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Abstract The measure of similarity between objects is a
very useful tool in many areas of computer science, including
information retrieval. SimRank is a simple and intuitive mea-
sure of this kind, based on a graph-theoretic model. SimRank
is typically computed iteratively, in the spirit of PageRank.
However, existing work on SimRank lacks accuracy esti-
mation of iterative computation and has discouraging time
complexity. In this paper, we present a technique to esti-
mate the accuracy of computing SimRank iteratively. This
technique provides a way to find out the number of iterations
required to achieve a desired accuracy when computing Sim-
Rank. We also present optimization techniques that improve
the computational complexity of the iterative algorithm from
O(n4) in the worst case to min(O(nl), O(n3/ log2 n)), with
n denoting the number of objects, and l denoting the number
object-to-object relationships. We also introduce a thresh-
old sieving heuristic and its accuracy estimation that further
improves the efficiency of the method. As a practical illus-
tration of our techniques, we computed SimRank scores on
a subset of English Wikipedia corpus, consisting of the com-
plete set of articles and category links.
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1 Introduction

The requirement for measuring similarity between objects
arises in many fields of computer science; examples include
recommender systems, “related pages” queries of web search
engines, document classification and clustering. Large
amounts and fast growth of information require machine aid
to humans for finding, classifying, and analyzing requested
information. Such a range of challenges includes automat-
ically detecting objects similar to a given object and rank-
ing them in accordance with their similarity scores. While
humans make judgment on object similarity intuitively, based
on their previous experience, the task of systematically com-
puting object similarity by a machine remains nontrivial. For
practical applicability, an effective similarity measure should
both reflect human intuition on objects similarity and provide
reasonable computational complexity.

For the existing similarity measures, two broad categories
can be outlined: (1) content- or text-based similarity mea-
sures that treat each object as a bag of items or as a vector of
word weights, and (2) link-based ones that consider object-
to-object relations expressed in terms of links. In the recent
research [23], the extensive evaluation of different similarity
measures was performed, and link-based measures produced
systematically better correlation with human judgments com-
pared to text-based measures. It is worth mentioning that the
success of the Google search engine began with its ability to
rank search results in accordance with human expectations;
the latter feature was essentially based on a purely link-based
ranking algorithm called PageRank [4]. From this perspec-
tive, it is reasonable to assume that an effective similarity
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measure would have a comparable impact for computer sci-
ence techniques as PageRank ranking algorithm had for web
search.

Considering the outlined state of the art, the similarity
measure SimRank [12] can be considered as one of the prom-
ising ones, due to the following reasons. SimRank is a link-
based similarity measure, and builds on the approach of
previously existing link-based measures. SimRank is based
on both a clear human intuition and a solid theoretical back-
ground. Similarly to PageRank, SimRank is defined recur-
sively with respect to a “random surfer” model and is
computed iteratively. Unlike the similarity measures that
require human-built hierarchies, SimRank is applicable to
any domain with object-to-object relationships, including the
Web.

Nevertheless, existing work on SimRank lacks two impor-
tant issues. First, although SimRank iterative similarity scores
are known to converge [12], a real-life computation naturally
involves performing a finite number of iterations. However,
a potential difference between SimRank iterative similarity
scores and theoretical ones remains an open question. The
symmetric question is finding out the precise number of iter-
ations sufficient to guarantee a desired accuracy.

Second, optimization issue of SimRank computation is
not the primary focus of the original SimRank proposal [12].
To the best of our knowledge, only one research paper [7]
is focused on optimizing the computation of SimRank. That
paper is initially oriented on SimRank probabilistic com-
putation, details are considered in the Related Work sec-
tion. As for SimRank iterative computation, optimization
has not been addressed in scientific literature yet, and the
time complexity of the straightforward SimRank compu-
tation is an obstacle for using SimRank on practical data
corpora.

This paper presents a solution to both issues, mathemati-
cally proven and practically justified by experimental results.
In summary, the main contributions of this paper are the fol-
lowing:

– A precise accuracy estimate is presented for SimRank
scores computed iteratively, with respect to the theoreti-
cal ones. This allows one to find out the number of iter-
ations required for achieving the desired accuracy.

– Optimization techniques that improve SimRank
computational complexity from O(n4) to min(O(nl),

O( n3

log2 n )). A threshold sieving heuristic is introduced
and its accuracy estimation is given that further improves
the efficiency of the method.

– SimRank computational viability for relatively large
object corpora in the presence of the suggested optimi-
zation techniques is verified experimentally by comput-
ing SimRank similarity scores for a subset of English

Wikipedia corpus, consisting the complete set of articles
and category links.

While in the conference version of our paper [21], we
reported the computational complexity of our techniques
be O(n3), in this extended version of the paper, we pres-
ent the additional optimization technique and improve Sim-
Rank computational complexity to min(O(nl), O( n3

log2 n )).
The additional technique is essentially based on algorithms
for optimized matrix multiplication.

The rest of the paper is organized as follows. In the next
section, SimRank overview is given and the necessary
notations and formulas are introduced. In Sect. 3, accuracy
estimate for the SimRank iterative computation model is
established. In Sect. 4, SimRank optimization techniques are
suggested, and Sect. 5 summarizes them into integral algo-
rithms for SimRank optimized computation. Section 6 gives
the overview of the related work. Experimental results are
presented in Sect. 7. Future work is discussed in Sect. 8.

2 SimRank overview

In this section, SimRank overview is given, and notations,
formulas and SimRank properties necessary for further dis-
cussion are provided. The material presented in this section
recalls Jeh’s and Widom’s work [12].

SimRank approach is focused on “object-to-object rela-
tionships found in many domains of interest” [12]. From the
relationships perspective, a domain is assumed to be mod-
eled as a (logical) graph, with nodes representing objects and
edges (links) representing relationships.

The basic intuition behind SimRank approach is: “two
objects are similar if they are referenced by similar objects”
[12]. Note that the given intuition is recursive by nature. As
the base case, any object is considered maximally similar to
itself, i.e. having a similarity score of 1 assigned.

Before presenting the mathematical formula that reifies
the basic SimRank intuition, several notations are introduced.
Given a graph G(V, E) consisting of a set of nodes V and
a set of links E , the following two mappings are further
assumed defined for each node v in the graph:

– I (v) denotes all in-neighbours of node v, i.e. all nodes
that have a link to v:

I (v) = {u ∈ V | (u, v) ∈ E}.

– O(v) denotes all out-neighbours of v, i.e. all nodes the
node v has a link to:

O(v) = {w ∈ V | (v,w) ∈ E}.
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Accuracy estimate and optimization techniques for SimRank computation 47

Notations |I (v)| and |O(v)| denote the number of nodes in
I (v) and O(v), respectively. Individual member of I (v) and
O(v) are referred to as Ii (v), 1 ≤ i ≤ |I (v)| and Oi (v),
1 ≤ i ≤ |O(v)|; a particular order of members when associ-
ated with indices is not important for further discussion.

With the similarity score between objects a and b denoted
by s(a, b) ∈ [0, 1], the basic SimRank intuition is then writ-
ten as follows:

s(a, a) = 1,

s(a, b) = C

|I (a)| |I (b)|
|I (a)|∑

i=1

|I (b)|∑

j=1

s(Ii (a), I j (b)), (1)

with a constant C being the decay factor, 0 < C < 1. For pre-
venting division by zero in the general formula (1) in case of
I (a) or I (b) being an empty set, s(a, b) is specially defined
as zero for I (a) = ∅ or I (b) = ∅.

We will further refer to s(∗, ∗) as SimRank theoretical
similarity function, and refer to its value s(a, b) as theoreti-
cal similarity score between nodes a and b.

A solution to the SimRank equations (1) is reached by iter-
ation to a fixed-point. For each iteration k, an iterative simi-
larity function Rk(∗, ∗) is introduced, with Rk(a, b) denoting
the iterative similarity score between a and b on iteration k.
The iterative computation starts with R0(∗, ∗) defined as

R0(a, b) =
{

1, if a = b,

0, if a �= b.
(2)

On the (k + 1)th iteration, Rk+1(∗, ∗) is defined in special
cases as

Rk+1(a, b) = 1, if a = b,

Rk+1(a, b) = 0, if I (a) = ∅ or I (b) = ∅,

and is computed from Rk(∗, ∗) in the general case as follows:

Rk+1(a, b) = C

|I (a)| |I (b)|
|I (a)|∑

i=1

|I (b)|∑

j=1

Rk(Ii (a), I j (b)). (3)

The following SimRank properties stated in [12] are worth
noting for the purposes of our further discussion:

1. A solution s(∗, ∗) to SimRank equations (1) always
exists and is unique, and s(∗, ∗) ∈ [0, 1].

2. For each k, Rk(∗, ∗) is a lower bound on the theoretical
SimRank function s(∗, ∗), i.e. Rk(a, b) ≤ s(a, b).

3. Iterative functions Rk(∗, ∗) converge to SimRank theo-
retical function s(∗, ∗), i.e. limk→∞ Rk(a, b) = s(a, b).

We will further refer to these properties by their correspond-
ing item numbers within the above list.

Symbol K further denotes the total number of iterations
performed; n denotes the number of nodes in a graph.

3 Iterative similarity accuracy estimate

Although Jeh and Widom proved iterative similarity conver-
gence [12], SimRank practical computation naturally implies
performing a finite number of iterations. From this perspec-
tive, no quantitative estimates were given for a potential
difference between SimRank iterative similarity scores and
theoretical ones. In this section, we fill in this gap and esti-
mate the accuracy of computing SimRank iteratively.

The following proposition establishes the accuracy esti-
mate for iterative similarity function Rk(∗, ∗) obtained after
k iterations with respect to theoretical similarity function
s(∗, ∗).

Proposition 1 The difference between SimRank theoretical
and iterative similarity scores decreases exponentially in the
number of iterations and uniformly for every pair of nodes.
Precisely, for every iteration number k = 0, 1, 2, . . . and for
every two nodes a, b, the following estimate holds:

s(a, b) − Rk(a, b) ≤ Ck+1. (4)

In conjunction with SimRank Property 2 listed above, the
proposition gives the following estimate:

0 ≤ s(a, b) − Rk(a, b) ≤ Ck+1.

The proof of the proposition is given in Appendix A. As
an accompanying result, it follows from the proposition that
Rk(∗, ∗) converges to s(∗, ∗) uniformly. Moreover, it can
also be noted that the established upper bound is precise:

Notes 1 The upper bound stated in Proposition 1 is precise.

The example that verifies the Note is given in Appendix B.
Proposition 1 shows that the number of iterations K

required for achieving a desired accuracy depends on nei-
ther the number of nodes in an input graph nor on any other
graph characteristics like the degree of nodes. Jeh and Widom
observed K independence from an input graph experimen-
tally [12]; Proposition 1 now gives the theoretical foundation
for this observation. The observation has an important impli-
cation for SimRank computational complexity, as the latter
naturally depends on the number of iterations. In accordance
with Proposition 1, the number of iterations can now be con-
sidered constant with respect to different input graphs.

For comparison, speed of convergence for PageRank gen-
erally depends on the structure of the modified adjacency
matrix—the so-called Google matrix. For instance, Page-
Rank scores are traditionally computed using iterative eigen-
vector algorithms, such as the power method, or Jacobi or
Gauss-Seidel methods. For these three classes of algorithms,
their speed of convergence is geometric with ratios |λ1/λ2|,
−D−1(L + U ) and (−L + D)−1U , respectively, where λ1

and λ2 are the first and the second dominant eigenvalues,
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D, L and U are the diagonal, the lower and the upper tri-
angular matrices of the L DU decomposition of the Google
matrix. Although it is known that these PageRank algorithms
converge for the Google matrix, we have not heard of any
estimations for the speed of convergence that are independent
of the matrix structure.

It is worth noting that Jeh and Widom [12] suggested
choosing the decay factor value C = 0.8 and the total number
of iterations K = 5, which in accordance with Proposition
1 stated above imply a relatively large potential difference
between theoretical and computed similarity scores:

0.85+1 = 0.86 > 0.26,

that could be unacceptable for many domains recalling that
similarity scores fall into the [0..1] segment. For guaranteeing
more accurate computation results, it can be advised using
either a smaller decay factor or more iterations. In [7], it was
experimentally observed that a smaller decay factor indeed
provides similarity scores of better quality, the observation
now explained theoretically.

Depending on the needs of a particular application, Prop-
osition 1 provides a precise mechanism for finding out (1)
either the accuracy value for the given decay factor C and
the number of iterations k, or (2) vice versa, the number of
iterations required for achieving a desired accuracy. A more
detailed discussion on the subject is given in Subsect. 4.4
below.

Proposition 1 provides an estimate for absolute difference
between theoretical and iterative similarity scores; for rank-
ing purposes, the relative order of nodes with respect to their
similarity to a given node is generally more important than
absolute scores. From this perspective, the following ranking
accuracy estimate can be established.

Proposition 2 The minimum difference between theoretical
similarity scores that allows correctly ranking two nodes with
respect to a third node in accordance with their pairwise iter-
ative similarity scores decreases exponentially in the number
of iterations. Precisely, if

s(a, b) > s(a, d) + Ck+1, (5)

then it necessarily follows that

Rk(a, b) > Rk(a, d). (6)

Proof Let us estimate the difference:

Rk(a, b) − Rk(a, d) > {using (5)}

> Rk(a, b) − Rk(a, d) − s(a, b) + s(a, d) + Ck+1

= s(a, d) − Rk(a, d)︸ ︷︷ ︸
≥0

− (s(a, b) − Rk(a, b))︸ ︷︷ ︸
≤Ck+1 using (4)

+Ck+1

≥ 0 − Ck+1 + Ck+1 = 0,

which gives (6). 	


The proposition states that the iterative SimRank compu-
tation appropriately grabs exponentially smaller differences
in theoretical similarity scores.

Propositions 1 and 2 are important not only on their own,
establishing an a priori correlation between the number of
iterations k and iterative similarity scores accuracy, but also
as a theoretical basis for one of the optimization techniques
suggested in the next section.

4 Optimization techniques

In this section, optimization techniques for SimRank compu-
tation are suggested. The optimization techniques cover three
consecutive aspects in SimRank computation. First, a tech-
nique for selecting essential node pairs is presented, aimed
at skipping node pairs that do not require similarity scores
computing for a given iteration. Second, two techniques are
suggested for reducing the number of access operations to the
iterative similarity function and for facilitating efficient clus-
tering. Third, threshold-sieved similarities are introduced for
speeding up subsequent iterations.

Each of the proposed optimization techniques is covered
in its own subsection accordingly. In the next section, the
optimization techniques are integrated into a general Sim-
Rank optimized computation algorithm.

When discussing the computational complexity provided
by each optimization technique, n denotes the number of
nodes in the graph, l denotes the number of links in the graph.
Since each link (u, v) contributes to exactly one member of
the sets I (v) and O(u), the total number of links correlates
with cardinalities of I (v) and O(u) as follows:1

l =
∑

v∈V

|I (v)| =
∑

u∈V

|O(u)| . (7)

4.1 Selecting essential node pairs

In this subsection, techniques for selecting essential node
pairs are suggested that allow reducing the computation of
iterative similarity scores to these node pairs only.

Definition 1 Let essential paired nodes for a given node a
over a similarity function Rk(∗, ∗) denote all nodes from the
following set of nodes:

EssentialRk (a)

= {b | ∃u ∈ I (a), ∃v : Rk(u, v) �= 0, b ∈ O(v)}. (8)

The reason for referring to nodes from a thus defined set
as “essential paired nodes” for a given node becomes clear
from the following proposition.

1 Recall that notation O(u) denotes the set of all out-neighbour nodes
of node u, as mentioned in Sect. 2.
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Proposition 3 For a given node a, Rk+1(a, b) is zero for
every node b such that

b �∈ {a} ∪ EssentialRk (a). (9)

Proof (by contradiction) Suppose that Rk+1(a, b) is non-
zero for some node b from (9). Since it follows from (9) that
b �= a, and since I (a) �= ∅ and I (b) �= ∅ in accordance
with our supposition Rk+1(a, b) �= 0, then Rk+1(a, b) is
computed by general iterative formula (3). As all items in
(3) are non-negative, it follows from Rk+1(a, b) �= 0 that
there exists at least a single pair of indexes (i0, j0) such that
Rk(Ii0(a), I j0(b)) �= 0. Let us denote Ii0(a) = u, I j0(b) = v.

By their notation, u ∈ I (a), v ∈ I (b). By symmetry, it fol-
lows from v ∈ I (b) that b ∈ O(v). Thus b ∈ EssentialRk (a),
since the chosen nodes u and v are the ones that satisfy (8).
The latter result leads to a contradiction with the initial terms
of the proposition. 	


Definition 1 and Proposition 3 provide an algorithm for
considering only essential node pairs and thus skipping iter-
ative scores computation for the remaining ones. From the
computational viewpoint, the set of essential paired nodes
EssentialRk (a) for a given node a can be obtained by first
constructing a temporary set of nodes TempRk

(a) that con-
sists of all nodes having non-zero similarity scores with some
I (a) member:

TempRk
(a) = {v | ∃u ∈ I (a) : Rk(u, v) �= 0}. (10)

It can easily be verified that the set of essential paired nodes
for a can then be obtained by taking all out-neighbours for
every node in TempRk

(a), i.e.:

EssentialRk (a) = {b | ∃v ∈ TempRk
(a) : b ∈ O(v)}. (11)

Considering the computational complexity of obtaining
essential paired nodes for a node a by formulas (10) and
(11), the following observation can be drawn:

1. Calculating TempRk
(a) implies scanning over each

member u ∈ I (a) and retrieving all nodes v that have
non-zero iterative similarity with u, i.e. at most n nodes
for each u. These calculations require performing at
most |I (a)| · n operations.

2. Calculating EssentialRk (a) by formula (11) implies
making a union of sets O(v) over all v ∈ TempRk

(a).
Since TempRk

(a) is a subset of V , the upper bound for
the required number of operations is:

∑

v∈TempRk
(a)

|O(v)| ≤
∑

v∈V

|O(v)| = l.

Intermediate memory consumption for both TempRk
(a) and

EssentialRk (a) is linear.

For a complete iteration, the computational complexity
of selecting essential node pairs is thus a sum of the above
numbers of operations over all a ∈ V :
∑

a∈V

(|I (a)| · n + l) = n
∑

a∈V

|I (a)|
︸ ︷︷ ︸

l

+l
∑

a∈V

1

︸ ︷︷ ︸
n

= 2nl.

Memory consumption remains linear, since TempRk
(a)

can be freed after EssentialRk (a) is constructed, and
EssentialRk (a) can be freed after essential paired nodes for
node a are processed. Further discussion in this section shows
that the computational complexity is no more than O(nl) for
subsequent processing within a SimRank iteration as well.

Essential node pairs provide a better selectivity when the
iterative similarity function Rk(∗, ∗) has a relatively small
fraction of non-zero values with respect to zero ones. We will
refer to such a similarity function as a sparse one. A tech-
nique for keeping an intermediate iterative similarity function
sparse is suggested in Subsect. 4.4.

Iterative similarity scores computation can be skipped not
only for node pairs with a priori zero scores, but also for the
ones that are not required for a subsequent iterative compu-
tation.

Proposition 4 If a node u in a graph has no outgoing links,
then Rk+1(∗, ∗) does not depend on Rk(u, ∗).

Proof (by contradiction) Suppose that there exists a pair of
nodes a, b ∈ V such that Rk+1(a, b) depends on Rk(u, ∗).
Note that a �= b, I (a) �= ∅ and I (b) �= ∅, since in a otherwise
case Rk+1(a, b) is constant by definition and thus does not
depend on Rk(u, ∗).

It follows from a �= b, I (a) �= ∅ and I (b) �= ∅ that
Rk+1(a, b) is calculated by the general iterative formula (3).
Since Rk(∗, ∗) is presented in the right-hand side of (3) in
the form of Rk(Ii (a), I j (b)), the only way for Rk+1(a, b) to
depend on Rk(u, ∗) is to have u = Ii0(a) for some index i0,
i.e. to have u ∈ I (a). But u ∈ I (a) implies by symmetry
that a ∈ O(u). The latter contradicts the proposition terms
on O(u) = ∅. 	

Corollary 1 If a node u in a graph has no outgoing links,
then it is sufficient to calculate Rk(u, ∗) on just the last iter-
ation without violating the semantics of SimRank iterative
computation.

An a priori knowledge of the precise number of itera-
tions provided by Proposition 1 plays the crucial role for the
practical applicability of Corollary 1. If the number of iter-
ations were unknown a priori, all non-zero similarity scores
would have had to be computed anyway for the reason of
finding out when to terminate the iterative computation.

From the computational viewpoint, checking the applica-
bility of Corollary 1 for a given node u can be performed in
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constant time and requires no additional memory, and thus
constitutes a practical pruning mechanism.

While Proposition 3 is focused on pruning node pairs with
zero similarity from consideration, Proposition 4 and Corol-
lary 1 cover a different pruning aspect. Indeed, even if a node
u has no outgoing links, it can still have many incoming links
and thus have a non-zero similarity with many other nodes in
a graph. Moreover, calculating all these similarity scores can
involve a large computational effort. However, if the node u
has no outgoing links, then this computational effort can be
saved on intermediate iterations and performed for the last
iteration only. We will show the practical importance of this
proposition when considering the experimental results.

4.2 Partial sums

After essential node pairs for a given node are selected, the
optimization technique presented in this subsection allows
reducing the number of access operations to Rk(∗, ∗) required
for computing Rk+1(∗, ∗). The main idea behind the optimi-
zation is that a sum of Rk(∗, ∗) values over a certain set of
arguments is used for computing several values of Rk+1(∗, ∗)

and can thus be effectively memoized [1] for preventing
repeated computation.

Figure 1 depicts the basic idea behind the technique. Sup-
pose that each square in the figure represents a value of the
iterative similarity function, with the first argument of the
function represented by the row the square is located in, and
the second argument—by the column. Then, computing simi-
larity score for a node pair (a, b) in accordance with SimRank
iterative formula (3) implies summing up the values that are
shown in Fig. 1 in squares filled with horizontal lines. In
the same way, squares filled with vertical lines show the val-
ues that are summed up for computing similarity score for
a node pair (a, d). It is clearly visible from the figure that
if I (b) ∩ I (d) �= ∅, then certain values are summed up in
this example twice (namely, the ones shown in squares filled

Fig. 1 Similarity scores involved in computing similarity of node pairs
(a, b) and (a, d)

with both horizontal and vertical lines). To save the computa-
tional effort, we can sum up the values over the rows in I (a)

only once for each column, and then use these pre-computed
partial sums for obtaining similarity scores of the node a with
all the other nodes in the graph.

For an elaborate discussion on the subject, let us first intro-
duce the notion of a partial sums function.

Definition 2 Let f (∗, ∗) be a binary function X × Y → R

and let S be a finite subset in X : S = {x1, x2, . . . , x p}, xi ∈
X , i ∈ 1, p. By partial sums for the function f over the set S
we will call a unary function Y → R denoted as Partial f

S (∗)

and defined as follows:

Partial f
S (y) =

∑

xi ∈S

f (xi , y), y ∈ Y.

A partial sums function is introduced for being applied to
SimRank iterative similarity scores computation:

Proposition 5 For a �= b, I (a) �= ∅ and I (b) �= ∅,
Rk+1(a, b) can be computed iteratively as

Rk+1(a, b) = C

|I (a)| |I (b)|
|I (b)|∑

j=1

PartialRk
I (a)(I j (b)). (12)

Proof The proposition is proved by simply swapping the
summation signs in the iterative formula (3):

Rk+1(a, b) = C

|I (a)| |I (b)|
|I (b)|∑

j=1

|I (a)|∑

i=1

Rk(Ii (a), I j (b))

︸ ︷︷ ︸
Partial

Rk
I (a)

(I j (b))

and by noting that the internal summation is the value of the
partial sums function for Rk(∗, ∗) over I (a) for argument
I j (b). 	


Although trivial in its proof, Proposition 5 provides the
efficient speedup technique for SimRank computation, based
on the following corollary:

Corollary 2 For a given fixed node a, the same partial sums
function PartialRk

I (a)(∗) is used for computing Rk+1(a, b) for
every node b in a graph.

The key point in optimizing Rk+1(a, ∗) computation via
a partial sums function PartialRk

I (a)(∗) is that once calculated,
partial sums values are memoized and are thus not recalcu-
lated when subsequently required. For example, if I j (b) =
Il(d) = u for some nodes b and d, then the partial sum
value PartialRk

I (a)(u) is calculated once and is used in both
Rk+1(a, b) and Rk+1(a, d) computation. Since for some
nodes w, the partial sum values PartialRk

I (a)(w) will proba-
bly not be required for computing the Rk+1(a, ∗) values, it is
reasonable to calculate the partial sums function in a delayed
fashion.
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Analyzing the computational complexity, the straightfor-
ward iterative SimRank computation involves |I (a)| · |I (b)|
access operations to Rk(∗, ∗) for computing Rk+1(a, b) for
a single pair of nodes (a, b), resulting in n2avga,b(|I (a)|
|I (b)|) operations per iteration [12], the latter being O(n4)

in the worst case [31]. For comparison, the computational
complexity of performing an iteration using partial sums is
obtained by considering the following two components:

1. Calculating a single value of a partial sums function
PartialRk

I (a)(y) involves summing up |I (a)|values, result-
ing in at most |I (a)| ·n operations for calculating all the
required values of the partial sums function.

2. With the values of the partial sums function calculated,
computing similarity between the node a and an arbi-
trary node b implies taking the sum

∑
y∈I (b)

PartialRk
I (a)(y), resulting in |I (b)| operations.

The computational complexity of performing a complete iter-
ation is thus expressed as the total number of operations for
the above two components for every node a in the graph,
that is:
∑

a∈V

(|I (a)| · n + l) = n
∑

a∈V

|I (a)| + ln = 2nl.

Note that both partial sums and the selection of essential
node pairs exhibit the same computational complexity, which
makes it attractive use the combination of both techniques
when performing an iteration.

Note that although the number of operations in case of
l < n can be fewer than the total number of pair-wise node
combinations, there is no inconsistency here. Indeed, in this
case, there are at most l nodes with incoming links in a graph,
that leaves only l2 similarity scores to be computed at most.

Partial sums allow additionally speeding up SimRank
computation by Rk(∗, ∗) values clustering. Precisely, before
partial sums were introduced, computing Rk+1(a, b) for a
single pair of argument nodes generally required access-
ing Rk(∗, ∗) for a Cartesian product of I (a) × I (b); such
argument values spread hardly made any clustering strategy
provide access time speed up. For comparison, partial sums
usage allows clustering the underlying storage for Rk(∗, ∗)

values by the first argument. Indeed, due to Rk(∗, ∗) symme-
try, PartialRk

I (a)(u) can be computed from Rk(u, ∗) involving
a single node for the first argument:

PartialRk
I (a)(u) =

|I (a)|∑

i=1

Rk(Ii (a), u) =
|I (a)|∑

i=1

Rk(u, Ii (a)).

The above made observations allow achieving access oper-
ations speed up by clustering Rk(∗, ∗) by the first argument
from the underlying storage viewpoint.

4.3 Cross summation

The idea of partial sums introduced in the previous sub-
section can be further generalized by grouping operations
over an iterative similarity function with common arguments
together. The technique presented in this subsection is essen-
tially based on the existing algorithms for optimized matrix
multiplication [15,17], specialized for the SimRank model.

Definition 3 Let f (∗, ∗) be a binary function X × Y → R

and let G(∗) be a mapping X → 2X from X to a finite set
in X . By outer sum for the function f over the function G,
we refer to a binary function X × Y → R that is defined as
follows:

Outer f
G(x, y) =

∑

xi ∈G(x)

f (xi , y), x ∈ X, y ∈ Y. (13)

Proposition 6 In the general case of a �= b, I (a) �= ∅ and
I (b) �= ∅, the iterative similarity score Rk+1(a, b) can be
computed as:

Rk+1(a, b) = C

|I (a)| |I (b)|
|I (b)|∑

j=1

OuterRk
I (a, I j (b)). (14)

Proof In the similar manner as for Proposition 5, let us swap
the summation signs in the iterative formula (3):

Rk+1(a, b) = C

|I (a)| |I (b)|
|I (b)|∑

j=1

∑

x∈I (a)

Rk(x, I j (b))

︸ ︷︷ ︸
OuterRk

I (a,I j (b))

.

Noticing that the internal summation is the value of the outer
sum function for Rk(∗, ∗) over I (a) for the argument pair
(a, I j (b)) finishes the proof. 	


The key corollary of the above proposition that allows
working out the optimized iterative computation is that the
single outer sum function is used throughout a complete itera-
tion. With this observation, it is suggested to computationally
organize an iteration in two steps:

1. The first step involves computing the outer sums func-
tion OuterRk

I (∗, ∗). The step has the effect of summing
up the values of the iterative similarity function Rk(∗, ∗)

for all the combinations of the first argument appearing
in the outer summation sign of the SimRank iterative
formula (3). It is due to this observation that the func-
tion introduced in Definition 3 was mnemonically called
the “outer sums function”. We will further refer to the
values of this function as simply outer sums.

2. On the second step, iterative similarity scores for the cur-
rent iteration Rk+1(∗, ∗) are computed using the already
computed outer sums function. The step has the effect of
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summing up the outer sums over all the combination of
the second argument appearing in the inner summation
sign of the SimRank iterative formula (3).

We called this technique “cross summation”, because sum-
mation of iterative similarity scores is separated into two dis-
tinct consecutive steps, with the first step collecting all the
required summations over the first argument, and the sec-
ond step further composing these outer sums over the second
argument.

Using cross summation, SimRank computation can be
additionally optimized by calculating multiple sums at once.
For this purpose, let us choose some natural p ≤ n and split
the whole set of nodes V of the graph into several subsets,
with each subset containing at most p nodes. Formally, we
introduce subsets V1, V2, …, Vq , where q = � n

p � and:

Vi ⊂ V, |Vi | ≤ p, i = 1, q;
Vi ∩ Vj = ∅, i �= j;
⋃

i=1,q

Vi = V .

We achieve computing the values of OuterRk
I (∗, b) at once

by summing the values of the iterative similarity function
Rk(∗, b) for all possible combinations of nodes from Vj

for each j . For formalizing this principle, we introduce the
notion of a combination function:

Definition 4 For a set of nodes Vj and an iterative similarity
function Rk(∗, b) with its second argument fixed to a node b,
a unary function Combination j

Rk (∗,b)(∗) is defined for each
subset W j of Vj as

Combination j
Rk (∗,b)(W j ) =

∑

a∈W j

Rk(a, b), W j ⊂ Vj .

The function Combination j
Rk (∗,b)(∗) is defined for 2|Vj | ≤

2p different arguments. Note further that all values of the
combination function can be computed in at most 2p sum-
mations, since each value of the function differs from some
of its other values by a single summation:
⎧
⎪⎨

⎪⎩

Combination j
Rk (∗,b)(∅) = 0;

Combination j
Rk (∗,b)(W j ∪ u)

= Combination j
Rk (∗,b)(W j ) + Rk(u, b).

With the combination function introduced, each value of
the outer sums function can be computed as follows:

OuterRk
I (a, b) =

q∑

j=1

Combination j
Rk (∗,b)(I (a) ∩ Vj ).

Since set intersections (I (a) ∩ Vj ) can be computed for all
a ∈ V , j = 1, q in advance, we introduce the notion of a
bucket function to grab this observation:

Definition 5 For an in-neighbour mapping I (∗) and a
sequence of sets of nodes {Vi }, i = 1, q , a binary func-
tion Bucket{Vi }

I (∗, ∗) is defined for its first argument being
a node a ∈ V and the second argument being an index
j ∈ {1, 2, . . . , q}, as follows:

Bucket{Vi }
I (a, j) = I (a) ∩ Vj .

Using the bucket function, each value of the outer sums
function is now computed as:

OuterRk
I (a, b)

=
q∑

j=1

Combination j
Rk (∗,b)(Bucket{Vi }

I (a, j)). (15)

The computational complexity for the technique is com-
prised of the following three components:

1. Computing the values of a single combination function
requires 2p summations, giving totally nq2p summa-
tions per a complete iteration due to nq different com-
bination functions involved.

2. A single value of the outer sums function is computed
in q summation, yielding n2q summations per iteration.

3. The bucket function is computed in n2 operations.

It can be observed that the number of operations for the
described approach is asymptotically minimized for
p = �log2 n�, with the number of operations then being

O(n2 n
log2 n ) = O( n3

log2 n ). Comparing this computational
complexity with the one for partial sums introduced in the
previous subsection, it can be noted that one of the two
techniques can be computationally beneficial over the other
depending on the proportion between n and l. This issue is
discussed in more detail below.

Inner summation is computationally organized anal
ogously to outer summation and yields the same computa-
tional complexity.

Concerning space complexity, applying cross summation
requires storing the values of the outer sum function, that
takes quadratic space in the number of nodes in the graph.
The bucket function, once computed, is used in the cross
summation technique instead of the initial mapping I (∗),
while requiring no more storage space than I (∗). Finally, no
more that a single combination function is required at a time,
involving space proportional to 2p ≤ 2log2 n = n, that is,
linear in the number of nodes in the input graph.

Cross summation and partial sums can be considered as
alternative techniques. Partial sums employ lazy evaluation,
while cross summation is an eager technique. Since all outer
sums are computed in advance, essential paired nodes are
not applicable to cross summation; however, Corollary 1
still applies. Either partial sums or cross summation can be
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preferable in different situations, more discussion on this sub-
ject is given in Sects. 5 and 7.

4.4 Threshold-sieved similarity

For certain graphs classes like scale-free graphs [16], the
iterative similarity function Rk(∗, ∗) has an abundance of
non-zero values after just a few iterations. However, many of
these values, although being non-zero, denote low similarity
between node pairs and thus contain little practical infor-
mation for the result similarity scores. On the other hand,
keeping all these small but nevertheless non-zero similar-
ity scores requires considerable storage amounts and slows
down subsequent iterations.

The proposition given in the following provides the quan-
titative illustration for the number of non-zero similarity
scores through SimRank iterative computation. As a prelim-
inary step, let us repeat the definition of the diameter of a
graph, introduced in [5]:

Definition 6 The diameter of a graph is defined as the aver-
age distance between any two nodes in the graph.

If a graph contains a pair of nodes that are not connected
by a (directed) path, then the diameter of the largest strongly
connected component in the graph is considered. In the fol-
lowing, let n′ denote the number of nodes in the largest
strongly connected component of the graph, n′ ≤ n, let d
denote the diameter of that component.

Proposition 7 If the diameter d and the number of SimRank
iterations K satisfy the inequality 2 < d ≤ K , then, denot-
ing D = �d�, the lower bound for the number of non-zero
values of the iterative similarity function RK (∗, ∗) obtained
after K iterations is:

#nonzero ≥ 6((D + 1)(n′ − 1) − dn′)2

D(D + 1)(2D + 1)
.

The proof of the proposition is given in Appendix C.
The proposition implies that for many practical graphs,

SimRank similarity function contains more non-zero values
than is actually needed for general applications, and more
than can be computed using reasonable storage size. In par-
ticular, it is typical for scale-free graphs to have their larg-
est strongly connected component contain most of the graph
nodes: n′ ∼ 0.9n, and to have the so-called ultrasmall diam-
eter [5]: d ∼ log log n′. Consequently, even large scale-free
graphs have their diameter less than 5, the typical number of
SimRank iterations performed. For d < 5, the lower bound
established in Proposition 7 becomes:

#nonzero ≥ (n′ − 6)2

55
, (16)

only around 55 times less than having every node similar
to every other node. The formula (16) implies that even for

a moderate graph with n′ = 3M and d < 5, SimRank itera-
tive computation produces at least 163 billion non-zero simi-
larity scores after five iterations. Even with 8 bytes per score,
computing this iterative similarity function involves process-
ing and storing more than a terabyte of memory.

Since scale-free graphs constitute the underlying repre-
sentation for many practical corpora including Wikipedia
[32] and the Web, we propose the notion of a threshold-sieved
similarity function for effectively handling desired similar-
ity scores. The necessary theoretical results are presented to
ensure that a threshold-sieved similarity function provides a
user-controlled effect over the result similarity scores.

Let us choose some non-negative parameters δ1, δ2, …,
δK , where each δk is treated as a threshold for iterative sim-
ilarity scores on the kth iteration. Conceptually, similarity
score for a pair of nodes a, b on the kth iteration will be
treated as zero if both (1) this value is not greater than the
threshold δk and (2) similarity between a and b is zero on the
previous iteration recursively.

Formally, let us define a threshold-sieved iterative simi-
larity function Rδk

k (∗, ∗) over a set of threshold parameters
{δk} as follows:

Rδ0
0 (a, b) = R0(a, b);

Rδk+1
k+1 (a, a) = Rk+1(a, a) = 1; (17)

Rδk+1
k+1 (a, b) = 0, if I (a) = ∅ or I (b) = ∅; (18)

Rδk+1
k+1 (a, b) = C

|I (a)| |I (b)|
|I (a)|∑

i=1

|I (b)|∑

j=1

Rδk
k (Ii (a), I j (b)),

if either (right-hand side > δk+1)

or Rδk
k (a, b) �= 0; (19)

Rδk+1
k+1 (a, b) = 0, otherwise. (20)

In Rδk+1
k+1 (a, b) definitions (18)–(20), a and b are assumed

to be different nodes; when a and b are the same node, the
definition of Rδk+1

k+1 (a, a) is given separately in (17).

For textually distinguishing Rk(∗, ∗) and Rδk
k (∗, ∗), we

will further refer to Rk(∗, ∗) as conventional iterative simi-
larity.

It can easily be proven by mathematical induction that con-
ventional similarity function is an upper bound for a thresh-
old-sieved one, i.e.

Rδk
k (a, b) ≤ Rk(a, b), ∀a, b, ∀k. (21)

Moreover, the following estimate for threshold-sieved iter-
ative similarity function with respect to conventional iterative
similarity function can be established:

Proposition 8 For every iteration k = 0, 1, 2, . . . and for
every two nodes a, b ∈ V the following estimate holds:

Rk(a, b) − Rδk
k (a, b) ≤ �,
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where

� =
k∑

m=1

Ck−mδm . (22)

The proof of the proposition is given in Appendix D.
The parameter � is intended as a user control over maxi-

mum potential difference between threshold-sieved and
conventional iterative similarity functions, and thus � is
generally chosen by a user. Provided that δ1, δ2, . . . , δk are
selected to fulfill (22), Proposition 8 states that difference
between threshold-sieved and conventional similarity scores
does not exceed �.

Note from the proposition proof that the Eq. (22) gives the
worst-case upper bound. In practice, we noted the differences
between Rk(∗, ∗) and Rδk

k (∗, ∗) for k = 5 being smaller than
� by one order of magnitude.

It should be noted that if � is chosen to be zero, then
δ1 = δ2 = . . . = δK = 0 and a threshold-sieved iterative
similarity function Rδk

k (∗, ∗) becomes a conventional iter-
ative similarity function Rk(∗, ∗). From this perspective, a
threshold-sieved similarity can be considered as a general-
ization for a conventional similarity.

One of the possible ways for choosing threshold parame-
ters δ1, δ2, …, δk is to specify every iteration make an equal
contribution to the � value:

Ck−mδm = �

k
, m = 1, k,

which gives

δm = �

kCk−m
, m = 1, k. (23)

Due to general commonalities between a threshold-sieved
and a conventional similarity functions, previously stated
Propositions 3 and 4 straightforwardly apply to threshold-
sieved similarity function. With partial sums introduced in
Sect. 4.2, equations (19) and (20) are rewritten correspond-
ingly as:

Rδk+1
k+1 (a, b) = C

|I (a)| |I (b)|
|I (b)|∑

j=1

Partial
R

δk
k

I (a)(I j (b)),

if either (right-hand side > δk+1)

or Rδk
k (a, b) �= 0; (24)

Rδk+1
k+1 (a, b) = 0, otherwise. (25)

In the similar way, equations for cross summation are rewrit-
ten as:

Rδk+1
k+1 (a, b) = C

|I (a)| |I (b)|
|I (b)|∑

j=1

Outer
R

δk
k

I (a, I j (b)),

if either (right-hand side > δk+1)

or Rδk
k (a, b) �= 0; (26)

Rδk+1
k+1 (a, b) = 0, otherwise. (27)

The combination of Propositions 1 and 8 provides the
upper bound for a maximum potential difference between a
threshold-sieved similarity function and the theoretical sim-
ilarity function:

Proposition 9 For every pair of nodes (a, b) and for every
iteration number k = 0, 1, 2, . . ., the following estimate
holds:

s(a, b) − Rδk
k (a, b) ≤ ε,

where

ε = Ck+1 + �, (28)

and threshold parameters δ1, δ2, . . . , δk are chosen with
respect to � as specified by (22).

Proof The proposition immediately follows from Proposi-
tions 1 and 8. 	


In combination with (21) and SimRank Property 2, the
estimate stated in Proposition 9 has the following form:

0 ≤ s(a, b) − Rδk
k (a, b) ≤ ε.

Based on Proposition 9, the analogue of Proposition 2 for
ranking accuracy estimate can be straightforwardly stated for
a threshold-sieved similarity function, replacing Ck+1 with ε.

A threshold-sieved iterative similarity function Rδk
k (∗, ∗)

may at first seem as an approximation for a conventional
iterative similarity function Rk(∗, ∗); however, Proposition 9
shows that both actually follow the same nature of uniformly
converging to the theoretical similarity function s(∗, ∗) for
k → ∞, � → 0. When a user wishes to achieve a desired
accuracy ε, she or he is free to follow one of the two possible
options. The user can turn threshold sieving off by speci-
fying � = 0, which in accordance with (28) would result
in a fewer number of iterations K required for achieving
accuracy ε:

K = �logC ε� − 1.

Alternatively, the user can perform one more iteration and
assign additional accuracy tolerance to �:

K = �logC ε�;
� = ε − C K+1.

As our experimental results presented in Sect. 7 show, the
latter option provides a faster computation due to a more
freedom for applying the suggested optimization techniques,
even though the additional SimRank iteration is performed.
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5 Algorithm for SimRank optimized computation

In this section, the optimization techniques presented above
are integrated into the general SimRank optimized computa-
tion algorithm.

As it was discussed in Subsects. 4.2 and 4.3, partial sums
and cross summation can be used as alternative techniques for
organizing SimRank optimized iteration. Consequently, two
alternative algorithms are presented that implement SimRank
iteration with respect to each of the techniques. In different
cases, one or the other algorithm is preferable depending on
input data involved; the discussion on this subject is given in
Sect. 7.

5.1 SimRank iteration using partial sums

Algorithm 1 implements SimRank optimized iteration using
essential node pairs, partial sums, and threshold-sieved sim-
ilarities. The algorithm accepts as input: the graph G, the
decay factor C , the iterative similarity function from the pre-
vious iteration Rδk

k (∗, ∗), and the threshold parameter δk+1.
The algorithm returns as output the iterative similarity func-
tion Rδk+1

k+1 (∗, ∗) computed as the result of this iteration.

Algorithm 1 SimRank iteration using partial sums

Input: G(V, E), C , Rδk
k (∗, ∗), δk+1

Output: Rδk+1
k+1 (∗, ∗)

1: for all a ∈ V do
2: if O(a) = ∅ and k �= K − 1 then
3: Continue for next a
4: end if
5: Initialize PartialRk

I (a)(∗)

6: Calculate EssentialRk (a)

7: for all b ∈ {a} ∪ EssentialRk (a) do
8: Calculate Rδk+1

k+1 (a, b)

9: end for
10: Free EssentialRk (a)

11: Free PartialRk
I (a)(∗)

12: end for

As algorithm statements are described in high-level terms,
the following list collects references to underlying formulas
and theoretical justifications given earlier in the paper and
implied in a corresponding algorithm line:

– In lines 5.1–5.1, the conditional expression is justified
by Corollary 1.

– In line 5.1, EssentialRk (a) is calculated by (10), (11).
– In line 5.1, the condition in the header of the for loop is

justified by Proposition 3.
– In line 5.1, Rδk+1

k+1 (a, b) is calculated by (17), (18), (24)
and (25).

– In lines 5.1 and 5.1, the free statement is used to denote
that EssentialRk (a) and PartialRk

I (a)(∗) are not required for
further computation and can be dropped.

5.2 SimRank iteration using cross summation

Cross summation involves outer summation followed by
inner summation; Algorithm 2 gives the detailed description
of the outer one:

– In line 5.2 of the algorithm, the value of the outer sums
function is calculated in accordance with Eq. (15).

– In line 5.2, the free statement is used to denote that
the values of the function Combination j

Rk(∗,b)(∗) are not
required for subsequent computation and can be
dropped.

Algorithm 2 Outer summation

Input: G(V, E), {Vi }, Bucket{Vi }
I (∗, ∗), Rδk

k (∗, ∗)

Output: OuterRk
I (∗, ∗)

1: for all b ∈ V do
2: Initialize OuterRk

I (∗, b) = 0
3: for all Vj , j = 1, q do

4: Calculate Combination j
Rk (∗,b)(∗)

5: for all a ∈ V do
6: Increment: OuterRk

I (a, b) +=

+= Combination j
Rk (∗,b)(Bucket{Vi }

I (a, j))
7: end for
8: Free Combination j

Rk (∗,b)(∗)

9: end for
10: Write OuterRk

I (∗, b)

11: end for

The algorithm for inner summation is very similar to the
one for outer summation and is thus omitted. Technically,
inner summation has the following changes with respect to
outer summation:

1. Inner summation accepts OuterRk
I (∗, ∗) instead of

Rδk
k (∗, ∗) as input and returns Rδk+1

k+1 (∗, ∗) as the result;
2. The relative nesting of the for-loops over nodes a and b

is swapped;
3. In the end of inner summation, each computed value is

normalized by C
|I (a)|·|I (b)| and is compared against the

threshold parameter δk+1.

Combining outer and inner summations, Algorithm 3
implements SimRank iteration using cross summation. The
algorithm accepts and returns the same parameters as
Algorithm 1 discussed above.
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Algorithm 3 SimRank iteration using cross summation

Input: G(V, E), C , Rδk
k (∗, ∗), δk+1

Output: Rδk+1
k+1 (∗, ∗)

1: Choose {Vi }, i = 1, q
2: Calculate Bucket{Vi }

I (∗, ∗)

3: OuterRk
I (∗, ∗) = outer_summation(

G(V, E), {Vi }, Bucket{Vi }
I (∗, ∗), Rδk

k (∗, ∗)

)
4: Rδk+1

k+1 (∗, ∗) = inner_summation(

G(V, E), {Vi }, Bucket{Vi }
I (∗, ∗), OuterRk

I (∗, ∗), C , δk+1
)

5.3 The complete iterative computation

Having introduced the above lower-level algorithms that
implement a single SimRank iteration, the complete itera-
tive computation is organized as a compact Algorithm 4. As
different strategies for choosing K and � for achieving the
desired accuracy can be applied, the algorithm accepts both
parameters as input.

Algorithm 4 SimRank optimized computation
Input: G(V, E), C , K , �

Output: RδK
K (∗, ∗)

1: Calculate δ1, δ2, …, δK
2: Initialize R0(∗, ∗)

3: for k = 0 to K − 1 do
4: Rδk+1

k+1 (∗, ∗) = iteration(G(V, E), C , Rδk
k (∗, ∗), δk+1)

5: end for

The statements involved in Algorithm 4 are elaborated as
follows:

– In line 5.3, each δm can be calculated by equation (23).
A different strategy for choosing δ1, δ2, …, δK can be
used; the only requirement is that (22) be fulfilled.

– In line 5.3, R0(∗, ∗) is defined by (2).
– In line 5.3, Rδk+1

k+1 (∗, ∗) is calculated as the result of per-
forming a single iteration. For an iteration, either par-
tial sums described in Algorithm 1 or cross summation
described in Algorithm 3 can be used.

Note that within the same iterative computation, different
iterations can rely on different algorithms—either on Algo-
rithm 1 or on Algorithm 3. Recommendations on choosing
a particular optimization algorithm for a given iteration are
provided in Sect. 7.

Collecting complexity analysis for all suggested optimi-
zation techniques, it follows that a single SimRank iteration
requires O(nl) operations in the worst case for Algorithm 1
and O( n3

log2 n ) operations for Algorithm 3.

The complete iterative process consequently has the com-
putational complexity of K · min(O(nl), O( n3

log2 n )). As it
was shown in Propositions 1 and 9 that the number of iter-
ations K required for achieving the desired accuracy does
not depend on the number of nodes n in the graph, we finally
obtain that SimRank computation in the presence of the
suggested optimization techniques is min(O(nl), O( n3

log2 n )).

6 Related work

Due to practical importance of measuring object-to-object
similarity, different approaches to defining similarity mea-
sures were suggested in scientific literature, e.g. the ones
based on domain hierarchies [9], information theory [18],
network flow computation [22]. With respect to the focus
of this paper, a detailed discussion is given to related work
that either correlate with SimRank or present similarity mea-
sures with complexity analysis claimed applicable for large
data corpora.

Xi et al. suggested a similarity-calculating algorithm
called SimFusion that aims at “combining relationships from
multiple heterogeneous data sources” [31]. The basic intu-
ition behind SimFusion approach somewhat resembles the
one for SimRank: “the similarity between two data objects
can be reinforced by the similarity of related data objects
from the same and different spaces” [31]. SimFusion pro-
vides the following extensions with respect to SimRank: (1)
support for different kinds of intra-nodes relations, e.g. out-
going links, content commonality; (2) support for different
weights associated with different kinds of relations; (3) sup-
port for several information spaces.

Iterative similarity computation formula for SimFusion
has much in common with the one for SimRank. Indeed,
with Lurm being a row-stochastic matrix that combines all
the relationships between nodes, SimFusion reinforcement
assumption is reified as follows:

Sk
usm = Lurm Sk−1

usm LT
urm, (29)

where Susm is a “unified similarity matrix” that represents
similarity values between node pairs [31]. Let us denote a
row in Lurm that corresponds to node a as Lurm(a), and a
matrix element in Sk

urm that corresponds to a pair of nodes
(a, b) as Sk

usm(a, b). If we then consider node relations of
the kind “has an incoming link” and treat all incoming links
as of an equal priority, then Lurm(a) contains 1

|I (a)| in col-

umn Ii (a), i = 1, n and zeroes in all remaining columns. In
accordance with (29), SimFusion iterative similarity value
between nodes a and b thus takes the form:
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Sk
usm(a, b) = Lurm(a)Sk−1

usm (Lurm(b))T

= 1

|I (a)| |I (b)|
|I (a)|∑

i=1

|I (b)|∑

j=1

Sk−1
usm (Ii (a), I j (b)), (30)

which is the same as for SimRank iterative formula minus
the decay factor C . Unlike SimFusion, SimRank similarity
score for any node with itself always equals to 1, and these
initial similarity scores are iteratively propagated to the other
node pairs. In SimFusion, initial similarity scores are redis-
tributed in a flow fashion through node relations, and thus
node similarity with itself may not be equal to 1.

If a node has no incoming links, it has zero SimRank
similarity score with every other node except for itself. In
SimFusion, a node with no relationship to the other nodes
in data space has each element in the corresponding row of
relationship matrix set to 1/n for preventing similarity sinks.
This treatment has the same effect as introducing a source of
rank in PageRank [26].

In spite of the noted differences between SimRank and
SimFusion, Eq. (30) shows that the overall iterative formu-
las for SimRank and SimFusion have much resemblance to
each other. Consequently, some of the optimization tech-
niques presented in this paper should apply to SimFusion
computation as well, e.g. essential node pairs selection in
terms of sparse matrices. We also believe that there should
exist an analogous accuracy estimate for SimFusion as the
one revealed for SimRank.

The computational complexity for SimFusion is O(K nl)
that directly follows from the matrix representation (29). For
comparison, cross summation we proposed in this paper pro-
vides computational complexity O( n3

log2 n ), being more com-
putationally efficient than O(nl) for an input graph with a
large proportion of links. SimRank similarity scores can thus
be computed more efficiently than SimFusion ones, since
cross summation is not directly applicable to a row-stochas-
tic matrix.

Fogaras and Rácz [7] suggested a scalable framework for
SimRank computation based on Monte Carlo method. The
main idea of their approach is to generate reversed random
walks for each node in a graph, calculate the first meeting
time τa,b for a pair of random walks started in nodes a and b,
and estimate s(a, b) by Cτa,b . In their work, Fogaras and Rácz
suggest several excellent ideas, in particular, fingerprint trees,
random permutations on graph nodes for effectively gener-
ating coupled random walks, parallelization possibilities for
SimRank computation under their framework. The probabi-
listic approach they took allowed them to significantly reduce
the computational complexity and to create a framework for
similarity computation scalable enough for performing Sim-
Rank precomputation phase for a graph with 79M nodes.
Fogaras and Rácz provide a solid theoretical basis for approx-
imations they make and a (probabilistic) error estimate for

their Monte Carlo similarity function. Valuable experimen-
tal results are obtained for path length and the decay factor
value; surprisingly however, Monte Carlo similarity was not
compared with iterative SimRank similarity from the per-
spective of scores quality. The differences in our approaches
are that Fogaras and Rácz initially base their framework on
Monte Carlo method, and thus their computation is inher-
ently probabilistic, whereas our work is focused on iteratively
computing the exact similarity scores.

For improving time and space requirements for SimRank
computation, Jeh and Widom [12] suggested pruning the log-
ical graph G2. Their proposal is to “set the similarity between
two nodes far apart to be 0, and consider node-pairs only
for nodes which are near each other” [12]. This technique
is based on the assumption that “it is very likely that the
neighborhood (say, nodes within a radius of 2 or 3) of a typ-
ical node will be a very small percentage (< 1%) of the
entire domain” [12]. First, this assumption does not hold for
scale-free graphs, as these have a very small average distance
(or diameter) between nodes [5]. As our early experimen-
tal studies over practical scale-free graphs showed, even the
neighbourhood within the radius of 2 contains a considerable
proportion of graph nodes.

Second, pruning graph G2 in the suggested way is an
approximation; Jeh and Widom provide no theoretical argu-
ment about the error of approximating [7], but admit that
“the quality of the approximation needs to be verified” [12].
Finally, removing node pairs not near each other from
consideration undermines the basic SimRank design prin-
ciple of being a generalization to a conventional immedi-
ate in-neighbours analysis [28]. As verified by Fogaras and
Rácz in their experiments, “the multi-step neighborhoods of
pages2 contain valuable similarity information” [7].

For comparison, optimization techniques suggested in this
paper are free from the above mentioned drawbacks. Select-
ing essential node pairs does not affect iterative similarity
scores. Threshold sieving has a controllable effect over iter-
ative scores precision that can be restored by performing
an additional iteration. The techniques do not decrease the
radius of a node neighbourhood considered for similarity
scores computation.

For making SimRank similarity scores more intuitive for
the area of sponsored search, Antonellis et al. [3] suggested
the similarity measure “Simrank++” by extending SimRank
with two enhanced versions. The enhanced versions make
similarity scores include evidence factor of incident nodes
and link weights information. Although some of the opti-
mization techniques suggested here are applicable to Sim-
rank++ as well, link weights added by Antonellis et al. make

2 The term “page” there is used in the same semantics as the term
“node” throughout this paper.
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computational complexity of Simrank++ be no better than
O(nl) in the general case.

In order to make Simrank++ practically computable for
a bipartite graph with totally 3.2M nodes and 4M links,
Antonellis et al. suggested splitting the graph into several
smaller subgraphs by finding cuts with small conductance [2].
While splitting a graph into multiple subgraphs can be a
promising approach for speeding up SimRank computation,
the effect of considering subgraphs separately on the accu-
racy of computed SimRank scores remained outside the scope
of consideration by Antonellis et al.

Maguitman et al. [23] introduce an information-theoretic
measure of semantic similarity that exploits human-gener-
ated topical directories metadata and relies on “both hier-
archical and non-hierarchical structure of an ontology” [23].
Maguitman et al. suggest a flexible mechanism for extending
the previously existing tree-based semantic similarity mea-
sures to a graph-based semantic similarity; however, their
results are based on the assumption that a graph necessarily
has a “hierarchical (tree) component” T .

Maguitman et al. claim computational complexity O(n3)

for their semantic similarity measure for n topics [23]; how-
ever, that is the computational complexity for just a single
matrices product A � B used in their reasoning. Precisely,
semantic similarity measure requires the closure matrix T +
computed; the latter is defined as T + = limr→∞ T (r), with
T (r+1) = T � T (r), T (0) = T . Consequently, obtaining
T + alone implies computational complexity O(n3h), where
h is “the maximum depth of the tree T ” [23]. Generally, h
depends on n, and the worst case the computational com-
plexity for T + is actually O(n4), not O(n3).

Maguitman et al. required significant computational and
storage resources for computing similarity scores for their
semantic similarity measure for a data corpus consisting of
0.5M topics containing totally 1.23M pages [23]. For com-
parison, our claim is that SimRank optimization techniques
suggested in this paper allow computing SimRank similarity
scores on a commodity desktop machine in reasonable time
even for a larger data corpora, as our experimental results
illustrate.

Using once computed semantic similarity scores as a base-
line, Maguitman et al. introduce and compare several approx-
imation measures. Notably, link-based similarity measures
systematically produced better correlation with semantic
similarity measure and correspondingly with human judg-
ments compared to text-based measures [23]. This important
result can in particular serve as an approval for SimRank
being a purely link-based similarity measure.

Lin et al. [19] suggest a similarity measure based on Page-
Rank scores propagation through link paths. With r stand-
ing for the propagation radius and d for an average node
degree, finding similar nodes to a given node with respect
to that measure has computational complexity of O(d2r ),

which we believe being too ineffective for on-line computa-
tion assumed in [19].

Geerts et al. [10] introduce the concept of a database
graph for expressing relationships between partial tuples in
a relational database and explore methods for ranking partial
tuples. Defining similarity measures in a database graph is
pointed out as an interesting question for future work. We
believe that SimRank can be a candidate measure for this
domain, since a database graph contains enough information
for computing SimRank similarity scores for partial database
tuples, and the suggested optimization techniques provide
viable computational complexity.

7 Experiments

In this section, experimental results are presented for illus-
trating the practical quantitative effect of applying the opti-
mization techniques presented in this paper.

We implemented a prototype that provides SimRank sim-
ilarity scores computation and incorporates the suggested
optimization techniques in accordance with Algorithm 4
given in Sect. 4. From the implementation perspective, each
graph node is identified by a distinct non-negative integer.
Iterative SimRank similarity function for each iteration is
represented by a square matrix, with a matrix element stand-
ing for the similarity score between nodes identified by the
corresponding row and column numbers. From the storage
perspective, a matrix is sparse, in that constant 1s across
the main diagonal and zero similarity scores are not stored.
Matrix storage in external memory is implemented on top
of Oracle Berkeley DB.3 As noted in Subsect. 4.2, the sug-
gested optimization techniques facilitate clustering similar-
ity function values by the first argument, corresponding to
clustering a matrix by rows in matrix terms. For each row
number, the associated (column_number, similarity_score)
pairs are stored adjacently. Each of the mappings I (v) and
O(v) is implemented as an association between a node iden-
tifier for v and a list of node identifiers for the corresponding
in-neighbours and out-neighbours, respectively.

Four kinds of experiments are reported here, each in its
own subsection. The first experiment investigates SimRank
computation time for different optimization techniques
employed. The second experiment compares partial sums
and cross summation and provides the recommendation for
a preferable technique in each case. The third experiment
investigates the number of non-zero similarity scores on each
SimRank iteration with respect to graph diameter and thresh-
old sieving. Finally, the last subsection reports our experience

3 http://www.oracle.com/technology/products/berkeley-db/index.
html.
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Table 1 SimRank computation
time w.r.t. the number of nodes
in a graph for different
optimization techniques
configurations

For each subsequent column,
another optimization technique
is turned on. For the last
column, � < C6 − C7

Number of nodes Computation time, seconds
in a graph

No Selecting Turn on Turn on
optimization essential Partial sums Threshold

node pairs sieving,
K = 6

1000 42 11 2 2

2000 348 157 25 13

5000 8061 5181 588 309

10000 165902 131675 8145 2799

in computing SimRank scores over the English Wikipedia
corpus.

7.1 SimRank computation time

The purpose of this experiment is to investigate the dynam-
ics in SimRank computation time with respect to the number
of nodes and links in a graph and particular optimization
techniques employed. We have chosen scale-free graphs for
the experiment, because a node in a scale-free graph gener-
ally has non-zero similarity scores with a significant propor-
tion of other nodes after several SimRank iterations (recall
Proposition 7), rather than with a fixed number of nodes.
Additionally, the number of incident links for each node in
a graph was made proportional to the total number of nodes,
thus making l ∼ O(n2). These settings of the experiment
were chosen in order to investigate a pessimistic case in Sim-
Rank computation, rather than an optimistic case.

The set of generated graphs was produced by the scale-
free graph generator.4 For the purposes of the experiment,
the implementation was made configurable, with the ability
of turning each optimization technique on and off at com-
pile-time. For properly taking access operations time into
account, unbiased by cache speed, the cache size in Ora-
cle Berkeley DB was chosen proportionally to the num-
ber of nodes in a graph and sufficient for keeping just
several matrix rows. The following machine configuration
was used: 2.1 GHz Intel Pentium processor, 1 Gb RAM and
Linux OS.

The averaged computation time with respect to the num-
ber of nodes in a graph and the particular optimization tech-
niques used is shown in Table 1. For a correspondence with
experiment conditions performed by Jeh and Widom [12],
the decay factor C was chosen as 0.8; the number of itera-
tions K was set to 5 for all table columns except for the last

4 Dreier, D. Manual of Operation: Barabasi Graph Generator v1.0.
University of California Riverside, Department of Computer Science.
(2002).

one. First, computing SimRank with no optimization, opti-
mization techniques are consequently turned on one by one
for each subsequent column in Table 1, thus illustrating the
speedup achieved by each individual optimization technique.
For the last column, six iterations were performed instead
of five, with threshold sieving turned on for � chosen as
� = 0.05 < C6 − C7, which in accordance with Proposi-
tion 9 gives the same total accuracy of computed similarity
scores as for all the remaining columns.

Two important conclusions can be drawn from the experi-
mental results presented in Table 1. First, even for a relatively
small graph sizes considered, using partial sums exposes
radical speedup that fully corresponds with the theoretical
expectations presented in Sect. 4. (Actually, proceeding the
comparison for larger input graphs was impractical, since
SimRank computation for a graph with 10K nodes took 36+ h
in the absence of partial sums). Second, SimRank compu-
tation benefits from using threshold-sieved similarity func-
tions, even with the additional iteration performed for
recovering the total accuracy of similarity scores. The lat-
ter result justifies the recommendation made in the end of
Subsect. 4.4.

For graphically illustrating the effect of introducing partial
sums for SimRank computation, Fig. 2 shows computation
time with respect to the number of nodes in a graph in a more
detail in the form of bar charts, for SimRank computed (a)
without and (b) with partial sums. For illustrating the correla-
tion between the computation time and the number of nodes
in a graph, each bar chart is approximated by a polynomial
curve. Note that different scale is chosen across the vertical
axis in Fig. 2 (a) and (b) for providing a more illustrative look
for each curve shape.

Constants P and Q in Fig. 2 were calculated in accordance
with minimum mean square error estimator; quartic and cubic
functions, respectively, showed the best approximation for
SimRank computation time without and with partial sums,
compared to the other polynoms in the number of nodes in
a graph. This experimental result fully agrees with the theo-
retical considerations made in Sect. 4.
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(a)

(b)

Fig. 2 SimRank computation time with (b) and without (a) partial
sums usage w.r.t. the number of nodes n in a graph

The experiment did not involve cross summation, because
it exhibited computation time similar to partial sums in these
settings. Cross summation and partial sums are specially
compared in the next subsection.

7.2 Partial sums versus cross summation

As we noted in Sect. 4, partial sums together with essential
node pairs allow saving much computational effort in case
of iterative similarity function containing a relatively small
fraction of non-zero values. On the other hand, cross sum-
mation is based on eager evaluation and thus the running
time of the technique should be quite stable to the number of
non-zero values. One can thus expect that partial sums would
be computationally preferable than cross summation for an
iterative similarity function with fewer non-zero values, and
the situation would be the opposite if the function has many
non-zero values.

To justify these observations experimentally, we used
graphs of different size and connectivity in order to obtain
similarity functions with different proportions of non-zero
values. In addition, since the number of non-zero values of
an iterative similarity function increases in the number of

iterations, we measured computation time for each iteration
individually.

Table 2 shows SimRank computation time for each itera-
tion for different input graphs, and the corresponding number
of non-zero values of the iterative similarity function. It can
be observed from the table that the theoretical considerations
stated above fully apply in practice: iteration based on partial
sums computes faster for an iterative similarity function with
small proportion of non-zero values, but computation time
increases considerably as the proportion of non-zero values
increases. On the other hand, iterative computation based on
cross summation exhibits its running time increasing only
insignificantly.

For each input graph in Table 2, bold font is used to empha-
size a first iteration that completes faster if computed using
cross summation than if computed using partial sums. It can
be observed from the last column in the table that cross
summation is computationally preferable if the proportion of
non-zero values of the iterative similarity function roughly
exceeds 0.003. It can thus be recommended to begin the itera-
tive computation using partial sums (Algorithm 1) and switch
to cross summation (Algorithm 3) starting from an iteration
that is expected to have the proportion of non-zero similarity
scores exceeding 0.003.

7.3 Counting non-zero similarity scores

This subsection experimentally verifies the lower bound for
the number of non-zero SimRank similarity scores estab-
lished in Proposition 7. For the experiment, we generated a
graph with diameter d = 4.7 satisfying the pre-conditions
of the proposition. Table 3, left side, displays the number of
non-zero similarity scores for the graph after each SimRank
iteration. It can be seen from the table that the proportion
of non-zero scores after five iterations (emphasized in bold)
indeed satisfies the inequality (16) stated by Proposition 7.

In fact, the database file in the experiment took up 58+ Gb
memory for storing the iterative similarity function after the
fifth iteration, so the sample graph was essentially the larg-
est one that can viably be used in practice if all non-zero
similarity scores are kept.

The right side of Table 3 shows the number of non-zero
similarity scores for the same graph in case of threshold
sieving turned on. To preserve the same accuracy of com-
puted scores, we took � = C6 −C7 and made the additional
sixth iteration. It can be seen from the table that threshold-
sieved similarity requires storing considerably fewer non-
zero scores while achieving the same accuracy. Moreover,
even with the lowest similarity scores filtered out, the thresh-
old-sieved similarity function leaves 3,000+ top-similar
nodes for each node in the graph on average, which we expect
to be sufficient for the needs of most applications.

123



Accuracy estimate and optimization techniques for SimRank computation 61

Table 2 Computation time for each SimRank iteration using partial sums or cross summation for different input graphs

n l k Computation time, seconds Number of nonzero values

Partial sums Cross summation Absolute Relative

50,000 100,000 1 24 879 99,868 0.00004 · n2

2 26 919 494,351 0.00020 · n2

3 48 921 1,859,857 0.00074 · n2

4 262 941 4,807,831 0.00192 · n2

5 994 958 8,218,846 0.00329 · n2

30,000 300,000 1 87 324 1,456,250 0.00162 · n2

2 2,132 597 13,640,653 0.01516 · n2

3 37,182 912 32,545,578 0.03616 · n2

50,000 500,000 1 38 1,440 4,247,429 0.00170 · n2

2 5,781 1,730 101,211,393 0.04048 · n2

3 122,617 2,981 315,935,956 0.12637 · n2

Table 3 Number of non-zero
similarity scores after each
iteration for a graph with
n = 150, 000 nodes, diameter
d = 4.7

k Number of non-zero similarity scores

� = 0 � = C6 − C7

Absolute Relative Absolute Relative

1 12,760,971 0.0005 · n2 9,246,356 0.0004 · n2

2 404,909,492 0.0180 · n2 96,245,954 0.0043 · n2

3 1,579,789,355 0.0702 · n2 192,236,054 0.0085 · n2

4 2,737,206,126 0.1216 · n2 287,262,953 0.0128 · n2

5 3,602,356,569 0.1601 · n2 378,246,595 0.0168 · n2

6 467,356,216 0.0208 · n2

7.4 Experiment over Wikipedia corpus

Our practical interest for implementing the suggested opti-
mization techniques was to compute SimRank over the com-
plete set of articles from English Wikipedia corpus.

Wikipedia is an open content online encyclopedia project
that is “created in a collaborative effort of voluntary con-
tributors”.5 Wikipedia is available in many languages, with
the English version being the largest one, containing 2.2M
articles. In addition to being a popular online encyclopedia,
Wikipedia has recently obtained a big academic interest as
an information corpus by itself,6 e.g. [8,30]. However, to the
best of our knowledge, nobody has yet reported the experi-
ence in computing SimRank scores for English Wikipedia
corpus.

Since each Wikipedia article is generally dedicated to
describe a single encyclopedic concept, we have naturally
chosen an individual article to be a node in the SimRank

5 http://wikipedia.org/.
6 Wikipedia in academic studies. http://en.wikipedia.org/wiki/
Wikipedia:Wikipedia_in_academic_studies.

model. As Wikipedia articles are organized into categories
being articles themselves, we chose the relationship “a cat-
egory contains an article” to be a link from the category
to the article. We will further refer to a thus built graph as
the Wikipedia graph. Computing SimRank scores over the
Wikipedia graph has the semantics of obtaining similarity
scores for encyclopedic concept pairs. Note that the Wiki-
pedia graph covers only a subset of Wikipedia corpus, since
category links constitute a subset of links available in Wiki-
pedia.

As we had a practical interest in computing SimRank over
the Wikipedia graph from the beginning of our research, our
implementation evolved throughout the optimization tech-
niques development. Before any optimization techniques
were introduced, preliminary experiments showed that Sim-
Rank computation over the Wikipedia graph would have
taken months at least to complete, which was unacceptable.

After the set of optimization techniques presented in this
paper has been worked out, SimRank computation over the
Wikipedia graph takes approx. 17 h to complete on a sin-
gle machine, making it possible to perform the computa-
tion on a nightly basis. The following SimRank computation
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parameters are used: C = 0.6, K = 5, � = 0.05. The cho-
sen parameters values provide reasonable accuracy for the
computed SimRank scores: ε = 0.65+1 + 0.05 < 0.1. Note
that due to the polynomial dependence between the decay
factor C and accuracy ε, even a relatively small decrease
in the decay factor results in a considerable improvement in
accuracy. Partial sums are used for the experiment for all iter-
ations, because threshold sieving achieves the proportion of
non-zero similarity scores small enough to make partial sums
computationally preferable over cross summation (recall the
previous subsection). We use a machine with 3 GHz Intel
Pentium 4 processor, 4 Gb RAM and 32-bit Linux OS; the
cache size of 256 Mb is specified for Oracle Berkeley DB.

Note that the Wikipedia graph provides a practical illustra-
tion for Corollary 1 presented in Sect. 4.1: Wikipedia graph
nodes not being categories have no outgoing links, and thus
SimRank scores for them are computed on the last iteration
only, while correctly preserving the semantics of the Sim-
Rank iterative model.

SimRank similarity scores for Wikipedia concepts pairs
provide a valuable practical source of information. We are
using the computed scores for extending search engines func-
tionality and for word sense disambiguation. Our further
plans include using the computed scores for automatic news
feeds classification.

8 Future work

Although optimization techniques presented in this paper
provide a considerable improvement to SimRank computa-
tional complexity, our profiling experiments revealed that a
significant proportion of computation time is occupied by
graph access operations I (v) and O(v). Although SimRank
computational complexity is guaranteed to remain propor-
tional to n · l, graph access operations may become a per-
formance bottleneck in the growing size of input graphs.
Our future work thus involves developing further optimi-
zation techniques for speeding up graph access operations.
Our current vision to achieving scalability in the growing size
of input graph is splitting the graph into several (generally,
intersecting) subgraphs in such a way that

1. each subgraph could be passed to its own parallel com-
putation instance as if the complete graph without chang-
ing the result of similarity scores computation for node
pairs processed by that instance; and

2. each subgraph is small enough to fit into main memory
for maximizing the speed of access operations.

Our future plans include developing a systematic proce-
dure for splitting a general graph into subgraphs that sat-
isfy the above listed requirements. In particular, candidate
algorithms for locating common borders of the subgraphs

can probably be minimum-cut/maximum-flow partition algo-
rithm [6] or maximized-modularity algorithm [25]. We also
believe that scale-free graphs theory [16] can be exploited for
developing the graph split procedure for scale-free graphs,
which constitute an underlying model for many existing prac-
tical domains.

Some of the algorithms for parallel computation of Page-
Rank could probably be applicable to SimRank computation
as well. For PageRank, two different approaches to parallel
computation are presented in literature. The first approach
is to divide an input graph into blocks [11,24,27] and then
to apply conventional methods such as the Jacobi one to
these blocks in parallel. Another approach is to approxi-
mate PageRank scores by a close but not the exact rank
vector [13]. In this case, PageRank is computed for higher-
level formations such as web host or web domains as indi-
visible items. For the internal link structure of these forma-
tions, PageRank is computed independently in parallel. The
most computationally efficient method presented by Kohl-
schütter et al. [14] uses a combination of both approaches
and relies on host-based link locality which means that web
sites contain more internal links than external ones. Based on
self-similarity property of complex networks [29], we can
suppose that the property of host-based link locality holds
for subgraphs of the Web as well. In particular, for Wikipe-
dia this supposition is confirmed by the Wikipedia cluster
structure [20].

9 Conclusion

The paper addresses the issues missing for similarity mea-
sure SimRank, namely, accuracy estimate and optimization
techniques, for facilitating SimRank wider application.

A precise accuracy estimate for SimRank iterative com-
putation is established. The estimate reveals that SimRank
computation parameters suggested in the original SimRank
proposal implied a relatively low accuracy, and the choice for
different parameter values is suggested. The accuracy esti-
mate allows a priori finding out the correct number of itera-
tions required for achieving a desired accuracy. The number
of iterations turns out to be independent of input graph char-
acteristics, the fact to benefit scalability.

Optimization techniques are suggested and integrated into
the general algorithm to provide a systematic improvement
for SimRank computational complexity.

Experimental results show a 50 times speedup achieved by
the optimization techniques for a graph with 10K nodes, and
relative improvement in computation time further increases
for larger graphs. The experience in computing SimRank
scores over the English Wikipedia corpus exhibits practical
viability of the approach for relatively large data corpora.
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We believe that the results presented in the paper would
facilitate a wider application of SimRank to computer science
techniques, as this similarity measure definitely deserves.

Appendix A: Proof of Proposition 1

Proof (of Proposition 1) If a = b then s(a, a) = Rk(a, a) =
1 by definition for every k = 0, 1, 2, . . ., the left-hand side
of (4) is zero, and thus (4) obviously holds.

Similarly, if I (a) = ∅ or I (b) = ∅ then by definition
s(a, b) = Rk(a, b) = 0, and the left-hand side of (4) is zero
as well.

For the general case of a �= b, I (a) �= ∅ and I (b) �= ∅,
the proof is organized by mathematical induction.

Induction Basis Let us prove that (4) holds for k = 0,
i.e. that for every two nodes a, b:

s(a, b) − R0(a, b) ≤ C. (31)

Since a �= b, I (a) �= ∅ and I (b) �= ∅, then R0(a, b) = 0
by definition, s(a, b) is defined by the general recursive equa-
tion (1), and consequently

s(a, b) − R0(a, b) = s(a, b)

= C

|I (a)| |I (b)|
|I (a)|∑

i=1

|I (b)|∑

j=1

s(Ii (a), I j (b))
︸ ︷︷ ︸

≤1

≤ C

|I (a)| |I (b)|
|I (a)|∑

i=1

|I (b)|∑

j=1

1 = C,

which proves (31).
Inductive step Provided that (4) holds for a given k for all

node pairs, let us prove that (4) holds for (k + 1) as well:

s(a, b) − Rk+1(a, b)

= C

|I (a)| |I (b)|
|I (a)|∑

i=1

|I (b)|∑

j=1

s(Ii (a), I j (b))

− C

|I (a)| |I (b)|
|I (a)|∑

i=1

|I (b)|∑

j=1

Rk(Ii (a), I j (b))

= C

|I (a)| |I (b)|

×
|I (a)|∑

i=1

|I (b)|∑

j=1

{s(Ii (a), I j (b)) − Rk(Ii (a), I j (b))}
︸ ︷︷ ︸

≤Ck+1 by inductive hypothesis

≤ C · |I (a)| |I (b)| · Ck+1

|I (a)| |I (b)| = C · Ck+1 = C (k+1)+1.

The latter finally proves (4). 	


Fig. 3 Illustration of the upper bound stated in Proposition 1 reached:
Rk(a, b) = 0, Rk+1(a, b) = Ck+1

Appendix B: Example that verifies Note 1

Let us consider an arbitrary k = 0, 1, 2, . . . and a pair of
nodes a, b in a graph presented in Fig. 3 for the chosen
k. In this figure, each of the nodes a and b has an incom-
ing directed path of length (k + 1) that starts from some
common node d. In such a graph configuration, it can easily
be seen that Rk(a, b) = 0, whereas Rk+m(a, b) = Ck+1,
m = 1, 2, 3, . . ., which gives s(a, b) = Ck+1. Subtracting
Rk(a, b) from s(a, b), we obtain

s(a, b) − Rk(a, b) = Ck+1,

which gives the precise upper bound stated in Proposition 1.

Appendix C: Proof of Proposition 7

Proof (of Proposition 7) Since d is the diameter of the
strongly connected component, there exists a node x such
that the average distance from x to any node in the compo-
nent does not exceed d. Indeed, if for every node x the average
distance from x to all nodes in the strongly connected com-
ponent were exceeding d, then the average distance between
a pair of nodes in the component would have been more than
d as well, contradicting the definition of the diameter.

Let us denote the set of all nodes from the strongly con-
nected component as V ′. It follows from d ≤ K that d < ∞,
and thus there exists a finite maximum distance p from the
node x to any other node in V ′:
p = max

u∈V ′ distance(x, u) < ∞.

Let Ni denote the set of all nodes from V ′ that have their
distance from x equal to i :

Ni = {u ∈ V ′ | distance(x, u) = i}.
For any i �= j , the sets Ni and N j have an empty intersec-
tion; and altogether the sets N0, N1, …, Np cover all nodes of
the strongly connected component. Thus,

∑p
i=0 |Ni | = n′.

Moreover, as the distance from x to any other node is greater
than zero, it follows that N0 = {x}, and consequently |N0| =
1 and:

p∑

i=1

|Ni | = n′ − 1. (32)
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By definition of N1, all nodes from N1 have the node x
for its common in-neighbour. Consequently, by definition of
SimRank iterative computation, all nodes from N1 have non-
zero pair-wise iterative similarity score after the first Sim-
Rank iteration. In the same manner, all nodes from N2 have
non-zero iterative similarity scores after the second SimRank
iteration; all nodes from Nk have non-zero iterative similarity
after kth iteration, for k = 1, p. Consequently,

#nonzero ≥
K∑

i=1

|Ni |2 ≥ {since K ≥ D} ≥
D∑

i=1

|Ni |2. (33)

The fact that the average distance from the node x to any
other node does not exceed d, can be rewritten using |N1|,
|N2|, …,

∣∣Np
∣∣ as:

p∑

i=1

i |Ni | ≤ dn′.

Let us split the latter summation into three parts:

D∑

i=1

i |Ni | + (D + 1) |ND+1| +
p∑

i=D+2

i |Ni | ≤ dn′ (34)

Using the Eq. (32), the value |ND+1| is equal to

|ND+1| = n′ − 1 −
D∑

i=1

|Ni | −
p∑

i=D+2

|Ni | .

Placing the latter into (34), we obtain:

D∑
i=1

<0︷ ︸︸ ︷
(i − (D + 1)) |Ni | + (D + 1)(n′ − 1)

+
p∑

i=D+2
(i − (D + 1))︸ ︷︷ ︸

>0

|Ni | ≤ dn′.

Thus,

D∑

i=1

(D + 1 − i)︸ ︷︷ ︸
>0

|Ni | ≥
p∑

i=D+2

(i − D − 1) |Ni |

+ (D + 1)(n′ − 1) − dn′.

Since our goal is estimating the lower bound for
∑D

i=1 |Ni |2,
it follows from the latter inequality that the lowest value is
achieved for |Ni | = 0, i = D + 2, p, and:

D∑

i=1

(D + 1 − i) |Ni | ≥ (D + 1)(n′ − 1) − dn′. (35)

Note that since d > 2, the right-hand side of the inequality
(35) is always positive. Considering (|N1| , |N2| , . . . , |ND|)
as a D-dimensional vector, the inequality (35) specifies a
D-dimensional half-space. Recalling the formula (33), our
goal in proving the proposition is to calculate the square dis-
tance between the half-space and the point (0, 0, . . . , 0).

The surface vector for the half-space is: (D, D − 1, D −
2, . . . , 1). Thus, the point in the half-space closest to (0, 0,

. . . , 0) is defined by the set of equations:

⎧
⎨

⎩

(|N1| , |N2| , . . . , |ND|) = (D, D − 1, . . . , 1) · t, t ∈ R,
D∑

i=1
(D + 1 − i) |Ni | = (D + 1)(n′ − 1) − dn′.

Solving this set of equations gives:

t = (D + 1)(n′ − 1) − dn′
∑D

i=1 i2
.

It can easily be verified that for d > 2 stated in the pre-
condition of the proposition, the located point satisfies the
inequality

∑D
i=1 |Ni | ≤ n′ − 1 imposed by the semantics of

the sets N1, N2, …, ND .
Thus, the square distance between (0, 0, . . . , 0) and any

point in the half-space (35) is:

D∑

i=1

|Ni |2 ≥
D∑

i=1

(i · t)2 = ((D + 1)(n′ − 1) − dn′)2

∑D
i=1 i2

.

Using the well-known formula

D∑

i=1

i2 = D(D + 1)(2D + 1)

6
,

we finally get:

D∑

i=1

|Ni |2 ≥ 6((D + 1)(n′ − 1) − dn′)2

D(D + 1)(2D + 1)
.

Combining the latter with (33) finishes the proof. 	


Appendix D: Proof of Proposition 8

Proof (of Proposition 8) For a = b, I (a) = ∅ or I (b) = ∅,
the same reasoning as for Proposition 1 applies. We thus fur-
ther consider a �= b, I (a) �= ∅ and I (b) �= ∅ and prove the
proposition by induction over the iteration number k.

Induction Basis For k = 0, the estimate obviously holds, as
R0(a, b) − Rδ0

0 (a, b) = 0.
Inductive Step During the inductive step, we refer to � as
�(k) when stressing that summation is performed from 1
to k, and as �(k + 1) when stressing that summation is
performed from 1 to (k + 1).
Provided that the proposition holds for k, let us estimate the
difference Rk+1(a, b) − Rδk+1

k+1 (a, b) for (k + 1).
Two possible cases will be considered separately: the one
for Rδk+1

k+1 (a, b) = 0 and the other for Rδk+1
k+1 (a, b) �= 0:
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1. If Rδk+1
k+1 (a, b) = 0, then it follows from (19) and (20)

that

C

|I (a)| |I (b)|
|I (a)|∑

i=1

|I (b)|∑

j=1

Rδk
k (Ii (a), I j (b)) ≤ δk+1

(36)

and the difference Rk+1(a, b) − Rδk+1
k+1 (a, b) is esti-

mated thus:

Rk+1(a, b) − R
δk+1
k+1 (a, b) = Rk+1(a, b)

≤ {using (36)} ≤ Rk+1(a, b) + δk+1

− C

|I (a)| |I (b)|
|I (a)|∑

i=1

|I (b)|∑

j=1

Rδk
k (Ii (a), I j (b))

= δk+1 + C

|I (a)| |I (b)|

×
|I (a)|∑

i=1

|I (b)|∑

j=1

{Rk(Ii (a), I j (b)) − Rδk
k (Ii (a), I j (b))

︸ ︷︷ ︸
≤�(k) by inductive hypothesis

}

≤ δk+1 + C
k∑

m=1

Ck−mδm = �(k + 1).

2. Otherwise Rδk+1
k+1 (a, b) �= 0, and thus it is defined by

(19) and consequently

Rk+1(a, b) − R
δk+1
k+1 (a, b)

= C

|I (a)| |I (b)|

×
|I (a)|∑

i=1

|I (b)|∑

j=1

{Rk(Ii (a), I j (b)) − Rδk
k (Ii (a), I j (b))

︸ ︷︷ ︸
≤�(k)

}

≤ C
k∑

m=1

Ck−mδm ≤ �(k + 1).

The latter finishes the induction. 	
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