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Abstract Graph conductance queries, also known as
personalized PageRank and related to random walks with
restarts, were originally proposed to assign a hyperlink-based
prestige score to Web pages. More general forms of such
queries are also very useful for ranking in entity-relation
(ER) graphs used to represent relational, XML and hyper-
text data. Evaluation of PageRank usually involves a global
eigen computation. If the graph is even moderately large,
interactive response times may not be possible. Recently, the
need for interactive PageRank evaluation has increased. The
graph may be fully known only when the query is submit-
ted. Browsing actions of the user may change some inputs
to the PageRank computation dynamically. In this paper, we
describe a system that analyzes query workloads and the ER
graph, invests in limited offline indexing, and exploits those
indices to achieve essentially constant-time query process-
ing, even as the graph size scales. Our techniques—data and
query statistics collection, index selection and materializa-
tion, and query-time index exploitation—have parallels in
the extensive relational query optimization literature, but is
applied to supporting novel graph data repositories. We report
on experiments with five temporal snapshots of the CiteSeer
ER graph having 74–702 thousand entity nodes, 0.17–1.16
million word nodes, 0.29–3.26 million edges between enti-
ties, and 3.29–32.8 million edges between words and entities.
We also used two million actual queries from CiteSeer’s
logs. Queries run 3–4 orders of magnitude faster than whole-
graph PageRank, the gap growing with graph size. Index size
is smaller than a text index. Ranking accuracy is 94–98% with
reference to whole-graph PageRank.
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1 Introduction

Entity-relationship (ER) graphs with textual or structured
attributes form a uniform data model for searching the Web
[34,42], relational data [3,6,9], XML documents [4], per-
sonal data networks [14], and query-document clickthrough
graphs [18].

The uniform graph model has been used for many search
and mining applications: answering proximity queries [9,
47], authority-based text search in databases [6,9], mining
connection subgraphs [22] and centerpiece subgraphs [51],
detecting stale Web pages [7], disambiguating entities men-
tioned in e-mails [41], and detecting link spam [28].

Closer scrutiny shows that most of these approaches use
one of two interchangeable notions of graph proximity: con-
ductance in an electrical network [20,22,35] and random
walks with restarts [32,53], also called personalized Page-
Rank.

1.1 Motivating applications

Suppose a paper P is submitted to a journal editor J , who
must find a reviewer R. A personal information database rep-
resents papers, words, authors, e-mails, and organizations as
typed nodes in an ER graph, connected by typed relations
as shown in Fig. 1. Observe that words are also represented
as nodes, as is meta-data, such as “company”.

A review request is likely to be accepted if R has written
papers P ′ similar to P , or within a short citation distance
from P , and R and J have exchanged many e-mails. These
can be encouraged in a “schema-free” fashion by measuring
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Fig. 1 ER graph conductance search

Fig. 2 Searching text with semantic and type annotations

the proximity from the match nodes (here, P and J ) to the
candidate node R. Clearly, edges of different types may have
very different roles to play in measuring proximity.

A second example comes from searching text with seman-
tic and type annotations (see Fig. 2). The dependency edges
connecting the tokens from above come from the CMU Link
Parser [49]. Although this is not shown, the edges output by
the Link Parser have many different types, depending on the
kind of tokens they connect and the purpose of the connec-
tions.

In addition to the edges inserted by the Link Parser, a
named entity tagger [11,26] may add edges from nodes rep-
resenting entity types like city or person to various token
spans, e.g., New York is-a city. These type nodes may come
from a lexical network such as WordNet [15,40].

The combination of links expressing syntactic dependen-
cies among tokens and links connecting tokens to type infor-
mation gives potent support for semantic search. A query
that may be answered with evidence from Fig. 2 is “Where
was Carl Sagan born?” posed as a graph proximity query
type=region near “Carl Sagan” born. A rea-
sonable paradigm for ranking candidate answer tokens is to
regard this as a personalized PageRank problem, with tele-
ports to query match words born and Carl Sagan, and the
answer type region, induced by where in the question. Exist-
ing work shows that graph search of this general form can
yield good accuracy [6,15].

Yet other notions of graph proximity, based on random
walks, have been proposed recently. These include escape
probability [52] and hitting and commute times [47]. These
new definitions are useful for link prediction and other graph
mining tasks. In summary, there is a growing body of recent
literature on using random walk processes to define the
semantics of proximity queries on graphs, and therefore a

growing need to support efficient graph databases to execute
such queries.

1.2 Personalized PageRank

We thus see that “personalized” PageRank should be inter-
preted much more broadly as a form of proximity search in
graphs, which can be applied meaningfully at diverse scales:
Web pages and hyperlinks, nodes as entities and edges as
relations in a personal information space, or nodes as tokens
and edges coming from lexical, syntactic, and type annota-
tions. We will now set up some generic, formal definitions
of personalized PageRank.

Consider a weighted, directed graph G = (V, E), where
nodes represent entities and edges represent relations. Each
edge (u, v) ∈ E in G is associated with a conductance
C(v, u): this is the probability of a “random surfer” [42]
walking from u to v. C is written down as a typically sparse
matrix with columns summing to 1. Given the match nodes,
we build a multinomial probability vector r ∈ R

|V | where
r(u) > 0 only if u is a match node. r is called the restart or
teleport vector and has ‖r‖1 = 1.

The random surfer chooses a random match node using the
multinomial distribution r . Then, at every step, if the surfer is
at u, with probability 1−α he restarts the walk by invoking r
again. With probability α he walks from u to an out-neighbor
v using C(·, u). The steady-state visit probability pr (u) of a
node u is its score (p is subscripted with r to remind us that
r is the “query”). From the random surfing process, one can
arrive at pr as the infinite series

pr = αCpr + (1− α)r

∴ pr = (1− α)(I− αC)−1r (1)

= (1− α)
(∑

k≥0
αkCk

)
r

The inverse exists, but is never computed explicitly. When
computing global PageRank, C and r are fixed. Starting with
an initial estimate p̃(0)

r , pr is estimated using power itera-

tions: p̃(t+1)
r ← αC p̃(t)

r + (1 − α)r , until
∥∥∥ p̃(t+1)

r − p̃(t)
r

∥∥∥
becomes less than some suitably small εiter > 0. Here t is
the number of iterations.

Personalized PageRank satisfies three desirable proper-
ties. First, two nodes are close if there is a high-conductance
path between them. Second, two nodes are close if there are
many paths between them. Third, all else being equal, a node
is ranked better if many paths lead to it, a kind of prestige
indicator originally used in PageRank [42].

In the example shown in Fig. 1, R should get credit for
being close (as in shortest-path distance) to P and J . R should
score well if it is connected to J via many paths. We should
naturally rate R well if R’s papers are frequently cited.
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Table 1 Notation

G = (V, E) A directed graph with nodes V and edges E

u, v, w ∈ V Graph nodes representing entities

d Special dummy node to implement teleport

C(v, u) Probability of making a u to v transition

α Probability of walk

1− α Probability of teleport

r A teleport (multinomial probability) vector

pr Personalized PageRank vector for teleport r

εiter Error tolerance for power iterations

δo Teleport to only one node o

PPVo = pδo PageRank vector for teleport δo

For future reference, given a fixed node v, if r(u) = 1
when u = v and r(u) = 0 for u �= v, we write r = δv

(“the impulse at node v”), and the resulting PageRank vector
pδv is called PPVv , the “personalized PageRank vector for
v”. Table 1 summarizes the notation used in this paper.

1.3 Quality of results

Balmin et al.[6] gave anecdotal evidence that PageRank que-
ries in ER graphs can give meaningful results. This is con-
firmed by our experience, especially after edge conductances
C were tuned by machine learning techniques [13]. Table 2
shows sample results from a CiteSeer snapshot. The top-
scoring papers and authors are easily recognized by people
familiar with the topic of the query. Additional evidence of
the effectiveness of ranking based on properties of random
walks have been reported in several recent papers [43,46,
47,52,53]. Not all the applications are about ranking nodes;
some consider such novel tasks as link prediction [46] and
automatic caption generation for images [43].

1.4 Our contributions

From the preceding discussion, it is clear that a connectivity
server [10] with suitable indices for accelerated personalized
PageRank computation has widespread applicability.

In this paper, we describe a new system called Hub-
Rank. The central goal is to build a graph database with
suitable indices so that personalized PageRank queries can
be answered in (empirically) constant time, irrespective of
the size of the data graph, while giving formal guarantees of
correct ranking, as per whole-graph PageRank.

We pursue two basic approaches to solve the problem.
The main approach proposed here, called HUBRANKP,
builds upon Berkhin’s Bookmark Coloring Algorithm or
BCA [8]. BCA has a “spreading activation” flavor: weights
are pushed asynchronously along edges, most weights dying
down to negligible magnitudes before reaching much of the

Table 2 Top hits for three queries on a snapshot of CiteSeer

type=author near network security

1. Steven M. Bellovin

2. Eugene H. Spafford

3. Bill Cheswick

4. Matt Bishop

5. Li Gong

6. John Mclean

7. Birgit Pfitzmann

8. Gene Tsudik

type=author near network congestion control

1. Van Jacobson

2. Michael J. Karels

3. Sally Floyd

4. Raj Jain

5. Srinivasan Keshav

6. James F. Kurose

7. Don Towsley

8. Songnian Zhou

9. Henning Schulzrinne

type=paper near shared memory multiprocessor

1. Weak Ordering - A New Definition

2. An Evaluation of Directory Schemes for Cache Coherence

3. APRIL: A Processor Architecture for Multiprocessing

4. Automatic Translation of FORTRAN Programs to Vector Form

5. Implementing Remote Procedure Calls

6. Scheduler Activations: Effective Kernel Support

7. The MIT Alewife Machine

8. Simple But Effective Techniques for NUMA Memory Management

9. Comparison of Hardware and Software Cache Coherence Schemes

10. Implementing Sequential Consistency In Cache-Based Systems

E-R graph. Early versions of HubRankP were reported in
WWW 2008 [27] and ICDE 2008 [45].

Apart from standard baselines, we compare HubRankP
with HUBRANKD, based on Jeh and Widom’s
Hub Decomposition Theorem [32], HubRankD identifies an
influence subgraph for each query that is much smaller than
all of G. Thereafter, an interactive computation is performed
within the influence subgraph. HubRankD was reported in
WWW 2007 [12] and is included here not only for com-
pleteness, but also because it is not clear ab initio which of
HubRankP and HubRankD is superior. While their goals
are the same, they are quite distinct algorithms, with different
query execution and storage costs. Therefore, it is of interest
to compare their performance.

Figure 3 shows the shared layout of the two approaches.
Both depend on selecting hub nodes H ⊂ V and building
certain indices on H . In both settings, we start with a query
processor, and model the typical or average time taken by the
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Fig. 3 System outline for HubRank and HubRankP

query processor over a query workload, as a function of the
hub set H selected. Once H is picked, both systems need to
prepare and index PPVs for nodes in H .

Section 3 describes HubRankD. In Sect. 3.1, we describe
query execution, and model its cost. In Sect. 3.2, we give a
simple heuristic for selecting H . In Sect. 3.3, we compare
HubRankD’s query speed and accuracy against whole-graph
PageRank.

Section 4 describes HubRankP. In Sect. 4.4, we describe
query execution. In Sect. 4.2, we develop an accurate, yet
efficiently estimated predictive model for the runtime perfor-
mance of the HubRankP query processor, as a function of the
query, the data graph, and the available index. In Sect. 4.3, we
use the performance model and workload statistics to select
the hub set, and present experimental results, comparing with
HubRankD.

We report on experiments with about two million que-
ries from CiteSeer’s logs and five temporal snapshots of
the CiteSeer ER graph having 74 to 702 thousand entity
nodes, 0.17 to 1.16 million word nodes, 0.29 to 3.26 mil-
lion edges between entities, and 3.29 to 32.8 million edges
between words and entities. We analyze trade-offs between
index space, query-processing time, and ranking precision.
We have similar experiences with a slice of the US Patent
data graph.

Whole-graph PageRank scales linearly with graph size.
HubRankD runs queries an order of magnitude faster than
whole-graph PageRank even for small graphs, and the gap
grows indefinitely with graph size. HubRankP runs queries
3–4 orders of magnitude faster than whole-graph PageRank,

again, the gap growing with graph size. Empirically, our
query time is almost constant, independent of graph size. The
PPV index size is smaller than a regular text index. Per-query
RAM footprint for HubRankP is 1/15th of HubRankD. As
a bonus, updating HubRankP’s state with node browsing
actions is as fast as or faster than initiating a new query.

A common issue for both systems is the preparation of
the index once H has been selected. By a judicious ordering
of nodes in H , and using earlier nodes to assist computation
of indices for later nodes, the time to prepare even large hub
indices can be made highly sublinear in |H |. We present the
idea and experimental results in Sect. 5. Concluding remarks
are made in Sect. 6.

2 Background and related work

For all but the smallest graphs, global PageRank is too slow
for interactive search applications (Table 3). We discuss some
existing alternatives to global PageRank computation and
argue why none of them fits our needs.

2.1 Linearity and hub decomposition

From (1), observe that pr is linear in r , and therefore

pγ r = γ pr ∀γ ∈ R, r ∈ R
|V | (2)

and pr1+r2 = pr1 + pr2 ∀r1, r2 ∈ R
|V |. (3)

Note that here r, r1, r2 need not even be valid multinomial
probabilities, but can be any real vectors.

Here is an interesting property of pr that we have not seen
commonly mentioned.

Theorem 1 pr , which is the solution to the recurrence pr =
αCpr + (1− α)r , also satisfies

pr = pαCr + (1− α)r.

Note that, in pαCr , αCr is in the subscript, i.e., pαCr is the
PageRank vector corresponding to the input vector αCr . αCr
is not a valid multinomial teleport probability vector, but we
can still plug it in, in place of r , in the definition of PageRank
given in (1).

Table 3 Power iteration time
(ms) vs. number of entity and
word nodes and edges, for
queries randomly sampled over
origin nodes, and five temporal
snapshots of the CiteSeer E-R
graph

Year Entity nodes Entity edges Word nodes Word to
entity
edges

Avg
global
Page Rank
time (ms)

Standard
deviation
(ms)

Edges
scanned
per milli-
second

1994 74,223 289,009 171,702 3,289,201 2,505 724 4,711

1996 177,208 755,762 341,437 8,530,197 7,159 1,765 4,494

1998 319,608 1,430,630 562,420 15,661,128 15,048 4,016 4,558

2000 470,028 2,157,541 792,794 23,309,842 27,746 6,475 4,583

Full 702,406 3,261,041 1,163,818 32,762,013 39,586 8,170 4,667
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Proof Start from the rhs:

(1− α)r + pαCr = (1− α)r

+(1− α)

⎛
⎝∑

k≥0

αkCk

⎞
⎠ (αCr) using (1)

= (1− α)

⎛
⎝I+

∑
k≥1

αkCk

⎞
⎠ r = pr ,

where we have used (3) twice. (An easy mnemonic for this
equality is to start with pr = (1 − α)r + αCpr , and “push
down” the αC into the teleport argument of p.) 
�

A simple corollary to Theorem 1 is the following hub decom-
position result, shown earlier by Jeh and Widom [32] from
first principles.

Theorem 2 (Hub Decomposition)

pδu = α
∑

(u,v)∈E

C(v, u)pδv + (1− α)δu .

Proof Using r = δu in Theorem 1, we just need to
show that pαCδu , which is αpCδu using (2), is equal to
α

∑
(u,v)∈E C(v, u)pδv , i.e., we need to show that

pCδu =
∑

(u,v)∈E

C(v, u)pδv

(3)= p∑
(u,v)∈E C(v,u)δv

,

using (3). Therefore, it suffices to see that both Cδu and∑
(u,v)∈E C(v, u)δv are the uth column of C . 
�

The hub decomposition theorem says that if all
out-neighbors of node u have known PPVs, the PPV of u
can be computed easily. The result can also be written in the
combined matrix form

Q = αQC + (1− α)I, (4)

where the uth column of Q is PPVu and I is the |V | × |V |
identity matrix. Note that, unlike in (1), Q multiples C from
the left.

Hub selection Jeh and Widom went on to give a recipe for
computing pr for an arbitrary r , given that PPVh was pre-
computed and stored for a fraction of nodes h ∈ H . They
thus laid the groundwork for personalization, but absent was
a treatment of how H ⊂ V ought to be picked. Their only
suggested heuristic was to pick “large PageRank” nodes into
H , because these are easily reached from other nodes. In
particular, they did not consider that nodes can behave very
differently in queries, e.g., because some represent words
and others entities. They also did not consider how a query
workload can be used to select a better H . This is our focus.

2.2 ObejctRank and BinRank

In ObjectRank [6], the PPVs of all word nodes are precom-
puted and cached. Only keyword match node are allowed.
Therefore, the response to a query can be computed as a sim-
ple Fagin merge [21] of PPVs of words in the match set,
without any graph computation at query time.

ObjectRank seeks to make keyword query-processing
interactive, but its preprocessing costs quickly get out of hand
with increasing graph and corpus vocabulary size. Precom-
puting PPVs for all 562,000 words in our testbed takes an
estimated 22,000 CPU-hours. Unsurprisingly, ObjectRank
does not really precompute PPVs for all words, but maintains
a cache of word PPVs. In case a user query “misses” in this
cache, a message of the following form results1

Top 20 results for keywords: euler lagrange
[Message: INDEX NOT FOUND]
Sorry. The answer to your query has not been
precomputed and stored in our system yet. It
would become available in the near future.
Thank you for your patience.

BinRank [30], published after most of the building blocks
[12,27,45] in this paper were published, attacked this key
bottleneck in ObjectRank. They used the property that
growing the teleport (“base”) set does not thin the set of
nodes that have non-negligible scores. They precomputed a
partitioned clustering (“binning”) of all words in the corpus,
where the similarity measure used in the clustering was based
on cooccurrence of words in object nodes. For each bin, they
precomputed and stored a subgraph similar to our notion of
a influence subgraph. At query time, a bin that contains all
query words and has a small influence subgraph is chosen,
the graph loaded into RAM, and ObjectRank scores com-
puted in the restricted graph. BinRank reduced the RAM
footprint compared to HubRankD, but as we shall see,
HubRankP [27,45] is a remarkable improvement beyond
HubRankD, smoothly trading off between query time and
index space and preparation time, and giving formal guaran-
tees on accuracy.

2.3 Asynchronous PageRank

Abiteboul et al.[1] described OPIC, an algorithm to com-
pute PageRank with a fixed teleport vector, while the graph
is changing and a crawler is incrementally acquiring parts of
the graph. OPIC proceeds by assigning some initial “cash”
to each node and “pushes” cash asynchronously along edges.
OPIC does not handle dynamic updates to teleport r : “One

1 The output was captured from http://teriyaki.ucsd.edu:9099/

examples/jsp/objrank/objectRank05.jsp on 2006/11/12. The same
demo is on http://db.ucsd.edu/BibObjectRank/main05new.html at
this time.
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may also want to bias the ranking of answers based on the
interest of users. Such interesting aspects are ignored here.”
OPIC does not propose or build indexes offline to speed up
query-time PageRank computation. McSherry [39] gave a
related asynchronous update scheme and gave effective heu-
ristics for scheduling the “cash propagation”, but he did not
use any indexes; neither did Sarkar et al.’s algorithm [47]. The
most recent asynchronous update algorithm, one on which
we base our current work, is Berkhin’s BCA (“bookmark
coloring algorithm”) [8].

Proposition 3 A converging approximation p̂r to the sum in
(1) can be built as follows:

1: q ← r, p̂r ← 0
2: while ‖q‖1 is large do
3: p̂r ← p̂r + (1− α)q
4: q ← αCq

Proof The result is clear from the expression of pr as the
infinite series pr = (1− α)

(∑
k≥0 αkCk

)
r . 
�

Because columns of C sum to 1, ‖Cq‖1=‖q‖1,
∥∥q(t+1)

∥∥
1

= α
∥∥q(t)

∥∥
1, and fast convergence is guaranteed. We can

replace the “synchronous” update in Step 4 of the whole of
q with an “asynchronous push” from some node u to its out-
neighbors v. This let Berkhin use a sparse form of C .

Proposition 4 A converging approximation p̂r to the series
pr = (1 − α)

(∑
k≥0 αkCk

)
r can be computed using the

following code:

1: q ← r, p̂r ← 0
2: while ‖q‖1 is large do
3: pick a node u such that q(u) > 0
4: q̂ ← q(u), q(u)← 0
5: p̂r (u)← p̂r (u)+ (1− α)q̂
6: for each out-neighbor v of u do
7: q(v)← q(v)+ αC(v, u)q̂

The proof of the above statement is a special case of the
proof of Proposition 7, so we omit it.

Berkhin also proposed to use PPVs of hub nodes to trade-
off between disk space and query time, but he left two impor-
tant questions unanswered.

– There was no known model that could predict the exe-
cution time of a specific query, based on the choice of
hubs and other system parameters (such as convergence
tolerances).

– Lacking a predictive performance model, he proposed a
generic hub selection strategy LPR similar to Jeh and
Widom: select “Large-PageRank” nodes as hubs.

While the LPR policy might be acceptable for the Web
graph, it performs poorly with diverse node and edge types.

For example, in our setting, word nodes are many in num-
ber, and therefore each has small global (query-independent)
PageRank, but they are vitally important to include into the
hub set, because most trails begin with keyword queries. But
neither words nor entities by themselves can form as good
a hub set as a judicious mix of both, found by exploiting
workloads of sample match node sets.

Our second proposal in this paper, HubRankP, uses BCA
as a foundation to implement very fast incremental updates
to pr as r changes in a sparse fashion.

2.4 Experimental testbed

In the interest of continuity, we will outline experimental
results as we present ideas and algorithms. In this section,
we summarize our experimental testbed and some baseline
performance numbers.

2.4.1 Hardware and software

HubRankD and HubRankP were written in Java (64-bit
JDK1.5) and run on a 4-CPU 2.2 GHz Opteron server with
8 GB RAM and U320 disks. Baseline PageRank used α =
0.8; power iterations were stopped when

∥∥∥ p̃(t+1)
r − p̃(t)

r

∥∥∥
dropped below εiter = 10−6.

2.4.2 The ER data graphs

The full CiteSeer corpus has 1,163,818 words over 702,406
entity nodes and 3,261,041 edges between entities. To get
naturally scaling graphs, we took the snapshots up to years
1994, 1996, 1998, 2000, as well as the full graph. Node and
edge statistics for the data slices are shown in Table 3. Except
in scaling studies, all the experimental numbers reported are
for the 1994 snapshot.

Lucene (http://lucene.apache.org) text indices took 55,
139, 259, 378, 540 MB on disk, respectively, on these
snapshots. The full CiteSeer graph skeleton occupied only
100 MB RAM. The samples were smaller, so HubRankD
and HubRankP used an in-memory conductance graph with
all other metadata kept on disk. Recent work [19] has enabled
using intelligent multilevel memory hierarchy for graph que-
ries.

Our system can process graphs that are orders of mag-
nitude larger, but we could not locate an object graph with
query logs that are so critical to our success. For some object
graphs, we sampled the distribution of words in the corpus
itself as a crude “query log”. The behavior of our algorithms
remained broadly similar.

2.4.3 Whole-graph PageRank

Empirically, for a fixed ε, a constant number of power
iterations (typically between 50 and 70 for us, consistent
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Fig. 4 Typical Zipfian distribution of word frequencies over almost
two million queries

with prior experience [33]) are needed, each iteration taking
O(|V |+ |E |) time. This is because the PageRank loop looks
like this:

1: pnext ← 0
2: for each edge 〈u, v, C(v, u)〉 do
3: pnext(v)← pnext + pcur(u) C(v, u)

where edges can be read in arbitrary order from disk. Because
the amount of CPU work inside the loop is very small, access
to an edge and its conductance must be very fast.

If u, v and C are accessed directly from three native Java
arrays (int[], int[], double[]), global PageRank
can scan around 20 million edges per second on our hard-
ware, which is reasonable for a JVM. However, per-query
modifications to G necessitates some extent of program-
ming abstraction involving edge iterators and a class to repre-
sent edges with conductances, rather than reading these from
native arrays directly. These, coupled with heap management
overheads, reduces our scan rate to around five million edges
per second. Baseline whole-graph PageRank times are shown
in Table 3. We believe these speeds can be boosted by a factor
of 2–3 by coding in C++.

Note that, for a given graph implementation, the time to
access an edge is the same across all algorithms. Therefore,
we can also compare two algorithms in terms of the number
of edges they access, which is platform-independent. In some
cases, we also report this performance measure for complete-
ness.

2.4.4 The query log

We obtained 1.9 million queries from CiteSeer, collected
over 36 days from 21st Aug to 25 Sep, 2005 with an average
of 2.68 words per query. Word frequencies are distributed in
a familiar Zipfian manner, as shown in Fig. 4. We sampled
10,000 test queries from the first 100,000 queries, while all
but the first 100,000 queries were used to train and tune our
indices. This sampling procedure (unlike uniform random
sampling) made sure that we are not benefiting from just the

short-term memory of splitting a query session with shared
words into the training and test set. Choosing the (small) test
set to be chronologically earlier than the (larger) training set
further ensures that the benefits of the hub index are measured
based only on long-term and stationary word statistics. We
chose several different test samples of size 10,000 to make
sure our observations are stable.

2.4.5 Workload model

In HubRank, a query is modeled as an unordered set of
words. Usually, words are represented as nodes; therefore,
each query can be thought of as a set of match nodes. A
query word can be any word in the vocabulary of the text
associated with nodes. (If phrases are detected in the corpus
in advance [38], these phrases can be used as indexing units
as well.)

To completely characterize a workload, we have to esti-
mate a distribution over all subsets of the vocabulary. Com-
putationally, capturing all dependencies between all words
is quite impractical. Luckily, most queries are very short,
typically, 1–3 words. In this section, we will build a uni-
gram model, i.e., estimate the marginal probability for each
single word w, which we denote queryProb(w). These esti-
mates will be used to estimate the average cost of query in
Subsect. 3.1.4 and Sect. 4.2, which will then be used to design
the hub index in Sects. 3.2 and 4.3, respectively.

The problem with estimating queryProb(w) is that in most
search engines, query word frequencies are highly skewed.
A sizable fraction of queries are never repeated. Even if we
use a large training set, a separately sampled test set will
always contain words we never saw in the training set. Each
such query may be rare, but collectively, many such queries
will happen. If we do not provision for these low-probabil-
ity word events, overall query execution performance will
suffer.

This is a standard problem in language modeling [38],
and a variety of smoothing schemes are known. We use the
well-known Lidstone smoother:

queryProb(w) = queryCount(w)+ �∑
w′ queryCount (w′)+ �

, (5)

where queryCount(w) is simply the raw count of w in the
training set and 0 < � ≤ 1 is a parameter to be set via
cross-validation.

To tune �, we randomly split the workload into partitions
W1 and W2, estimate queryProb(w) using W1, and estimate
the probability of W2 as

∑
w∈W2

queryCountW2
(w) log

(
queryProbW1,�

(w)
)
,
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and we maximize over tuning parameter �:

arg max
�

∑
w∈W2

queryCountW2
(w) log

(
queryProbW1,�

(w)
)
.

using a grid search. For robustness we can make multiple
random W1, W2 splits.

For HubRankP, match nodes can correspond to both
words and entities, but as long as we have statistics for users
issuing word queries and clicking on entity nodes, the prob-
lem remains the same. A match node set M can be any subset
of V .

Suppose the query time with M as input is denoted
QueryTime(M). Then the expected query time over a work-
load is
∑

M

Pr(M) QueryTime(M).

A full characterization of Pr(M) will involve estimating 2|V |
probabilities. Luckily, most Ms are very small and most
Pr(M)s are vanishingly small. A browsing action corre-
sponds to a singleton match set M = {u}. A keyword search
step also typically results in a very small match set because
most queries are only 1–3 words long [48].

Therefore, in the interest of computational feasibility, sim-
ilar to word probability estimation in language modeling
[38], we limit ourselves to estimating single-node margin-
als queryProb(u), which is the probability that a query drawn
randomly from the universe of queries has a match set M con-
taining u. Using queryProb(·), we approximate the expected
query-processing time as:

∑
u∈V

queryProb(u) QueryTime({u})

i.e., the match set is the singleton node u.
If it is found desirable to extend the query distribution

beyond a multinomial on single words, one can extend mar-
ket basket techniques [29] to build a dictionary of highly cor-
related word sets, and then estimate probabilities of seeing
these sets in queries. We leave this for possible future work.

2.4.6 Evaluating scores and rankings

Although it takes much more time, running whole-graph per-
sonalized PageRank gives us the gold-standard scores and
ranking among nodes. We compare HubRankD and Hub-
RankP scores and ranks against the PageRank reference as
follows.

L1 error If pr is the true full-precision personalized Page-
Rank, and we estimate p̂r , then

∥∥ p̂r − pr
∥∥

1 is a reasonable
first health-check, but it does not guarantee ranking accuracy.

Precision at k pr induces a “perfect” ranking on all nodes v,
while p̂r induces an approximate ranking. Let the respective
top-k sets be Tk and T̂k . Then the precision at k is defined as
|Tk ∩ T̂k |/k ∈ [0, 1]. Clipping at k is reasonable, because,
in applications, users are generally not adversely affected by
erroneous ranking lower in the ranked list.

Relative average goodness (RAG) at k Precision can be
excessively severe. In many real-life social networks, near-
ties in PageRanks are common.

RAGk =
∑

v∈T̂k
pr (v)∑

v∈Tk
pr (v)

∈ [0, 1]

rewards the ranking algorithm if the true scores of T̂k are large
(note that p̂r (v) is not used). RAG can be overly lenient.

Kendall’s τ Let exact and approximate node scores be
denoted by Sk(v) and Ŝk(v), respectively, where the scores
are forced to zero if v �∈ Tk and v �∈ T̂k . A node pair v,w ∈
Tk∪T̂k is concordant if (Sk(v)−Sk(w))

(
Ŝk(v)− Ŝk(w)

)
>0,

and discordant if it is < 0. It is an exact-tie if Sk(v) = Sk(w)

and is an approximate tie if Ŝk(v) = Ŝk(w). If there are c, d, e
and a such pairs, respectively, and m pairs overall in Tk ∪ T̂k ,
then Kendall’s τ (at rank k) is defined as

τk = c − d√
(m − e)(m − a)

∈ [−1, 1].

Other criteria Information retrieval systems are evaluated
using test queries, each having a set of human-labeled rel-
evant and irrelevant documents (see http://trec.nist.gov/).
Typically, there is no total order of the corpus for each query.
In such settings mean average precision (MAP), mean recip-
rocal rank (MRR), or normalized discounted cumulative gain
(NDCG) are appropriate [31]. In contrast, we have a refer-
ence ranking from the definition of personalized PageRank,
but no absolute relevance judgments. Therefore, we use cri-
teria that are based on comparing scores and permutations.

3 HUBRANKD

For fast query processing, both HubRankD and HubRankP
depend on the fact that r is sparse, i.e., teleport initially
reaches only a few nodes, which we called the “match nodes”.
The two algorithms limit computations to a small subgraph
reachable from the match nodes. HubRankD does this in a
heuristic manner, whereas HubRankP uses the more prin-
cipled BCA approach. To keep the distinction clear, we call
the subgraph the influence subgraph in case of HubRankD
and the active subgraph in case of HubRankP.
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Fig. 5 Query-time collection of influence subgraph

3.1 Query execution algorithm and cost

Suppose u is a match node, i.e., r(u) > 0. Suppose we knew
PPVu for all such u’s. Then, we can quickly compute the
scores of all nodes in response to query r as

∑
u r(u) PPVu ,

similar to ObjectRank. Theorem 2 says that, even if PPVu

were not known at query time, if all out-neighbors of node
u have known PPVs, the PPV of u can be computed easily.
HubRankD extends this to the case where even the direct
out-neighbors of u do not have known PPVs.

3.1.1 Expansion to influence subgraph

After receiving a query, the first step of HubRankD is to
expand out from the match nodes u until a hub node h with a
known PPV is hit or (an approximation to) the conductance
from u to the periphery node v dwindles to a very small
value. The intuition is that nodes like v have little influence
on PPVu . So the exact PPVv we use is unimportant, and we
can just use δv , say.

The algorithm for collecting the influence graph is shown
in Fig. 5. There is no formal property associated with the
influence subgraph nodes I , because we are approximating
the conductance from a teleport node u to an influence node v

with the single largest conductance path from u to v. Multiple
paths are not taken into account. εtrim is a system parameter
that calls off further expansion once we are sufficiently far
from match nodes.

3.1.2 PPV clipping and loading heuristics

We describe how PPVs are computed for hub nodes in Sect. 5.
Fogaras et al.[24] show that to achieve high confidence in
arranging nodes by personalized PageRank, any index must
have �(|H | |V |) bits in the worst case. In realistic graphs and
practical applications, PPV elements are extremely skewed,
query words are Zipfian, and the graph often shows power-
law degree distribution. This allows practical systems like
ObjectRank [6] to clip PPVs, i.e., remove any PPVh(u) <

Fig. 6 Iterative computation of missing PPVs

εclip for some system parameter εclip > 0, before storing it in
the index. This makes the PPVs much smaller. More PPVs
fit in a RAM cache of a given size and queries can be exe-
cuted faster. Obviously, personalized PageRank scores will
become more and more inaccurate as εclip increases. As a
result, the ranking induced by HubRank will also deviate
from the gold standard, and this can be measured in various
ways, as described in Subsect. 2.4.6.

εclip is usually chosen conservatively such that ranking
accuracy is unlikely to suffer for any query. (Typically, test-
ing the system with a few values of εclip suffices; see Fig. 12.)
However, when the algorithm in Fig. 5 is executed for a spe-
cific set of match nodes, if u is far away from the match
nodes, then s is very small. In such cases, we can load only a
part of PPVu , as follows. We keep all clipped PPVh sorted in
decreasing order of PPVh(v) and load up to the last element
that is larger than εtrim/s. The intuition is that PPVh(v) can
significantly affect the answer only if s PPVh(v) > εtrim. As
we shall see in Sect. 3.3, this additional adaptive clipping
does not affect ranking accuracy in practice, but improves
query-processing time.

3.1.3 Computing missing PPVs

After executing Fig. 5, we have an influence graph I where

– The PPVs at the nodes in I ∩ H can be read from the
PPV database precomputed at indexing time.

– The PPVs at some other nodes v �∈ H are fixed to δv

because they are likely to have small influence on the
query result. We call these distant nodes D ⊂ I .

– The remaining nodes have missing PPVs and are denoted
M ⊂ V . We have to find these PPVms.

Figure 6 shows a customized power iteration pseudocode.

Proposition 5 If, in the algorithm shown in Fig. 6, the ter-
mination condition is
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Fig. 7 Fast convergence of missing PPVs. Each line is a different query

∀m ∈ M :
∥∥∥PPV(t)

m −PPV(t−1)
m

∥∥∥ < εiter

for some tolerance εiter > 0, then the algorithm converges,
giving a definite value for all PPVms.

Proof Consider (4) again. Let PPVu be the uth column in
Q ∈ R

|V |×|V |, and let a specific row of Q (corresponding to
a fixed node w ∈ V , say) be q. Then PPV iterations amount
to solving for q the recurrence q = α q C+(1−α)δ�w , except
that q is partitioned into qM , the missing elements and qK ,
the known elements (from hub and distant nodes). Let C be

correspondingly partitioned into

[
CM M CM K

CK M CK K

]
. As far as

our PPV iterations go, because we never look beyond nodes
in K , only M → K and M → M edges matter; thus, we are
looking for a solution to

qM = α qM CM M + α qK CK M + const1×|M|
but α qK CK M is a fixed row vector as well, so the recurrence
simplifies into qM = α qM CM M + c, where c is some fixed
1×|M | row vector. Because α CM M is strictly substochastic,
(I− α CM M )−1 exists and so there is a unique solution for
qM . Now, we can adapt Jeh and Widom’s proof of conver-
gence of their “basic dynamic programming” method to show
that the algorithm in Fig. 6 will converge to these values. 
�
For four representative queries (one line per query), Fig. 7
shows that the worst L1 change in any missing PPV indeed
goes down exponentially with iterations. Unfortunately, qM

is not guaranteed to be statistically meaningful (e.g., unbi-
ased or even nonnegative). This makes HubRankP, based
on BCA, a better choice, at least as far as the theory goes.

3.1.4 Query cost

HubRankD’s query execution cost has three parts:

1. Building the influence subgraph and loading known
PPVs.

Fig. 8 Over 2–3 orders of magnitude, the time for iterative PPV esti-
mation is almost linear in the number of influence nodes

2. Iteratively computing missing PPVs.
3. Merging teleport node PPVs and reporting top-K result

nodes.

The iterative computation shown in Fig. 6 dominates query-
processing time, especially if PPVs are stored truncated as
described in Subsect. 3.1.2. To a first approximation, the
number of nodes in the influence graph strongly affects itera-
tion time. Regressing on a log–log plot (shown in Fig. 8) gives
a slightly sublinear fit. This very crude estimate is accurate
to within a factor of 2 for a vast majority of queries.

3.2 Hub selection

Given the dependence of query time on the size of the influ-
ence graph, a very reasonable objective, while selecting H ,
is to try to minimize the size of the influence subgraph,
summed (equivalently, averaged) over queries in a represen-
tative workload. However, this can be shown to be NP-hard.

Proposition 6 The NP-complete independent set problem is
polynomial-time reducible to the problem of finding an opti-
mal hub set.

Proof The independent set problem is as follows. Given an
undirected graph G = (V, E) and a number 0 < k < |V |,
decide whether there is a subset K ⊂ V of size at least k such
that no pair of nodes in K are connected by an edge in G.
Given an instance of the independent set problem, we create
a directed graph for HubRankD by bidirecting all edges.
Then, we ask for the best hub set of size at most |V | − k.
Suppose G had an independent set K of size at least k. Then
the hub set selection algorithm is free to choose H = V \ K .
Any query can now be executed by directly reading off a
PPV, or a single step combination of PPVs as in Theorem 2.
In contrast, if there is no independent set of size at least k,
and H must be of size at most |V | − k, there will be some
edge (u, v) such that u �∈ H and v �∈ H , and there is some
query teleport r for which the iterative algorithm in Fig. 6
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Fig. 9 Greedy estimation of a measure of merit to include each node
into the hub set

must be run. We can make the convergence criterion very
stringent (small εiter in Proposition 5) so that the resulting
query time is much larger than simple PPV lookups, in fact,
so large that we can detect a difference in average query time
over a workload of queries, each teleporting to one node in
G. 
�

Since the estimates of query-processing times are anyway
approximate, and so are the estimates of disk space needed
to store PPVs, the likely non-existence of a polynomial-time
algorithm is not too disturbing. In fact, on large ER graphs,
any algorithm that takes much more than linear time may not
be acceptable. We will use a simple greedy heuristic: we will
order word and entity nodes in decreasing order of an intu-
itive and easy-to-compute merit score, then pick a suitable
prefix of the merit list. The algorithm will closely mirror the
expansion to the influence subgraph shown in Fig. 5, except
that the query workload will be taken into account. The algo-
rithm is shown in Fig. 9. Once the merit list is set, we go
down the list computing PPVs (see Sect. 5) and stop when
we run out of index space.

There are two limitations of the above approach. First, the
merit of a node u depends not only on the degree to which
activation from queries reaches u, but also the “hinterland”
behind u that would not enter the influence graph if u were
made a hub node. The latter factor is ignored by HubRankD.
Second, we do not account for the space occupied by PPVs
while constructing the merit list; ideally, we should do a cost-
benefit analysis. We fix both these problems in HubRankP
and experimentally show that these fixes result in consider-
able improvements.

3.3 Performance

Choice of hub nodes For keyword queries, teleport is stron-
gest at word nodes and then diffuses out to entities with a
loss incurred at every step. Therefore, it may appear that the
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Fig. 10 For reasonable hub set sizes, entity nodes are highly desirable
compared with word nodes; the best case is a nontrivial mix

Fig. 11 Effect of storing clipped PPVs on query speed (|H | = 16,000)

originating word nodes have all the advantage in ranking
highest in the merit list. However, the correct intuition is that
queries about a link-cluster in the graph will share a theme
but not necessarily words. Over many queries, these individ-
ual words may not float to the top, but entity nodes at the
confluence of many short paths from thematic words will.

This is confirmed in Fig. 10. The order returned by the
algorithm in Fig. 9 is a nontrivial mix. Words do crowd the
top ranks but soon they are overtaken by entity nodes; in fact,
the fraction of words steadily dwindles until nearly all entity
nodes are exhausted.

Effect of PPV clipping PPVs are initially stored in the disk
PPV cache so that PPV elements less than εclip are clipped and
discarded. We will vary εclip between 10−6 and 10−3. Now
queries are run with a conservative value of εtrim = 10−6,
effectively disabling trimmed loading. Figure 11 shows the
effect of εclip on average query execution time, broken down
into the main subroutines. Larger values of εclip (more aggres-
sive clipping) saves time during the influence graph expan-
sion phase (which includes PPV loading—see Subsect. 3.1.4)
as well as the iterative phase, because PPVs are represented
as sparse vectors and increasing εclip increases sparsity.

Figure 12 shows the effect of clipping PPVs on rank-
ing accuracy, with k = 20. RAG, being very forgiving,
remains essentially 1 throughout. Precision and Kendall’s
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Fig. 12 Effect of storing clipped PPVs on ranking accuracy (|H | =
16,000)

Table 4 Total space needed to store PPVs (in megabytes) as a function
of |H | and εclip. A Lucene text index for this data set takes 55 MB

εclip →
10−6 10−5 10−4 10−3

|H | 5,000 293 106 26 4

↓ 10,000 438 155 40 7

15,000 561 196 51 10

20,000 679 235 63 12

25,000 793 272 73 15

30,000 910 311 84 18

35,000 1,020 347 95 21

τ are around 0.98 up to εclip = 10−4, but further clipping
makes matters worse.

Table 4 shows the payload size of the PPV index on disk,
against the two design choices of |H | and εclip. Each sparse
record in a PPV is assumed to be one 4-byte int for the
node ID and one 8-byte double for the PageRank value.
As a reference, for this data set (1994) a standard Lucene
text index is 55 MB large. For this data set, εclip = 10−4

is an excellent compromise between PPV index size, query
execution speed, and ranking accuracy.

Here, we computed the table entries after building the PPV
index, but Subsect. 4.3.3 will show how the sizes can be esti-
mated quickly without materializing the PPVs first. Armed
with this table, we should pick the smallest εclip consistent
with our storage budget.

Effect of trimmed PPV loading Next, we will measure the
effect of varying εtrim on query speed while holding εclip and
|H | (therefore, the size of the PPV index) fixed. εtrim affects
all stages of query processing:

– Large εtrim quickly terminates the influence graph expan-
sion show in Fig. 5.
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Fig. 13 Effect of εtrim on query time, broken down into query-
processing stages
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Fig. 14 Breakup of HubRank running time

– Large εtrim leads to early abandonment of PPV loading
(Subsect. 3.1.2). However, most PPVs are only hundreds
to thousands of bytes long, so this may not save much in
terms of disk IO.

– However, loading larger PPVs lead to the PPVs in the
iteration step (Fig. 6) being less sparse, and this leads to
a dramatic increase in the time required for the iteration
step, and a smaller increase in the time to merge the final
PPVs into a ranking. This is the dominant reason why
large εtrim leads to much faster query execution.

These observations are summarized in Fig. 13.

Query time breakup Figure 14 shows the time taken by var-
ious stages of HubRankD’s query-processing algorithm, as
prefixes of increasing size from HubRankD’s merit list are
included into the hub set. We see that the dominating part
of the running time is spent in iteratively computing missing
PPVs. This part of the running time decreases steeply with
increasing |H |, because large |H | quickly limits the influence
subgraph.

However, we can improve further beyond uniform power
iteration over the influence subgraph, by concentrating on
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Fig. 15 Extending Proposition 4 to use hub PPVs

high-conductance paths and adapting the BCA algorithm to
use judiciously chosen hubs. This is the subject of the rest of
the paper.

4 HUBRANKP

Compared to whole-graph PageRank, HubRankD is a prac-
tical and efficient query-processing strategy. However, it has
a few shortcomings.

– There are no theoretical guarantees about the accuracy
of node scores or ranks when compared with the “gold
standard” global PageRank.

– There is no direct control on the size of the influence
subgraph. The total size of all PPVs over the influence
subgraph may exceed main memory limits. (In our exper-
iments, this happens in 2 out of 10,000 queries.)

– In case of a minor change in r from one query to another
(say, a query word added or dropped), the influence sub-
graph needs to be recomputed from scratch. It can change
dramatically, and there is no satisfactory way to reuse
computations invested in earlier influence subgraphs.

These shortcomings are removed in HubRankP, described
in this section. HubRankP is based on Berkhins’s BCA
described in Sect. 2.3.

4.1 Asynchronous PageRank with hubs

Suppose, for a selection of hub nodes h ∈ H ⊂ V , we have

precomputed and stored PPVh
	= pδh . Then the pseudocode

in Proposition 4 can be extended to use the hub PPVs, as
shown in Fig. 15.

Proposition 7 In Fig. 15, p̂r + pq is invariant across the
while loop.

Proof Let q<, ρ< and q>, ρ> be the values of q and p̂r

before and after one loop execution. First, consider the case

Fig. 16 More efficient version of Fig. 15

h �∈ H . Then

q> = q< − q<(u)δu + αCq<(u)δu

ρ> = ρ< + (1− α)q<(u)δu

We have to show that ρ< + pq< = ρ> + pq> . The rhs

= ρ< + (1− α)q<(u)δu + pq<−q<(u)δu+αCq<(u)δu

= ρ< + (1− α)q<(u)δu

+pq< − pq<(u)δu + pαCq<(u)δu using (3)

= lhs+ (1− α)q<(u)δu − pq<(u)δu + pαCq<(u)δu

= lhs+ 0, using Theorem 1.

Now, consider the case h ∈ H . In this case,

q> = q< − q<(u)δu

ρ> = ρ< + q<(u)pδu , from which

ρ> + pq> = ρ< + q<(u)pδu + pq<−q<(u)δu

= ρ< + pq< + q<(u)pδu − pq<(u)δu using (3)

= lhs+ q<(u)pδu − q<(u)pδu = lhs.


�
H has critical effect on query time: u ∈ H blocks the

expansion, while u �∈ H is non-blocking and propagates
weight to out-neighbors v.

Step 7 in Fig. 15 accesses PPVu from disk inside the loop.
This can be avoided by adding up the coefficients q̂ over the
execution of the algorithm into an accumulator B(u), which
is multiplied by PPVu probed from disk once, at the very
end. Because B is a function of the hub set H and query
teleport r , we will denote it as BH,r . This version is shown
in Fig. 16.

Proposition 8 In Fig. 16,

pq + NH,r +
∑
h∈H

BH,r (h) PPVh

is invariant across the while loop.

The proof is very similar to that of Proposition 7 and is
omitted.
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In Fig. 15, we begin with p̂r = 0 and q = r , so p̂r + pq =
pr . When we terminate, q ≈ 0, so pq ≈ 0 and therefore p̂r ≈
pr . Similarly, in Fig. 16, NH,r +∑

h∈H BH,r (h) PPVh ≈ pr

at termination.

Proposition 9 At most ‖r‖1/(1 − α)εpush pushes are exe-
cuted before termination.

Proof For the loop body to execute, ‖q‖1 > εpush. There-
fore, ‖q‖1 decreases by at least εpush, then, if u �∈ H , it can
increase again (if there is a self-loop, say) by at most αεpush,
because

∑
v C(v, u) = 1. Therefore, each execution of the

loop body reduces ‖q‖1 by at least (1 − α)εpush. Because
q = r initially, the number of loop executions is at most
‖r‖1/(1− α)εpush. 
�

In our experiments, we have indeed observed that the
query execution time depends directly on the initial ‖r‖1
(details in Subsect. 4.2.4). We use a max-heap for q, so that
we can drive the largest q(u) down first. Note the parameter
εpush and the test ‖q‖1 > εpush that trigger termination.

Residual data structure To terminate fast, we must “drain”
q quickly, which is why we choose the u with the largest
q(u) to drain. (Correctness is guaranteed no matter which u
we pick in step 4 in Fig. 16.) We implement q as a heap.
A Fibonacci heap achieves O(1)-time insert and increase-
key and O(log |V |)-time delete and delete-max operations.
Therefore, we used Chazelle’s soft heap [16]. A soft heap
costs O(1) for all operations, but up to some small fixed
fraction of keys in the heap may get arbitrarily corrupted.
This only upsets the delete-max order; we can always retain
the correct residual value, so that score correctness remains
guaranteed. In practice, the soft heap reduces ‖q‖1 as quickly
as the Fibonacci heap, and queries run twice as fast.

Very small footprint per query We can implement step 12 of
Fig. 16 to minimize HubRankP’s memory footprint, in a way
not mentioned by Berkhin [8]. Because NH,r (u), BH,r (u),

PPVh(u) ≥ 0 ∀u, we can return the top-k nodes u with
the largest pr (u) by indexing PPVh in decreasing order of
PPVh(u) and pulling items from a cursor on the PPVh record,
sorting NH,r (u) and BH,r (u) likewise, and merging [21] until
we output k hits. Given k is very small (10–20), this means
the memory footprint of a query is essentially the number of
nonzero elements in NH,r and BH,r in practice. This stands
in stark contrast to HubRankD, where PPVs for each node
in the active subgraph need to be materialized in RAM. We
will see the benefits in Sect. 4.5.

4.2 BCA performance model

From the preceding description, we see that most of the work
in updating pr@(−1) to pr@0 is in computing pr [M0]. We
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Fig. 17 Across all data slices, push time is proportional to the number
of pushes, with a small cache effect for very small graphs

therefore want to select a hub set H that will reduce the aver-
age computation time of pr [M0] as much as possible. To do
this, we first need

– A distribution over match sets M (Subsect. 2.4.5).
– A predictive model for the execution time for pr [M] given

M and H (Subsects. 4.2.1, 4.2.2, 4.2.3 and 4.2.4).

In this section, we will describe a predictive model for
PushTime(H, δu, εpush). From Fig. 17, we see that PushTime
is linearly proportional to the number of pushes, but it
remains a challenging task to predict the number of pushes.
Because of εpush and hub set H , the push algorithm touches
only a small portion of G, called the active subgraph, and
denoted PushActive(H, δu, εpush). We establish (experimen-
tally) that the number of pushes can be predicted well if we
knew PushActive(H, δu, εpush), which in turn is impossible
to predict without running the push algorithm itself. There-
fore, we will proceed as follows:

1. We will show empirical evidence that the number of
nodes in the active subgraph is an excellent predictor
of total push time while executing a query.

2. Since the active subgraph is itself determined by the push
algorithm, the above observation is not directly useful.
We will provide an approximation to active subgraph size
that also gives excellent predictions.

3. Even the approximation takes too long to compute
naively on large graphs. We present a random-sampling
algorithm to get an unbiased estimate of the approxima-
tion.

We will make sure we do not lose the essence of our goal
quantity, push time, through these approximations. Despite
our approximations, our hub selection strategy (Sect. 4.3)
performs very well.
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Fig. 18 PushActive(H, δu , εpush) can predict push time (ms) accu-
rately via regression

4.2.1 PushActive(H, δu, εpush)

If the active subgraph were acyclic, the push algorithm
would insert each active node exactly once into the resid-
ual heap, and would complete in time proportional to
PushActive(H, δu, εpush). In general there would be loops
and a node may enter and leave the residual heap q mul-
tiple times via increase-key and delete-max (see Fig. 16),
so we expect the running time of the push algorithm to scale
superlinearly with the number of nodes in PushActive(H, δu,

εpush). Figure 18 shows that the size of the active subgraph
is a surprisingly accurate predictor of the total time spent by
the push algorithm. As anticipated, the dependency is super-
linear. Both word and entity origins are shown.

4.2.2 PathActive(H, δu, εpush)

Relating push time to PushActive(H, δu, εpush) gives us
insight into BCA’s performance dynamics, but is not directly
useful, because it is itself defined by a push run! As our
second approximation step, we will consider only the single
largest conductance path from u to each node, not touching
any h ∈ H . The conductance of a path is the product of
the conductance of its edges. Nodes not reached or nodes to
which the path conductance is less than εpush will be consid-
ered as not active.

We denote the shortest path tree (rooted at u) thus col-
lected by PathActive(H, δu, εpush), which is our approxima-
tion to PushActive(H, δu, εpush). If the true active subgraph
is already a tree, then no damage has been done; otherwise,
PathActive(H, δu, εpush) will generally be smaller. Figure 19
shows that the approximation is very acceptable.

4.2.3 Sampled estimate CohenActive(H, δu, εpush)

The hub selection algorithm in Sect. 4.3 will need estimates of
PathActive(H, δu, εpush) for a large batch of origin nodes u.
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Fig. 19 Instead of PushActive(H, δu, εpush), we can use
PathActive(H, δu, εpush) to predict push time (ms)

Doing so many shortest path expansions explicitly and sepa-
rately will be too expensive: we cannot afford time quadratic
or worse in the size of the graph. We adapt an elegant random-
sampling technique by Cohen [17] for quickly estimating the
number of nodes reachable from each of a large number of
origin nodes, within a given path length.

Consider a directed graph where edges have associated
lengths (we will describe how to assign edge lengths based
on the conductance matrix C shortly). Cohen’s algorithm
depends on the insight that, if we assign random scores to
the nodes in the graph then the number of nodes reachable
from node u is strongly related to the minimum score which
can be reached from u. The confidence and accuracy of the
estimate can be increased by repeating the estimation process
N times, with different sets of random scores assigned to the
nodes.

In iteration 1 ≤ i ≤ N , we assign score Ri (u) ∈ [0, 1]
independently at random to each node u ∈ V . Let gi (u, d)

be the node with minimum score that can be reached from
u within a path length of d. Cohen estimated the number of
nodes that can be reached from u within path length d as

ŝ(u, d) = N∑
1≤i≤N Ri (gi (u, d))

− 1 (6)

Let S(u, d) be the nodes reachable from u within path length
d, and let s(u, d) = |S(u, d)|. Cohen showed that for any
ε > 0 and for u ∈ V ,

Pr
(|s(u, d)− ŝ(u, d)| ≥ εs(u, d)

) ≤ O
(

1
ε2 N

)
.

Cohen also showed that, for all u ∈ V , the expected error

E

(∣∣s(u, d)− ŝ(u, d)
∣∣

s(u, d)

)
= O

(
1/
√

N
)

.

In each of the N rounds (N is typically a small constant like
10), Cohen’s algorithm first assigns random scores to nodes.
This induces a total order on the nodes; we can regard the
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Fig. 20 Preparing L(u) at all nodes u to estimate CohenActive(H,

δu , εpush)

node IDs as {1, 2, . . . , |V |}. Then it builds a list L(v) asso-
ciated with each node v. The list contains pairs of the form
(av(i), uv(i)) in decreasing order of av(i), such that for all
i, uv(i) ∈ V is the node with the smallest ID among S(v, a)

for all av(i) ≤ a < av(i + 1). It is easy to see that uv(i)
are in increasing order, and, given query (v, a), g(v, a) can
be computed by binary-searching L(v). Thus, we can avoid
computing s(v, a) for all v and all a in advance.

To apply Cohen’s algorithm to our setting, we need to set
the length of edge (u, v) to − log C(v, u). Figure 20 shows
how to build L(v) at all v ∈ V , for one round i of random
score assignment. It is very important to update the defini-
tion of gi (u, d) to exclude nodes that are not reachable from
u without passing through some h ∈ H . This results in extra
checks in steps 12 and 15.

Following Cohen, we can show that the expected length
of L(v) is O(log |V |), and the running time of the algo-
rithm shown in Fig. 20 is O

(|E | log |V | + |V | log2 |V |)
for one round. Probing L(v) to compute g(v, d; H) takes
O(log log |V |) time in expectation. With N rounds, the pre-
processing time is O

(
N |E | log |V | + N |V | log2 |V |) and

the expected probe time over lists L1(v), . . . , L N (v) is
O(N log log |V |). Each entry (v, d) in Li (u), where d is a
distance, specifies that in the i th round, the node with mini-
mum score node that can be reached from u without touching
H and within distance d is v. We can find the score of v using
Ri (·) and then obtain an estimate CohenActive(H, δu, εpush)

as ŝ(u,− log εpush), using (6) (i.e., the path length cutoff d
is − log εpush for us).

In our experiments, we used N = 10 as the best compro-
mise between variability of random estimates and sampling
speed. Final system performance is insensitive to fine-tun-
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Fig. 21 CohenActive(H, δu, εpush) estimates PathActive(H, δu,

εpush) fairly well
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Fig. 22 End-to-end evaluation: From CohenActive(H, δu, εpush), we
can get a reasonable estimate of actual push time (in ms)

ing N . We see from Fig. 21 that CohenActive(H, δu, εpush)

is a very usable surrogate for PathActive(H, δu, εpush).
Finally, Fig. 22 shows that push time can be obtained via a

regression from CohenActive(H, δu, εpush). We call this the
Regress(·) function. A linear fit can predict most push times
to within a 2× factor. The variance in Figs. 21 and 22 can
be reduced by increasing N , but the hub set selection algo-
rithm in Sect. 4.3 is tolerant to reasonable variance, so we
can economize on preprocessing time.

4.2.4 Linearity and saturation

We have now completed a cost model for impulse teleport
into one origin node. In Sect. 4.3, we will need to extend the
cost model to general queries. A key question while doing
so is whether CohenActive(H, r, εpush) is reasonably linear
in r . Figure 23 considers several origins u and plots the size
of the active subgraph as the origin residual δu is scaled with
a constant factor 0 < a < 1.

The plots are not globally linear with respect to a; they
show a steep, roughly linear growth followed by saturation to
a fixed value. As a increases, push reaches more nodes until
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Fig. 23 Dependence of PathActive(H, aδu , εpush) on a > 0

all nodes R(H̄ , u) that are reachable from u without touch-
ing H (and within distance − log εpush) are included in the
active subgraph. This is consistent with hop-plots in social
networks [23].

A key reason why PathActive is a good surrogate for
PushActive is that, thanks to edge conductances being less
than α < 1, residuals in loops die down quickly. Ignoring
these loopback edges, the aggregate push cost starting from
origin u may be modeled as approximately additive over the
push costs from the out-neighbors of u. Every edge traversed
reduces the residual. Therefore, for a vast majority of nodes,
we are in the small-a linear regime of Fig. 23. Summarizing,
the following linearity and additivity properties hold reason-
ably well at most nodes during a query:

CohenActive(H, ar) ≈ a CohenActive(H, r) (7)

CohenActive(H, r1 + r2) ≈ CohenActive(H, r1)

+CohenActive(H, r2) (8)

4.3 Hub set selection algorithm

We now use our understanding of the dynamics of the push
algorithm to design approaches to select a good hub set H .
Before we set out, we note that we can formulate this prob-
lem in several ways that are NP-hard, but the real utility lies
in making the best approximations and proposing practical
heuristics. We will do a cost-benefit style [25] greedy opti-
mization.

Benefit: The marginal benefit of including a node u into
H is the work saved because step 7 of Fig. 16
will terminate in node u without further weight
propagation.

Cost: The cost is the space needed to store PPVu . In this
section, we will ignore the cost to compute PPVu ,
but we will optimize and measure it in Sect. 5.

4.3.1 Work saved for one query if u ∈ H

If u is found in H in step 7 of Fig. 16, the residual q̂ is
“grounded” (i.e. not propagated to neighbors v), possibly

saving a lot of pushes downstream. Consider a fixed query
specified by teleport r . While executing the query, u is
removed from the heap q a number of times. Let the sequence
of these removal instances be DelMax(r, u). For every delete
operation ρ ∈ DelMax(r, u), u has a residual score q̂ =
q(ρ, u).

Using additivity (8), we approximate the benefit of includ-
ing node u in H for query r by estimating the times to com-
pute some synthetic queries:

WorkSaved(H, r, u) =
∑

ρ∈DelMax(r,u)

PushTime(H, q(ρ, u)δu, εpush)

(Note q(ρ, u) is a scalar and δu a vector.) Using Sect. 4.2,
the rhs is replaced by the regressed push time with u as the
origin and q(ρ, u) as initial residual:

∑
ρ∈DelMax(r,u)

Regress
(
CohenActive(H, q(ρ, u)δu, εpush)

)

We will drop H and εpush when they are fixed and clear
from context. Assuming Regress(·) is roughly linear (least-
squares fit in Fig. 22), we further approximate the work saved
as proportional to:

Regress

⎡
⎣ ∑

ρ∈DelMax(r,u)

CohenActive(q(ρ, u)δu)

⎤
⎦

This is still not directly useful, because, as in Sect. 4.2, we will
not know DelMax(r, u) without actually running the push
algorithm. To get around this, we use the additivity property
(8) because q(ρ, u) is almost always tiny

(
10−11 . . . 10−5

)
in practice:

Regress

⎡
⎣CohenActive

⎛
⎝δu

∑
ρ∈DelMax(r,u)

q(ρ, u)

⎞
⎠

⎤
⎦

Because u is not yet in H , step 9 of the algorithm in
Fig. 16 immediately gives us (1−α)

∑
ρ∈DelMax(r,u) q(ρ, u)

= NH,r (u), and therefore the work saved for query r is

Regress
[
CohenActive

(
δu NH,r (u)

1−α

)]
,

which is PushTime
(

H,
δu NH,r (u)

1−α
, εpush

)
.

4.3.2 Work saved by u over query workload

The work saved by indexing PPVu , averaged over the query
workload distribution f̃ (w) is
∑
w

f̃ (w) WorkSaved(H, δw, u)

By the previous discussion, we can rewrite this as

∑
w

f̃ (w) PushTime

(
H,

δu NH,δw (u)

1− α
, εpush

)
. (9)
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Given infinite CPU power, this can be estimated directly,
but this involves computing NH,δw (u) for each pair w, u.
The solution is to use the approximate linearity property (7)
because NH,δw (u) is very small for sufficiently large graphs,
thus letting us approximate

(9) ≈
∑
w

f̃ (w)
NH,δw (u)

1− α
PushTime(H, δu, εpush)

= PushTime(H, δu, εpush)

1− α

∑
w

f̃ (w)NH,δw (u),

the advantage being that
∑

w f̃ (w)NH,δw (u) = NH, f̃ (u), so

a single PageRank computation with r = f̃ suffices. Also
recall that PushTime(H, δu, εpush) can be quickly estimated
for all u together using Subsect. 4.2.3.
Summarizing, our final expression is

(9) ≈ 1

1− α
PushTime(H, δu, εpush)NH, f̃ (u)

Let us sanity-check the final expression. If u is in the back-
waters of G, not reaching many nodes, or if H already blocks
many paths out of u, then pushes starting at u end quickly
anyway, so indexing PPVu is not very profitable. This shows
up in PushTime(H, δu, εpush). If a lot of frequent words reach
u often, it may be profitable to index PPVu . This is reflected
in NH, f̃ (u).

4.3.3 PPVu storage space

Having modeled the benefits, let us model the cost of PPVu :
the space taken by PPVu on disk. Let R(u) be the nodes
reachable from u. Assuming no node v has vanishingly small
PPVu(v) score, PPVu stored to full precision may need up
to |R(u)| node IDs and their |R(u)| corresponding scores,
which would be prohibitive for even modest H . Aggres-
sive clipping (removing PPV elements below a threshold
εclip) hardly damages ranking accuracy while reducing index
space, as shown in Fig. 24 (and also used by Balmin et al.[6]).
Our problem is that our cost-benefit hub selector will need
space estimates for the clipped PPVs.

As in the estimation of work saved, this is also a difficult
problem that we can address only in aggregate statistics; it is
not possible to compute the number of post-clip elements in
a PPV perfectly without computing the PPV first!

The solution is to use the property that the elements of
PPVu tend to be power-law distributed in social networks
[44]; if they are sorted in decreasing order, PPVu(vi ) ∝ i−β ,
approximately. One key question is whether one universal
power β will suffice reasonably for all PPVs in a fixed
graph G.

We rescale all PPVs so that PPVu(v1) = 1, let xi be
the log of the rank of vi (i.e., log i), yi = log PPVu(vi ),
and fit a regression y = −βx given (xi , yi ) observations
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Fig. 24 Clipping PPVs have very modest effect on accuracy (see
Subsect. 2.4.6 for accuracy definitions) while reducing PPV cache size
drastically

(collected over many PPVs). A least-square fit yields β∗ =
−∑

i xi yi
/∑

i x2
i . To get an impression of the stability of

β∗, we took 50 random samples each of 5% of word and
entities as origins, computed their PPVs, and used those for
a least-square β fit; clearly, a single β∗ for a given graph is
not a bad choice:

Quantity CiteSeer1994 CiteSeer1998
Minimum β∗ 1.36 1.75
Maximum β∗ 1.39 1.81
Average β∗ 1.37 1.77
Std dev of β∗ 0.083 0.015

Therefore, it seems reasonable to trust a single power law for
all PPVs of a given graph. Perhaps surprisingly, |R(u)|, β∗,
and PPV clip threshold εclip directly determine the clipped
PPV size estimate:

1: input: unclipped PPV size estimate |R(u)|, clip threshold
εclip, fitted power β∗

2: unscaledSum←∑|R(u)|
i=1 i−β∗

3: rawClippedSize← min
{

i : i−β∗
unscaledSum < εclip

}

4: return min{rawClippedSize, |R(u)|}
To complete the job, we need |R(u)| for all origins u. We

can again use Cohen’s sampling algorithm with special input
parameters: CohenActive(H = ∅, δu, εpush = 0) returns an
estimate of R(u), the number of nodes reachable from origin
u. Results are shown in Fig. 25; they are adequately accurate
for good hub selection.

4.3.4 Hub inclusion policies

LPR The baseline “large PageRank” or LPR policy sug-
gested by Jeh and Widom [32] and Berkhin [8] orders entity
nodes in decreasing global PageRank order with uniform
teleport r = 1/|V |.
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Fig. 25 Over a wide range of unclipped sizes, the ratio of observed to
estimated clipped sizes are within a factor of 2 for the vast majority of
PPV origins

Fig. 26 LAP hub selection

N1 HubRank [12] ordered hubs u one-shot by only
NH, f̃ (u), ignoring the important downstream work term
PushTime(H, δu, εpush) that “looks ahead” from u. We call
this “naive one-shot” or N1.

LAP The cost/benefit method proposed here as part of Hub-
RankP is called “lookahead progressive” or LAP. LAP bal-
ances query time benefit against PPV space cost and runs a
greedy packing procedure shown in Fig. 26.

The batched updates to H account for reduction in merit
of nodes owing to nodes included in earlier batches. The loop
body is fairly expensive, so we should amortize it over a rea-
sonably large batchSize. At the same time, excessively large
batches will fail to recognize that earlier hub nodes render
later candidates less useful. In practice, we have found the
quality of H insensitive to a broad range of batchSize.

4.4 Handling streams of teleports

A key feature of HubRankP, unlike HubRankD, is that
HubRankP can recompute node scores quickly as r changes
incrementally. Query-time personalization of PageRank is
increasingly unavoidable [4,6,14,18] in applications where
user activity must be incorporated dynamically into the
graph. In this section, we describe how HubRankP can be
used for online personalization.

To design r at any instant, the system may draw on past
profile information, and/or use previous queries and brows-
ing action within the current session. As an example from
Fig. 1, suppose, after an initial search, J decides that a
reviewer from industry (as against academia) would be pref-
erable. J adds the node representing the type “companies”
to the set of match nodes. J may also browse some similar
papers and consider some other reviewers along the way.

For simplicity, assume that the user does not switch task
or goal and is in a single “session”. Keywords and entities
alike are nodes in G. At every time step t , the user indicates a
(typically small) subset of nodes Mt ⊂ V as matched nodes.
Mt may include both words (query modification) and entities
(click/browse actions).

The current time step is designated 0. We have already
observed M−T , . . . , M−1, M0. We need to define the corre-
sponding teleports and thereby the personalized PageRanks
for each step. Specifically, given recent match sets and plast,
we want to quickly compute rnow and pnow.

The data stream literature [5,36] suggests several ways to
design teleport vectors given a stream of recent match sets.
HubRankP fully supports all of them, but evaluating which
gives the most meaningful rankings is an important area for
future work.

Before proceeding, we need one piece of notation. For a
specific match node set M , a conventional teleport vector is
r [M], given by r [M]u = 1/M if u ∈ M and 0 if u �∈ M . Our
system can work with a more general definition of r [M].

4.4.1 Indefinite accumulation

We average the teleport over the whole session:

rnow = 1

T + 1

0∑
t=−T

r [Mt ]

If we have seen match sets M−T , . . . , M−1 and already com-
puted plast, and we now see M0, we can update

pnow = T

T + 1
plast + 1

T + 1
pr [M0]

4.4.2 Finite window

We only remember the last W match node sets: assuming
T ≥ W ,

rnow = 1

W

0∑
t=−W+1

r [Mt ]

Once we are in the steady state, (T ≥ W ), we have to simply
drop pr [M−W ] and add on pr [M0]:

pnow = plast − 1

W
pr [M−W ] +

1

W
pr [M0]
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In a small-scale system (say, personalized desktop search),
we might hang on to all pr [Mt ] for t in the window, but
for large-scale shared search that may consume too much
RAM, and it may be cheaper to store only Ms and recom-
pute pr [M−W ].

Exponential decay We remember old match node sets, but
give them less importance than recent ones:

rnow =
0∑

t=−T+1

ctr [Mt ], where c < 1.

In steady state, this is the infinite sum

rnow =
∑
t≥0

c−t r [M−t ].

This also has the effect of forgetting old match sets, but more
smoothly. This is again a simple matter of scaling and adding:

pnow = c plast + pr [M0]

In all cases, rnow keeps changing through the session, and
pnow must be recomputed quickly with each change. There-
fore, PageRank cannot be computed offline and used as a
static score. On the other hand, query-time whole-graph
PageRank computation is unacceptably slow.

Hanging on to recent PageRank vectors may consume
much RAM. In practice, the user needs to see only some
top-k items of pnow. We can keep around a safe overdose of
top scores from plast and merge [21] with pr [M0]. We expect
that this would not introduce significant ranking errors over
short sessions.

4.5 HubRankP experiments

We report the performance of HubRankP and compare with
other systems where appropriate. Details of our testbed and
evaluation measures are in Subsect. 2.4.

Hub inclusion policy comparison Fig. 27 shows that LAP is
better than N1 and much better than LPR. This shows that
LPR, without the benefit of HubRankP’s model and algo-
rithms, results in > 10× query times as LAP. As H grows,
the more elaborate LAP selection beats the more crude N1
method. Note that part (a) uses |H | as the x-axis, whereas
part (b) uses the actual index size, which is more natural.

A preliminary implementation of HubRank [12] used the
N1 hub node selection strategy described here, but, instead
of storing truncated PPVs, it stored Monte-Carlo approxima-
tions of PPVs called fingerprints [24]. We call this older ver-
sion of HubRank N1FP. For completeness, we also report
on a head-to-head comparison, using the exact same data and
testbed, between HubRankP and N1FP. See upper right cor-
ner of Fig. 27. LAP with 30 MB of PPV index beats N1FP
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Fig. 27 Comparison of LAP, N1, LPR orders for the 1994 snapshot.
Note: A text index needs 55 MB; y-axis is log-scale. Whole-graph power
iteration (PR) xtime is over four orders of magnitude larger

with 50 MB of FP index by almost three orders of magnitude
in query speed.

In retrospect, truncated PPVs provide a better trade-off
than fingerprints with respect to all performance metrics:
index space, query-processing time, and even ranking accu-
racy: N1FP has typical RAG, precision and τ accuracy at
rank 20 (Sect. 2.4.6 defines these) of 0.996, 0.916, and
0.829, while HubRankP (LAP with PPV) achieves scores
of 0.998, 0.95 and 0.94.

Effect of scaling G and H together We used temporal snap-
shots of CiteSeer, as described in Subsect. 2.4.2, to evaluate
the scalability of HubRankP. A critical issue is how quickly
H needs to scale with G so that the query time remains inde-
pendent of the size of G. |H |/|V | is not a very accurate
measure of index scaling requirements, because PPVs for
nodes in H may have diverse sizes on disk after clipping at
threshold εclip. A more faithful measure of relative storage
overhead of indexing is to divide the total number of PPV
elements (node ID and node score) across all PPVs by the
number of edges in the ER graph. This is the quantity used
for the x-axis in Fig. 28.

Note that a 8× storage inflation (on disk) compared to the
edge list is very modest in absolute terms, compared to the
storage required for the text and text index (see the detailed
comparison for 1994 in Table 4). Figure 28(a) shows that, for
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Fig. 28 By scaling H with G, (a) the number of pushes and (b) query
time can be held essentially fixed. Each curve is for a distinct CiteSeer
snapshot year, shown in the legend

a fixed index overhead, HubRankP can keep the absolute
number of pushes within one order of magnitude notwith-
standing diverse graph sizes. Push times in Fig. 28(b) are
also close, except for the smallest data set (1994) that gets
some cache advantage. In fact, the largest data sets (2000 and
full) fare better than the 1996 slice.

Summarizing, as long as H scales with G, query time
can be kept constant independent of graph size. In contrast,
global PageRank times scale up steeply with |V | and |E |.

It might sound dangerous to allow H to scale with G
because of index space and indexing time considerations.
However, 1. the PPV index is on disk, 2. on clipping, the
PPV space required reduces drastically (compare the x-axis
of Fig. 27 with 55 MB, the Lucene index size used for this
chart.), and 3. in Sect. 5.2 we show that the time to build
the PPV index can be reduced substantially by judiciously
exploiting PPVs computed earlier to compute later PPVs.

Query-time footprint As mentioned in Sect. 4.1, HubRankP
needs RAM that is roughly the size of the active subgraph.
Figure 29 shows that HubRankP query footprint (aver-
age 1119 node-score records) is over an order of magni-
tude smaller than HubRankD’s (average 17102 node-score
records). This makes HubRankP better suited to extend-

Fig. 29 HubRankP has much smaller RAM footprint per query than
HubRankD. Note the different x and y scales

ing from personal desktop search to shared enterprise-scale
search.

Dynamic teleport update performance We evaluate Hub-
RankP using a realistic model of a live user searching and
browsing an E-R graph database. A suitable user interface
might have two panels. The left panel shows a ranked list of
top-k responses. Clicking on a node displays it in the right
panel, and updates the match node set Mt . This is then used to
instantly recompute the personalized PageRank, and a new
ranked list is presented in the left panel, while the user is
viewing the right panel. Each session begins with a keyword
query. For every browse step, the user picks a page among the
top-k at random. For simplicity, all sessions involve a small
fixed number of browse steps (here, 5).

The model can be made more realistic in a few ways: we
can generate the session length randomly, and users may tra-
verse relationship links to browse from entity to entity with-
out referring to the left panel showing the ranked list. Still, we
believe we capture the essence of real-time personalization
in our simple proposal.

Lacking realistic click trail data from CiteSeer, we con-
tinue to prepare the PPV index based only on keyword que-
ries in CiteSeer’s query logs. In other words, the PPV index
is optimized only for the initial keyword query and not the
subsequent browsing steps. Figure 30 shows, for several val-
ues of |H |, the average time taken for the initial keyword
query followed by the average time taken by the five dynam-
ically personalized browsing steps.

Query time drops markedly from the keyword query to
the first browsing step, then gently increases during subse-
quent hops. The initial drop suggests that the push algorithm
finds blocking hub nodes during the first browse step even
more readily than during the execution of the initial keyword
query. This hints that LAP, like N1, is including a generous
number of entity nodes as hubs. (This is confirmed in the
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Fig. 30 As the user types an initial keyword query and browses away
by up to 5 hops, we can personalize the ranking on the fly at speeds
comparable to the initial query

Table 5 Both word and entity PPVs are essential for fast query
processing

PPV Index (MB) |H | AvgQueryTime (ms)

Only entities in H

7 17,307 3,758

8 27,465 1,124

10 32,687 771

11.3 37,879 443

Only words in H (like ObjectRank)

7 9,308 9,122

8 11,028 5,880

10 14,806 5,443

11.3 17,405 5,187

Both words and entities in H (HUBRANKP)

7.31 8,000 748

8.86 10,000 288

10.2 12,000 132

11.3 14,000 72

Bold figures show that using both word and entity hubs results in
drastically reduced average query times

next experiment.) As we move further away from the initial
query, the lack of optimized hubs shows through in gradually
increasing push times. However, the time needed to update
the ranked list typically remains comparable to the time taken
by the initial keyword query.

Both entity and word hubs exploited LAP does an elaborate
cost-benefit analysis to select both words and entities in H . Is
such an elaborate scheme necessary, even for keyword query
workloads? Could we, say, simply pick some words that are
frequent in the query log and cache their PPVs, minimally
extending ObjectRank? Alternatively, could we cache only
entity PPVs, because word PPVs are usually larger in size and
therefore are less value for index storage than entity PPVs?

To check this, we retained our hub merit order, but did
separate runs with only word PPVs, only entity PPVs, and

both. On omitting words or entities, some queries became so
slow that global PageRank became faster than push, so we
considered that as the query time.

Table 5 makes it clear that our hub selection really exploits
synergy between word and entity selection. If only word
PPVs are indexed and even one query word “misses” we
need to invoke the push algorithm. With no entity blockers
available, this can be slow. Entity-only is also visibly slower
than word+entity. This also explains why, in Fig. 30, updates
based on clicks on entity nodes were very fast despite training
on word match sets alone.

4.6 Top-K ranking

The query-processing algorithm presented thus far is capa-
ble of computing personalized PageRank of all nodes up to
some small additive error. However, for typical ad hoc search
applications, scores for all items are not needed; the quest is
for a few top-scoring items. In the context of personalized
PageRank for ad hoc queries, the user is not really looking
for the whole vector pr as a solution to pr = αCpr+(1−α)r ,
but is looking for the K nodes that have the largest PageRank
scores in pr .

Traditionally, power iteration methods iterate the assign-

ment p̃(t+1)
r ← αC p̃(t)

r + (1 − α)r , until
∥∥∥ p̃(t+1)

r − p̃(t)
r

∥∥∥
becomes “small”, i.e., the scores stabilize. Strictly speaking,
score stability is no guarantee of rank stability [37]. Besides,
in the context of HubRankP, where there is no notion of
a global iteration, and node scores change by tiny amounts
over a large number of push steps, it is unclear how to test
for even score stability.

However, a corollary of Propositions 7 and 8 is that for
each node u, the estimated PageRank p̂r (u) is always less
than or equal to the true PageRank pr (u). Suppose we
could also estimate, for each node u, a nontrivial upper
bound p̌r (u). If, at any time during the execution of the
push algorithm in Figs. 15 or 16, we can find a set of
K nodes u1, . . . , uK such that for all v �∈ {u1, . . . , uK },
p̌r (v) < min1≤k≤K p̂r (uk), then we would at least know
the identity of the top-K nodes and terminate the push loop.
Such techniques have been used for top-K queries on rela-
tional data for a long time [21,50], but not for PageRank.

A small relaxation of the above termination condition
often leads to even faster termination. When the user spec-
ifies that she wants to view the top K answers, it is usu-
ally quite acceptable if a few more answers are returned. For
example, if the user wants K = 20 answers, the system may
limit the number of answers to a range

[
K , K

]
, say, [20,40].

In this case, the termination check above should be mod-
ified to looking for a set of K nodes {u1, . . . , uK }, where
K ≤ K ≤ K , such that for all v �∈ {u1, . . . , uK }, p̌r (v) <

min1≤k≤K p̂r (uk). The termination test will itself take some
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time, so we should engage in it only after we have spent some
substantial time in push steps. Subject to this condition, the
bound estimation and termination check would be inserted
at the end of the main push loop, i.e., just after line 11 in
Fig. 15.

All that remains is to design the upper bound p̌r . There
are simple, loose bounds and there are more careful bounds.
Computing the simple, loose bounds and checking for ter-
mination are so fast that they typically compensate for their
looseness.

Proposition 10 In the push algorithm shown in Fig. 15, at
any time, for all nodes u,

p̂r (u) ≤ pr (u) ≤ p̂r (u)+ ‖q‖1 def= p̌r (u).

This is a very loose and yet surprisingly effective bound:
it just says that the entire residual q could land up at any
single node. Note that, to compute p̌r , we need to know p̂r ,
which means we cannot keep NH,r and BH,r separate as in
Fig. 16, but must combine them, at least every time we do
a termination check. However, the PPV database will typi-
cally use a cache, and there is high locality of PPV access in
practice. That p̌r (u)− p̂r (u) is a constant independent of u
(for a fixed current residual q) makes implementation very
easy and fast.

Note that the top-K algorithm returns a set of top-K nodes,
but the exact order among them is not known. Unlike in rela-
tional top-K query systems [21,50], we know of no straight-
forward way to update p̂r (u) to pr (u) for all top-K final-
ists. In experiments, with aggressive values of εpush (10−5 to
10−3), if the finalists are ordered by p̂r (u), ranking errors are
exceedingly rare.

Figure 31 shows that relaxing K to
[
K , K

]
leads to sub-

stantially increased success rate for termination check. In
typical runs, about 40% of the queries terminate early. At the
same time, the actual rank K ∗ at which the termination check
succeeds is typically very close to K .

As Fig. 32 shows, termination check is fast and effec-
tive. Tests for termination take a very small amount of time
(which we limit, as discussed earlier) and typically give a
considerable speed boost. Also reassuring is that as little as
4% time invested in quit checks result in robust gains. The
overall query time is very insensitive to the fraction of time
allocated to termination checking.

More sophisticated bounds are possible [27], but if we
account for the complexity of computing them and imple-
menting the corresponding termination checks, gives but
meager speedups.

One final note is in order. The entire index and query
optimization framework depends on the push time estima-
tion of Sect. 4.2, which has no notion of early termination.
Therefore, strictly speaking, if early termination is used, the
performance model of Sect. 4.2 gives us only an upper bound

Fig. 31 Relaxing K to
[
K , K

]
(= [20, 40] here) enables more fre-

quent quits, while statistically the quit often happens close to K . The
leftmost bar corresponds to no early termination

Fig. 32 Using Proposition 10, push times averaged across queries vs.
fraction of push time allowed in termination checks. (The top line uses
no termination checks.)

on query time. At this time, we see no way of modeling the
(highly unpredictable) effects of early termination on push
time. However,

– The typical multiplicative error of our push time esti-
mates is of the same order as the gains of early termi-
nation, so the additional inaccuracy introduced into the
model is not overwhelming.

– In any case, in the interest of tractability, we use a greedy
heuristic for hub inclusion, not a global optimization with
perfect inputs.

– In our experience, the estimation inaccuracy may lead
to some local mistakes in hub merit list ordering, but if
H is of reasonable size, the set of hub nodes selected is
adequate.

5 Building the PPV index

We finally turn to the question of populating the hub index
efficiently, once the hub set H has been decided upon. This
is required for running both HubRankD and HubRankP.
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Fig. 33 Populating the hub index
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Fig. 34 While early PPVs use power iteration, later PPVs leverage
them using BCA and run faster and faster

The baseline approach is to compute PPVh for each h ∈
H independently using power iterations, which, in practice,
takes time ∝ |H |(|E | + |V |).

In this section, we propose a way to compute hub PPVs
more efficiently. As some PPVs in H become available, com-
puting another PPVh is essentially a “query” with r = δh . So
the PPVs already available can speed up PPV computation.

In Fig. 33, “batch:” statements are executed once in a
while to amortize over computational costs. PushTime esti-
mation in Step 4 uses Sect. 4.2 extensively.

5.1 The MPWH hub ordering

The order in which hub PPVs are computed is important
because PPVs computed earlier reduce subsequent work.
Our modeling exercise in Subsect. 3.1.4 and Sect. 4.2 were
already nontrivial. It seems exceedingly difficult to estimate
the total time needed by the algorithm in Fig. 33 as a func-
tion of the ordering policy, leave alone design the optimal
ordering policy. After evaluating several heuristic policies,
we realized that we should first schedule nodes h that block
many “heavy” paths from other (pending) hubs. To estimate
this, we create a teleport vector r [H ]with r [H ](h) = 1/|H |
if h ∈ H and 0 if h �∈ H , and then we compute the person-
alized PageRank (PPR) pr [H ]. The largest elements of pr [H ]
give us nodes to schedule next. Like push time, pr [H ](h)

keeps changing because H is changing. To save costs, we
update the hub order only occasionally. We call this maxi-
mum PageRank wrt H or MPWH ordering.

5.2 PPV indexing experiments

Figure 34 shows that once a critical mass is reached by H ,
more PPVs can be added to H much faster than power iter-
ations. Each line is for a different final |H | (but this hardly
matters). While the early PPVs are computed using power
iterations, later PPVs are computed much faster by exploit-
ing PPVs already in H . The end effect is that the total PPV
indexing time quickly levels out as |H | is increased. This
shows that scaling up H mildly with G is a practical prop-
osition. We also note that power iteration itself can be sped
up substantially by recent acceleration techniques [33].

6 Conclusion

Personalized PageRank, also known as random walk with
restarts, is useful not only for personalization of Web search,
but also as a general way of ranking nodes in E-R graphs in
response to sparse but fast-changing teleports. Several algo-
rithms and systems compress [2] massive link graphs into
Connectivity Servers [10], but we know of no systems that
provide indexing for fast, dynamic computation of personal-
ized PageRank and related graph proximity measures.

We presented a generic framework called HubRank for
preparing a PPV index, and exploiting it during query exe-
cution. Within this framework we considered two query exe-
cution strategies. HubRankD uses Jeh and Widom’s [32]
decomposition theorem as a query execution mechanism,
whereas HubRankP uses Berkhin’s [8] BCA. None of the
earlier personalization proposals gave a workload-cognizant
hub selection strategy, which is the focus of this paper. Our
specific goal was to enable constant time personalized Page-
Rank, irrespective of the size of the graph.

We discussed in detail a number of important engineering
issues. We first gave predictive performance models for our
query processors. Then we gave effective, workload-driven
algorithms for selecting good hub sets. Finally, we showed
how to precompute PPVs quickly.

Experiments with CiteSeer and US Patents entity-
relationship graphs, together with millions of real queries
from CiteSeer, showed that HubRank achieves small index
space, index-building time and query-processing time while
maintaining high ranking accuracy. While both approaches
are of interest, our experience suggests that HubRankP is
better suited to handling clickstreams as online personaliza-
tion input.

Apart from personalized PageRank, hitting and commute
times have been proposed as other viable notions of graph
proximity by Sarkar et al. [47]. Unlike our deterministic
bounding techniques in Sect. 4.6, their algorithm uses a more
aggressive probabilistic pruning, with approximation guar-
antees on the resulting ranking. They do not use query log
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statistics or any caching or indexing technique. Their reported
query times are about an order of magnitude larger on the
same data set on comparable hardware. It would be of inter-
est to extend our PPV indexing framework to also support
and speed up hitting and commute time queries. That would
take us closer to a generic graph database with indexing and
query optimization support for graph proximity search.

Acknowledgments Thanks to C. Lee Giles for CiteSeer data, to Yan-
nis Papakonstantinou for access to ObjectRank source code, and Pavel
Berkhin and Andrei Broder for helpful discussions. Thanks to Ganesh
Ramakrishnan, Somnath Banerjee and Devshree Sane for proofreading.

References

1. Abiteboul, S., Preda, M., Cobena, G.: Adaptive on-line page impor-
tance computation. In: WWW Conference, pp. 280–290 (2003)

2. Adler, M., Mitzenmacher, M.: Towards compressing Web graphs.
In: Data Compression Conference, pp. 203–212 (2001)

3. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A system for key-
word-based search over relational databases. In: ICDE. IEEE, San
Jose, CA (2002)

4. Amer-Yahia, S., Botev, C., Shanmugasundaram, J.: TeXQuery:
A full-text search extension to XQuery. In: WWW Conference,
pp. 583–594. New York (2004)

5. Babcock, B., Datar, M., Motwani, R., O’Callaghan, L.: Maintain-
ing variance and k-medians over data stream windows. In: PODS
Conference, pp. 234–243. ACM (2003)

6. Balmin, A., Hristidis, V., Papakonstantinou, Y.: Authority-based
keyword queries in databases using ObjectRank. In: VLDB Con-
ference, Toronto (2004)

7. Bar-Yossef, Z., Broder, A.Z., Kumar, R., Tomkins, A.: Sic Transit
Gloria Telae: Towards an understanding of the Web’s decay. In:
WWW Conference, pp. 328–337 (2004)

8. Berkhin, P.: Bookmark-coloring approach to personalized page-
rank computing. Internet Math. 3(1), (2007)

9. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan,
S.: Keyword searching and browsing in databases using BANKS.
In: ICDE IEEE (2002)

10. Bharat, K., Bröder, A., Henzinger, M., Kumar, P., Venkatasubrama-
nian, S.: The connectivity server: fast access to linkage information
on the Web. In: WWW Conference, Brisbane, Australia (1998)

11. Borthwick, A., Sterling, J., Agichtein, E., Grishman, R.: Exploiting
diverse knowledge sources via maximum entropy in named entity
recognition. In: Sixth Workshop on Very Large Corpora. Associa-
tion for Computational Linguistics (1998)

12. Chakrabarti, S.: Dynamic personalized PageRank in entity-relation
graphs. In: WWW Conference, Banff (2007)

13. Chakrabarti, S., Agarwal, A.: Learning parameters in entity rela-
tionship graphs from ranking preferences. In: PKDD Conference,
LNCS, vol. 4213, pp. 91–102. Berlin (2006)

14. Chakrabarti, S., Mirchandani, J., Nandi, A.: SPIN: Searching per-
sonal information networks. In SIGIR Conference, pp. 674–674
(2005)

15. Chakrabarti, S., Puniyani, K., Das, S.: Optimizing scoring func-
tions and indexes for proximity search in type-annotated corpora.
In: WWW Conference. Edinburgh (2006)

16. Chazelle, B.: The soft heap: an approximate priority queue with
optimal error rate. JACM 47(6), 1012–1027 (2000)

17. Cohen, E.: Estimating the size of the transitive closure in linear
time. In: FOCS Conference, pp. 190–200 (1994)

18. Craswell, N., Szummer, M.: Random walks on the click graph. In:
SIGIR Conference, pp. 239–246. ACM (2007)

19. Dalvi, B., Kshirsagar, M., Sudarshan, S.: Keyword search on exter-
nal memory data graphs. In: VLDB Conference (2008)

20. Doyle, P., Snell, L.: Random walk and electric networks. In: Math-
ematical Association of America (1984)

21. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. JCSS 66(4), 614–656 (2003)

22. Faloutsos, C., McCurley, K.S., Tomkins, A.: Connection subgraphs
in social networks. In: Workshop on Link Analysis, Counterterror-
ism, and Privacy. SDM Conference (2004)

23. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law rela-
tionships of the internet topology. In: SIGCOMM, pp. 251–262
(1999)

24. Fogaras, D., Rácz, B., Csalogány, K., Sarlós, T.: Towards scal-
ing fully personalized PageRank: algorithms, lower bounds, and
experiments. Internet Math. 2(3), 333–358 (2005)

25. Graefe, G.: Query evaluation techniques for large databases. ACM
Computing Survey 25(2), 73–170 (1993)

26. Grishman, R., Sundheim, B.: Message understanding conference-
6: A brief history. In: Proceedings of the 16th conference on Com-
putational linguistics, pp. 466–471. Association for Computational
Linguistics (1996)

27. Gupta, M., Pathak, A., Chakrabarti, S.: Fast algorithms for top-k
personalized PageRank queries. In: WWW Conference, pp. 1225–
1226 (2008)

28. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web
spam with TrustRank. In: VLDB Conference, pp. 576–587. (2004)

29. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without
candidate generation: A frequent-pattern tree approach. Data Min
Knowl Discov 8(1), 53–87 (2004)

30. Hwang, H., Balmin, A., Reinwald, B., Nijkamp, E.: BinRank: scal-
ing dynamic authority-based search using materialized subgraphs.
In: ICDE, pp. 66–77. IEEE Computer Society (2009)

31. Järvelin, K., Kekäläinen, J.: IR evaluation methods for retriev-
ing highly relevant documents. In: SIGIR Conference, pp. 41–48
(2000)

32. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW
Conference, pp. 271–279 (2003)

33. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.:
Extrapolation methods for accelerating PageRank computations.
In: WWW Conference, pp. 261–270 (2003)

34. Kleinberg, J.M.: Authoritative sources in a hyperlinked environ-
ment. JACM 46(5), 604–632 (1999)

35. Koren, Y., North, S.C., Volinsky, C.: Measuring and extracting
proximity in networks. In: SIGKDD Conference, pp. 245–255.
ACM (2006)

36. Koudas, N., Srivastava, D.: Data stream query processing. In: ICDE
p. 1145 (2005)

37. Lempel, R., Moran, S.: Rank-stability and rank-similarity of link-
based web ranking algorithms in authority-connected graphs. Infor-
mation Retrieval 8(2), 245–264 (2005)

38. Manning, C.D., Schütze, H.: Foundations of Statistical Natural
Language Processing. MIT, Cambridge (1999)

39. McSherry, F.: A uniform approach to accelerated pagerank com-
putation. In: WWW Conference, pp. 575–582 (2005)

40. Miller, G., Beckwith, R., FellBaum, C., Gross, D., Miller, K., Tengi,
R.: Five Papers on WordNet. Princeton University (1993)

41. Minkov, E., Ng, A., Cohen, W.W.: Contextual search and name dis-
ambiguation in email using graphs. In: SIGIR Conference (2006)

42. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank cita-
tion ranking: bringing order to the Web. Manuscript, Stanford Uni-
versity (1998)

43. Pan, J.-Y., Yang, H.-J., Faloutsos, C., Duygulu, P.: Automatic mul-
timedia cross-modal correlation discovery. In: SIGKDD Confer-
ence, pp. 653–658 (2004)

123



470 S. Chakrabarti et al.

44. Pandurangan, G., Raghavan, P., Upfal, E.: Using PageRank to char-
acterize web structure. In: COCOON, LNCS 2387, pp. 330–339
(2002)

45. Pathak, A., Chakrabarti, S., Gupta, M.S.: Index design for dynamic
personalized PageRank. In: ICDE, pp. 1489–1491 (2008)

46. Sarkar, P., Moore, A.W.: A tractable approach to finding closest
truncated-commute-time neighbors in large graphs. In: UAI Con-
ference (2007)

47. Sarkar, P., Moore, A.W., Prakash, A.: Fast incremental proximity
search in large graphs. In: ICML, pp. 896–903 (2008)

48. Silverstein, C., Henzinger, M., Marais, H., Moricz, M.: Analysis
of a very large AltaVista query log. Technical Report 1998-014,
COMPAQ System Research Center (1998)

49. Sleator, D.D., Temperley, D.: Parsing English with a link grammar.
In: Third International Workshop on Parsing Technologies (1993)

50. Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation
with probabilistic guarantees. In: VLDB Conference, pp. 648–659
(2004)

51. Tong, H., Faloutsos, C.: Center-piece subgraphs: problem defini-
tion and fast solutions. In: SIGKDD Conference (2006)

52. Tong, H., Faloutsos, C., Koren, Y.: Fast direction-aware proximity
for graph mining. In: SIGKDD Conference, pp. 747–756. ACM
(2007)

53. Tong, H., Faloutsos, C., Pan, J.-Y.: Fast random walk with restart
and its applications. In: ICDM (2006)

123


	Index design and query processing for graph conductance search
	Abstract
	1 Introduction
	1.1 Motivating applications
	1.2 Personalized PageRank
	1.3 Quality of results
	1.4 Our contributions

	2 Background and related work
	2.1 Linearity and hub decomposition
	2.2 ObejctRank and BinRank
	2.3 Asynchronous PageRank
	2.4 Experimental testbed
	2.4.1 Hardware and software
	2.4.2 The ER data graphs
	2.4.3 Whole-graph PageRank
	2.4.4 The query log
	2.4.5 Workload model
	2.4.6 Evaluating scores and rankings


	3 HubRankD
	3.1 Query execution algorithm and cost
	3.1.1 Expansion to influence subgraph
	3.1.2 PPV clipping and loading heuristics
	3.1.3 Computing missing PPVs
	3.1.4 Query cost

	3.2 Hub selection
	3.3 Performance

	4 HubRankP
	4.1 Asynchronous PageRank with hubs
	4.2 BCA performance model
	4.2.1 APushActive(H,δu,εpush)
	4.2.2 PathActive(H,δu,εpush)
	4.2.3 Sampled estimate CohenActive(H,δu,εpush)
	4.2.4 Linearity and saturation

	4.3 Hub set selection algorithm
	4.3.1 Work saved for one query if uH
	4.3.2 Work saved by u over query workload
	4.3.3 PPVu storage space
	4.3.4 Hub inclusion policies

	4.4 Handling streams of teleports
	4.4.1 Indefinite accumulation
	4.4.2 Finite window

	4.5 HubRankP experiments
	4.6 Top-K ranking

	5 Building the PPV index
	5.1 The MPWH hub ordering
	5.2 PPV indexing experiments

	6 Conclusion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


