated architecture. We reused most of the
modules of Heritrix (the shaded region), and we added the
Change-Rates module and replaced the Heritrix scheduler
with the SHARC scheduler. Like standard Web crawlers, the
SHARC crawler usually starts with a set of seed URLs for
a site to be captured. In addition, we have implemented the
sitemaps protocol, which allows us to load URLs of a site
and their typical change rates from published sitemaps. The
SHARC scheduler retrieves this information and schedules
the pages for visits and then for revisits.

8.2 Determining change rates

Change rates can be determined from three sources: (1)
extracted from sitemaps, (2) estimated from previous crawls
of a site, (3) predicted by machine learning methods (classifi-
ers or regression models) based on easily observable features.
We discuss all these issues below in turn.
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Fig. 11 SHARC architecture

Fig. 12 Example of sitemap with sitemap indexes

Sitemaps are an easy way for webmasters to inform robots
about pages on their sites that are available at the Web site for
crawling. Sitemaps are XML files that contain URLs point-
ing to other sitemaps (see Fig. 12) or a list of URLs available
at the site (see Fig. 13). The compressed size of the sitemap
is limited to 10MB and can contain up to 50K URLs. These
limitations are introduced so that the Web server does not
need to serve very large files. If a sitemap exceeds the limit,
then multiple sitemap files and a sitemap index file must be
created. However, it has become practice that webmasters
create several sitemaps even for small Web sites, grouping
the URLs into conceptual partitions of interrelated URLs on a
site, sub-sites so to speak. Our framework can harness infor-
mation about subsites that site owners want to be crawled
and archived as coherently as possible.

A sitemap file consists of a list of URLs with the following
metadata (cf. Fig. 13):

– loc is a mandatory field indicating the URL of a Web
page.

– lastmod is an optional field indicating the last modified
date and time of the page.
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Fig. 13 Example of sitemap with URLs

– changefreq is an optional field indicating the typical fre-
quency of change. Valid values include always, hourly,
daily, weekly, monthly, never. This information can be
mapped onto (bins of) change rates for the page-specific
parameter of the Poisson-process model.

– priority is an optional field indicating the relative impor-
tance or weight of the page on the Web site.

Currently, approximately 35 million Web sites publish
sitemaps, providing metadata for several billion URLs. Top
domains using sitemaps are in .com, .net, .cn, .org, .jp, .de,
.cz, .ru, .uk, .nl domains including www.cnn.com, www.
nytimes.com, www.bbc.co.uk, www.dw-world.de [35].

The oracle of change rates returns the best estimate for
the change rate of a given page. We call it an oracle, since it
needs to know the full history of changes. This is in contrast
to a change rate predictor (see below) where the change his-
tory is known only for a sample of pages and is used to learn
a prediction model.

We use the standard maximum likelihood estimator
(MLE) for a Poisson distribution to compute the change rate
λ. We postulate that the history of timepoints of changes for
a time period T is available and the changes of a page follow
a Poisson process. We split the period T into n intervals of
length τ , such that there is either 1 or 0 changes in each inter-
val. For each page p, we define sample data x1, x2, . . . , xn ,
where xi is the number of observed changes of p in the i-th
interval. Then, n = T/τ , and the MLE for change rate λ is

λ̂ = 1

n

n∑
i=1

xi .

The predictor of change rates uses standard classification
techniques (Naive Bayes and the C4.5 decision-tree classi-
fier) to predict change rates from given features of a page.
(We also tried linear regression. It was poorer because of
the dominating non-changing pages.) Since classifiers work
with categorical output data (labeled classes), we discretize

the change rates using equal-frequency binning [22] with ten
bins. Equal-frequency binning aims to partition the domain
of change rates into bins (intervals) so that each bin con-
tains the same (or nearly the same) number of observations
(individual pages) from the dataset. As for the features of the
pages, we have investigated two different sets: features that
are only available in online settings (the Web page itself is
not available, but only its URL and its metadata) and offline
settings (where the Web page is available as well):

– online features: features from the URL string: domain
name, MIME type, depth of the URL path (number of
slashes), length of the URL, the first three word-seg-
ments of the URL path, the presence/absence of special
symbols: tilde (∼), underline(_), question mark(?), semi-
column(;), column(:), comma(,), and percentage sign (%)
.

– offline features: all online features and the number of
days since the last change, number of images, number of
tables, number of outlinks, number of inlinks in the Web
page.

We tested the classifiers on the available datasets (see
Sect. 9.3) using 10-fold cross-validation. The results are
shown in Table 4. To emphasize the results of the best tech-
niques, we have set these numbers in bold.

The change rate predictors are indeed practically viable.
Not surprisingly, the overall winners use offline features, but
the online features predictors are also fairly accurate.

C4.5 is slightly more accurate than the Naive Bayesian
classifier (see Table 4); therefore, we use C4.5 in our main
experiments presented in Sect. 9. For most datasets, the clas-
sifier achieved about 70% accuracy. However, even when the
classifier is only 40% accurate, the mispredicted change rates
are typically close to the actual values and still useful for the
scheduling algorithms. This is because we are using ten bins
and when we do not classify the change rate into the correct
bin (for example the bin with hourly change rates), it is often
assigned to an adjacent bin (e.g., the bin of daily changing
rates). Figure 14 assesses such mispredictions for the DH

Table 4 Classification precision for MPII, DMOZ, and UKGOV
Datasets

Dataset Online features Offline features

Bayesian C4.5 Bayesian C4.5

MPII 90.857 97.951 97.502 97.951
DMOZ 27.398 43.520 48.670 43.753
MOD 79.379 85.995 80.794 86.886
DFID 70.653 67.437 74.020 71.256
ARMY 78.423 80.660 79.312 82.406
RAF 85.848 86.561 89.453 91.902
DH 37.011 41.658 41.798 46.002
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Fig. 14 Assessment of C4.5 classification for the DH dataset

Table 5 Classification precision for sitemap datasets

Dataset Naive Bayesian C4.5

dw-world.de 100.00 99.981
intereconomia.com 98.464 99.889
fr.euronews.net 99.977 99.977

dataset (only 41.658% precision with online features). Over
4,500 of the pages are predicted correctly (see the first col-
umn in the figure), and additional 3,500 ones are assigned to
adjacent bins. The number of pages that are mispredicted by
two bins “away” is about 2,000 (third column).

We also tested the classifiers for sites with sitemap data.
The setup of the experiment is similar to the previous set-
ting; however, we did not need to discretize the change rates,
because change frequency is already a categorical attribute
in sitemaps (see sitemap example at the beginning of the sec-
tion). As input features of pages, we have used the domain
name, MIME type, depth within the URL path, and number
of days since the last update. The results of 10-fold cross-val-
idation are shown in Table 5. To emphasize the results of the
best techniques, we have set these numbers in bold. Change
rate predictors for sitemaps are extremely precise.

9 Experimental evaluation

We evaluated all SHARC methods in terms of the blur and
coherence quality metrics. We first present the competitors
under comparison in Subsect. 9.1. The experiments were
designed so that we could use the exact history of changes as
a reference for computing the actual blur and actual coher-
ence of captures. These metrics are defined in Subsect. 9.2.
Datasets on which the SHARC framework is evaluated
are described in Subsect. 9.3. Our main experimental find-
ings on the blur and coherence measures are presented in
Sects. 9.4 and 9.5. Finally, we present sensitivity studies in
Sect. 9.6 where we vary the Web site properties like the size,
change skew, and crawl duration. Throughout the section, to
emphasize the results of the best strategy, we have set these
numbers in bold.

9.1 Methods under comparison

We experimentally evaluate our own techniques—SHARC-
offline, SHARC-online, SHARC-revisits, and SHARC-
selective—against a variety of baseline strategies:
breadth-first search (BFS) and depth-first search (DFS) (most
typical techniques by archive crawlers), hottest-first (HF),
hottest-last (HL) (most promising simple crawlers, where
heat refers to change rates of pages), and the method of
Olston and Pandey (OP) [30] (the best freshness-optimized
crawling strategy). SHARC-offline requires the knowledge
of all URLs of the site in advance. The setup of our exper-
iments allowed us to study this idealized strategy as a ref-
erence. In practice, it is unrealistic to assume such knowl-
edge, and SHARC-online will be used instead. The BFS and
DFS strategies schedule downloads based on the graph struc-
ture of the site as it is dynamically traversed by the crawler
(the crawl tree). BFS stores the detected URLs in a FIFO
queue, while DFS stores the detected URLs in a stack. HF
and HL download the hottest and the coldest page from the
list of detected pages. All online strategies (SHARC-online,
SHARC-selective online, BFS, DFS, HF, HL) are dynamic
and work incrementally: in each iteration, we schedule only
one page (from among the so far detected pages). The OP
strategy sorts the pages in each iteration according to the
values of the utility function Upi (i) and downloads the one
with the highest value. The utility function Upi (i) assumes
knowledge of the full change history. This assumption is not
practical; we give these optimistic performance numbers for
comparison.

For incorporating change rate estimates, we include two
versions: the change rate is given either by the oracle or by
the predictor. We trained the predictors only with the online
features. A random sample of 10% of the size of each Web
site was used to train the classifiers.

The incoherence measure (in contrast to blur) assumes
the visit–revisit crawl model where all pages are accessed
twice. The classical BFS, DFS, HF, and HL strategies do
not have revisits, but for fair comparison, we simulated
the revisits using FIFO (first-in-first-out) or LIFO (last-in-
first-out) strategies. We did not run OP for the visit–revisit
case, since there is not obvious generalization of this tech-
nique.

9.2 Quality metrics

We use the actual blur (Eq. (23)) and actual incoherence to
assess single-visit and visit–revisit strategies, respectively.

The intuition behind the actual blur is the same as the one
behind the stochastic blur (Definitions 1 and 3): the aver-
age number of changes that an explorer of the archive will
encounter. The stochastic blur uses change rates λi while the
actual blur uses the history of actual timepoints of changes
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(h0, . . . , hm). In combination with the download time t of
page p and the observation interval [os, oe], this allows us to
define the actual blur of p:

B(p) = 1

oe − os

⎛
⎝ ∑

os≤h j ≤t

(h j − os) +
∑

t<h j ≤oe

(oe − h j )

⎞
⎠ .

(23)

The actual blur B of an entire site capture with pages
(p0, . . . , pn) is the sum of the actual blur values of all pages:

B(p0, . . . , pn) =
n∑

i=0

B(pi ).

The actual blur with revisits can be defined similarly. Let
tv be the visit and tr be the revisit time of page p. Then, the
actual blur with revisits for observation interval [os, oe] is as
follows:

B(p) = 1

oe − os

⎛
⎝ ∑

os<h j ≤tv
(h j − os)

+
∑

tv<h j ≤ tv+tr
2

(
tv + tr

2
− h j

)
+

∑
tv+tr

2 <h j ≤tr

(h j − tv + tr

2

+
∑

tr <h j ≤oe

(oe − h j )

⎞
⎠ . (24)

The intuition behind this formula is that for each page that
should be accessed as of observation time t , we can choose
either the version as of the visit time or the version as of the
revisit time, whichever is closer to t .

The actual blur with revisits of a site capture with pages
(p0, . . . , pn) is the sum of the corresponding values of all
pages:

B(p0, . . . , pn) =
n∑

i=0

B(pi ).

The O P utility function Up can be expressed in terms
of the actual blur. Up is the actual blur of page p in inter-
val [os, oe] given that the page is downloaded at oe: Up =
B(p) = 1

oe−os

∑m
j=0(h j − os). The utility function gives a

higher priority to pages with late changes.

In Sect. 7, we defined the coherence measure as the num-
ber of pages that did not change during their visit–revisit
intervals. In the experiments, we measure and report the
actual incoherence: the number of pages that changed during
their visit–revisit intervals. So just like with blur, the lower the
reported numbers are the better it is for Web archive quality.

9.3 Datasets

We tested all methods on a variety of real-world datasets
and also on synthetically generated Web sites for systematic
variation of site properties. The real-world datasets are sum-
marized in Table 6. They are used for our main experiments
about blur and incoherence, presented in Sects. 9.4 and 9.5.
The datasets span long periods (a year or longer) and consist
of captures (weekly or even daily) of entire sites. The data-
sets consist of an academic Web site (Max Planck Institute
for Informatics MPII), a number of governmental Web sites
(UK government), and a Web directory (DMOZ). The MPII
dataset constitutes crawls of our Web server. The “home”
Web server allowed us to crawl it frequently and aggressively
(without respecting the politeness delays). The DMOZ data-
set represents a large Web site with subsites (topic categories)
that change frequently and subsites that change infrequently.
The UKGOV dataset spans a long period and is, to the best
of our knowledge, the most comprehensive, freely available
Web archive reference collection.

We used the available datasets to simulate crawls and
evaluate the SHARC framework. As a stress test for polite-
ness-aware archive crawling, we artificially slowed down the
crawls so that they would take as long as the entire time period
covered by the dataset. This is done by replaying crawls from
our stored data with virtual time. Obviously, slowing down
a crawl so that it would take months or even a whole year is
quite extreme and does not correspond to what you would do
in reality. But in this way, we impose a large number of page
changes on each crawl and turn our experiments into more
informative stress-test studies.

The synthetic datasets simulate changes according to the
Poisson process and are used in sensitivity experiments (see
Sect. 9.6). The change rates are modeled with a skewed
distribution: λi = 1/((i + 1)skew). The Web graph of a
synthetic site is generated to form a tree with n pages;

Table 6 Datasets
Dataset Abbreviation Web site Periodicity Time range Pages Changing pages

MPII MPII mpi-inf.mpg.de daily 08.09–07.10 72,071 1,356
DMOZ DMOZ dmoz.org weekly 10.09–07.10 177,446 50,855
UKGOV MOD mod.uk weekly 08.03–02.06 10,047 5,988
UKGOV DFID dfid.gov.uk weekly 08.03–02.06 2,186 1,131
UKGOV ARMY army.mod.uk weekly 08.03–02.06 37,330 15,259
UKGOV RAF raf.mod.uk weekly 08.03–02.06 27,836 4,286
UKGOV DH dh.gov.uk weekly 08.03–02.06 15,884 12,203
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each page pi has outdegree children. The default values are
skew = 1.2, outdegree = 400, and n = 10, 000. To corre-
late site structure with skewed change rates, we generated
Web sites in two flavors. The first flavor has the hottest page
at the root of the site tree, and the pages are gradually “cool-
ing down” toward the leaves (denoted by “Cold Leaves” in
Tables 11, 12, 13, 14 , 15, 16, 17, 18, 19, 20, 21). The sec-
ond flavor consists of sites where the root is coldest, and the
pages are gradually “heating up” toward the leaves (denoted
by “Hot Leaves” in the captions).

9.4 Blur experiments with single-visit strategies

The results of the experiments on blur with single-visit strat-
egies over real-world datasets are shown in Table 7. The
best values for each dataset are highlighted in boldface.
SHARC-offline outperforms all competitors by a large mar-
gin. SHARC-online with change-rate oracle performs nearly
as well as the optimal SHARC-offline method. Its addi-
tional burden, compared to SHARC-offline, is that it needs
to incrementally detect the pages of a Web site. The exper-
iments show that the penalty of this page discovery process
is low.

SHARC-online with predicted change rates leads a more
pronounced increase in the blur metric. Obviously, estima-
tion errors about which pages are hot and which ones are not
so hot have a notable influence on the overall quality of a
site capture. As a consequence, SHARC-online may even be

slightly inferior to more traditional baselines on some data,
but it wins by a large margin for most datasets. Note that the
traditional baselines used a change-rate oracle; so the slight
losses of SHARC-online are mostly due to the facts that the
opponents had better a priori knowledge about changes.

Overall, this experiment showed that our blur-optimizing
strategies do indeed provide what our theory suggested: they
clearly improve the quality of site captures for web archiving.

9.5 Incoherence experiments with visit–revisit strategies

The results of the experiments on incoherence with visit–
revisit strategies over real-world datasets are shown in Table 8
with change rate oracle and Table 9 with change rate predic-
tors, respectively.

For the tests with change rate oracle, the SHARC-
selective strategies outperformed all baseline opponents by a
substantial margin. SHARC-selective offline exhibits inco-
herence values that are lower than those of the competitors
by more than a factor of 3. SHARC-online did not perform
quite as well as its offline counterpart, but it is not much
worse and still much better than all online competitors. On
one specific dataset, SHARC-selective online outperformed
the offline variant, but it is due to “random” effects regarding
lucky situations by the order in which pages are detected.
SHARC-revisits are designed to minimize the blur metric
(not shown here) and performed moderately on incoherence.
The flexibility that the SHARC-selective strategies have in

Table 7 Average blur per page
Site SHARC HF HL BFS DFS OP

Offline Online Online
Oracle Oracle Predicted Oracle Oracle Oracle

MPII 0.12 0.13 0.16 0.26 0.15 0.24 0.15 0.18
DMOZ 0.18 0.19 0.23 0.24 0.31 0.25 0.25 0.24
MOD 2.14 2.16 2.17 2.48 2.98 2.41 2.46 3.15
DFID 2.11 2.17 2.17 3.35 2.20 2.51 2.19 2.17
ARMY 1.23 1.26 1.29 1.55 1.65 1.56 1.45 1.81
RAF 0.11 0.11 0.14 0.14 0.15 0.14 0.15 0.15
DH 2.82 2.83 2.94 4.00 3.08 3.08 3.08 3.27

Table 8 Incoherence with
oracle of change rates Site SHARC-selective SHARC HF HF HL HL BFS BFS DFS DFS

Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

MPII 145 453 837 1,013 1,252 751 508 935 1,091 908 726
DMOZ 15,914 25,206 34,233 37,405 42,240 33,413 31,720 35,672 36,176 34,357 33,048
MOD 4,449 4,701 5,803 5,903 5,769 5,766 5,452 5,840 5,475 5,767 4,890
DFID 959 987 1,113 1,110 1,115 1,109 1,104 1,097 1,038 1,079 1,049
ARMY 10,947 12,479 14,052 13,865 14,528 14,008 13,901 14,104 13,996 14,172 13,120
RAF 2,120 3,284 4,096 3,487 4,243 4,077 3,676 3,242 3,192 4,006 3,941
DH 11,376 11,368 11,589 11,514 11,494 11,546 11,457 11,625 11,483 11,625 11,482
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Table 9 Incoherence with
predictor Site SHARC-selective SHARC HF HF HL HL

Offline Online Revisits FIFO LIFO FIFO LIFO

MPII 558 504 720 835 931 808 504
DMOZ 26,016 31,847 34,098 36,553 38,396 34,447 31,847
MOD 4,516 5,089 5,776 5,867 5,662 5,748 5,262
DFID 961 985 1,076 1,102 1,076 1,088 1,054
ARMY 11,774 12,876 14,305 14,290 14,245 14,113 13,796
RAF 3,520 3,745 3,891 4,030 3,615 3,914 3,745
DH 11,360 11,305 11,545 11,596 11,517 11,681 11,612

dealing with hopeless pages pays off well and leads to the
highest gains on sites with a large number of changing pages
like DMOZ, MOD, DH, and ARMY.

When all methods are limited to the realistic case of
relying on a change rate predictor, the SHARC-selective
strategies again win by a substantial margin, as shown in
Table 9. We did no longer include the BFS and DFS strat-
egies in this comparison, as they were already clear losers
in the experiments with change rate oracle. For some data-
sets, SHARC-selective online even performed better than the
offline variant. The explanation lies in the nature of the cor-
responding Web sites. For example, the MPII dataset is very
skewed: there are about 1,000 pages, out of 70,000, with
very high change rates, while the other 69,000 hardly ever
changed. This reduced the quality of the change rate predic-
tor and led to suboptimal behavior. SHARC-selective online,
our natural candidate for deployment in a real system, per-
formed very well across the suite of datasets: usually not
much worse than the offline variant, and sometimes even
better.

Compared to the previous experiment with change rate
oracle (see Table 8), the incoherence values of the predictor-
based methods increased considerably. Although our predic-
tors generally provided decent accuracy, there is room for
improvement in this regard.

We also performed live measurements (as opposed to
experiments replayed from stored data about former crawls)
on a number of sites, using our extended version of the Heri-
trix crawler. Here, we focused on sites which publish sitem-
aps, and we limit ourselves to the three most interesting com-
petitors because each strategy requires a separate crawl in real
time. Running more simultaneous crawls on the same Web
site would influence the crawls themselves, and running dif-
ferent strategies sequentially would make their results incom-
parable as they no longer see the same state of the site.

We crawled selected subsites of dw-world.de (5,309 p
in total), intereconomia.com (2,948 p), and fr.euronews.net
(672 p) defined by available sitemaps. The results are shown
in Table 10. SHARC-selective clearly wins for all sites.

Table 10 Incoherence with sitemaps and Heritrix crawler

Site SHARC HL DFS
Selective LIFO LIFO

dw-world.de 3,655 3,705 3,712
intereconomia.com 2,704 2,723 2,721
fr.euronews.net 643 657 658

Table 11 Scalability: average blur per page (cold leaves)

Size SHARC HF HL BFS DFS OP

Offline Online

1 · 104 1.21 1.70 1.75 2.26 2.00 1.80 2.28
5 · 104 1.25 1.75 1.80 2.38 2.07 1.83 2.42
1 · 105 1.27 1.77 1.82 2.44 2.13 1.87 2.48
5 · 105 1.30 1.81 1.86 2.52 2.18 2.00 2.56
1 · 106 1.31 1.83 1.87 2.55 2.19 2.01 2.59

Table 12 Scalability: average blur per page (hot leaves)

Size SHARC HF HL BFS DFS OP

Offline Online

1 · 104 1.19 1.21 2.24 1.44 1.28 1.22 2.25
5 · 104 1.25 1.26 2.39 1.53 1.92 1.81 2.42
1 · 105 1.26 1.27 2.43 1.55 1.36 1.30 2.47
6 · 105 1.29 1.30 2.52 1.60 1.39 1.96 2.56
1 · 106 1.31 1.31 2.55 1.61 2.21 1.94 2.59

9.6 Sensitivity studies

In this section, we studied the sensitivity of our crawl strate-
gies with regard to the scale (size) of a Web site, the skew in
the change rate distribution of a site’s pages, and the polite-
ness-driven duration of the crawl. As we wanted to vary these
parameters systematically, we performed these experiments
with synthetically generated Web sites.

Scalability. Tables 11 and 12 show blur results for Web sites
with hotter pages closer to the root and hotter pages closer
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Table 13 Scalability:
incoherence (cold leaves) Size SHARC-selective SHARC HF HF HL HL BFS BFS DFS DFS

Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

1 · 104 3,075 3,075 4,104 4,184 4,140 4,177 3,079 4,170 3,719 4,163 3,995
5 · 104 11,940 11,940 17,327 17,394 17,959 17,397 12,100 17,368 16,072 17,418 16,366
1 · 105 21,378 21,378 32,051 32,142 33,705 32,110 21,533 32,015 29,033 32,129 29,395

Table 14 Scalability:
incoherence (hot leaves) Size SHARC-selective SHARC HF HF HL HL BFS BFS DFS DFS

Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

1 · 104 3,019 3,039 4,143 4,140 4,057 4,165 3,238 4,136 3,785 4,175 3,999
5 · 104 11,830 11,997 17,377 17,321 17,925 17,330 12,364 17,288 16,582 17,366 15,397
1 · 105 21,417 21,630 32,295 32,050 33,776 32,313 22,165 32,028 30,618 32,181 29,664

Table 15 Crawl duration:
average blur per page (cold
leaves)

Slow-down SHARC HF HL BFS DFS OP

Offline Online

1 1.20 1.68 1.97 2.25 2.21 1.78 2.28
2 2.41 3.38 3.96 4.50 4.36 3.46 4.41
3 3.58 5.02 5.89 6.70 6.48 5.07 6.54
4 4.79 6.72 7.88 8.98 8.81 7.28 8.77
5 5.99 8.38 9.83 11.21 10.77 8.58 10.95
10 12.00 16.83 19.75 22.48 21.62 16.75 22.00

to the leaves, respectively. While SHARC-online is only
slightly worse than SHARC-offline in Table 12, the differ-
ence between the strategies is more prominent in Table 11.
This difference appears because we discover cold pages
much later in Table 12 and misguide the schedule for page
downloads by seeing mostly hot pages early on.

SHARC-online consistently outperforms all baseline
opponents. Schedules of HF for the dataset with cold leaves
and HL for the hot leaves are very similar to the schedule of
SHARC-online. Consequently, HF and HL perform almost
as well as SHARC-online in some cases, but strongly deteri-
orate in the other cases. Moreover, they are much more sen-
sitive to the size of a Web site. The sensitivity comes from
the strong influence of the different sizes on the number of
leaves and consequently on the placement of the hot and cold
pages in the schedule.

Tables 13 and 14 show scalability results for the incoher-
ence measure with visit–revisit strategies. SHARC-selective
strategies outperform all competitors, with increasing gains
as the size of the site increased. SHARC-selective online
produces schedules identical to those of the offline variant
for hot pages near the root (Table 13), as it detects these
pages early. For the dual case of hot pages near the leaves
(Table 14), SHARC-selective online lost against its offline
counterpart, but still outperformed all other opponents by a
large margin.

Table 16 Crawl duration: average blur per page (hot leaves)

Slow-down SHARC HF HL BFS DFS OP

Offline Online

1 1.20 1.22 2.27 2.10 1.86 1.85 2.27
2 2.39 2.42 4.48 4.17 2.47 2.46 4.40
3 3.60 3.65 6.73 6.25 3.92 4.02 6.56
4 4.80 4.86 8.99 8.37 7.55 7.47 8.77
5 5.98 6.07 11.19 10.42 8.29 8.24 10.94
10 12.01 12.18 22.47 20.92 17.67 18.79 22.03

Crawl Duration. In this experiment, we increased the polite-
ness delay by a specified slow-down factor. Tables 15 and 16
show the resulting blur values. For all strategies, the capture
interval increases, and in turn, the blur increases as well. For
short captures, all competitors perform similarly, as crawling
is almost “instantaneous”. For longer captures, our SHARC
strategies become increasingly advantageous over the com-
petitors.

SHARC-online outperforms all other online strategies.
The only exception is the DFS strategy for the longest crawl
and the dataset with cold leaves. The specific placement of the
changes in the tree of the Web site made the schedule of the
DFS slightly closer to the schedule of SHARC-offline. How-
ever, as the placement of the hot pages changes (Table 16),
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Table 17 Crawl duration:
incoherence (cold leaves) Slow-down SHARC-selective SHARC HF HF HL HL BFS BFS DFS DFS

Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

1 3,058 3,058 4,215 4,172 4,118 4,212 3,062 4,176 3,931 4,222 3,695
2 4,608 4,607 58,65 5,875 5,359 5,857 4,919 5,811 5,317 5,887 5,542
3 5,672 5,673 6,945 7,009 6,193 6,984 6,301 6,984 6,215 6,975 6,336
4 6,255 6,286 7,695 7,678 6,646 7,711 7,287 7,701 6,814 7,703 6,842
5 6,721 6,753 8,207 8,214 7,009 8,224 7,985 8,224 7,221 8,195 7,414
10 7,906 7,903 9,443 9,419 8,003 9,432 9,488 9,415 8,561 9,425 8,619

Table 18 Crawl duration:
incoherence (hot leaves) Slow-down SHARC-selective SHARC HF HF HL HL BFS BFS DFS DFS

Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

1 3,002 3,006 4,102 4,115 4,083 4,150 3,216 4,091 3,735 4,170 4,006
2 4,547 4,859 5,778 5,767 5,281 5,741 5,288 5,733 5,598 5,818 5,305
3 5,552 6,387 6,835 6,894 6,066 6,833 6,774 6,896 6,531 6,887 6,260
4 6,221 6,466 7,697 7,689 6,696 7,688 7,816 7,690 6,856 7,681 6,953
5 6,744 6,847 8,208 8,215 7,092 8,210 8,541 8,222 7,379 8,195 7,634
10 7,959 8,075 9,431 9,436 8,118 9,414 9,760 9,403 8,708 9,446 8,309

Table 19 Skew: average blur per page

Skew SHARC HF HL BFS DFS OP

Offline Online

(a) Cold leaves
0.50 60.49 67.00 73.53 73.84 71.79 67.63 69.23
1.00 2.57 3.35 3.99 4.40 4.29 3.54 4.20
1.50 0.61 0.88 1.08 1.21 1.18 1.00 1.22
2.00 0.37 0.58 0.70 0.74 0.74 0.63 0.74

(b) Hot leaves
0.50 60.38 62.38 73.71 72.02 69.01 69.56 69.23
1.00 2.55 2.61 4.39 4.17 3.10 3.15 4.16
1.50 0.62 0.62 1.22 1.16 1.06 1.11 1.22
2.00 0.38 0.38 0.75 0.71 0.38 0.38 0.75

the cold pages are discovered earlier and SHARC-online sub-
stantially outperforms DFS.

For visit–revisit strategies aiming at low incoherence, the
results are shown in Tables 17 and 18. The SHARC-selec-
tive methods outperform all competitors. The online method
is very close to the offline variant, and sometimes even better
(see Table 17). This is due to “random” effects: early discov-
ery of hopeless (very hot) pages resulted in almost identical
schedules for online and offline methods. But for the dual
case with hot pages closer to leaves (Table 18), the offline
strategy consistently outperforms the online variant as the
latter discovers hopeless pages much later and thus places
them in suboptimal slots.

Skew. Skew controls how uniformly the changes are dis-
tributed among the pages. High skew allocates most of the
changes to very few pages, while low skew keeps the changes
uniformly distributed. In absolute numbers, this results in

high blur for low skew and low blur for high skew for all
strategies. Table 19 shows the results for this sensitivity study
with the single-visit strategies aiming at low blur. Relative
to the baseline opponents, the SHARC strategies cope best
with high skew. Their relative gains increase with increasing
skew.

Tables 20 and 21 show the result of the study with visit–
revisit strategies aiming at low incoherence. SHARC-selec-
tive offline is the best strategy, and SHARC-selective online
is second best. For large skew values (skew > 1) and hot
pages closer to leaves, the online method does not differ from
the offline variant, since very few pages are very hot and their
late discovery by the online crawler does not influence the
schedule anymore.

10 Conclusion and future work

Data quality is crucial for the future exploitation of Web
archives. To this end, the paper defined and investigated two
quality measures: blur and coherence. The blur measure is
appropriate for explorative use of archives. The coherence
measure is appropriate for legally tangible use of archives.
For each of the measures, we presented strategies applicable
in practice. SHARC-online minimizes the blur, and SHARC-
selective maximizes coherence. The experiments confirm
that SHARC-online and SHARC-selective outperform their
competitors.

Directions for future work include the following. First,
experiments with sitemaps revealed that some sites change
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Table 20 Skew: incoherence
(cold leaves) Skew SHARC-selective SHARC HF HF HL HL BFS BFS DFS DFS

Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

1.00 7,061 7,073 8,518 8,517 7,257 8,504 8,110 8,540 7,623 8,509 7,567
1.50 365 367 1,064 1,037 1,308 1,060 710 1,056 1,119 1,035 935
2.00 11 35 169 174 246 176 210 178 223 170 175

Table 21 Skew: incoherence
(hot leaves) Skew SHARC-selective SHARC HF HF HL HL BFS BFS DFS DFS

Offline Online Revisits FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO

1.00 7,012 7,151 8,455 8,479 7,283 8,475 8,587 8,516 7,790 8,486 7,316
1.50 355 355 1,018 1,010 1,237 1,033 362 1,035 714 1,022 1,157
2.00 20 20 182 174 225 171 22 177 186 181 169

very frequently, and it is not possible to capture them entirely
coherently. Instead, the large subsites for coherent captures
should be identified. Second, it would be interesting to incor-
porate the importance (priority weight) of pages into the
framework. The importance weights may depend on the
freshness requirements on the pages, access frequency as
estimated, for example, from logs, and so on. Third, it would
be interesting to develop strategies for continuous and incre-
mental crawling. In such settings, we would no longer distin-
guish individual captures but would continuously visit pages
driven by archiving priorities.
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