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Abstract Imagine a system that gives you satisfying rec-
ommendations when you want to rent a movie with friends
or find a restaurant to celebrate a colleague’s farewell: at the
core of such a system is what we call group recommendation.
While computing individual recommendations have received
lots of attention (e.g., Netflix prize), group recommendation
has been confined to studying users’ satisfaction with dif-
ferent aggregation strategies. In this paper (Some results are
published in an earlier conference paper (Amer-Yahia et al. in
VLDB, 2009). See Sect. “Paper contributions and outline”
for details.), we describe the challenges and desiderata of
group recommendation and formalize different group con-
sensus semantics that account for both an item’s predicted
ratings to the group members and the disagreements among
them. We focus on the design and implementation of efficient
group recommendation algorithms that intelligently prune
and merge per-user predicted rating lists and pairwise dis-
agreement lists of items. We further explore the impact of
space constraints on maintaining per-user and pairwise item
lists and develop two complementary solutions that leverage
shared user behavior to maintain the efficiency of our recom-

S. Basu Roy (B) · A. Chawla · G. Das
University of Texas at Arlington, Arlington, TX, USA
e-mail: senjuti.basuroy@mavs.uta.edu

A. Chawla
e-mail: achawla@uta.edu

G. Das
e-mail: gdas@uta.edu

S. Amer-Yahia
Yahoo! Research, Barcelona, Spain
e-mail: sihem@yahoo-inc.com

C. Yu
Google Research, New York, USA
e-mail: congyu@google.com

mendation algorithms within a space budget. The first solu-
tion, behavior factoring, factors out user agreements from
disagreement lists, while the second solution, partial mate-
rialization, selectively materializes a subset of disagreement
lists. Finally, we demonstrate the usefulness of our group
recommendations and the efficiency and scalability of our
algorithms using an extensive set of experiments on the 10 M
ratings MovieLens data set.

Keywords Group recommendation · Top-k algorithm

1 Introduction

Recommender systems have grown to become very effective
in suggesting items of high relevance to individual users.
Group recommendation, or the task of finding items that
please a set of users, on the other hand, started to received
attention relatively recently [3,4,6,11,13,17–19]. We envi-
sion a system that a community of users can consult when
planning an activity together such as looking for a book for a
reading club, finding a restaurant to celebrate a project mile-
stone with colleagues, or renting a movie to watch at a girls’
night out. In this paper, we study this problem with a focus
on time and space efficiency.

Even more so than in traditional individual recommenda-
tion, identifying items of high relevance to a group is chal-
lenging: What if group members disagree on their favorite
items (e.g., people who prefer non-fiction books vs those who
like fiction, in a book reading club)? What if there is a group
member whose tastes highly differ from all others (e.g., a
vegetarian going to a restaurant with non-vegetarians)? At
its core, group recommendation necessitates the modeling
of disagreements between group members and aims to find
items with high predicted rating that also minimize disagree-
ments between group members. In other terms, it is more
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desirable to return an item that each group member is happy
with than to return an item that polarizes group members
even if the latter has higher average ratings among them. In
this work, we formalize the notion of consensus functions
that capture such real-world scenarios.

Intuitively, the general form of consensus functions is a
weighted combination of predicted rating and pairwise dis-
agreement. For a given user, her individual preference (i.e.,
predicted rating generated by an underlying recommender
system) for items can be maintained in the so-called pre-
dicted rating list. We can then leverage Fagin-style merge
algorithms [8] to generate items to be recommended to the
group based on individual lists of items sorted by their pre-
dicted ratings to each group member. Unfortunately, while
item disagreements between users can be computed from
their predicted rating lists, they do not increase or decrease
monotonically with the predicted ratings: two users who both
think highly of an item may still disagree more on that item
than on an item they both dislike. This drastically reduces the
pruning power of the merge algorithms. To address this issue,
we introduce pairwise disagreement lists which are precom-
puted from predicted rating lists and sorted in decreasing
order of disagreements. Both predicted rating lists and pair-
wise disagreement lists can then be merged, using Fagin-style
algorithms, to find items to recommend to a group.

Without prior knowledge of what groups can be formed
between users, a disagreement list has to be created for every
user pair. In practice, this introduces enormous space require-
ments. A back-of-the-envelope computation shows that with
a modest 70K-user, 10K-item database, a total of about 2TB
space is needed to store the 14 trillion list entries in pairwise
disagreement lists. To address this concern, we develop space
reduction strategies which exploit two key characteristics of
disagreement lists. First, entries in those lists may be redun-
dant due to shared user behavior. Our strategy that factors out
common entries in disagreement lists without affecting I/O.
Second, all lists do not contribute equally to processing time
because of different rating distributions. We develop a partial
materialization strategy that identifies which subset of lists
to materialize in order to maximize space reduction and min-
imize processing time.

Intuitively, if two users (u and v) agree on many items,
their disagreement lists with all other users will be the same
for those items. In other terms, given any other user w, the
entries corresponding to the items that u and v agree on in
the (u, w) disagreement list will be the same as those in the
(v,w) disagreement list. Hence, they can be stored only once,
instead of being replicated in all lists. We call this behavior
factoring in disagreement lists. We formalize the problem
and devise an algorithm for efficiently factoring common
entries in disagreement lists. This space-saving strategy
requires changes to the group recommendation algorithm to
process factored lists.

Factoring comes for free and always saves space when at
least two users agree on some items. Unfortunately, if a space
budget is imposed, factoring alone does not always guaran-
tee to produce a set of lists within that budget. We further
explore partial materialization as a complementary space
reduction strategy which selectively materializes a subset of
the disagreement lists. In a nutshell, a disagreement list that
does not significantly affect processing time and consumes
too much space should be dropped. Not surprisingly, partial
materialization may negatively affect processing time since
the benefit of non-materialized disagreement lists will be lost.
We formulate partial materialization as a variant of the Knap-
sack problem and develop an algorithm which identifies the
subset of lists to materialize.

1.1 Paper contributions and outline

We make the following contributions in this paper:

1. We formalize the problem of top-k group recommenda-
tion and use a model for group consensus similar to the
social value functions developed in [18] to incorporate
various predicted rating and disagreement models.

2. We propose the use of pairwise disagreement lists, and
design and implement efficient group recommendation
algorithms based on the merging and effective prun-
ing of individual predicted rating lists and pairwise
disagreement lists.

3. Given the potentially large number of disagreement lists,
we exploit shared user behavior to reduce the space
requirement of those lists. As a result, we extend the
group recommendation algorithms to process factored
lists. We show that factoring common entries in disagree-
ment lists can drastically reduce storage space without
incurring I/O overhead.

4. The factoring strategy does not always guarantee reach-
ing a fixed space budget. To achieve a certain space
budget, we develop a partial materialization strategy
which exploits the size of each disagreement list and
their impact on query processing: it skips disagreement
lists in order to minimize space, while incurring small
processing time overhead. We formalize this question as
an adaptation of the Knapsack problem and develop an
algorithm to solve it.

5. We run an extensive set of experiments with different
group sizes on MovieLens data sets. We perform exten-
sive user study in Amazon’s Mechanical Turk to dem-
onstrate the effectiveness of our group recommendation
semantics and how satisfied users are with recommended
group ratings compared to individual ones. Our elaborate
performance experiments exhibit the efficiency of group
recommendation computation. We also demonstrate the
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benefit of behavior factoring and partial materialization
on space.

We note here that the group recommendation problem
definition and the basic group recommendation algorithms
were first introduced in the conference version [3] of this
paper. Furthermore, [3] also discussed partial materializa-
tion to a certain extent. However, the partial materialization
algorithms described here address the problem in a more
formal way. Behavioral factoring is introduced for the first
time here. The rest of the paper is organized as follows. Sec-
tion 2 provides some background and formalism. It describes
the family of consensus functions we tackle in this paper
and defines the group recommendation problem. Section 3
describes the group recommendation algorithm. Section 4
presents our behavior factoring strategy and a revision of the
group recommendation algorithm to operate on factored lists.
Section 5 discusses partial materialization in the presence of
a space budget and develops our adaptation of the Knap-
sack problem to achieve partial materialization post factor-
ing. Experiments are presented in Sect. 6. Section 7 contains
the related work. We conclude in Sect. 8.

2 Background and data model

Let U denote the set of users and I denote the set of items
(e.g., movies, travel destinations, restaurants) in the system.
Each user u may have provided a rating for an item i in the
range of 0 to 5, which is denoted as rating(u, i). If the
user has not provided a rating for an item, the rating is set
to ⊥. We further generate predicted ratings for each pair of
user and item, denoted as predictedrating(u, i). This
predicted rating comes from two sources. If the user has pro-
vided a rating for the item, then it is simply the user provided
rating. Otherwise, it is generated by the system using a rec-
ommendation strategy as outlined next.

2.1 Individual recommendation model

We review the two most popular families of recommendation
strategies. These strategies rely on finding items similar to
the user’s previously highly rated items (item-based), or on
finding items liked by people who share the user’s interests
(user-based) [1].

2.1.1 Item-based strategies

These are the oldest recommendation strategies. They aim to
recommend items similar to those the user preferred in the
past. While different strategies use different approaches to
compute the predicted rating, we present one common for-
mulation. The rating of an item i ∈ I by a current user u ∈ U

is estimated as follows:

predictedrating(u, i)

= Avgi ′∈I & rating(u,i ′) �=⊥ItemSim(i, i ′)
×rating(u, i ′).

Here, ItemSim(i, i ′) returns a measure of similarity
between two items i and i ′. Item-based strategies are very
effective when the given user has a long history of rating
activity. However, item-based strategy do not work well when
a user first joins the system. To address that collaborative
filtering strategies have been proposed, which we briefly de-
scribe next.

2.1.2 User-based strategies

These strategies aim to recommend items, which are highly
rated by users who share similar interests with or have
declared relationship with the given user. The key of this
method is to find other users connected to the given user.
The rating of an item i by a user u is estimated as follows:

predictedrating(u, i)

= Avgu′∈U & rating(u′,i) �=⊥UserSim(u, u′)
×rating(u′, i)

Here, UserSim(u, u′) returns a measure of similarity or
connectivity between two users u and u′ (it is 0 if u and u′
are not connected). Collaborative filtering strategies broaden
the scope of items being recommended to the user and have
become increasingly popular.

We note that there are also so-called fusion strategies [14],
which combine ideas from item-based and collaborative fil-
tering strategies, and model-based strategies, which leverage
machine learning techniques. While we do not consider them
in this paper, we note that group recommendation does not
rely on one specific strategy to generate recommendations
for individual group members.

2.2 Group recommendation model

The goal of group recommendation is to compute a recom-
mendation score for each item to reflect the interests and pref-
erences of all the group members. In general, group members
may not always have the same tastes and a consensus score
for each item needs to be carefully designed. Intuitively, there
are two main aspects to the consensus score. First, the score
needs to reflect the degree to which the item is preferred by
the members. The more group members prefer an item, the
higher its score should be for the group. Second, the score
needs to reflect the level at which members disagree or agree
with each other. All other conditions being equal, an item
that members agree most about should have a higher score
than an item with a lower overall group agreement. We call
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the first aspect group predicted rating and the second aspect
group disagreement.

Definition 1 (Group Predicted Rating) The predicted rating
of an item i by a group G, denoted as grouppredicte−
drating(G,i), is an aggregation over the predicated rating
of each group member, predictedrating (u, i) where
u ∈ G. We consider two main aggregation strategies:

(1) Average:
grouppredictedrating(G, i)
= 1

|G|
∑

(predictedrating(u, i))

(2) Least-Misery:
grouppredictedrating(G, i)
= Min(predictedrating(u, i))

Average and least-misery aggregation models are
considered because they are the most prevalent mechanisms
being employed currently [11]. Alternative aggregations (e.g.
Most-Happiness, i.e., taking the maximum over all individual
predicted ratings) are also possible.

Definition 2 (Group Disagreement) The disagreement of a
group G over an item i , denoteddis(G, i), reflects the degree
of consensus in the predicted ratings for i among group mem-
bers. We consider the following two main disagreement com-
putation methods:

(1) Average Pairwise Disagreements:
dis(G, i)= 2

|G|(|G|−1)

∑
(|predictedrating

(u, i)− predictedrating(v, i)|),
where u �= v and u, v ∈ G;

(2) Disagreement Variance:
dis(G, i) = 1

|G|
∑

u∈G (predictedrating(u, i) −
mean(G,i))2, where mean(G,i) is the mean of all the
individual predicted ratings for the item i .

The average pairwise disagreement function computes the
average of pairwise differences in predicted ratings for the
item among group members, while the variance disagreement
function computes the mathematical variance of the predicted
ratings for the item among group members. Intuitively, the
closer the predicted ratings for i between users u and v, the
lower their disagreement for i . In Sect. 3.1, we will charac-
terize the properties of both disagreement functions in detail.

Finally, we combine group predicted rating and group
disagreement in the consensus function.

Definition 3 (Consensus Function) The consensus function,
denoted F(G, i), combines the group predicted rating and
the group disagreement of i for G into a single group recom-
mendation score using the following formula:F(G, i) = w1×
grouppredictedrating(G, i)+w2 ×(1−dis(G, i)),

where w1 + w2 = 1.0 and each specifies the relative impor-
tance of predicted rating and disagreement in the overall
recommendation score.

While one could design more sophisticated consensus
functions (see [19] for an example), we adopt this general
form of weighted summation of group predicted rating and
group disagreement for its simplicity, and the fact that the
family of threshold algorithms can be easily applied for the
computation. We note here that the commonly used least-mis-
ery model maps to the case where w1 = 1.0 and group pre-
dicted rating is aggregated using the least-misery function.

2.3 Problem statement

Problem (Top-k Group Recommendation). Given a user
group G and a consensus function F , identify a list IG of
items such that:

1. |IG | = k
2. Items in IG are sorted on their decreasing group recom-

mendation score as computed by the consensus function
F , and � j ∈ I s.t. F(G, j) > F(G, i), j /∈ IG, i ∈ IG .

3 Efficient computation of group recommendation

In this section, we discuss efficient group recommendation
algorithms. We first examine the applicability of existing
top-k processing algorithms, then present our solution. We
then discuss how to improve our algorithm with threshold
tightening strategies that benefit from users’ predicted rating
lists.

3.1 Applicability of top-k threshold algorithms

Many of the best algorithms for computing top-k items
belong to the family of threshold algorithms [8]. Given an
overall scoring function that computes the score of an item
by aggregating scores from individual components, threshold
algorithms consume sorted item lists that correspond to each
component. Those input lists are scanned using sequential or
random accesses, and the computation can be terminated ear-
lier using stopping conditions based on score bounds (thresh-
olds). Early stopping is possible when the scoring function
is monotone, i.e., if component c is the only component in
the scoring function and items i1 and i2 differ in their scores,
the overall score of i1 is no less than i2’s if i1’s score on c is
no less than i2’s score on c.

Recall from Definition 3 that our consensus function is
a weight summation of two components, group predicted
rating and group disagreement. It is clear that the consensus
function itself is monotone in the two individual components.
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u1
--------
(i1, 4)
(i2, 3)

u2
--------
(i1, 3)
(i2, 3)

u1
--------
(i2, 3)
(i1, 4)

u2
--------
(i1, 4)
(i2, 4)

(a) (b)

Fig. 1 Group disagreement is not monotonic w.r.t. predicted rating
lists

In other words, if two items have the same group disagree-
ment, the item with the higher group predicted rating will
have at least the same group recommendation score, and vice
versa.

It is also clear that the two group predicted rating functions
proposed in Definition 1 are themselves monotone in the pre-
dicted ratings of individual members. If all group members,
except u, rate items i1 and i2 the same, i1 will have at least the
same group predicted rating score as i2 if u rates i1 no less
than i2. This holds for both the average and the least-misery
strategies.

It is, however, not clear whether the group disagreement
functions proposed in Definition 2 are monotone. In this sec-
tion, we prove that the two group disagreement functions
proposed can be transformed into aggregations of individual
pairwise disagreements and become monotone. This means
we can apply threshold algorithms to compute the overall
recommendation score with individual predicted rating lists
and pairwise disagreement lists as inputs and take advantage
of the pruning power that threshold algorithms give us.

3.2 Monotonicity of group disagreements

We use a simple example group of two users to show that
computing group disagreement based on predicted ratings
of individual members is not monotonic. Figure 1a illus-
trates the two sorted predicted rating lists for the two users
(u1 and u2). It is clear that while i1 has a higher predicted rat-
ing for u1 than i2 (4 vs. 3), the group disagreement score for
i2 is in fact higher (1 instead of 0). The same non-monotonic-
ity can be encountered when predicted rating lists are sorted
in decreasing order (as shown in the example in Fig. 1b).
Hence, the problem of non-monotonicity of disagreement in
predicted rating lists persists regardless of the order in which
predicted rating lists are sorted.

To address this problem, we propose to maintain pair-
wise disagreement lists instead and prove their monotonic-
ity properties for the two group disagreement functions in
Definition 2.

A pairwise disagreement list (or simply disagreement list)
for users u and v is a list of items that are sorted in the
increasing order of the difference between their predicted
rating scores for u and v. For an item i , we use Δi

u,v =
|predictedrating(u, i)−predictedrating(v, i)|
to denote this predicted rating difference.

Observation 1 The average pairwise disagreement function
in Definition 2 is monotonic w.r.t. pairwise disagreement lists.

Proof Let us assume a group G = {u1, u2, . . . , u p} with
all its p(p − 1)/2 disagreement lists (one for each user
pair). Also assume that there are a total of t items,
I = {i1, i2, . . . , it }. Note that we want to retrieve items with
minimum disagreements first. Consider two items ir and is

within I.
The group disagreement for ir and is can be written as:

f × �∀ j,k=1,2,...,p(Δ
ir
u j ,uk ) and f × �∀ j,k=1,2,...,p(Δ

is
u j ,uk ),

respectively, where f = 2
p(p−1)

(see Definition 2).

Without loss of generality, assume we have Δ
ir
ux ,uy <

Δ
is
ux ,uy and ∀ j, k = 1, 2, . . . , p,Δ

ir
u j ,uk = Δ

is
u j ,uk , where

( j, k) �=(x, y). It is easy to see that f ×�∀ j,k=1,2,...,p(Δ
ir
u j ,uk )

< f × �∀ j,k=1,2,...,p(Δ
is
u j ,uk ).

If the number of disagreement lists is restricted to m,1 the
monotonicity property can still be maintained by assuming
the minimum disagreement values (0) for any unavailable
user pairs during top-k computation. ��

In the disagreement variance model in Definition 2, dis-
agreement over an item is defined as the variance in predicted
ratings among all group members. In other words, the pre-
dicted rating by each member is compared against the mean
predicted rating of the group. We now show that this dis-
agreement function can in fact be monotonically aggregated
from pairwise disagreement lists.

Observation 2 The disagreement variance function in
Definition 2 is monotonic w.r.t. pairwise disagreement lists.

Proof Let us consider the group G and set of items I in
Lemma 1. Consider two items ir and is . The group disagree-
ment of ir and is can be written as:

�∀ j∈p[predictedrating(u j , ir )− �∀i∈ppredictedrating(ui ,ir )

p ]2
p

and

�∀ j∈p[predictedrating(u j , is )− �∀i∈ppredictedrating(ui ,is )
p ]2

p

We can transform this disagreement variance formula for
ir into (ignoring p):

[Δir
12 + Δ

ir
13 + · · · + Δ

ir
1p]2 + [Δir

21 + Δ
ir
23 + · · · + Δ

ir
2p]2

+ · · · + [Δir
p1 + Δ

ir
p2 + · · · + Δ

ir
p(p−1)]2

1 We discuss partial materialization of disagreements lists in Sect. 5.
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which can be further expressed as:

[Δir
12]2 + · · · + [Δir

1p]2 + · · · + 2 × [Δir
12][Δir

13]
+ 2 × [Δir

12][Δir
14] + · · ·

It is clear that the above-mentioned formula is a monotonic
aggregation of [Δ jk]∀ j, k ∈ p. Without loss of generality,

assume we have Δ
ir
ux ,uy < Δ

is
ux ,uy and ∀ j, k ∈ p,Δ

ir
u j ,uk =

Δ
is
u j ,uk , where ( j, k) �= (x, y). It is easy to see that the

disagreement variance of ir is less than the disagreement
variance of is . Hence, we have proved that using pairwise
disagreement lists is sufficient to compute disagreement var-
iance in a monotonic fashion. ��

Materializing all possible pairwise disagreement lists may
not be practical since the number of such lists grows quadrat-
ically in the number of users. We discuss behavior factoring
in Sect. 4 to save space and in Sect. 5, we discuss, given a
fixed space constraint, which pairs to materialize in order to
produce the best performance with threshold algorithms.

3.3 Group recommendation algorithms

Given a group G, the goal, stated in Sect. 2.3, is to return
the k best items according to a consensus function F (see
Definition 3). We describe several algorithms for this prob-
lem; with each algorithm being a variant of the well-known
TA [8] for top-k query processing.

The Full Materialization (FM) Algorithm: We start by
describing Algorithm 1, which admits predicted rating lists
IL of each user in the input group G and disagreement
lists DL for every pair of users in G. ILs are sorted in
decreasing order of predicted rating, and DLs are sorted in
increasing order of disagreement. These predicted rating lists
and disagreement lists of a group are akin to attributes on
which the algorithm TA [8] works. We refer to Algorithm 1
as FM (Full Materialization).

Each IL is obtained using an individual recommendation
strategy (as described in Sect. 2.1). Each DL is generated for
a user pair and records the difference in scores for all items
in their respective ILs.

We showed in Sect. 3.1 that pairwise disagreement lists
guarantee monotonicity for both pairwise and variance dis-
agreements, thereby allowing FM to rely on a threshold for
early stopping. Our algorithm makes sequential access (SA)
on each input lists (predicted rating and disagreement) in
a round-robin fashion (lines 3 and 12) and reads an entry
e = (i, r), where i is the item-id and r is the predicted rat-
ing or disagreement value associated with it. There are two
routines: ComputeExactScore that computes the score
of the current item, and ComputeMaxScore that produces
a new threshold value at each round. During the execution

Algorithm 1 Group Recommendation Algorithm with Fully
Materialized Disagreement Lists (FM)
Require: Group G, consensus function F;
1: Retrieve predicted rating lists ILu for each user u in group G;
2: Retrieve disagreement lists DL(u,v) for each user pair (u, v) in group

G;
3: Sr = {∪ru}, the last predicted rating from ILu , ∀u ∈ G
4: SΔ = {∪Δu,v}, the last pairwise disagreement value read on dis-

agreement list, ∀(u, v) ∈ G
5: Cursor cur = getNext() accesses predicted rating lists and dis-

agreement lists in round-robin;
6: while (cur <> NULL) do
7: Get entry e = (i, r) at cur ;
8: if !(inHeap(topKHeap, e)) then
9: if (ComputeMaxScore(Sr , SΔ,F) >

topKHeap.kthscore) then
10: score = ComputeExactScore(i,F) by performing ran-

dom accesses to all ILus for item i ;
11: if score > topKHeap.kthscore then
12: topKHeap.addToHeap(e.i, score);
13: end if
14: else
15: return topKList(topKHeap);
16: Exit;
17: end if
18: end if
19: cur = getNext();
20: end while
21: return topKList(topKHeap);

of the algorithm, we also maintain a bounded buffer(heap)
which stores the top-k elements encountered thus far and
their corresponding exact scores using the input consensus
function F. If a new item is encountered during a sequential
access (SA), ComputeExactScore performs a random
access (RA) on all other predicted rating lists to compute
the score of that item using the input consensus function F.
The main difference between FM and TA is that while SAs
are done on ILs and DLs interchangeably, RAs are only
done on ILs (since disagreement can be computed from
predicted ratings). In fact, DLs are not necessary to compute
the final result. They are only there to compute the threshold
and enable early termination.
ComputeMaxScore produces a new threshold value at

each round. Its basic purpose is to provide an upper bound
of the score of any item that has not yet been seen by the
algorithm. Thus, if ru is the last predicted rating value read
on list ILu for all u ∈ G, and Δu,v the last pairwise disagree-
ment value read on disagreement list DLu,v for all u, v ∈ G,
then the upper bound for the threshold (assuming the average
pairwise disagreement model) is computed as follows:

F(G, i) ≤ w1 × 1

|G|
∑

u∈G
ru + w2

×
⎛

⎝1 − 2

|G|(|G| − 1)

∑

u,v∈G
Δu,v

⎞

⎠
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The Ratings Only (RO) Algorithm: We next describe an-
other variation of the algorithm, called RO (Ratings Only),
which applies when only the predicted rating lists are pres-
ent and none of the DLs are available. RO has the obvi-
ous benefit of consuming less space. As discussed earlier,
the lack of disagreement lists does not have any impact
on ComputeExactScore. However, it has an impact on
how the ComputeMaxScore has to be modified to pro-
duce a (somewhat less tight) threshold value. More precisely,
since disagreement lists are not available, we assume that the
pairwise disagreement between each pair of users for any
unseen item is 0. Thus, the upper bound for the threshold
value only comes from the last values read from each pre-
dicted rating list:

F(G, i) ≤ w1 × 1

|G|
∑

u∈G
ru

The Partial Materialization (PM) Algorithm: Finally, the
most general variant is the case where only some disagree-
ment lists are materialized, referred to as PM (Partial Mate-
rialization). As with RO, PM also has the obvious benefit of
consuming less space than FM. In terms of processing, it dif-
fers from the others in how the threshold is computed. Let
M be the set of all pairs of users for which disagreement
lists have been materialized, the threshold can be computed
as follows:

F(G, i) ≤ w1 × 1

|G|
∑

u∈G
ru + w2

×
⎛

⎝1 − 2

|G|(|G| − 1)

∑

(u,v)∈M

Δu,v

⎞

⎠

Intuitively, one may think that the more DLs are materi-
alized, the tighter the score bound and hence, the faster the
algorithm terminates. It turns out that it is not always the
case. The basic intuition is that overall performance is a bal-
ance between the total number of distinct items which need
to be processed before finding the best k items, referred to as
DIP (Distinct Items Processed), and the number of sequen-
tial accesses, SAs, that result from the proliferation of dis-
agreement lists. Consider the case of a 3-member group. The
question we ask ourselves is when does using two material-
ized lists, DL1 and DL2, perform worse than when only one
materialized list, say DL1, is used? If none of top items in
DL2 is in the final output, each SA on DL2 is pure overhead.
This is exacerbated if the top items in DL1 and DL2, i.e., the
ones with the least disagreement, are distinct. In both cases,
if DL2 does not provide an opportunity to tighten the thresh-
old, the number of SAs using DL1 and DL2 will be much
higher than the number of SAs where only DL1 is used.

The PM variant raises an interesting question—which
pairwise disagreement lists should be materialized as a

preprocessing step? This partial list materialization problem
is discussed in the Sect. 5. But first, in Sect. 3.4, we dis-
cuss interesting and novel techniques by which the threshold
bounds can be sharpened even further.

3.4 Sharpening thresholds

In this subsection, we examine the different variants of theTA
algorithm that we have developed thus far—FM,RO andPM—
and suggest techniques by which their performance can be
further improved, mainly by modifying the ComputeMax-
Score function to compute sharper thresholds that enable
earlier termination.2

Our approach is best illustrated by the following simple
example. Consider a group consisting of two users G =
{u, v}. Recall that ILu (resp. ILu) is the relevant list for
user u (resp. v), and DL(u,v) is the disagreement list of user
pair u and v. Assume that the disagreement list has been
materialized.

Consider a snapshot of the FM algorithm after a certain
number of iterations. Let ru = 0.5, rv = 0.5 and Δu,v =
0.2 be the last predicted rating and disagreement values read
from each list, respectively. The task of the ComputeMax-
Score function is to provide an upper bound on the max-
imum possible value of the consensus function F(G, i) for
any item i that has not yet been seen in any of the lists. Let
the unseen item i’s unknown predicted rating values be iu

and iv for user u and v, respectively. The consensus function
is defined as:

F(G, i) = (iu + iv)/2 + (1 − |iu − iv|/1) (1)

Since each list is sorted in decreasing order of predicted
rating (increasing order of disagreement), it should be clear
that the following inequalities hold:

0 ≤ iu ≤ 0.5

0 ≤ iv ≤ 0.5

0.2 ≤ |iu − iv| ≤ 1

As described in Sect. 3.3, our current approach provides
a simple upper bound for F(G, i) by substituting the upper
bounds for iu and iv (and the lower bound for |iu − iv|) from
the above inequalities, to arrive at the following threshold:

F(G, i) ≤ (0.5 + 0.5)/2 + (1 − 0.2/1) = 0.5 + 0.8 = 1.3

However, a more careful examination of the inequalities
reveals that this bound is not tight. Notice that iu and iv should
be at least 0.2 units apart, thus both cannot be at 0.5. Since
the upper bound of iu is 0.5, iv can be at most 0.3. Thus, we

2 While these techniques appear very promising, we note that they are
the subject of our ongoing investigations—we discuss them in this ver-
sion of the paper primarily to illustrate their potential.
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can derive a sharper bound for F(G, i) as follows:

F(G, i) ≤ (0.5 + 0.3)/2 + (1 − 0.2/1) = 0.4 + 0.8 = 1.2

This example illustrates that due to the dependencies
between the disagreement lists and the predicted rating lists,
there are opportunities for deriving sharper thresholds for
early termination after each iteration of the algorithm. More
generally, after every iteration, we are faced with a for-
mal optimization problem where we seek to maximize the
consensus function over |G| real-valued variables, subject
to various constraints on their values arising from the cur-
sor positions on the predicted rating and disagreement
lists. These optimization problems have seemingly complex
formulations, because the consensus function as well the
inequalities arising from disagreement lists are non-linear,
involving absolute terms (e.g., of the form |iu − iv|) in the
case of average pairwise disagreement, as well as quadratic
terms (e.g., of the form (iu − mean)2) in the case of vari-
ance-based disagreement.

In this paper, we conduct a detailed investigation of the
optimization problem involving the pairwise disagreement
model. Presence of absolute terms in the inequalities and
consensus function makes the optimization problem non-
linear; however, we realize that the non-linear optimization
problem can be reformulated as multiple linear optimization
problems. Solution to this non-linear optimization can be
achieved by solving each linear optimization problems indi-
vidually and finally selecting the linear optimization solution
that offers the maximum objective value.

Using LP-based reformulation technique, optimization
problem in Eq. 1 can be reformulated as two linear opti-
mization problems:

(a) Maximize

F(G, i) = (iu + iv)/2 + (1 − (iu − iv)/1)

s.t.

0 ≤ iu ≤ 0.5

0 ≤ iv ≤ 0.5

0.2 ≤ (iu − iv) ≤ 1

and
(b) Maximize

F(G, i) = (iu + iv)/2 + (1 − (iv − iu)/1)

s.t.

0 ≤ iu ≤ 0.5

0 ≤ iv ≤ 0.5

0.2 ≤ (iv − iu) ≤ 1

Solution to problem 1 is the maximum of the objective
values that linear optimization problems (a) and (b) take. In
general, consensus function involving n variables requires
n! linear reformulations and solving each of them individu-
ally for obtaining the correct optimization value. However,
at the same time, the sizes of the problems themselves are
very small, consisting of only a few variables and constraints
(assuming user group sizes are small), and thus are likely to be
efficiently solvable by reformulating the problem into mul-
tiple linear optimization problems with practically no over-
head per iteration. Note that this reformulation only works
for the absolute operator in the consensus function (pair-
wise disagreement model) and not for the quadratic operator
(variance-based disagreement model).

4 Behavior factoring

In this section, we explore our first space-saving strategy,
which relies on factoring shared behavior from disagreement
lists. The intuition is that if two users have the same rating on
a subset of the items, they can be treated as a single virtual
user whose disagreement lists with other users should only
be stored once. More precisely, if two users u and v agree on a
set of items S, their disagreement lists DL(u,w) and DL(v,w)

with any other user v share the same disagreement values for
items in S. An extreme case is when u1 and u2 agree on every
single item, the two lists DL(u,w) and DL(v,w) are the same.
We begin by defining the factoring set of a pair of users.

Definition 4 (Factoring Set) A factoring set for a pair of
users u and v is the largest set of items in which u and v

agree. This set is referred to as S(u,v) ⊆ I and is defined as
∀i ∈ S(u,v),Δ

i
u,v = 0, where Δi

u,v = |predictedrating
(u, i) − predictedrating(v, i)|

Given a pair of users, (u, v), ∀w ∈ U s.t., w is different
from u and v, the disagreement lists DL(u,w) and DL(v,w),
share the same values for items in S(u,v).

We define a configuration C as the set of disagreement lists
materialized for a user base U . The algorithms developed in
Sect. 3 admit different configurations as input. FM accepts a
configuration where a disagreement list is created for every
user pair in U . RO accepts an empty configuration (since it
only processes predicted rating lists).

Given a space constraint m (number of entries for stor-
ing materialized disagreement lists) and a configuration
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C, factoring aims to output a configuration (C′) such that
size(C′) ≤ m, where size(C′) = ∑

DL(u,v)∈C′(|DL(u,v)|).
The size of predicted rating lists IL(u,v) is ignored since
they are not affected by factoring. We next describe the fac-
toring algorithm in Sect. 4.1 and the modification to query
processing in the presence of factored lists in Sect. 4.2.

4.1 Factoring algorithm

The outline of the algorithm is as follows: factoring
begins by deciding the user pair which has the largest fac-
tored set (say user pair (u, v)). The factored set is removed
from the original disagreement list of (u, v). That set is also
removed from every other original disagreement list that is
shared by either u (or v), and a third user (say w) and their
disagreements on those items are stored only once in a
common list (note that in the original case, items of the
factored set are present in both (u, w) and (v,w)’s disagree-
ment lists). This step overall achieves a space reduction.
However, if the space budget (m) is not satisfied yet, same
factoring strategy is repeated on the user base which has all
other users except u and v. This factoring process is reit-
erated unless one of these two conditions are satisfied: a)
overall space is reduced under m or b) no more factoring is
possible.

Consider Fig. 2 that illustrates one complete run of the
proposed factoring algorithm on an example user base of
size 5, {u, v, w, x, y}. Inputs to the factoring algorithm are
a space budget (m, total no of entries in all pairwise dis-
agreement lists in the user base), and the set of all possible
pairwise disagreement lists of the user base. Figure 2a mod-
els the user base in form of a 5-node clique, where each
user contributes one node in that clique. An edge between a
pair of nodes is the pairwise disagreement list between them.
Note that, initially, the presence of all pairwise disagreement
lists make this graph complete, as shown in Fig. 2a. Next,
it aims to compute factoring sets for every user pair and
identify the user pair which has the largest factoring set.
(Since all disagreement lists are of same size, largest fac-
tored set attains the highest space reduction.) Let that user
pair be (u, v), as shown in Fig. 2b. Once (u, v) is identi-
fied, the disagreement between u and any other user, and
disagreement between v and the same user, over items in
their factoring set, are factored out and only stored once.
The core primitive in the algorithm is to consider one tri-
angle of users at a time involving edge (u, v) and per-
form factoring. Note that Fig. 2b explains this step where
S(u,v) is factored out from disagreement list DL(u,v). Next,
S(u,v) is factored out from DL(u,w) and DL(v,w) and is
stored only once in DLS(u,v),w. Similarly, S(u,v) is factored
out from DL(u,x), DL(v,x) and DL(u,y),DL(v,y) and stored
once in DLS(u,v),x and DLS(u,v),z , respectively. Conceptu-
ally, this step involves modifications of 3 triangles involving

edge (u, v) for the given user base that consists of 5 users.
For each triangle, overall space reduction is {2 × |S(u,v)|}
after factoring. Note that, user pairs that do not involve
either u or v are not affected so far in this factoring step.
We show (w, x), (w, y) and (x, y) in solid lines in Fig. 2b
which remain unaffected after factoring w.r.t. user pair
(u, v).

Next, the factoring algorithm checks if the overall space
now satisfies the specified space budget. It stops immedi-
ately if that condition is satisfied. Otherwise, it continues to
the next step where it considers the largest complete graph (of
size >= 3) which is not yet affected by factoring (the size 3
clique in the example). Note that the clique size gets reduced
by 2 in two successive steps. Therefore, the algorithm com-
putes the factored sets of the user pairs (w, x), (w, y), (x, y)

and selects the one which has the largest factored set (say
(w, y) as shown in Fig. 2c). It adheres to the same factor-
ing strategy as earlier by factoring out S(w,y) from DL(w,y),
DL(w,x), DL(y,x) and storing it only once in DLS(w,y),x . The
overall space reduction in this step is {2 × |S(w,y)|}. Note
that after this step, all disagreement lists are affected by fac-
toring. Hence, the algorithm stops and outputs the factored
disagreement lists.

Algorithm 2 summarizes the factoring strategy. One arti-
fact of this factoring algorithm is it requires at least 3 user
pairs to be effective. Note that, any disagreement list is fac-
tored out into at most two parts using our factoring strategy.
We intend to explore more complex factoring techniques in
the future.

Algorithm 2 Factoring
Require: Configuration C, space budget m
1: Compute space requirement of userbase ProcessSpace(G) as

StorageR.
2: ProcessedPair = null;
3: if ((|C| mod 2 = 0) and (|Processed Pair | = |G| − 2)) then
4: Exit;
5: end if
6: if ((|G| mod 2 �= 0) and (|Processed Pair | = |G| − 1)) then
7: Exit;
8: end if
9: while StorageR > m do
10: for each user pair ((u, v) ∈ G) do
11: if (u /∈ ProcessedPair) and (v /∈ ProcessedPair) then
12: Configuration C(u,v) = Factor(G, u, v);
13: Compute storage requirement of C(u,v) as Process-

Space(u, v);
14: Compute ΔS(u,v) = StorageR − C(u,v);
15: Store Configuration C(u,v), ΔS and ProcessSpace(u, v) in

CompProcessList;
16: end if
17: end for
18: Select Configuration(C(x,y)) such that ΔS(x,y) is maximum.
19: Set StorageR = ProcessSpace(x, y);
20: Set ProcessedPair = {x, y};
21: end while
22: return CProcessed Pair (StorageR);
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Fig. 2 Factoring steps

Algorithm 3 Subroutine—Factor
Require: Configuration C, user pair u, v

1: {Perform factoring of a Configuration wrt a particular user pair.}
2: Modify DL(u,v) into DLS(u,v)

such that any item ∈ DLS(u,v)
is sorted

in increasing disagreement value and > 0;
3: Add DLS(u,v)

in the Configuration(C(u,v));
4: Create list DLC(u,v)

from DL(u,v) such that all items in DLC(u,v)
are

0.
5: for each x ∈ G and (x �= u, v) do
6: Decompose DL(x,u) and DL(x,v) in three lists
7: Create disagreement list DLS(u,v),x for items present in DLC(u,v)

8: Create DLS(x,u)
from DL(x,u), DLS(x,v)

from DL(x,v) such that
an item ∈ (DLS(x,u)

or DLS(x,v)
) is not in DLS(u,v),x)

9: Add DLS(u,v),x), DLS(x,u)
and DLS(x,v)

in Configuration(Cuv);
10: end for
11: return Configuration(C(u,v));

Algorithm 4 Subroutine—ProcessSpace
1: {Computes the space (number of entries) required to store a partic-

ular configuration}
Require: Configuration C;
2: for each list DLS(i) ∈ C do
3: Compute T otalSpace = T otalSpace + DLS(i) ;
4: end for
5: return T otalSpace;

Factoring S(u,v) from the list DL(u,w) (resp., DL(v,w))
results in converting DL(u,w) (resp., DL(v,w)) into two lists:
a factored list DL(u−S(u,v),w) (resp., DL(v−S(u,v),w)), and a
common list, DLS(u,v),w. In this case, the space saving is
proportional to the size of the factoring set, |S(u,v)|. Hence,
the larger the factoring set the higher the saving. Note that,
factoring may fail to reach the specified budget (m) if fac-
tored sets are not large enough to reduce the overall space

consumption to that extent. In fact, at the worst case, fac-
toring fails to reduce any space if all factored sets are of
length 0. However, factoring preserves all information of the
original pairwise disagreement lists and thus achieves space
reduction without impacting performance.

4.2 Impact of factoring on query processing

Algorithm 1 (FM) in Sect. 3.3 admits a group and a configu-
ration containing all disagreement lists and outputs the best
recommendations to the group given a consensus function.
Here, we discuss how to adapt the algorithm to the case of
a factored configuration where at least one disagreement list
is factored out.

It turns out all is needed is to redefinegetNext() to adapt
query processing to work on factored disagreement lists. The
main algorithm (Algorithm 1) does not need to be aware of
such lists. Given a disagreement list DL(v,w) which has been
factored into two lists DL(v−S(u,v),w) and DLS(u,v),w), the
getNext() routine on DL(v,w) decides whether to advance
the cursor on one list or the other. The decision is simply
based on choosing the entry with the highest agreement value
(lowest disagreement) among those two lists.

A consequence of confining the implementation to get-
Next() is that factoring does not modify the number of I/Os
which makes it an appealing space-saving strategy.

5 Partial materialization

In the previous section, we discussed the preprocessing tech-
nique of factoring that reduces the space required to store all
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the pairwise disagreement lists between users. However, if
the set of n users is large, since the number of user pairs is
quadratic in n, factoring alone may not be enough to reduce
the space to manageable proportions. In such cases, it is more
practical to materialize (i.e., retain) only a small but effective
subset of the disagreement lists. The central problem that we
consider in this section is thus: given a fixed space constraint
m, to determine (after factoring) which lists to materialize
such that the total space consumed by these lists is at most
m, and these lists are of “maximum benefit” during recom-
mendation processing.3

Intuitively, a (factored) disagreement list should be mate-
rialized if (a) the corresponding users together are more likely
to be a part of the same group, and (b) materializing the list
significantly improves the running time of top-k recommen-
dation algorithms. In the following subsections, we formalize
this problem and develops algorithms to address it.

Our discussion will proceed in two stages. We shall first
consider the simple scenario, where factoring has not been
applied to a configuration C . In this scenario, all disagree-
ment lists in C are equal in size, and each contains r entries
where r is the total number of items. In Sect. 5.1, we discuss
a simple algorithm that materializes a subset (at most m/r )
of these disagreement lists that are of maximum benefit dur-
ing recommendation processing, i.e., such that the average
processing time is least affected.

However, once factoring has been performed, each origi-
nal disagreement list may be composed of up to two factored
lists of varying sizes. For example, using the factoring set
S(u,v), a disagreement list DL(v,w) will be decomposed into
two lists DL(v−S(u,v),w) and DLS(u,v),w). The sum of those
lists’ sizes is the same as that of S(u,v). We discuss this more
general situation in Sect. 5.2, where the task is to material-
ize a subset of the (factored) disagreement lists such that the
total number of entries in all the materialized lists is m, and
the average processing time is least affected. We formalize
this new problem as an adaptation of the well-known NP-
hard Knapsack Problem [16] and develop an approximation
algorithm to address it.

5.1 Partial materialization without factoring

Let the set of users be U = u1, . . . , un . Recall that ILu is
the predicted rating list for user u, and DL(u,v) is the dis-
agreement list of user pair u and v. Let the set of all possible
user pairs in U be S = {(u, v)|u, v ∈ U}. Let M ⊂ S be
the (unknown) subset of user pairs whose corresponding dis-
agreement lists we wish to materialize (i.e., |M | = m/r ).
Let G ⊆ U be any user group. Let p(G) be the probability
(or likelihood) that G will be the next “query”, i.e., the next

3 We assume that m represents a user-specified threshold on the total
number of entries in all the materialized disagreement lists.

group that will seek item recommendations. Let tM (G) be the
execution time of the top-k algorithm on user group G when
run using the predicted rating lists ILu (for all u ∈ G) as
well as the disagreement lists DL(u,v) (for all u, v ∈ G) that
have been materialized in M , i.e., using algorithm FM. (Note
that therefore tφ(G) denotes the execution time of the top-k
algorithm on user group G when run using only the predicted
rating lists ILu (for all u ∈ G), i.e., using algorithm RO.

Our objective is to minimize the expected cost of execut-
ing the top-k algorithm on any user group query, using the
predicted rating lists as well the disagreement lists. Let the
expected cost be denoted as tM . The partial materialization
of disagreements list problem may now be formally defined
as follows.

Problem (Partial Materialization Without Factoring).
Determine the subset of pairs M ⊆ S s.t. |M | = m/r and
tM = ∑

G⊆U p(G)tM (G) is minimized.

Although clearly very important and practical, the partial
materialization problem is unfortunately quite hard to solve
optimally. There are several reasons for this. First, it is very
difficult to get reliable and accurate estimates for the dis-
tribution p(G), i.e., the probability that a given user group
G will be queried next. Moreover, the set of possible user
groups is exponential in n, so it is not clear how such infor-
mation can be compactly represented, even if it were reliably
available. Next, due to the complex dependencies involved,
it is very hard to estimate the impact of a materialized dis-
agreement list in improving the running time of a top-k algo-
rithm, without actually materializing candidate disagreement
lists and running the top-k algorithms with and without the
lists to determine their benefit. Finally, an important param-
eter of a top-k algorithm is the value of k, which is usu-
ally unknown at preprocessing time. As a first step toward
addressing these challenges, we propose several principled
and practical solutions.

5.1.1 A simplifying assumption, and a simple lists
materialization algorithm

In order to make the problem more tractable, we make the fol-
lowing simplifying assumption. We assume that each future
user group query G will only contain exactly two users, and
moreover, p(G) is reliably known for all pairs of users G.
This assumption is of course patently false, but we empha-
size here that we use it only for simplifying the computation
of M . Once M has been computed and the corresponding
disagreement lists materialized, we shall later show that they
can be used at query time for answering any user group G,
even groups containing more than two users.

This assumption considerably simplifies the computation
of M , which can now proceed as follows. Recall that S
is the set of all n(n − 1)/2 pairs of users. For every pair
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of users u and v, we temporarily materialize the disagree-
ment list DL(u,v) and compute t{(u,v)}({u, v}) as well as
tφ({u, v}) by running the top-k algorithm twice, once with
the disagreement list and once without the disagreement list,
respectively.4

We can then eliminate from S those pairs {u, v} where
t{(u,v)}({u, v}) ≥ tφ((u, v))

Although situations where the additional use of a dis-
agreement list actually hurts the top-k execution may appear
counter-intuitive, they can occur. For example, consider two
users that are very similar to each other (e.g., they agree on
most items) or are very dissimilar to each other (e.g., they
disagree on most items). In both cases, their disagreement
list contains very similar disagreement values (mostly 0’s,
or mostly 1’s, respectively), and consequently is of no help
in forcing early termination of the top-k algorithm, and in
fact hurts the execution because of the extra sequential list
accesses incurred. A disagreement list is useful for forcing
early termination only if there is significant skew in its dis-
agreement scores, i.e, at the top of the list the users agree on
most items, whereas their disagreement is more pronounced
as we go deeper into the list.

Let the remaining set of pairs be S′. Then, we should se-
lect M from S′ such that following expression is maximized:
∑

(u,v)∈M p({u, v}) · (tφ({u, v}) − t{(u,v)}({u, v}))

Algorithm 5 Partial Materialization Without Factoring
Require: User pairs in S′;
1: Sort the pairs (u, v) ∈ S′ by decreasing p({u, v}) · (tφ({u, v}) −

t{(u,v)}({u, v}));
2: Return the m/r pairs with the largest values.

Algorithm 5 shows a very simple approach to compute M
optimally. The algorithm requires O(n2) executions of the
top-k algorithm. Even though this is a preprocessing step,
it may nevertheless be very time consuming. We discuss
in Sect. 5.1.2 additional techniques by which this can be
reduced.

The disagreement lists materialization procedure dis-
cussed earlier assumed that the user groups are restricted
to two members only. However, once the m/r lists have been
materialized, they can be used at query processing time for
user groups of any size in a straightforward manner. Consider
any arbitrary user group G. In executing the top-k recommen-
dation algorithm for this group, we use the predicted rating
lists ILu (for all u ∈ G) as well as all disagreement lists
DL(u,v) (for all u, v ∈ G) that have been materialized in M .

4 Performance numbers are obtained for a fixed k, specifically set for
each application. E.g., in a movie recommendation, 10 movies is typical.

5.1.2 Avoiding examining all user pairs

In a large user base, it is very likely that many user pairs
are almost never going to occur in query groups. In order
to reduce preprocessing costs, it is critical that we identify
only those user pairs that have significant likelihood of occur-
ring together, and only consider such pairs in the above-men-
tioned algorithm.

If we have a rich query log (or workload) of past user
groups, then it is possible to analyze the query log in deter-
mining this information. For example, let G1, . . . ,Gq be a
query log of q user groups. Then, for any user pair (u, v), we
can compute

p({u, v}) = |{Gi |u, v ∈ Gi }|
q

This computation can be carefully done to ensure that we
only compute the probabilities for those user pairs that occur
in the query log, thus avoiding having to examine a vast
majority of the user pairs that never occur together. More-
over, even for user pairs that occur together in the query log,
we can eliminate those that have extremely low probabilities.

5.2 Partial materialization after factoring

We next consider the more complex case when the disagree-
ment lists have already been factored. Recall that given a
factoring set S(u,v), each original disagreement list DL(u,w)

is now factored into a possibly smaller list DLu−S(u,v),w

such that the original list is the union of the factored list
DLu−S(u,v),w and a common list DLS(u,v),w) for some other
user w.

Our partial materialization goal will be to identify the sub-
set of pairs M ⊆ S such that both the factored as well as
common component of the original disagreement list for each
such pair is materialized. Using notation similar to Sect. 5.1,
let tM (G) be the execution time of the top-k algorithm on user
group G when run using the predicted rating lists ILu (for all
u ∈ G) as well as the materialized (factored as well as com-
mon) disagreement lists corresponding to all user pairs (u, v)

that appear in both M and G. Our objective is to minimize
the expected cost of executing the top-k algorithm on any
user group query, using the predicted rating lists as well the
materialized factored and common disagreement lists. Let
the expected cost be denoted as tM . Given a space budget m,
the partial materialization problem after factoring problem
may be formally defined as follows.

Problem (Partial Materialization After Factoring). Deter-
mine the subset of pairs M ⊆ S s.t. the space required by all
factored and common lists corresponding to all pairs in M is
at most m, and tM = ∑

G⊆U p(G)tM (G) is minimized.
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As before, we will make the simplifying assumption that
each future user group query G will only contain exactly two
users, and p(G) is reliably known for all pairs of users G.
We also reduce the set of user pairs from S to S′, eliminating
those pairs for which the availability of the disagreement list
does not improve the query processing time.

Let DLS(Pi ) be the factored list corresponding to any user
pair Pi ∈ S′. Since common lists are shared, let C(S′) rep-
resent the set of all common lists corresponding to S′. Then,
the space consumed by all factored as well as common lists is

Space(S′) =
∑

Pi ∈S′
|DLS(Pi )| +

∑

DLC ∈C(S′)
|DLC |

It may be that this space is still greater than the space
constraint m. In this case, we will have to remove a few
more user pairs from S′, eliminating those pairs for which
the availability of the disagreement list adversely impacts
query processing time the least.

For user pair (u, v) = Pi , let the benefit Bi be defined as

Bi = p({u, v}) · (tφ({u, v}) − t{(u,v)}({u, v}))
The residual problem can be formally defined as follows.

Problem (0/1 Knapsack-Based Formulation of Partial
Materialization After Factoring). Determine the subset of
pairs M ⊆ S′ s.t.
∑

Pi ∈M

Bi

is maximized, subject to

Space(M) =
∑

Pi ∈M

|DLS(Pi )| +
∑

DLC ∈C(M)

|DLC | ≤ m

We note that this problem is similar, but not identical, to
the classical NP-Hard 0/1 Knapsack Problem [16]. This is
because the space constraint contains a term that represents
the space consumed by the common lists of M . If this term
were not there, then the formulation can be easily seen to be
identical to 0/1 Knapsack.

In solving this problem, we leverage the well-known
greedy 1/2-approx algorithm for 0/1 Knapsack, suitably mod-
ified to account for the extra complexity of having to consider
the materialization of common lists.

Algorithm 6 essentially orders the pairs in S′ by decreas-
ing “benefit density”, except that in the calculation of this
density, the common lists are not considered. The common
lists are only considered in the space calculation of M . The
returned user pairs are either (a) the largest prefix of this
ordered list that can fit within the space budget or (b) the
very last user pair that causes the space to exceed the budget.

While Algorithm 6 is not an optimal algorithm for the
problem, it is adapted along the lines of the 1/2-approx algo-
rithm for the classical 0/1 Knapsack problem, and our exper-
iments indicate it is both efficient and provides solutions of

Algorithm 6 Partial Materialization After Factoring
Require: User pairs in S′;
1: Sort the pairs Pi ∈ S′ by decreasing Bi /|DLS(Pi )|
2: M = {}
3: i = 1
4: while Space(M) + |DLS(Pi )| ≤ m do
5: M = M ∪ Pi ; i + +;
6: end while
7: if

∑
Pj ∈M B j ≥ Bi then

8: return M
9: else
10: return Pi
11: end if
12: return

Table 1 Statistics about the MovieLens data set

# users # movies # ratings

71,567 10,681 10,000,054

good quality. More interestingly, when run on un-factored
disagreement lists, it is identical to Algorithm 5 which is
optimal for that case. As shown in our experiments, for the
same space constraint, factoring followed by partial materi-
alization is always better than partial materialization alone.

6 Experiments

We evaluate our group recommendation system from three
major angles. First, from the quality perspective, we con-
duct an extensive user study through Amazon Mechanical
Turk5 to demonstrate that group recommendations with the
consideration of disagreements are superior to those rely-
ing on aggregating individual predicted rating scores alone
(Sect. 6.1). Second, from the performance perspective, we
conduct a comprehensive set of experiments to show that our
materialization algorithms can achieve better pruning than
alternative algorithms (Sect. 6.2). Third, we investigate the
performance of our space-saving strategies with respect to
both space and time.

We implemented our prototype system using JDK 5.0.
All performance experiments were conducted on an Intel
machine with dual-core 3.2 GHz CPUs, 4 GB Memory, and
500 GB HDD, running Windows XP. The Java Virtual Mem-
ory size is set to 256 MB. All numbers are obtained as the
average of three runs.

Data Set: We use the MovieLens [10] 10 M ratings data set
for evaluation purposes. The statistics of this data set is shown
in Table 1.

Individual Predicted Ratings: We adopt collaborative fil-
tering [1] for generating individual predicted ratings as
described in Sect. 2.1.2, where the user-user similarity,

5 http://www.mturk.com/.
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UserSim(u, u′), is computed as follows: sim(u, u′) =
|{i |i∈Iu ∧ i∈Iu′ ∧ |rating(u,i)−rating(u′,i)|≤2}|

|{i |i∈Iu ∨ i∈Iu′ }| where Iu de-
notes the set of items u has rated. We consider a movie to
be shared between two users if they both rated it within 2 of
each other on the scale of 0–5.

6.1 User study

We conduct an extensive user study through Amazon
Mechanical Turk to compare our proposed group recommen-
dation consensus functions with prior group recommenda-
tion mechanisms, which rely solely on rating aggregations.
In particular, we compare four group recommendation mech-
anisms:

Average Rating (AR), which computes the group recom-
mendation score as the average of individual predicted rat-
ings. The disagreement weight is set to zero.

Least-Misery Only (MO), which computes the group rec-
ommendation score as the minimum individual predicted
rating among all group members. Again, the disagreement
weight is set to zero.

Consensus with Pairwise Disagreement (RP), which com-
putes the group recommendation score as a weighted summa-
tion of the average predicted rating and the average pairwise
disagreements between all group members.

Consensus with Disagreement Variance (RV), which com-
putes the group recommendation score as a weighted sum-
mation of the average predicted rating and the variance of
individual predicted ratings among all group members.

The user study is conducted in two phases: User Collection
Phase and Group Judgment Phase. At each phase, a series of
HITs (Human Intelligence Tasks) are generated and posted
on Mechanical Turk, Amazon users are invited to complete
those tasks.

6.1.1 User collection phase

The goal of the User Collection Phase is to recruit users and
obtain their movie preferences. Those users will later form
groups and perform judgments on group recommendations.

Preferences Collection: Asking a user to go through all ten
thousand movies in our system and give ratings as they go
is clearly not practical. Therefore, we selected a subset of
the movies for users to provide their preferences. We consid-
ered two factors in selecting those movies: familiarity and
diversity. On one hand, we want to present users with a set
of movies that they do know about and therefore can provide
ratings. On the other hand, we want to maximize our chances
of capturing the different tastes among movie-goers. Toward
these two goals, we select two sets of movies. The first set is
called the popular set, which contains the top-40 movies in

Table 2 Similarities of user study groups

Size = 3 Size = 8

Similar group 0.89 0.90

Dissimilar group 0.29 0.27

Random group 0.69 0.73

MovieLens in terms of popularity (i.e., the number of users
who rated a movie in the set). The second set is called the
diversity set, which contains the 20 movies in MovieLens
that have the highest variance among their user ratings and
that are ranked in the top-200 in terms of popularity. We
created two HITs with 40 movies each. The Similar HIT
consisted entirely of the movies within the popular set, and
the Dissimilar HIT consisted of the top-20 movies from the
popular set and the 20 movies from the diversity set. Fifty
users were recruited to participate in each HIT. Users are
instructed to provide a rating between 0 and 5 (5 being the
best) for at least 30 of the 40 movies listed (in random order)
according to their preferences. In addition to their ratings, we
also record their Mechanical Turk IDs for future reference.

Group Formation: We consider two main factors in forming
user groups: group size and group cohesiveness. We hypoth-
esize that varying group sizes will impact the difficulties in
reaching consensus among the members and therefore af-
fect to which degree members are satisfied with the group
recommendation. We chose two group sizes, 3 and 8, rep-
resenting small and large groups, respectively. Similarly, we
hypothesize that group cohesiveness (i.e., how similar are
group members in their movie tastes) is also a significant
factor in the satisfaction with group recommendation. As a
result, we chose to form three kinds of groups: similar, dis-
similar, random. A similar group is formed by selecting users
who: (1) have completed the Similar HIT described earlier;
(2) combined with having the maximum summation of pair-
wise similarities (between group members) among all groups
of the same size. A dissimilar group is formed by selecting
users who: (1) have completed the Dissimilar HIT described
earlier; (2) combined with having the minimum summation
of pairwise similarities (between group members—based on
the provided ratings) among all groups of the same size.
Finally, a random group is formed by randomly selecting
users from all the pool of available users. Table 2 illustrates
the average similarity between group members of the six
groups formed.

6.1.2 Group judgment phase

The goal of the Group Judgment Phase is to obtain ground
truth judgments on movies by users in a group setting. Those
judgments can then be used to compare group recommenda-
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tion generated by the four different mechanisms AR, MO,
RP and RV.

Individual Recommendation: For each user in one of the
six groups in Table 2, we generated and materialized a list
of individual recommendations against the MovieLens data-
base using collaborative filtering.

Group Recommendation Candidates: For each group, we
generated group recommendations using all of our four strat-
egies. The resulting recommendation lists were combined
into a single set of distinct movies, called group candidate
set. This ensures that we obtain ground truth judgments on all
the movies we will encounter using any of the four strategies.

For each group, a Group HIT was generated and con-
tained the following group context: for each movie in the
group candidate set, the individual recommendation score of
each member. The users are then instructed to decide whether
a movie in the group candidate set is suitable for recommen-
dation given its group context. Users from the previous phase
were invited back (with a higher payout) to participate in
the HITs which correspond to a group to which they belong.
Additional users were also recruited to participate in the HITs
to complement the set of prior users, and they were instructed
to pretend themselves to be one of the group members in
the HIT. At the conclusion of the user study, on average 5
users participated in the three 3-member-group HITs and 10
users participated in the three 8-member-group HITs, for a
total of 45 users.

6.1.3 Result interpretation

Given a Mechanical Turk user’s ground truth evaluation of
the candidate movies, we adopt the Discounted Cumulative
Gain (DCG) [12] measure to evaluate each of the following
six group recommendation strategies (note that the least-mis-
ery model by definition considers only one member of the
group and therefore cannot be combined with either of the
disagreement models):

AR, MO: these two are group recommendation lists gener-
ated based on average and least-misery models, respectively,
without the disagreement component.

RP20, RP80: these two are group recommendation lists gen-
erated by combining the average predicted ratings model with
the pairwise disagreement model. RP20 sets w2 in Defini-
tion 3 to 0.2, while RP80 sets it to 0.8.

RV20, RV80: these two are group recommendation lists gen-
erated by combining the average predicted ratings model and
the disagreement variance model. RV20 sets w2 in Defini-
tion 3 to 0.2, while RV80 sets it to 0.8.

Each strategy generates a 10-movie recommendation list
and for a given list, its DCG value is calculated as follows:

DCG10 = rating1 +
10∑

i=2

ratingi

log2(i)

where ratingi is the ground truth (provided by the
Mechanical Turk user) of the movie at position i and is either
1 (the user considers this movie suitable for the group set-
ting) or 0 (otherwise). We further normalize the DCG value
into a range between 0 and 1 by dividing it by the DCG value
of the ideal list to produce the nDCG value. (The ideal list
is obtained by resorting the movies in the list in the order of
their predicted ratings.)

For each group with a given size and cohesiveness, the
nDCG values of each recommendation list are computed as
the average of all the users who participated in the group
HIT. The results are shown in Fig. 3. We note that our obser-
vation is anecdotal and our finding in this experiment is not
necessarily statistically significant.

The top-left chart in Fig. 3 reports the nDCG for small and
large groups of similar users. In a real-world setting, a group
of friends can be thought of as such a group. According to
this chart, MO results in the best performance for both small
and large groups. This can be explained as a group activity of
similar users, where the objective is to agree with the person
who has the harshest opinion. MO is most practical for this
setting since agreeing upon the worst opinion results in the
least disagreement from a user’s personal opinion. It is also
interesting to notice, that for large groups, MO performs very
well. The next best strategy is AR, which is intuitively true
for any set of similar users—people with very high similarity
have no difference in their opinion. RV80 and RP80 perform
worst since there is hardly any scope of difference in opinion
in a group of similar users.

The top-right chart in Fig. 3 reports the nDCG for small
and large groups of dissimilar users. In a practical setting,
a group of family members, whose tastes typically differ is
a good example here. For dissimilar users, differences in
opinion is conspicuous hence needs to be captured carefully.
Indeed, we can see that, our disagreement-based models
RV80, RP80 start performing better than other two mod-
els. Specifically, for large groups, RV80 results in the best
value of nDCG, while the predicted rating-based mod-
els are useless. This observation corroborates our initial
claim that formalizing disagreement as a component of the
consensus function is important for group recommenda-
tion.

The bottom-left chart in Fig. 3 reports the nDCG for small
and large groups of random users. A random group can con-
sist of both similar and dissimilar users. For small groups,
MO works best, whereas for large groups, there is no signif-
icant difference between all four strategies.

The bottom-right chart in Fig. 3 reports the differences in
our disagreement models (notice the different weights) for
dissimilar user groups. It is interesting to notice that, for small

123



892 S. Basu Roy et al.

Fig. 3 Comparison of user predicted ratings (using NDCG) among different group recommendation lists

groups, all four disagreement models perform equally well in
general. However, for large groups, disagreement becomes
a conspicuous part in decision-making. Consequently, the
disagreement strategies RV80, RP80 outweigh the other two
models RV20, RP20.

To summarize, we can say that user similarity in a group as
well as group size should be accounted in modeling disagree-
ment in the consensus function. One of our planned experi-
ment is to involve users more actively in the final judgment by
letting group members consult with each other and reach con-
sensus in an iterative manner as described in [11]. Such feed-
back would help draw a stronger connection between group
size and overall group dynamics in group recommendation.

6.1.4 Effectiveness of group ratings

We next perform user studies to validate the effectiveness
of the group ratings. More precisely, we ask users to com-
pare group ratings generated by our group recommendation
strategies with the individual ratings obtained directly from
the underlying recommendation system. Again, Group HITs
are generated based on similar and dissimilar groups. Addi-
tional users were recruited to participate in the HITs to com-
plement the set of prior users, and they were instructed to
pretend themselves to be one of the group members in the
HIT. Within each HIT, a 10-movie recommendation list is
presented to each user within the context of a group. Each
movie comes with the individual predicted rating and the
group rating generated by one of our group recommendations

strategies (RP80 and RV80). The users were then instructed
to give their preference for either the group or the individual
rating for each movie, although the explicit model name was
kept hidden from them. Additionally, they were also required
to describe their satisfaction level for the group ratings over-
all, in the scale of 1–5. In this new user study, on average 15
users participated in the each of the two (similar and dissim-
ilar) 3-member-group HITs and 8 users participated in each
of the two (similar and dissimilar) 8-member-group HITs,
for a total of 218 users.

Result Interpretation: For each group with a given size
and cohesiveness, we calculate the percentage of user’s
preference for group ratings corresponding to a strategy and
compare that with the percentage of user’s preference for
individual ratings. The results are listed in Fig. 4. In all cases,
group ratings are preferred by more than 50% of users. It is
also easy to observe that the group ratings are more pre-
ferred over individual ratings for similar user groups when
compared to dissimilar user groups. The reason is intuitive
and can be explained as follows: similar users have similar
ratings for movies; hence, with a small compensation, they
can match their individual preference with the group pref-
erence. However, for dissimilar user groups, preference var-
ies widely among group members—hence dissimilar users
are more reluctant to adopt group ratings. Another inter-
esting observation is, irrespective of group cohesiveness,
members in large groups prefer group ratings more than
members in small groups do. This corroborates the efficacy of
our group recommendation strategies which are designed to
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Fig. 4 Comparison of percentage of user preference for group ratings and individual predicted ratings among different group recommendation
lists

Table 3 Dissimilar user group—overall model ratings

Rating RP80 RV80

Small (%) Large (%) Small (%) Large (%)

1 0 0 0 0

2 5 0 8 3

3 31 20 28 17

4 42 44 60 36

5 22 36 4 44

Table 4 Similar user group—overall model ratings

Rating RP80 RV80

Small (%) Large (%) Small (%) Large (%)

1 3 0 5 0

2 14 0 8 0

3 14 14 20 11

4 52 30 40 41

5 17 56 27 48

minimize the difference in opinions between group members
individual preference and are more conspicuous for larger
groups.

Tables 3 and 4 record the percentage of overall group rat-
ings (in the scale of 1–5) of different group recommendation
strategies for different group cohesiveness and group size. It
can be easily observed from the tables that proposed group
recommendation strategies are highly rated (mostly 3 and
above) always, irrespective of the size and cohesiveness of
the group under consideration.

6.2 Performance evaluation

In this section, we analyze the performance of the three
group recommendation algorithms described in Sect. 3:
Dynamic Computation with Predicted Rating List Only (RO),
Full Materialization (FM) and Partial Materialization with a
given budget on number of lists (PM). At the core of all three
algorithms is the top-k TA algorithm [8], which scans down
the input lists and stops processing when score bounds indi-
cate that no more items qualify. The cost of TA is determined
by two factors: the number of sequential accesses, which
corresponds to the number of next() calls made during
the scan of each list, and the number of random accesses,
which corresponds to the number of calls made to each list
for score retrieval given an item. During the processing, when
the buffer is bounded and only the top-k items are kept, the
number of random accesses is proportional to the number
of sequential accesses. When the buffer is unbounded, the
number of random accesses is proportional to the number of
distinct items processed. We adopt the bounded buffer ver-
sion of the TA algorithm and therefore mostly measure the
number of sequential accesses to compare the performance
between various algorithms.

In addition to that we also compare our proposed group
recommendation algorithms with a very simple baseline
approach—Without-Fagin RO. This algorithm works
as follows: It works only with the set of lists relevant to a
specific group. This algorithm does not work in Fagin(top-k)
style; i.e., it cannot acquire any early stopping using upper
bound value of thresholds. In order to compute the top-k
group ratings, it maintains a heap and stores the top-k ratings
encountered thus far. However, the algorithm can only ter-
minate once the entire database is scanned and outputs the
top-k best ratings thereafter.

123



894 S. Basu Roy et al.

Varying Similarity

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.3 0.5 0.7 0.9

Similarity

#S
A

s
FM
RO
PM
Without-
Fagin RO

Varying Similarity 

0

200

400

600

800

1000

1200

0.3 0.5 0.7 0.9

Similarity

#D
IP

s

FM
RO
PM
Without-
Fagin
RO

Varying no of items 

0

100

200

300

400

500

600

700

800

900

1000

30105

No of items

#S
A

s

FM
RO
PM
Without-
Fagin RO

Varying group size

0

500

1000

1500

2000

2500

3000

3 5 8
Group Size

#S
A

s

FM
RO
PM
Without-
Fagin RO

(a) (b)

(c) (d)

Fig. 5 Performance comparison among algorithms RO, FM, PM and without-Fagin RO

Group Formation: Groups are formed by selecting users
from the MovieLens database. The key factor we consider
is group cohesiveness (or similarity). We defined four group
similarity levels: 0.3, 0.5, 0.7, 0.9, with a margin of ±0.05.
To form a group of 3 with similarity 0.3, we select three
users u1, u2, u3 from the database, such that ∀i, j, 0.25 <

sim(ui , u j ) < 0.35, where 1 ≤ i, j ≤ 3, i �= j . The other
factors we consider are number of recommendations being
produced (small = 5, medium = 10, large = 30) and the size
of groups (small = 3, medium = 5, large = 8).

Summary of Results: Our first observation is that group
similarity has a direct impact on the number of sequential
accesses (SAs). This is not surprising: the predicted rating
lists of similar users tend to contain similar items at similar
positions, including those with high predicted ratings. Our
second observation is that some Disagreement Lists (DLs)
almost always guarantee earlier stopping. Hence, ROwins in
very few cases. However, the presence of DLs is not always
beneficial and can sometimes become redundant. In fact, the
results show that for different user groups, different strate-
gies (RO, FM or PM) will win. In particular, a higher number

of DLs does not guarantee earlier stopping. The proliferation
of lists may increase the number of SAs and also the number
of distinct items seen unnecessarily, thereby hurting the per-
formance in the end. In addition to that we compare our three
algorithms, with the baseline approach Without-Fagin
RO. Eventually, as shown in Fig. 5, this algorithm always
scans the entire database and encounters all items in the data-
base before producing the output. Consequently, it attains the
worst performance among all. We provide detailed descrip-
tions on our experiments below.

6.2.1 Varying group similarity

Figure 5a and b illustrate the performance of RO, FM and PM
with different group similarities in terms of both SAs and
DIP. The group size is fixed at 5, and the number of rec-
ommended items is 10. For PM, the number of materialized
lists is 3. As the group similarity increases, the effectiveness
of our materialization algorithms gradually decrease. This is
not surprising since the more similar the members are with
each other, the more likely their agreements on the top items
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are close to the upper bounds that are estimated in the RO
algorithms. As a result, RO can reach stopping conditions as
early as PM and FM do. This observation is also corroborated
by the similar numbers of DIP between RO and the other
two algorithms for high similarity values. Furthermore, FM
forces the system to scan unnecessarily large number of lists
and results in poor performances instead. In fact, it can be
easily observed from Fig. 5a and b, for very high similarity,
RO results in the best performances, whereas for very low
similarity, FM is the winner in most of the cases. The perfor-
mance ofPM can be observed to be in between. An interesting
observation in this case is, for average similarity, PM results
in the best performances for both SAs and DIP. This corrob-
orates the fact that in certain cases partial materialization can
be the best option.

6.2.2 Varying k

Figure 5c illustrates the performance comparison of RO, FM
and PM with different numbers of items recommended. The
group size is fixed at 5, and the group similarity is fixed at
0.5. Algorithm PM uses three materialized lists for k = 5, 10
and five lists for k = 30. As expected, the number of SAs
increases with the increasing number of recommended items.
For all three cases, algorithm PM out-performs both RO and
FM significantly.

6.2.3 Varying group size

We examine the effect of different group sizes in Fig. 5d.
The group similarity is fixed at 0.5, and the number of rec-
ommended items is 10. For PM, the number of materialized
lists is 3. As expected, the number of SAs increases as the
group size increases. When the group sizes are small and
medium, both materialization algorithms significantly out-
perform RO. It is counter-intuitive to see that when the group
size is large, the benefit of materialization decreases. After
some investigation, we discovered that when the group is
large, it is easy to have a predicted rating list that can provide
enough pruning power to trigger the early stopping condi-
tions. As a result, pruning through the disagreement lists is
no longer as effective.

6.2.4 Effect of disagreement lists in query processing

We study the impact of materializing different numbers of
disagreement lists (DLs). The group size is fixed at 5 and its
similarity is fixed at 0.5, and the number of recommended
items is 5. We report SAs and DIP by varying the num-
ber of materialized disagreement lists. As shown in Fig. 6,
the performance is at its worst when the number of DLs is
0, which corresponds to RO. It starts getting better as more
DLs are added, and the performance is best when the num-
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Fig. 6 Effect of the number of DLs

ber of DLs reaches 3. Then, it starts degrading and never
gets better. However, from the 4th to the 10th list, the num-
ber of DIP remains almost the same. By examining the 4th
list, we noticed that many top items in that list are not pres-
ent in the final result, and, as a result, the number of SAs
increases unnecessarily. We also noticed that the top items in
the 4th list are shared by all subsequent lists (which explains
the close-to-constant performance). This situation can arise
when a subset of the group dislikes the same set of movies
equally.

6.3 Space reduction techniques and their impact on query
processing

The main focus of this subsection is to analyze and com-
pare the query processing performance ofPM algorithm under
space constraints. Recall that the PM algorithm is designed
when a space budget is enforced and a subset of possible set of
pairwise disagreement lists can be materialized. We proposed
to combine factoring and disagreement lists materialization
to satisfy such hard space constraints. Here, we experimen-
tally evaluate query processing performance attained by PM
using configurations offered by these different space reduc-
tion techniques.

Summary of Results: Our first observation is PM is never
worse than RO. For some groups, the best performance can
be attained by using PM algorithm. In general, FM gets better
with bigger group sizes. However, the difference in perfor-
mance betweenFM andPM is not noteworthy as the group size
is increased. Hence, under a space constraint,PM is an accept-
able solution. Next, we observe that our proposed behavior
factoring algorithm performs well in reducing space. Finally,
we experimentally demonstrate that factoring is always ben-
eficial from performance perspective since it aids to pre-
serve more disagreement lists in a lossless way. Consequen-
tially, factoring followed by Knapsack basedPM is better than
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Fig. 7 Query processing performance of different group recommendation algorithms

PM-Only even when a small fraction of space is offered to
materialize disagreement lists.

In these experiments, the space required by a configuration
is interpreted as the total number of entries in the disagree-
ment lists (as defined in Sect. 4.) That is because predicted
rating lists being necessary, they are not affected by our space
reduction strategies, factoring and partial materialization.

6.3.1 Effect of partial materialization (PM-Only) on query
processing

First, we perform a comparative performance study of query
processing of different group recommendation algorithms
(RO, FM and PM ). In these experiments, we set the avail-
able space to materialize disagreement lists to 50% of the
total space consumed by all possible pairwise disagreement
lists in the user base. We vary the query size from 2 to 20
(recall that a query is a group that is seeking recommenda-
tions) and measure the number of sequential accesses (SAs)
required to compute top-k (k = 30) recommended items to
the group. Each performance number of a particular query
size is obtained by averaging the number of sequential acces-
ses required to compute top-k recommendations of three dif-
ferent groups of that particular size. For a particular query,
its size is increased by adding one random new user from the
user base.

Figure 7 illustrates the performance comparison of dif-
ferent group recommendation algorithms. As expected, the
average number of SAs increases with the increasing group
size in general. In general, FM gets better as group size is
increased.RO performs the worst among all three in all cases.
For groups 5, 6 and 7, PM is the best solution. By examin-
ing group 5 in one individual run, we noticed that PM uses
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Fig. 8 Difference in performance between PM and FM

only 4 disagreement lists at that step, whereas FM uses all
10 disagreement lists. These extra disagreement lists incur
unnecessary sorted accesses in FM. Also, PM gets better from
group 4 to group 5. Our analysis reveals that PM uses only
1 disagreement list in group 4, whereas in group 5, it uses
3 new disagreement lists. We further investigate that behav-
ior and notice that the new disagreement lists play crucial
role in reaching the threshold fast during top-k computation.
Consequently, the overall number of accesses drops from
group 4 to group 5. This experiment also reinforces the intu-
ition that different disagreement lists have varying impacts
on performance.

Next, we study the difference in performance between PM
and FM (the better one between FM and RO) in the same set-
tings in Fig. 8. AlthoughFMoutperformsPMwith the increase
in group size; however, the difference is not significant. These
two experiments corroborate our initial claims: even when
full materialization is acceptable, partial materialization is
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Fig. 9 Space savings of factoring algorithm for similar userbase

important since that can attain the best performance some-
time. Also, under a space constraint, PM is a satisfactory
solution since its performance is reasonably close to the best
solution.

6.3.2 Benefit of factoring algorithm in space saving

Next, we evaluate the space-saving benefit of behavior fac-
toring. We increase the size of the user base (from 3 to 20)
and measure the space requirement (i.e., no of entries) to
store all pairwise disagreement lists for that user base with
and without factoring. Recall that the benefit of factoring can
only be achieved for groups with size 3 and beyond. In par-
ticular, we consider two different cases: in one case, a new
user is added into the existing user base at random, whereas
in other case, a new user is only selected for addition into the
existing user base when it is highly similar (50% or more) to
at least one existing user (henceforth referred to as Random
Userbase and Similar Userbase, respectively, in this section.)

Figure 9 demonstrates the benefit of space saving for Sim-
ilar Userbase. The user group of size 20 has 190 disagreement
lists that contain 42978 entries (space) originally. Upon fac-
toring, the total size of these lists is reduced to 22063 entries,
thus achieving a space saving of 48.66% in a lossless manner.

Figure 10 demonstrates the benefit of space saving for
Random Userbase. The user group of size 20 has 190 dis-
agreement lists that consumes 42012 entries (space) origi-
nally. Upon factoring, the total size of these lists is reduced
to 31023 entries, thus achieving a space saving of 26.15% in
a lossless manner. It is easy to observe that space reduction
is very significant for Similar Userbase, however, even for
Random Userbase the reduction achieves good performance.
This demonstrates that the factoring algorithm is effective
and performs well in practice, thereby, reinforcing the idea
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Fig. 10 Space savings of factoring algorithm for random userbase

that unless no two users agree on any item, factoring is always
beneficial.

6.3.3 Impact of different space reduction strategies
on query processing

Finally, we investigate different space reduction strategies
and their comparative effectiveness in query processing.
Recall that given a space budget (i.e., number of entries)
for materializing disagreement lists, behavior factoring may
fail to reduce the original pairwise disagreement lists of the
user base to that extent. Effectiveness of space saving solely
depends on similarity between users in the user base under
consideration. Therefore, it may be necessary to apply tech-
niques to drop some disagreement lists on the factored user
base (refer to Algorithm in Sect. 5) to satisfy the hard space
constraint. On the other hand, the hard space constraint can
also be guaranteed by applying partial materialization only
(refer to Sect. 5) on the original (not factored) pairwise dis-
agreement lists.

In these experiments, we intend to evaluate the impact
of space reduction techniques from two major angles: first,
given different space budgets, we evaluate the impact on
query processing of factoring followed by disagreement
lists materialization (henceforth referred to as Factoring
followed by Knapsack-based PM in this section)
and compare that with the performance attained by apply-
ing partial materialization only (henceforth referred to as
PM-Only in this section).

Figure 11 shows the comparative study of the query
processing performance of Factoring followed by
Knapsack-based PM and PM-Only on Random User-
base. The group size is fixed at 10. Performance numbers
are obtained by averaging the number of sequential acces-
ses required to compute top-k (k = 30) recommendations
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Fig. 11 Performance of different space-saving strategies under
different space budgets

of three different groups of size 10 chosen randomly from
the Random Userbase. Space constraints are varied by 5
different numbers, in an equi-spaced manner, ranging from
(0–100%). Recall that this hard space constraint allows only
certain amount of space (# of entries) for materializing dis-
agreement lists. Note that 0% space means no disagree-
ment list can be materialized (Algorithm RO) and 100%
space budget allows all disagreement lists to be materialized
(Algorithm FM.)

Figure 11 demonstrates one such case, where a higher
space budget results in better performance. Therefore, perfor-
mance is the worst for 0% space and the best for 100% space.
It also corroborates the fact that factoring is always benefi-
cial, since it conserves more information in a lossless way
under the same space constraint. Consequently,Factoring
followed by Knapsack-based PM performs better
thanPM-Only in all three intermediate space constraints, 25,
50 and 75%. The most interesting observation is Factor-
ing followed by Knapsack-based PM attains
the same performance in 75 and 100% space constraints.
Recall that we use Random Userbase in this experiment
which achieves a 26.15% overall space saving, i.e., factor-
ing stores all disagreement lists in 26.15% less space, while
guaranteeing the same processing performance as FM.

Finally, we investigate the comparative performance of
the two space reduction strategies discussed above at a fixed
space constraint (50%). We profile the performance of query
processing by varying query size (i.e., group size from 3
to 20) there. Each performance number is presented after
averaging the individual performance numbers as discussed
earlier.

Figure 12 summarizes the result of this experiment. As
expected, the average number of SAs increases with the
increasing group size in general. However, Factoring
followed by Knapsack-based PM outperforms

0

20

40

60

80

100

120

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Group Size

A
ve

ra
g

e 
#S

A
s

Factoring Followed By Knapsack Based PM

PM-Only

Fig. 12 Performance of different space-saving strategies with a space
budget of 50%

PM-Only significantly in all group sizes. This result corrob-
orates the effectiveness of the proposedFactoring fol-
lowed by Knapsack-based PM algorithm.

7 Related work

We organized our related work section into two subsections:
recommendations and query processing.

7.1 Recommendations

Two good surveys of recommendations can be found in [1]
and [14]. Briefly, the goal of a recommendation strategy is
to estimate a user’s rating for items he has not rated before,
and return k items with highest estimated ratings. The two
most popular families of recommendation strategies are item-
based and user-based strategies. The former leverages items
similar to the user’s previously highly rated items and the
latter leverages users who share the user’s interests. In this
paper, we use collaborative filtering to generate individual
recommendations.

A survey on group recommendations is given in [11].
It describes the two prevalent approaches: virtual user and
recommendation aggregation. The former combines exist-
ing ratings of each group member to create a virtual user to
whom conventional recommendation strategies are applied,
whereas the latter creates individual recommendation lists
for each member and consolidates those lists to form the
group’s list. In this paper, we adopt the latter approach for its
flexibility as described in [11].

Existing research on group recommendations mainly
focuses upon group formation and evolution, privacy con-
cerns and interfaces for supporting group recommendations.
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To the best of our knowledge, we have not encountered any
related work that emphasizes on performance aspect of group
recommendation computation, nor do they provide a theoret-
ical and empirical study of different consensus functions, as
we have done in this work. A few conducted user studies to
evaluate the benefits of group recommendations. Those are
summarized later.

PolyLens [18] is a group recommender extension to the
MovieLens recommender system. The authors report a user
study where existing MovieLens users were allowed to form
groups of their preference(e.g., by inviting each other) and
the system studies the impact of group behavior on the recom-
mender system MovieLens. In order to produce group recom-
mendations, individual groups members’ recommendations
were merged using the least-misery model. User satisfac-
tion was measured using following different criteria: how
easy the process of creating groups was; how easy it was to
add members into a group; how useful group recommenda-
tions were; and the overall satisfaction. The study concluded,
among other findings, that users in a group prefer group rec-
ommendations than individual ones. This inspired our group
vs individual recommendation comparison in Sect. 6.1.4.

In [6], the authors develop a genetic algorithm-based
collaborative filtering strategy to infer interactions between
group members to compute the predicted rating of an item for
a group. Even here, their experimental evaluation validates
the quality of group recommendations and users satisfaction.

In [13], the authors distinguish between group recommen-
dations in online communities and in non-online ones. They
propose a two-phase approach, where first a set of recom-
mendations are generated for a group using collaborative
filtering, and then items are filtered from that set in order
to improve satisfaction of individual members preferences.
Their experiments show that the proposed method has con-
sistently higher precision and individual members are more
satisfied.

AHP (Analytic Hierarchy Process) of multi-criteria deci-
sion-making is used in [19] to model group preferences us-
ing the preferences of individuals. The authors also use a
Bayesian network to model uncertainty in an individual
user’s preference. Their evaluation on 10 different situations
assesses the high usability of their system and a comparison
with both random and rule-based recommendation is also
provided.

The authors in [17] develop 3 different aggregation poli-
cies of individual user models into a group model and for the
purpose of biasing recommendations in a critiquing-based,
case-based recommender. They conduct experiments to high-
light the benefits of group recommendation using live-user
preference data.

Finally, in [4], the authors use hierarchical clustering and
decision trees to generate recommendations of user groups
in Facebook. This work differs from ours because it focuses

on recommending friends groups instead of recommending
items to groups. The experiments show that a large number
of groups in Facebook (73%) are accurately predicted using
members’s profiles.

Factoring Lists: In [2], the authors developed space-saving
strategies on keyword inverted lists using shared user behav-
ior. Their approach is based on clustering users first and then
building per-cluster keyword indices instead of individual
users’ indices. The experiments show that such clustering
saves space and that processing keyword queries on cluster-
based indices has acceptable time overheads. There are two
key differences between our factoring strategy and this work.
First, factoring is explored in a pairwise fashion (and not for
an entire user cluster). Second, factoring does not incur addi-
tional I/O. One extension of our work is to explore factoring
for a cluster of users.

Top-K Processing: The family of top-k threshold algorithms
[7,8] aims to reduce the amount of processing required to
compute top-ranked answers and have been used in the rela-
tional [5], XML [15] and many other settings. Monotonic
score aggregation functions, which operate on sorted input,
enable the early pruning of low-rank answers. In this work,
we apply these algorithms on user’s predicted rating lists
and introduce pairwise disagreement lists to improve perfor-
mance.

Knapsack Problem: This combinatorial optimization prob-
lem [9,20] arises whenever resource allocation is required
between many contenders under budgetary constraints. Each
resource has a cost and a value, and the total allocated re-
source cost is restricted under a hard constraint, so it aims to
allocate resources such that it gathers maximum value for a
given cost. Two main variants of this problem are Bounded
Knapsack and Unbounded Knapsack. Bounded Knapsack as-
sumes limited availability of each resource type, whereas
each resource may have infinite no of copies in Unbounded
Knapsack problem. We adapt a special case of Bounded
Knapsack known as 0/1 Knapsack for modeling disagree-
ment lists materialization problem. Each disagreement list is
selected for materialization under overall space constraints
(space budget) based on how much benefit it offers in speed-
ing up query processing (value) by consuming how much
space (cost).

8 Conclusion

Group recommendations are becoming of central impor-
tance as people engage in online social activities together.
In this paper, we define the semantics and study the effi-
ciency of delivering recommendations to groups of users.
We introduce the notion of a consensus function which aims
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to achieve a balance between an item’s aggregate predicted
rating in the group and individual member’s disagreements
over the item. We design and implement efficient threshold
algorithms to compute group recommendations. We report
on a user study conducted on the MovieLens data sets us-
ing Amazon’s Mechanical Turk and a comprehensive perfor-
mance study of our algorithms. We established that similarity
between group members impacts both quality and efficiency.

In the absence of any information about what groups could
be formed, pairwise user disagreement lists need to be main-
tained in order to efficiently process recommendations to
randomly formed groups. Hence, we developed two comple-
mentary space reduction strategies and studied their impact
on space and time. In particular, our experiments showed
that behavior factoring, a space-saving strategy where items
two users agree on are stored only once, achieves consid-
erable space reduction. That strategy combined with selec-
tively materializing disagreement lists successfully addresses
applications where a space budget is enforced.

There are many avenues we would like to explore in the
future. One extension to this work is to devise a query opti-
mization algorithm which takes a group and a configuration
(a set of materialized and possibly factored disagreement
lists) and determines which lists to use for that group. The
experiment in Sect. 6.2.4 showed that it is sometimes ben-
eficial to merge a subset of the disagreement lists for some
groups, even if they are materialized. Another avenue for
improvement is the implementation of threshold sharpening
as described in Sect. 3.4 for the pairwise disagreement model.
We believe this will have drastic improvements on processing
recommendations.
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