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Abstract A major source of uncertainty in databases is the
presence of duplicate items, i.e., records that refer to the same
real-world entity. However, accurate deduplication is a dif-
ficult task and imperfect data cleaning may result in loss of
valuable information. A reasonable alternative approach is
to keep duplicates when the correct cleaning strategy is not
certain, and utilize an efficient probabilistic query-answering
technique to return query results along with probabilities of
each answer being correct. In this paper, we present a flexible
modular framework for scalably creating a probabilistic data-
base out of a dirty relation of duplicated data and overview
the challenges raised in utilizing this framework for large
relations of string data. We study the problem of associating
probabilities with duplicates that are detected using state-
of-the-art scalable approximate join methods. We argue that
standard thresholding techniques are not sufficiently robust
for this task, and propose new clustering algorithms suitable
for inferring duplicates and their associated probabilities. We
show that the inferred probabilities accurately reflect the error
in duplicate records.
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1 Introduction

The presence of duplicates is a major concern for the quality
of data in large databases. To detect duplicates, entity resolu-
tion, also known as duplication detection or record linkage is
used as a part of the data-cleaning process to identify records
that potentially refer to the same entity. Numerous dedupli-
cation techniques exist to normalize data and remove errone-
ous records [42]. However, in many real-world applications
accurately merging duplicate records and fully eliminating
erroneous duplicates is still a very human-labor intensive pro-
cess. Furthermore, full deduplication may result in the loss
of valuable information.

An alternative approach is to keep all the data and intro-
duce a notion of uncertainty for records that have been deter-
mined to potentially refer to the same entity. Such data would
naturally be inconsistent, containing sets of duplicate records.
Various methodologies exist with different characteristics for
managing uncertainty and inconsistency in data [2,3,15,22,
51]. A large amount of previous work addresses the prob-
lem of efficient query evaluation on probabilistic databases
in which it is assumed that meaningful probability values are
assigned to the data in advance. Given these probabilities, a
query can return answers together with a probability of the
answer being correct, or alternatively return the top-k most
likely answers. For such approaches to work over duplicate
data, the record probabilities must accurately reflect the error
in the data.

To illustrate this problem, consider the dirty relations of
Fig. 1. To assign probabilities, we must first understand which
records are potential duplicates. For large data sets, a number
of scalable approximate join algorithms exist which return
pairs of similar records and their similarity scores (e.g., [4,8,
38]). Given the result of an approximate join, we can group
records into sets of potential duplicates using a number of
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Fig. 1 A sample dirty database with Company, Product and Price relations

techniques. The most simple technique is to group all records
whose similarity is within some threshold value. We show
that using simple thresholding with such techniques to deter-
mine groups (clusters) of duplicates often results in poor
accuracy. This is to be expected as thresholding does not
take into account the characteristics of the data or the dupli-
cate detection task. To overcome this, we consider existing
and new scalable clustering algorithms that are designed to
produce high-quality clusterings even when the number of
clusters is unknown.

In Fig. 1, the clustering is indicated by the cluster identi-
fier in the cid attribute. Records that share a cluster identi-
fier are potential duplicates. Once a clustering is determined,
we consider how to generate probabilities. For our uncer-
tainty model, we adopt the model of Andritsos et al. [2] and
Dalvi and Suciu [22] called disjoint-independent databases.
In this model, tuples within a cluster (potential duplicates)
are mutually disjoint. Tuples in different clusters are indepen-
dent. This reflects the intuition that errors are introduced for
different (real-world) entities independently. So, the proba-
bility that t1 (from Cluster c1) is in the clean (deduplicated)
database is independent of the probability of t8 (from Clus-
ter c2) being in the clean database. An important motivation
for our choice of uncertainty model is that efficient query-
answering techniques are known for large classes of queries
over such databases, which is important since keeping dupli-
cate information is only worthwhile if it can be queried and
used effectively in decision making. As further motivation,
the probabilistic databases we create can be used as input to
query evaluation techniques which model clustering uncer-
tainty (that is the uncertainty introduced by the clustering
process itself) [10]. We elaborate on this in Sect. 2.4.

We also consider clustering techniques that produce over-
lapping clusters. In this approach, records that have been
assigned to multiple clusters are no longer independent. Such
probabilistic databases require more complex query-process-
ing techniques which might be supported by the lineage
mechanisms of systems like Trio [51] or world-set semantics
of MayBMS [3].

To assign probabilities within a cluster, we follow the com-
mon wisdom in uncertain data management which has noted

that record probabilities are mostly internal to the system and
useful primarily for ranking answers [24,43]. Hence, in this
work, we do not consider different probability distributions
within clusters, but focus instead on assigning confidence
scores that accurately reflect the error in the records. That
is, among a set of duplicate records, a record with less error
should have a lower probability than a record containing more
error.

1.1 Outline and contributions

In this paper, we propose a flexible modular framework for
scalably creating a probabilistic database out of a dirty rela-
tion of duplicated data (Sect. 2). This framework consists of
three separate components. The input to the first component
is a base relation R and the output of the third component
is a probabilistic relation. Our framework complements and
extends some existing entity resolution and approximate join
algorithms, permitting their results to be used in a principled
way within a probabilistic database management system. We
study this framework for the case of string data, where the
input relation consists of duplicated string records and no
additional information exists or is usable to enhance the dedu-
plication process. This in fact is the case in many real-world
problems.

For each component of our framework, we briefly over-
view the state-of-the-art (Sects. 2.1–2.3) to further describe
the characteristics of our framework in comparison with other
deduplication techniques. We also present a detailed discus-
sion of query evaluation over probabilistic databases focus-
ing on how the probabilistic databases we create can be used.
We justify the scalability and adaptability of our framework
and the need for thorough evaluation of the performance of
each component. We perform this evaluation using a meth-
odology (summarized in Sect. 2.5) heavily based on existing
evaluation methods.

We present an overview of several string similarity mea-
sures used in state-of-the-art similarity join techniques and
benchmark the accuracy of these measures in our frame-
work (Sect. 3). Unlike previous comparisons, we focus on
measures useful for duplicate detection [33]. Given pairs of
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similar records, we present several clustering algorithms for
string data suitable for our framework (Sect. 4).

We address the problem of assigning probabilities (con-
fidence scores) to records within each cluster that naturally
reflect the relative error in the record (Sect. 5). We pres-
ent several algorithms based on a variety of well-performing
similarity measures for strings, and an algorithm using the
information bottleneck method [2,47] which assigns proba-
bilities based on the relative information content of records
within a cluster.

An important characteristic of our framework is its mod-
ularity with components that are reusable for other clean-
ing tasks. Hence, we thoroughly benchmark each component
individually to evaluate the effectiveness of different tech-
niques in terms of both accuracy and running time. For each
component, we present a summary of the results of extensive
experiments which used many datasets with different char-
acteristics to ensure that our framework is robust. We used
several existing and some novel measures of accuracy in our
evaluations. We also present an end-to-end evaluation of the
components when used together for creating a probabilistic
database.

2 Framework

Figure 2 shows the components of our framework. The input
to this framework is a base relation R and the output is a
probabilistic relation. In this work, we focus on creating a
framework using scalable algorithms that do not rely on a
specific structure in the input relation R. There are dupli-
cate detection algorithms that can take advantage of other
types of input such as co-citation or co-occurrence informa-
tion [13]. Such information may be available in bibliographic
co-citation data or in social networks. However, we do not
consider these specialized algorithms as such information is
often not present in the data.

An important characteristic of our framework is its
modularity. This makes our framework adaptable to other
data-cleaning tasks. As new deduplication techniques are
developed, they may replace one or both of our first two
components. Moreover, if the input relation contains addi-
tional information that can be used to enhance the accuracy
of deduplication, these different methods may be used. Fur-
thermore, by dividing the system into three separate modules,
we are able to evaluate the performance of each module indi-
vidually.

2.1 Similarity join

The first component of the system is the similarity join mod-
ule. The input to this module is a relation R = {ri : 1 ≤ i ≤
N }, and the output is a set of pairs (ri , r j ) ∈ R×R where ri

Fig. 2 Components of the framework

and r j (i < j) are similar and a similarity score for each pair.
In existing join approaches, two records are considered simi-
lar when their similarity score based on a similarity function
sim() is above a threshold θ . Many join methods typically
model records as strings. We denote by r the set of q-grams
(sequences of q consecutive characters of a string) in r . For
example, for t = ‘db lab’, t = {‘d’,‘db’, ‘b’ ,‘l’,‘la’, ‘ab’, ‘b’}
for tokenization using 2-grams.1 In certain cases, a weight
may be associated with each token.

Similarity join methods use a variety of different similar-
ity measures for string data [20,31]. Recently, there has been
an increasing interest in using measures from the information
retrieval field [4,16,28,31,45]. In [31], several such similar-
ity measures are introduced and benchmarked for approxi-
mate selection where the goal is to sort the tuples in a relation
based on their similarity with a query string. The extension of
approximate selection to approximate join is not considered.
Furthermore, the effect of threshold values on accuracy for
approximate joins is also not considered. To fill in this gap,
we show that the performance of the similarity predicates in a
similarity join is slightly different (than in selection) mainly
due to the effect of choosing a single threshold for matching
all the tuples as opposed to ranking the tuples and choosing
a different threshold for each selection query.

Our work is motivated by the recent advancements that
have made similarity join algorithms highly scalable. Signa-
ture-based approaches (e.g., [4,16,45]) address the efficiency
and scalability of similarity joins over large datasets. Many
techniques are proposed for set-similarity join, which can be

1 Strings are first padded with whitespaces at the beginning and the
end, then all whitespaces are replaced with q −1 occurrences of special
unused symbol (e.g., a $).
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used along with qgrams for the purpose of (string)
similarity joins, and are mostly based on the idea of cre-
ating signatures for sets (strings) to reduce the search space.
Some signature generation schemes are derived from dimen-
sionality reduction. One efficient approach uses the idea of
Locality Sensitive Hashing [36] in order to hash similar sets
into the same values with high probability and, therefore, pro-
vides an approximate solution. Arasu et al. [4] proposed algo-
rithms specifically for set-similarity joins that are exact and
outperform previous approximation methods in their frame-
work, although parameters of the algorithms require exten-
sive tuning. More recent work [8] proposes algorithms based
on novel indexing and optimization strategies that do not rely
on approximation or extensive parameter tuning and outper-
form previous state-of-the-art approaches. One advantage of
our approach is that all these techniques can be applied to
make this first component of the framework scalable.

2.2 Clustering

The clustering module outputs a set of clusters of records
c1, . . . , ck where records in each cluster are highly similar
and records in different clusters are more dissimilar. Most of
the data-clustering algorithms assume that clusters are dis-
joint, i.e., ci ∩ c j = ∅ for all i, j ∈ 1 . . . k. We will also
present algorithms for a model in which clusters are not dis-
joint, i.e., records may be present in two or more clusters. This
makes sense for the duplication detection problem where it
may be impossible to allocate a record with certainty to a
single cluster. Record t8 in the database of Fig. 1 is an exam-
ple of such a record where there may be uncertainty as to
whether t8 belongs to cluster c2 or c1.

Given our framework, we consider clustering techniques
that do not require as input the number of clusters. There
is a large body of work on clustering, including the use of
clustering for information retrieval [6,34] and record link-
age [25,35,39,41]. We consider existing and new techniques
that do not require input parameters such as the number of
clusters. In this sense, our motivation is similar to the use
of generative models and unsupervised clustering in entity
resolution [14]. Notably however, we are dealing with large
datasets and scalability is an important goal. Moreover, as
noted earlier, our evaluation is based on the assumption that
structural or co-occurrence information does not exist or such
information cannot effectively be used to enhance deduplica-
tion. The only input to our clustering component is the result
of a similarity join, i.e., the similar pairs and the similarity
scores between them. Our algorithms will generally be lin-
ear in this input, with the exception that some techniques will
require sorting of this input.

Therefore, we do not consider relational clustering algo-
rithms or any of the new generative clustering models. Nota-
bly, algorithms like latent dirichlet allocation (LDA) [14]

are not scalable at present. For example, one recent promis-
ing application of LDA to entity resolution requires hours of
computation on relatively small data sets of less than 10,000
entities [12].

The majority of existing clustering algorithm that do not
require the number of clusters as input [7,17,27,50] do not
meet the requirements of our framework. Specifically, they
may require another parameter to be set by the user and/or
they may be computationally expensive and far from practi-
cal. There are other clustering algorithms that produce non-
disjoint clusters, like Fuzzy C-Means [11], but like K-Means
they require the number of clusters. We refer the reader to
[25] and references therein for details of numerous clustering
algorithms used for duplicate detection. A thorough experi-
mental comparison of diverse clustering algorithms from the
Information Retrieval, Machine Learning, and Data Manage-
ment literature can be found elsewhere [32]. These include
the disjoint algorithms presented in this paper (Sect. 4), as
well as algorithms not considered here, like correlation clus-
tering and its optimizations [1,23] that were shown to not
perform well (or not better than those we consider) for the
duplicate detection task.

2.3 Creating a probabilistic database

The final component of our framework creates a probabilistic
database. Managing uncertainty and inconsistency has been
an active research topic for a long time. Various methodol-
ogies exist with different characteristics that handle uncer-
tainty and inconsistency in a variety of applications [2,3,15,
22,51]. A large amount of previous work addresses the prob-
lem of efficient query evaluation on databases in which it is
assumed that a probability value is assigned to each record in
the database beforehand. The vast majority of approaches do
not address the problem of creating probabilistic databases.
A common assumption is that the probabilities reflect the
reliability of the data source, for example, based on the reli-
ability of the device (e.g. RFID sensor) that generates the data
or statistical information about the reliability of a web data
source. The Price relation in Fig. 1 is an example of such
database, where it is assumed that there is an existing knowl-
edge about the reliability of the data sources that provide the
prices.

Andritsos et al. [2] propose a method for creating a prob-
abilistic database for duplicated categorical data. In cate-
gorical data, the similarity between two attribute values is
either 0 (if the values are different) or 1 (if the values are the
same). They first cluster the relation using a scalable algo-
rithm based on the Agglomerative Information Bottleneck
[47], and then assign a probability to each record within a
cluster that represents the probability of that record being in
the clean database. However, they do not evaluate the accu-
racy of the probabilities assigned. The Andritsos et al. [2]

123



Creating probabilistic databases 1145

work creates a database with row-level uncertainty (prob-
abilities are associated with records). Gupta and Sarawagi
[29] present a method for creating a probabilistic database
with both row- and column-level uncertainty from statistical
models of structure extraction. In structure extraction, unlike
duplicate detection, there is uncertainty about not only the
correctness/existence of a record, but also the correctness of
attribute values within each record.

Dalvi and Suciu [21] propose an online approach for gen-
erating the probabilities in which the SQL queries are allowed
to have approximate equality predicates that are replaced at
execution time by a user defined MATCH() operator. Accu-
rate and efficient implementation of a MATCH() operator is
not a trivial task as partly shown in this paper.

2.4 Query evaluation

An important motivation for our work is the increased value
that can be found from effectively modeling duplicates and
their uncertainty. To realize this value, we must be able to
query and use the database we create. Consider again our
example of Fig. 1. It may be possible to normalize (or stan-
dardize) the names of companies and their location by, for
example, choosing one common convention for representing
cities. However, in other attributes there may be true disagree-
ment on what the real value should be. For the first company
(Altera), we do not know how many employees (emp#) it has.
By keeping all values and using some of the query-answer-
ing techniques described in this subsection, we can still give
users meaningful answers to queries. For example, if we want
to find small companies (with less than 1000 employees), we
know not to return Altera. If we want to know the total num-
ber of employees in New York, we can again use our assigned
probabilities to give probabilities for the possible answers to
this query.

In this subsection, we briefly discuss several query-
processing techniques suitable for probabilistic databases
generated by our framework. We begin with a recent pro-
posal for modeling and querying possible repairs in duplicate
detection. We then discuss two other proposals that have con-
sidered efficient query evaluation on the specific probabilistic
database we create (that is disjoint-independent databases).
We then consider techniques for top-k query evaluation on
probabilistic databases along with a new proposal for using
probabilistic information (of the type we can create) to help
in data cleaning. Finally, we describe a simple extension to
our framework to create databases with attribute-level uncer-
tainty.

2.4.1 Querying repairs of duplicate data

Beskales et al. [10] present an uncertainty model for rep-
resenting the possible clusterings generated by any fixed

parametrized clustering algorithm, as well as efficient tech-
niques for query evaluation over this model. Any probabi-
listic database generated by our framework can be viewed
as a duplication repair in this model. Their approach pro-
vides a way of modeling clustering uncertainty on top of
our probabilistic databases. Hence, their queries use both the
probabilities we assign and in addition account for possible
uncertainty in the clustering itself (e.g., uncertainty in the
assignment of tuples to clusters). Their model is based on
the notion of U-Clean relations. A U-Clean relation Rc of an
unclean relation R is defined as a set of c-records. A c-record
is a representative record of a cluster along with two addi-
tional attributes C and P . The attribute C of a c-record is the
set of record identifiers in R that are clustered together to form
the c-record, and the attribute P is the parameter settings of
the clustering algorithm A that leads to the generation of the
cluster C . In Beskales et al. [10], possible parameter values
are represented using a continuous random variable τ , and P
is an interval for τ that results in C . Here, we consider pos-
sible parameter values as a discrete random variable θ , and
P as the set of thresholds θ used for the similarity join com-
ponent that results in the cluster C . Let θ l denote the lower
bound and θu denote the upper bound for the threshold. For
many string similarity joins, θ l = 0 and θu = 1. Applying
A to the unclean relation R with parameter θ , generates a
possible clustering of R, denoted by A(R, θ).

Consider again the Company relation in the dirty database
of Fig. 1. Assume that any threshold less than or equal to 0.3
results in one clusters {t1, t2, t3, t4, t5, t6, t7, t8}, threshold
θ = 0.4 results in two clusters {t1, t2, t3, t4, t8} and {t5, t6,
t7}, and any threshold above 0.4 and below 0.7 results in two
clusters {t1, t2, t3, t4} and {t4, t5, t6, t7}. Figure 3 shows the
C and P attributes of the corresponding U-Clean relation.

The set of all clusterings χ is defined as {A(R, θ) : θ ∈
{θ l , . . . , θu}}. Let function fθ (t) be the probability that t is
the suitable parameter setting. The probability of a specific
clustering X ∈ χ , denoted Pr(X), is derived as follows:

Pr(X) =
θu∑

t=θ l

fθ (t) · h(t, X) (1)

where h(t, X) = 1 if A(R, t) = X , and 0 otherwise.

Fig. 3 U-Clean relation created from the Company relation in the dirty
database of Fig. 1
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In our framework, the function fθ (t) can be derived by
manual inspection of a possibly small subset of the clus-
tering results, and calculating (and normalizing) the quality
measures presented in Sect. 4.3 over a subset of the data
using different thresholds. Efficient algorithms are proposed
in [10] for evaluation of Selection, Projection, Join (SPJ), and
aggregation queries. Moreover, an extension of this model
is presented in which the uncertainty in merging the clusters
(or choosing the representative record for each cluster) is also
considered. Our probability assignment component (Sect. 5)
can be used to generate such U-Clean relations.

2.4.2 Clean answers over duplicated data

This approach, presented by Andritsos et al. [2], requires
a probabilistic database with row-level uncertainty, where
probabilities are assigned in a way such that for each
i ∈ 1 . . . k,

∑
t∈Ci

prob(t) = 1. Such a database is referred to
as a dirty database. The probability values reflect the prob-
ability of the record being the best representation of the real
entity. Even if the database does not contain a completely
clean record, such a database can be used for accurate query
answering.

Consider the example dirty database in Fig. 1. This data-
base consists of three dirty relations:Companywith original
schema Company(tid, name, emp#, hq), Prod-
uct with original schema Product(pid, product,
tidFk) and Price with original schema Price(tid,
product, price). Two new attributes are introduced in
all the relations: cid for the identifier of the clustering pro-
duced by the clustering component, and prob for the tuple
probabilities. In relation Product, a new attribute cidFk
is introduced for the identifier of the company referenced by
Product.tidFk. The values of this attribute are updated
using a process called identifier propagation which runs after
the clustering phase and adds references to the cluster identi-
fiers of the tuples in all the relations that refer to those tuples.

A candidate database Dcd for the dirty database D is
defined as a subset of D that for every cluster ci of a relation
in D, there is exactly one tuple t from ci such that t is in
Dcd . Candidate databases are related to the notion of possi-
ble worlds, which has been used to give semantics to prob-
abilistic databases. Notice, however, that the definition of
candidate database imposes specific conditions on the tuple
probabilities: the tuples within a cluster must be exclusive
events, in the sense that exactly one tuple of each cluster
appears in the clean database, and the probabilities of tuples
from different clusters are independent. For the example data-
base in Fig. 1 without the relation Price, the candidate dat-
abases are:

Dcd
1 = {t1, t5, p1, p4}Dcd

2 = {t2, t5, p1, p4}Dcd
3 = {t3, t5, p1, p4}

Dcd
4 = {t4, t5, p1, p4}Dcd

5 = {t1, t6, p1, p4}Dcd
6 = {t2, t6, p1, p4}

Dcd
7 = {t3, t6, p1, p4}Dcd

8 = {t4, t6, p1, p4}Dcd
9 = {t1, t7, p1, p4}

Dcd
10 = {t2, t7, p1, p4}Dcd

11 = {t3, t7, p1, p4}Dcd
12 = {t4, t7, p1, p4}

Dcd
13 = {t1, t8, p1, p4}Dcd

14 = {t2, t8, p1, p4}Dcd
15 = {t3, t8, p1, p4}

Dcd
16 = {t4, t8, p1, p4}Dcd

17 = {t1, t9, p1, p4}Dcd
18 = {t2, t9, p1, p4}

Dcd
19 = {t3, t9, p1, p4}Dcd

20 = {t4, t9, p1, p4}Dcd
21 = {t1, t5, p2, p4}

Dcd
22 = {t2, t5, p2, p4}Dcd

23 = {t3, t5, p2, p4}Dcd
24 = {t4, t5, p2, p4}

Dcd
25 = {t1, t6, p2, p4}Dcd

26 = {t2, t6, p2, p4}Dcd
27 = {t3, t6, p2, p4}

Dcd
28 = {t4, t6, p2, p4}Dcd

29 = {t1, t7, p2, p4}Dcd
30 = {t2, t7, p2, p4}

Dcd
31 = {t3, t7, p2, p4}Dcd

32 = {t4, t7, p2, p4}Dcd
33 = {t1, t8, p2, p4}

Dcd
34 = {t2, t8, p2, p4}Dcd

35 = {t3, t8, p2, p4}Dcd
36 = {t4, t8, p2, p4}

Dcd
37 = {t1, t9, p2, p4}Dcd

38 = {t2, t9, p2, p4}Dcd
39 = {t3, t9, p2, p4}

Dcd
40 = {t4, t9, p2, p4}Dcd

41 = {t1, t5, p3, p4}Dcd
42 = {t2, t5, p3, p4}

Dcd
43 = {t3, t5, p3, p4}Dcd

44 = {t4, t5, p3, p4}Dcd
45 = {t1, t6, p3, p4}

Dcd
46 = {t2, t6, p3, p4}Dcd

47 = {t3, t6, p3, p4}Dcd
48 = {t4, t6, p3, p4}

Dcd
49 = {t1, t7, p3, p4}Dcd

50 = {t2, t7, p3, p4}Dcd
51 = {t3, t7, p3, p4}

Dcd
52 = {t4, t7, p3, p4}Dcd

53 = {t1, t8, p3, p4}Dcd
54 = {t2, t8, p3, p4}

Dcd
55 = {t3, t8, p3, p4}Dcd

56 = {t4, t8, p3, p4}Dcd
57 = {t1, t9, p3, p4}

Dcd
58 = {t2, t9, p3, p4}Dcd

59 = {t3, t9, p3, p4}Dcd
60 = {t4, t9, p3, p4}

Clearly, not all the candidate databases are equally likely
to be clean. This is modeled with a probability distribution,
which assigns to each candidate database a probability of
being clean. Since the number of candidate databases may
be huge (exponential in the worst case), the distribution is not
given by extension. Instead, probabilities of each tuple are
used to calculate the probability of a candidate database being
the clean one. Since tuples are chosen independently, the
probability of each candidate database can be obtained as the
product of the probability of each of its tuples: Pr(Dcd) =∏

t∈Dcd prob(t).
Although the clean database is not known, a query can be

evaluated by being applied to the candidate databases. Intui-
tively, a result is more likely to be in the answer if it is obtained
from candidates with higher probability of being clean. A
clean answer to a query q is, therefore, defined as a tuple
t such that there exists a candidate database Dcd such that
t ∈ q(Dcd). The probability of t is: p = ∑

Dcd :t∈q(Dcd )

Pr(Dcd).
The clean answers to a query can be obtained directly from

the definition if we assume that the query can be evaluated
for each candidate database. However, this is an unrealis-
tic assumption due to the potentially huge number of candi-
date databases. Andritsos et al. [2] propose a solution to this
problem by rewriting the SQL queries to queries that can be
applied directly on the dirty database in order to obtain the
clean answers along with their probabilities. The following
two examples illustrate this approach.

Example 1 Consider a query q1 for the dirty database in
Fig. 1 that retrieves all the companies that have at least 5K
employees.
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Company cluster c1 has more than 5K employees in all
the candidate databases and, therefore, is a clean answer
with probability 1. The cluster c2, however, has at least 5K
employees only in the candidate databases that include tuple
t8. The probability of this candidate database is 0.184. The
following re-written query returns the clean answers along
with their probability values.
select cid, sum(prob)
from company
where emp# >= 5K
group by cid

The previous example focuses on a query with just one
relation. However, as shown in the next example, the rewrit-
ing strategy can be extended to queries involving foreign key
joins.

Example 2 Consider a query q2 for the dirty database in
Fig. 1 that selects the products and the companies for those
companies that have at most 5K employees.

The product cluster c4 associated with company cluster c2

appears in every candidate database and the employee count
of c2 is always at most 5K . Therefore, (c4, c2) has probability
1 of being a clean answer. The query answer (c3, c2) appears
only in the result of applying the query q2 to the candidate
databases that include tuples t8 and p2 (Dcd

33 , Dcd
34 , Dcd

35 and
Dcd

36 ), and sum of their probabilities is 0.064. (c3, c1) does
not appear in any of the candidate databases and, therefore,
is not a clean answer (i.e., has probability zero). It is easy to
see that the clean answers can be obtained by the following
rewriting of the query.

select p.cid, p.cidFk, sum(p.prob * c.prob)

from company c, product p

where p.cidFk = c.cid

and c.emp# <= 5K

group by p.cid, c.cid

The above rewriting strategy works only for a certain class
of queries. Let q be a select-project-join (SPJ) query. The
identifier of a relation is defined as the attribute containing
the cluster id (which identifies the tuples which are duplica-
tions). The join graph G of q is defined as a directed graph
such that the vertices of G are the relations used in q, and
there is an arc from Ri to R j if a non-identifier attribute
of Ri is equated with the identifier attribute of R j . Andritsos
et al. [2] define an SPJ query q with join graph G as a
rewritable query if (1) all the joins involve the identifier of
at least one relation (2) G is a tree (3) a relation appears in
the from clause at most once, and (4) the identifier of the
relation at the root of G appears in theselect clause. These
conditions rule out, for example, joins that do not involve an
identifier attribute and queries that are cyclic or contain self
joins.

Dalvi and Suciu [22] present a theoretical study of the
problem of query evaluation over dirty databases (also known

as disjoint independent databases). They present a dichot-
omy for the complexity of query evaluation for queries with-
out self-joins: evaluating every query is either PTIME or
#P-hard. #P-hard queries are called hard queries and are in
one of the following forms (the underlined attributes are the
keys of the relations):

– h1 = R(x), S(x, y), T (y)

– h2 = R(x, y), . . . , Rk(x, y), S(y)

– h3 = R(x, y), . . . , Rk(x, y), S1(x, y), . . . , Sm(x, y)

The hardness of any conjunctive query without self-joins fol-
lows from a reduction from one of these three queries. Any
query that is not hard (#P-hard) is referred to as safe and can
be evaluated in PTIME.

2.4.3 Top-k query evaluation

The problem of evaluating top-k query results on probabilis-
tic databases has been studied in previous work [43,49,48].
Different types of top-k queries are possible for uncertain
data. Consider the following queries over the dirty database
of Fig. 1:

– Find the location of the headquarters of companies that
have a product selling for more than $300, return only the
top k locations (ranked according to their probabilities).

– Find the top k most expensive products.
– Find the companies that have the k most expensive

products (ranking based on the price in all the possible
worlds).

Here again, these queries can be answered by materi-
alizing all the candidate databases, obtaining answers for
each candidate database, and aggregating the probabilities
of identical answers, which could be prohibitively expen-
sive because of the huge number of candidate databases. For
evaluation of the first query, the fact that the user is inter-
ested only in the top 3 most probable answers can be used
to make the query evaluation more efficient. Ré et al. [43]
present an approach for generating the top-k probable query
answers using Monte-Carlo simulation. In this approach, the
top k answers of a SQL query (according to their prob-
abilities) are returned, and their probabilities are approx-
imated only to the extent needed to compute their rank-
ing. Although the probabilities are approximate, the answers
are guaranteed to be the correct k highest ranked answers.
The queries considered in this work are of the following
form:
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Fig. 4 The sample dirty
database of Fig. 1 with
attribute-level uncertainty

TOP k
SELECT B̄, agg1(A1), agg2(A2), · · ·
FROM R̄

WHERE C
GROUP BY B̄

The aggregate operators can be sum, count, min and
max; avg is not supported.

The other type of top-k query requires finding the top k
tuples according to their price values (or some other scor-
ing function). The second and third queries above are exam-
ples of such queries. Soliman et al. [48,49] present a single
framework for processing both score and uncertainty lever-
aging current DBMS storage and query-processing capa-
bilities. Their work is based on an uncertainty model that
includes generation rules, which are arbitrary logical formu-
las that determine the valid worlds. Tuples that are not corre-
lated using generation rules are independent. Such a model is
particularly useful for duplicate detection. The disjointness
(mutual exclusion) of tuples within clusters can be expressed
using generation rules. In addition, two clusters can share a
single tuple with a generation rule that states that the shared
tuple cannot be present in both clusters. Therefore, for the
example database in Fig. 1 where there may be uncertainty
as to whether t8 belongs to cluster c2 or c1, it is possible to
include a new tuple t ′8 in cluster c1 which has the same values
as tuple t8, using the generation rule (t8 ⊕ t ′8) which means
that both tuples cannot be present in a single candidate data-
base. This model makes it possible to use the non-disjoint
clustering algorithms we propose in this paper.

2.4.4 Cleaning with quality guarantees

Another interesting application of uncertain data manage-
ment for duplicate detection is cleaning the data in order
to increase the quality of certain query results. Cheng et al.
[19] recently proposed a framework for this purpose. In their
work, they present the PWS-quality metric, which is a uni-
versal measure that quantifies the level of ambiguity of query
answers under the possible world’s semantics. They provide
efficient methods for evaluating this measure for two classes
of queries:

– Non-rank-based queries, where a tuple’s qualification
probability is independent of the existence of other tuples.
For example, range queries, i.e., queries that return a set of
tuples having an attribute value that is in a certain range.

– Rank-based queries, where a tuple’s qualification prob-
ability depends on the existence of other tuples, such as
MAX query which is the main focus of the techniques in
this framework.

Using the PWS-quality, a set of uncertain objects in the
database can be chosen to be cleaned by the user, in order to
achieve the best improvement in the quality of query answers.

2.4.5 Attribute-level uncertainty

We have limited our discussions so far to databases with
tuple-level (row-level) uncertainty. It is also possible to use
the probability assignment methods we present in this paper
to create databases with attribute-level (column-level) uncer-
tainty. This can be done easily by applying our techniques
to each attribute individually (essentially applying our tech-
niques to a column-store version of the database). Figure 4
shows such a database for the sample dirty relations in Fig. 1.
Relations with attribute-level uncertainty can either be trans-
formed to several relations with tuple-level uncertainty and
be used along with one of the query evaluation techniques
described in this section, or they can be stored and queried
in more efficient frameworks designed for efficient handling
of attribute-level uncertainty [3,46].

2.5 Evaluation framework

To generate datasets for our experiments, we use an enhanced
version of the UIS database generator which has been effec-
tively used in the past to evaluate duplicate detection algo-
rithms and has been made publicly available [31,35]. We
follow a relatively standard methodology of using the data
generator to inject different types and percentages of errors
to a clean database of string attributes. The erroneous records
made from each clean record are put in a single cluster (which
we use as ground truth) in order to be able to measure qual-
ity (precision and recall) of the similarity join and clustering
modules. The generator permits the creation of data sets of
varying sizes, error types and distributions and thus is a very
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Table 1 Statistics of clean datasets

Dataset #rec. Avg. rec. length #words/rec.

Company names 2,139 21.03 2.92

DBLP titles 10,425 33.55 4.53

flexible tool for our evaluation. The types of typographical
errors injected by the data generator are based on studies
on common errors present in string data in real database
[37]. Therefore, the synthetic datasets resemble real dirty
databases, but allow thorough evaluation of the results based
on robust quality measures.

Our data generator provides the following parameters to
control the error injected in the data:

– the size of the dataset to be generated
– the fraction of clean records to be utilized to generate

erroneous duplicates
– distribution of duplicates: the number of duplicates gen-

erated for a clean record can follow a uniform, Zipfian or
Poisson distribution.

– percentage of erroneous duplicates: the fraction of dupli-
cate records in which errors are injected by the data gen-
erator.

– extent of error in each erroneous record: the percentage
of characters that will be selected for injecting character
edit error (character insertion, deletion, replacement or
swap) in each record selected for error injection.

– token swap error: the percentage of word pairs that will be
swapped in each record that is selected for error injection.

We use two different clean sources of data: a data set
consisting of company names and a data set consisting of
titles from DBLP. Statistical details for the two datasets are
shown in Table 1. Note that we can generate reasonably large
datasets out of these clean sources. For the company name
dataset, we also inject domain-specific abbreviation errors,
e.g., replacing Inc. with Incorporated and vice versa.
We describe the characteristics of the specific datasets gen-
erated for evaluating each component (parameters used to
create datasets) in the related sections.

3 Similarity join module

There are a large number of similarity functions for string
data. The choice of the similarity function highly depends
on the characteristics of the datasets. In what follows, we
briefly describe the similarity measures that are suitable for
our framework. Since one of our main goals in this work
is scalability, we only consider those similarity measures
that could have efficient implementation. Our contribution

in this section is benchmarking accuracy of these measures
in order to choose the measure with highest performance for
this framework.2

3.1 Similarity measures

The similarity measures that fit in our framework are those
based on q-grams created out of strings along with a similar-
ity measure that has been shown to be effective in previous
work. The measures discussed here share one or both of the
following properties.

– High scalability: There are various techniques proposed
in the literature as described in Sect. 2.1 for enhancing
the performance of the similarity join operation using
q-grams along with these measures.

– High accuracy: Previous work has shown that these mea-
sures perform better or equally well in terms of accuracy
when compared with other string similarity measures.
Specifically, these measures have shown good accuracy
in name-matching tasks [20] or in approximate selec-
tion [31]. We include these measures to compare their
accuracy to the scalable measures. The results of our
experiments show that some highly scalable measures
outperform other highly accurate but non-scalable mea-
sures in terms of accuracy on the approximate join task.

3.1.1 Edit similarity

Edit-distance is widely used as the measure of choice in many
similarity join techniques. Specifically, previous work [28]
has shown how to use q-grams for an efficient implemen-
tation of this measure in a declarative framework. Recent
work on enhancing performance of similarity join has also
proposed techniques for scalable implementation of this mea-
sure [4,38].

Edit distance between two string records r1 and r2 is
defined as the transformation cost of r1 to r2, tc(r1, r2), which
is equal to the minimum cost of edit operations applied to r1

to transform it to r2. Edit operations include character insert
(inserting a new character in r1 to transform it into r2, delete
(deleting a character from r1 for the transformation) and sub-
stitute (substitute a character in r1 with a new character for
the transformation) [30]. The edit similarity is defined as

simedit(r1, r2) = 1 − tc(r1, r2)

max{|r1|, |r2|} (2)

There is a cost associated with each edit operation. There
are several cost models proposed for edit operations for this

2 A presentation of the evaluation was given at the International Work-
shop on Quality in Databases [33].
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measure. The most commonly used measure called Levensh-
tein edit distance, which we will refer to as edit distance in
this paper, uses unit cost for all the operations.

3.1.2 Jaccard and weighted Jaccard

Jaccard similarity is the fraction of tokens in r1 and r2 that are
present in both. Weighted Jaccard similarity is the weighted
version of Jaccard similarity, i.e.,

simWJaccard(r1, r2) =
∑

t∈r1∩r2
wR(t)

∑
t∈r1∪r2

wR(t)
(3)

where wR(t) is a weight function that reflects the commonal-
ity of the token t in the relation R. We choose a slightly mod-
ified form of the inverse document frequency (IDF) weights
based on the Robertson/Sparck-Jones (RSJ) weights for the
tokens which was shown to be effective in our experiments
and in previous work [31]:

wR(t) = log

(
N − nt + 0.5

nt + 0.5

)
(4)

where N is the number of tuples in the base relation R and
nt is the number of tuples in R containing the token t .

3.1.3 Measures from IR

A well-studied problem in information retrieval is the prob-
lem of finding the documents that are the most relevant to a
query. In the measures for this problem, records are treated as
documents and q-grams are seen as words (tokens) of the doc-
uments. Therefore, the same techniques for finding relevant
documents to a query can be used to return similar records
to a query string. In the rest of this subsection, we present
three measures that have been shown to have higher perfor-
mance for the approximate selection problem [31]. Note that
IR models may be asymmetric, but we are able to still use
them since we are using self-joins for duplicate detection.

Cosine w/tf-idf The tf-idf cosine similarity is a well-estab-
lished measure in the IR community which leverages the vec-
tor space model. This measure determines the closeness of
the input strings r1 and r2 by first transforming the strings into
unit vectors and then measuring the angle between their cor-
responding vectors. The cosine similarity with tf-idf weights
is given by

simCosine(r1, r2) =
∑

t∈r1∩r2

wr1(t) · wr2(t) (5)

where wr1(t) and wr2(t) are the normalized tf-idf weights
for each common token in r1 and r2, respectively. The nor-
malized tf-idf weight of token t in a given string record r is

defined as follows:

wr (t) = w′
r (t)√∑

t ′∈r w′
r (t

′)2
, w′

r (t) = t fr (t) · id f (t)

where t fr (t) is the term frequency of token t within string r
and id f (t) is the inverse document frequency with respect
to the entire relation R.

BM25 The BM25 similarity score for a query r1 and a string
record r2 is defined as follows:

simBM25(r1, r2) =
∑

t∈r1∩r2

ŵr1(t) · wr2(t) (6)

where

ŵr1(t) = (k3 + 1) · t fr1(t)

k3 + t fr1(t)

wr2(t) = w
(1)
R (t)

(k1 + 1) · t fr2(t)

K (r2) + t fr2(t)

w
(1)
R (t) = log

(
N − nt + 0.5

nt + 0.5

)

K (r) = k1

(
(1 − b) + b

|r |
avgrl

)

and t fr (t) is the frequency of the token t in string record r , |r |
is the number of tokens in r , avgrl is the average number of
tokens per record, N is the number of records in the relation
R, nt is the number of records containing the token t and k1,
k3 and b are set of independent parameters.

Hidden Markov model The approximate string matching
could be modeled by a discrete Hidden Markov process which
has been shown to have better performance than Cosine w/tf-
idf in the IR literature [40] and high accuracy and low running
time for approximate selection [31]. This particular Markov
model consists of only two states where the first state mod-
els the tokens that are specific to one particular “String” and
the second state models the tokens in “General English”,
i.e., tokens that are common in many records. A complete
description of the model and possible extensions are pre-
sented elsewhere [31,40].

The HMM similarity function accepts two string records
r1 and r2 and returns the probability of generating r1, given
r2 is a similar record:

simHMM(r1, r2) =
∏

t∈r1

(a0 P(t |G E) + a1 P(t |r2)) (7)

where a0 and a1 = 1−a0 are the transition state probabilities
of the Markov model and P(t |G E) and P(t |r2) is given by

P(t |r2) = number of times t appears in r2

|r2|
P(t |G E) =

∑
r∈R number of times t appears in r∑

r∈R |r|
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3.1.4 Hybrid measures

The implementation of these measures involves two similar-
ity functions, one that compares the strings by comparing
their word tokens and another similarity function which is
more suitable for short strings and is used for comparison of
the word tokens.

GES The generalized edit similarity (GES) which is a mod-
ified version of fuzzy match similarity [16], takes two strings
r1 and r2, tokenizes the strings into a set of words and assigns
a weight w(t) to each token. GES defines the similarity
between the two given strings as a minimum transformation
cost required to convert string r1 to r2 and is given by

simGES(r1, r2) = 1 − min

(
tc(r1, r2)

wt (r1)
, 1.0

)
(8)

where wt (r1) is the sum of weights of all tokens in r1 and
tc(r1, r2) is the minimum cost of a sequence of the following
transformation operations:

– token insertion: inserting a token t in r1 with costw(t).cins

where cins is the insertion factor constant and is in the
range between 0 and 1. In our experiments, cins = 1.

– token deletion: deleting a token t from r1 with cost w(t).
– token replacement: replacing a token t1 by t2 in r1 with

cost (1 − simedit(t1, t2)) · w(t) where simedit is the edit-
distance between t1 and t2.

SoftTFIDF SoftTFIDF is another hybrid measure proposed
by Cohen et al. [20], which relies on the normalized tf-idf
weight of word tokens and can work with any arbitrary simi-
larity function to find the similarity between word tokens. In
this measure, the similarity score is defined as follows:

simSoftTFIDF(r1, r2)

=
∑

t1∈C(θ,r1,r2)

w(t1, r1) · w(arg max
t2∈r2

(sim(t1, t2)), r2)

· max
t2∈r2

(sim(t1, t2)) (9)

where w(t, r) is the normalized tf-idf weight of word token
t in record r and C(θ, r1, r2) returns a set of tokens t1 ∈ r1

such that for t2 ∈ r2 we have sim(t1, t2) > θ for some simi-
larity function sim() suitable for comparing word strings. In
our experiments, sim(t1, t2) is the Jaro-Winkler similarity as
suggested by Cohen et al. [20].

3.2 Evaluation

We only evaluate the accuracy of the similarity measures,
since there has been several studies on the scalability of these
measures, but little work studying the accuracy of the join

operation. The accuracy is known to be dataset-dependent
and there is no common framework for evaluation and com-
parison of accuracy of different similarity measures and tech-
niques. This makes comparing their accuracy a difficult task.
Nevertheless, we argue that it is possible to evaluate rela-
tive performance of different measures for approximate joins
by using datasets containing different types of well-known
quality problems such as typing errors and differences in
notations and abbreviations.

Datasets In order to evaluate the effectiveness of different
similarity measures described in this section, we use the same
datasets used in an evaluation of approximate selection [31].
As described in Sect. 2.5, the errors in these datasets include
commonly occurring typing mistakes (edit errors, charac-
ter insertion, deletion, replacement, and swap), token swap
and abbreviation errors (e.g., replacing Inc. with Incor-
porated and vice versa). For the results presented in this
section, the datasets are generated by the data generator out
of the clean company names dataset described in Table 1.
The errors in the datasets have a uniform distribution. For
each dataset, on average 5,000 dirty records are created out
of 500 clean records. We have also run experiments on data-
sets generated using different parameters. For example, we
generated data using a Zipfian distribution, and we also used
data from the other clean source in Table 1 (DBLP titles).
We also created larger datasets. For these other datasets, the
accuracy trends remain the same. Table 2 shows the descrip-
tion of all the datasets used for the results in this paper. We
used eight different datasets with mixed types of errors (edit
errors, token swap and abbreviation replacement). Moreover,
we used five datasets with only a single type of error (3 lev-
els of edit errors, token swap or abbreviation replacement
errors) to measure the effect of each type of error individu-
ally.

Measures We use well-known measures from IR, namely
precision, recall, and F1, for different values of the thresh-
old to evaluate the accuracy of the similarity join operation.
We perform a self-join on the input table using a similarity
measure with a fixed threshold θ . Precision (Pr) is defined as
the percentage of duplicate records among the records that
have a similarity score above the threshold θ . In our data-
sets, duplicate records are marked with the same cluster ID
as described above. Recall (Re) is the ratio of the number of
duplicate records that have similarity score above the thresh-
old θ to the total number of duplicate records. Therefore,
a join that returns all the pairs of records in the two input
tables as output has low (near zero) precision and recall of 1.
A join that returns an empty answer has precision 1 and zero
recall. The F1 measure is the harmonic mean of precision

and recall, i.e., F1 = 2 × Pr × Re

Pr + Re
We measure precision,

recall, and F1 for different values of the similarity threshold
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Table 2 Datasets used for the results in this paper

Group Name Percentage of

Erroneous Errors in Token Abbr.
duplicates duplicates swap error

Dirty D1 90 30 20 50

D2 50 30 20 50

Medium Error M1 30 30 20 50

M2 10 30 20 50

M3 90 10 20 50

M4 50 10 20 50

Low Error L1 30 10 20 50

L2 10 10 20 50

AB 50 0 0 50

Single Error TS 50 0 20 0

EDL 50 10 0 0

EDM 50 20 0 0

EDH 50 30 0 0

θ . For comparison of different similarity measures, we use
the maximum F1 score across different thresholds.

Settings For the measures based on q-grams, we set q =
2 since it yields the best accuracy in our experiments for
all these measures. We use the same parameters for BM25
and HMM score formula that were suggested elsewhere
[31,40,44].

Results Appendix A contains the full precision-recall curves
for all the measures described above. The results of our exper-
iments show that the “dirtiness” of the input data greatly
affects the value of the threshold that results in the most accu-
rate join. For all the measures, a lower value of the threshold is
needed as the degree of error in the data increases. For exam-
ple, Weighted Jaccard achieves the best F1 score over the
dirty group of datasets with threshold 0.3, while it achieves
the best F1 for the low-error datasets at threshold 0.55. BM25
and HMM are less sensitive and the best value of the thresh-
old varies from 0.25 for dirty datasets to 0.3 for low-error
datasets. We will discuss later how the degree of error in the
data affects the choice of the most accurate measure.

Effect of types of errors Figure 5 shows the maximum F1

score for different values of the threshold for different mea-
sures on datasets containing only edit-errors (theEDL, EDM
and EDH datasets). These figures show that weighted Jaccard
and Cosine have the highest accuracy followed by Jaccard,
and edit similarity on the low-error dataset EDL. By increas-
ing the amount of edit error in each record, HMM performs
as well as weighted Jaccard, although Jaccard, edit similar-
ity, and GES perform much worse on high edit error data-
sets. Considering the fact that edit-similarity is mainly pro-
posed for capturing edit errors, this shows the effectiveness
of weighted Jaccard and its robustness with varying amount
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Fig. 5 Maximum F1 score for different measures on datasets with only
edit errors
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Fig. 6 Maximum F1 score for different measures on datasets with only
token swap and abbr. errors
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Fig. 7 Maximum F1 score for different measures on dirty, medium
and low-error group of datasets

of edit errors. Figure 6 shows the effect of token swap and
abbreviation errors on the accuracy of different measures.
This experiment indicates that edit similarity is not capable
of modeling such errors. HMM, BM25 and Jaccard also are
less capable of modeling abbreviation errors than cosine with
tf-idf, SoftTFIDF and weighted Jaccard.

Comparison of measures Figure 7 shows the maximum F1

score for different values of the threshold for different mea-
sures on dirty, medium- and low-error datasets. Here, we
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have aggregated the results for all the dirty data sets together
(respectively, the moderately dirty or medium data sets and
the low-error data sets). The results show the effectiveness
and robustness of weighted Jaccard and cosine in compari-
son with other measures. Again, HMM is among the most
accurate measures when the data is extremely dirty, and has
relatively low accuracy when the percentage of error in the
data is low.

3.3 Our choice of similarity measure

Unless specifically mentioned, we use weighted Jaccard sim-
ilarity as the measure of choice for the rest of the paper due
to its relatively high efficiency and accuracy compared with
other measures. Note that this similarity predicate can be
implemented declaratively and used as a join predicate in
a standard RDBMS engine [31], or used with some of the
specialized, high performance, approximate join algorithms
as described in Sect. 2. Specifically, the Weighted Enumera-
tion (WtEnum) signature generation algorithm can be used
to significantly improve the running time of the join [4]. In
addition, novel indexing and optimization techniques can be
utilized to make the join even faster [8].

4 Clustering module

Here, we consider algorithms for clustering records based on
the output of the similarity join module. So the input to this
module is a set of similar pairs of records and the output is
a set of clusters of records C = {c1, . . . , ck} where records
in each cluster are highly similar. We present two groups of
algorithms, one for creating disjoint clusters, i.e., non-over-
lapping clusters that partition the base relation, and the other
for non-disjoint clustering, i.e., we allow a few records to be
present in two or more clusters.

The scalable similarity join will eliminate large portions
of the data (records without duplicates) from the clustering.
Specifically, the similarity graph used in the clustering will
be much smaller after using a similarity join. Of course, we
want to be able to handle large amounts of error in the data,
so we do also focus on clustering techniques that can still
handle large data sets containing hundreds of thousands of
potential duplicates. But the combination of a scalable simi-
larity join, with a clustering technique that can handle large
similarity graphs, greatly enhances the end-to-end scalability
of the overall approach and permits the generation of proba-
bility values (Sect. 5) on very large databases.

There exists a variety of clustering algorithms in the liter-
ature each with different characteristics. However, as men-
tioned earlier, we are dealing with a rather different clustering
problem here. First of all, we use only the output of the sim-
ilarity join module for the clustering. Our goal of clustering

is to create a probabilistic database and, therefore, we need
to seek specific characteristics that fit this goal. For example,
a few extra records in a cluster is preferable to a few missing
records, since the few extra records will get less probability
in the probability assignment component. Moreover, since
the similarity join module needs a threshold for the similar-
ity measure which is hard to choose and dataset-dependent,
we seek clustering algorithms that are less sensitive to the
choice of the threshold value. A comprehensive study of the
performance of clustering algorithms in duplicate detection
including the disjoint algorithms presented here and several
more sophisticated clustering algorithms can be found else-
where [32].

4.1 Disjoint algorithms

In this group of algorithms, the goal is to create clusters of
similar records C = {c1, . . . , ck} where the value of k is
unknown,

⋃
ci ∈C ci = R and ci ∩ c j = ∅ for all ci , c j ∈ C,

i.e., clusters are disjoint and partition the base relation.
We can think of the source relation as a graph G(U, V ) in

which each node u ∈ U presents a record in the base rela-
tion and each edge (u, v) ∈ V connects two nodes u and v

having corresponding records that are similar, i.e., their simi-
larity score based on some similarity function sim() is above a
specified threshold θ . Note that the graph is undirected, i.e.,
(u, v) = (v, u). The task of clustering the relation is then
clustering the nodes in the graph. In our implementation, we
do not materialize the graph. In fact, all the algorithms can be
efficiently implemented by a single scan of the list of similar
pairs returned by the similarity join module, although some
require the list to be sorted by similarity score. We only use
the graph G to illustrate our techniques.

4.1.1 Algorithm1: partitioning

In this algorithm, Partitioning (or transitive closure), we
cluster the graph of records by finding the connected
components in the graph and putting the records in each com-
ponent in a separate cluster. This can be done by first assign-
ing each node to a different cluster and then scanning the list
of similar pairs and merging clusters of all connected nodes.
Figure 8a shows the result of this algorithm on a sample
graph. As Fig. 8a shows, this algorithm may put many records
that are not similar in the same cluster. Partitioning is a com-
mon algorithm used in early entity resolution work [25,35],
and is included as a baseline.

4.1.2 Algorithm2: CENTER

This algorithm, which we call CENTER as in [34] performs
clustering by partitioning the graph of the records so that each
cluster has a center and all records in the cluster are similar
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Fig. 8 Illustration of disjoint
clustering algorithms.
a Partitioning, b CENTER,
c MERGE-CENTER (MC)

(c)(b)(a)

to the center. This can be performed by a single scan of the
sorted list of similar pairs. The first time a node u appears
in the scan, it is assigned as the center of the cluster. All the
subsequent nodes v that appear in a pair (u, v) are assigned to
the cluster of u and are not considered again. Figure 8b shows
how this algorithm clusters a sample graph of records, where
node u1 is the first node in the sorted list of similar records
and node u2 appears right after all the nodes similar to u1,
and node u3 appears after all the nodes similar to u2. This
algorithm may result in more clusters than Partitioning since
it puts into one cluster only those records that are similar to
one record which is the center of the cluster.

4.1.3 Algorithm3: MERGE-CENTER

MERGE-CENTER, or MC, is similar to CENTER, but
merges two clusters ci and c j whenever a record similar to
the center node of c j is already in the cluster ci , i.e., it is
similar to a node that is the center or is similar to the center
(or one of the center nodes) of the cluster ci (Note that when
two clusters are merged, we do not choose a single center
node in this algorithm, so each cluster can have multiple
center nodes). As with CENTER, this is done using a single
scan of the list of similar records, but keeping track of the
records that are already in a cluster. The first time a node u
appears in the scan, it is assigned as the center of the cluster.
All the subsequent nodes v that appear in a pair (u, v) and
are not present in any cluster, are assigned to the cluster of u,
and are not selected as the center of any other cluster. When-
ever a pair (u, v′) is encountered such that v′ is already in
another cluster, all the nodes in the cluster of u (records sim-
ilar to u) are merged with the cluster of v′. Figure 8c shows
the clusters created by this algorithm assuming again that the
nodes u1, u2 and u3 are the first three nodes in the sorted list
of similar records that are selected as the center of a cluster.
As shown in the Figure, this algorithm creates fewer clusters
for the sample graph than the CENTER algorithm, but more
than the partitioning algorithm.

4.2 Non-disjoint algorithms

In this group of algorithms, we do not require ci ∩c j = ∅ for
all i, j ∈ 1 . . . k. For this purpose, we use the results of the

similarity join module along with the similarity scores of the
similar records. The idea is to have a core for each cluster that
consists of the records that are highly similar, and marginal
records for each cluster that are relatively less similar. The
core of the clusters are created based on the results of the sim-
ilarity join with similarity score above a high threshold θ1.
The marginal records are added to the clusters based on the
results of the similarity join with a threshold θ2 ≤ θ1. Using
the terminology from probabilistic record linkage [26], we
can say that we put the records that match with the center of
the cluster in its core, and records that probably match with
the center in the marginal records of the cluster. Each record
appears in the core of only one cluster, but may appear in the
marginal records of more than one cluster.

4.2.1 Algorithm4: non-disjoint clustering

Our first non-disjoint algorithm, ND, creates a set of core
clusters (in a similar way to MERGE-CENTER), and then a
set of records are added to each cluster which are less similar
to the center of the cluster. The algorithm performs as fol-
lows. Assume that we have the list of records with similarity
score above a threshold θ2 along with their similarity score
from the output of the similarity join module. The algorithm
starts by scanning the list. The first time a node u appears in
the scan, it is assigned as the center of the core of the cluster.
All the subsequent nodes v that appear in a pair (u, v), have
sim(u, v) ≥ θ1, and are not present in the core of any other
cluster, are assigned to the core of the cluster of u and are
not selected as the center of any other cluster. Other pairs
(u, v) that have sim(u, v) ≤ θ1 (but have sim(u, v) ≥ θ2)
are added as the marginal members of the cluster. Whenever
a pair (u, v′) with sim(u, v′) ≥ θ1 is encountered such that
v′ is already in the core of another cluster, all the nodes in
the cluster of u are merged with the cluster of v′.

4.2.2 Algorithm5: improved non-disjoint clustering
with information bottleneck method

The ND algorithm performs well when thresholds θ1 and
θ2 are chosen accurately. However, the choice of the thresh-
olds highly depends on the similarity measure used in the
similarity join module and the type of errors in the datasets.
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Therefore, it is plausible to be able to choose a low value
for the lower threshold θ2 and then enhance the accuracy of
the clustering by pruning extra records from each cluster in a
uniform way regardless of the value of the thresholds. Here,
we adopt an approach from the information theory field called
the information bottleneck in order to enhance the results of
non-disjoint clustering. The idea is to prune those marginal
records in clusters that are less similar to the records in the
core of the clusters.

Our ND-IB algorithm is based on the Agglomerative Infor-
mation Bottleneck (IB) algorithm for clustering data [47]
which we briefly explain here.

Assume R is the set of records, n = |R| is the number of
records, T is the set of qgrams of the strings, and d = |T | is
the total number of qgrams in all records. In the information
bottleneck method for clustering data, the goal is to partition
the records in R into k clusters C = {c1, c2, . . . , ck} where
each cluster ci ∈ C is a non-empty subset of R such that
ci ∩ c j = ∅ for all i, j . Giving equal weight to each record
r ∈ R, we define p(r) = 1

n . We also set the probability of

a qgram t given a record p(t |r) = id f (t)∑
t ′∈r id f (t ′) where id f (t)

is the inverse document frequency of qgram t in the relation.
For c ∈ C , the elements of R, T and C are related as follows:

p(c) =
∑

r∈c

p(r) (10)

p(t |c) = 1

p(c)

∑

r∈c

p(r)p(t |r) (11)

Merging two clusters ci and c j is performed by setting the
following parameters for the new cluster c∗:

p(c∗) = p(ci ) + p(c j )

p(t |c∗) = p(ci )

p(c∗)
p(t |ci ) + p(c j )

p(c∗)
p(t |c j ) (12)

In the IB algorithm, clustering is performed by first assum-
ing that each record is a separate cluster and then iteratively
merging the clusters n − k times to reduce the number of
clusters to k. In each iteration, two clusters are chosen to be
merged so that the amount of information loss as a result of
merging the clusters is minimum. Information loss is given
by the following formula [47]:

δ I (ci , c j ) = [p(ci ) + p(c j )] · DJ S[p(t |ci ), p(t |c j )] (13)

where DJ S[p(t |ci ), p(t |c j )] is equal to:

p(ci )

p(c∗)
DK L [p(t |ci ), p̄] + p(c j )

p(c∗)
DK L [p(t |ci ), p̄] (14)

where:

p̄ = p(ci )

p(c∗)
p(t |ci ) + p(c j )

p(c∗)
p(t |c j ) (15)

DK L [p, q] =
∑

r∈R

p(r) log
p(r)

q(r)
(16)

The pruning algorithm for our non-disjoint clustering per-
forms as follows. For each cluster (1) the records in the core
of the cluster are merged using the merge operation and put
in cluster ccore. (2) For each record ri in the set of marginal
records M = {r1, . . . , rk}, the amount of information loss
for merging ri with the core cluster ccore, ili = δ I (ri , ccore),
is calculated. (3) It is assumed that avgil is the average value
of ili for i ∈ 1 . . . k and stddevil is the standard deviation.
Those marginal records that have ili ≥ avgil − stddevil are
pruned from the cluster.

The intuition behind this algorithm is that by using the
information in all the qgrams of the records from the core of
the cluster that are identified to be duplicates (and match),
we can identify which of the marginal records (that proba-
bly match) are more probably duplicates that belong to that
cluster. For this, the records in the core of each cluster are
merged using the merge operation (Equation 12). If merging
a marginal record with the core of the cluster would result in
high information loss, then the record is removed from the
marginal records of the cluster.

4.3 Evaluation

Datasets The datasets used for accuracy results in this sec-
tion are the same datasets described in Table 1 of Sect. 3.2.
Most of the results presented here are for the medium error
group of these datasets. In our evaluation, we note when the
trends on the other groups of datasets are different than those
shown in this report. Note again that we limited the size of the
datasets only for our experiments on accuracy. For running
time experiments, we used the data generator with DBLP
titles dataset of Table 1 to generate larger datasets. In order
to show that these results are not limited to the specific data-
sets we used here, we have made the results of our extensive
experiments over various datasets (with different sizes, types
and distribution of errors) publicly available at http://dblab.
cs.toronto.edu/project/stringer/evaluation/.

Accuracy measures We evaluate the quality of the clustering
algorithms based on several measures from the clustering lit-
erature and also measures that are suitable for
evaluation of these clusterings in duplicate detection. The lat-
ter measures are taken from Hassanzadeh et al. [32]. Suppose
that we have a set of k ground truth clusters G = {g1, . . . , gk}
of the base relation R and let C denote a clustering of records
into k′ clusters {c1, . . . , ck′ } produced by a clustering algo-
rithm. Consider mapping f from elements of G to elements
of C , such that each cluster gi is mapped to a cluster c j =
f (gi ) that has the highest percentage of common elements
with gi . We define precision, Pri , and recall, Rei , for a cluster
gi , 1 ≤ i ≤ k as follows:

Pri = | f (gi ) ∩ gi |
| f (gi )| and Rei = | f (gi ) ∩ gi |

|gi | (17)
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Intuitively, Pri measures the accuracy with which cluster
f (gi ) reproduces cluster gi , while Rei measures the com-
pleteness with which f (gi ) reproduces class gi . We define
the precision and recall of the clustering as the weighted aver-
ages of the precision and recall over all ground truth clusters.
More precisely

Pr =
k∑

i=1

|gi |
|R| Pri and Re =

k∑

i=1

|gi |
|R| Rei (18)

Again, we also use the F1-measure (the harmonic mean of
precision and recall).

We think of precision, recall, and F1-measure as indic-
ative values of the ability of the algorithm to reconstruct
the indicated clusters in the dataset. However, since in our
framework the number of clusters created by the clustering
algorithm is not fixed and depends on the datasets and the
thresholds used in the similarity join, we should also take
into account this value in our quality measure. We use two
other measures more suitable for our framework. The first,
called clustering precision, CPri , is the ratio of the pairs of
records in each cluster ci that are in the same ground truth
cluster g j : ci = f (g j ), i.e.,

CPri = |(t, s) ∈ ci × ci |t 
= s ∧ ∃ j ∈ 1 . . . k, (t, s) ∈ g j × g j |(|ci |
2

)

(19)

Clustering precision, CPr, is then the average of CPri for
all clusters with size ≥2. Cpr measures the ability of the clus-
tering algorithm to put the records that must be in the same
cluster in one cluster regardless of the number and the size of
the clusters. We also need to have a measure that penalizes
those algorithms that create more or fewer clusters than the
ground truth number of clusters. PCPr is CPr multiplied by
the percentage of the extra or missing clusters in the result
of clustering, i.e.,

PCPr =
{

k
k′ CPr k < k′
k′
k CPr k ≥ k′ (20)

Partitioning and CENTER algorithms We measure the
quality of clustering algorithms based on different thresh-
olds of the similarity join. The table below shows the values
for our medium-error datasets and thresholds that result in
the best F1 measure and the best PCPr measure values. We
have chosen these thresholds to show how the threshold value
could affect the accuracy of the algorithms, and also justify
using the PCPr measure. Similar trends can be observed for
other thresholds and datasets.

Partitioning CENTER

Best PCPr Best F1 Best PCPr Best F1

PCPr 0.554 0.469 0.593 0.298
CPr 0.946 0.805 0.760 0.692
Pr 0.503 0.934 0.586 0.971
Re 0.906 0.891 0.783 0.805
F1 0.622 0.910 0.666 0.877
Cluster# 353 994 472 1305

Note that the number of clusters in the ground truth data-
sets is 500. The last row in the table shows the number of
clusters generated by each algorithm. These results show that,
precision, recall and F1 measures cannot alone determine the
best algorithm since they do not take into account the number
of clusters generated. As it can be seen, the best value of F1

measure among different thresholds is 0.910 for partition-
ing and 0.877 while the corresponding number of clusters
are 994 and 1305 respectively. However, the best value of
PCPr among different thresholds is 0.554 for partitioning
and 0.593 for CENTER, with 353 and 472 clusters in the
results respectively. This justifies using CPr and PCPr mea-
sures. Also note that the accuracy of these algorithms highly
depend on the threshold used for the similarity join module.
The results above show that the CENTER algorithm is more
suitable than the partitioning algorithm for identification of
the correct number of clusters.

MERGE-CENTER (MC) algorithm The accuracy
results for the MERGE-CENTER algorithm for the medium
error datasets are shown below. The results are for the similar-
ity threshold that produced the best PCPr results although the
trend is the same for both algorithms with any fixed threshold.
These results show that the MC algorithm results in signifi-
cant improvement in all accuracy measures comparing with
CENTER and Partitioning algorithms.

Partitioning MC Diff.

PCPr 0.554 0.696 +25.6%
CPr 0.946 0.940 −0.1%
Pr 0.503 0.658 +30.8%
Re 0.906 0.950 +4.9%
F1 0.622 0.776 +24.8%
Cluster # 353 459

Non-disjoint algorithms (ND and ND-IB) We compare the
results of MERGE-CENTER (MC) with our non-
disjoint algorithms, ND and ND-IB, below. Adding marginal
records to the clusters increases PCPr, CPr with a small drop
in recall but a significant drop in the precision. Note that
for our goal which is creating probabilistic databases, recall
is more important than precision, since missing records can
result in missing results for queries over the output proba-
bilistic database, whereas a few extra records result in extra
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Fig. 9 CPr score of clustering algorithms for datasets with different
amount of error

answers with lower probability values. For these results, we
set the threshold θ = 0.3 for MC, the lower threshold
θ2 = 0.2 and the higher threshold θ1 = 0.4 for non-disjoint
algorithms, and we use our low-error datasets. We observed a
similar trend using many different thresholds and other data-
sets. In fact non-disjoint algorithms become more effective
when used on highly erroneous datasets as partly shown in
Fig. 9.

MC ND ND-IB
θ =0.3 θ1 = 0.4, θ1 = 0.4,

θ2 = 0.2 θ2 = 0.2

Diff.(MC) Diff.(ND)

PCPr 0.696 0.930 +0.234 0.924 −0.006
CPr 0.940 0.999 +0.059 0.993 −0.007
C./Rec. 1.0 3.3 +2.3 2.2 −1.07

A key benefit of using the non-disjoint algorithm with
information bottleneck (IB) is that the clustering algorithm
becomes less sensitive to the value of the threshold used for
the similarity join. In the above results, changing the thresh-
old for the MC algorithm to θ = 0.4 results in a much higher
PCPr but lower CPr score and setting θ = 0.2 results in a
significant drop in PCPr but higher CPr. The last row shows
the average number of clusters to which each record belongs,
e.g., in the non-disjoint algorithm with the threshold used for
the results in this table, each record is present in 3.3 clus-
ters on average. As it can be seen, PCPr and CPr are slightly
decreased but in return, the average number of clusters for
each record is significantly decreased. This results in decreas-
ing the overhead associated with having non-disjoint clusters
as well as increasing the precision of the clustering.

Fig. 10 Running time: disjoint algorithms

Fig. 11 Running time: non-disjoint algorithms

Effect of amount of error In order to show the effect of
the amount of error in the datasets on the accuracy of the
algorithms, we measure the CPr score of all the clustering
algorithms, with threshold θ = 0.5 for disjoint algorithms
and lower threshold θ2 = 0.3 and higher threshold θ1 = 0.5
for non-disjoint algorithms. Figure 9 shows the results. For all
datasets, the relative performance of the algorithms remains
the same. All algorithms perform better on lower error data-
sets. MERGE-CENTER algorithm becomes more effective
on cleaner datasets comparing with Partitioning and CEN-
TER algorithms. Non-disjoint algorithms become less effec-
tive on cleaner datasets mainly due to higher accuracy of the
disjoint algorithm with the threshold used.

Performance results We ran our experiments using a Dell
390 Precision desktop with 2.66 GHz Intel Core2
Extreme Quad-Core Processor QX6700, 4 GB of RAM run-
ning 32-bit Windows Vista. Each experiment is run multiple
times to obtain statistical significance. Figures 10 and 11
show the running time of the disjoint and non-disjoint algo-
rithms. These results are obtained from DBLP datasets of
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size 10–100 K records. The average percentage of erroneous
duplicates is 50%, and the average percentage of errors in
each duplicate record, the average amount of token swaps,
and the average amount of abbreviation errors is 30%. For
disjoint algorithms, a fix threshold of θ = 0.5 is chosen
for the similarity join and for non-disjoint algorithms lower
threshold of θ = 0.4 and higher threshold of θ = 0.6 is
chosen, although we observed a similar trend with many
other threshold values. As expected, the Partitioning algo-
rithm is the fastest in disjoint algorithms since it does not
need the output of the similarity join to be sorted. CEN-
TER and MERGE-CENTER both require the output to be
sorted, and MERGE-CENTER has an extra merge operation
which makes it a little slower than CENTER. The results for
non-disjoint algorithms show that the overhead for the infor-
mation bottleneck pruning makes the algorithm 5–10 times
slower, but still reasonable for an offline process.

5 Probability assignment module

Assuming that the records in the base relation R are clus-
tered using a clustering technique, the output of the proba-
bility assignment module is a probabilistic database in which
each record has a probability value that reflects the error in
the record. We present two classes of algorithms here. One
based on the similarity score between the records in each
cluster, and the other based on information theory concepts.

5.1 Algorithms

MaxSim Algorithm In this algorithm, first a record in each
cluster is chosen as the representative of a cluster and then the
probability value is assigned to each record that reflects the
similarity between the record and the cluster representative.
This algorithm is based on the assumption that there exists a
record in the cluster that is clean (has no errors) or has less
errors, and that this record is the most similar record to other
records in the cluster. Therefore, this record is chosen as the
cluster representative and the probability of the other records
being clean is proportional to their similarity score with the
cluster’s representative.

Figure 12 shows the generic procedure for finding proba-
bilities in this approach. For each cluster, the record that has
the maximum sum of similarity score with all other records in
the cluster (based on some similarity function sim()) is cho-
sen as the cluster representative. The probability assigned
to each record is basically the similarity score between the
representative and the record, normalized for each cluster.

Information bottleneck method Here, we present a
technique for assigning probability values to records within
each cluster based on the Information Bottleneck (IB)

Fig. 12 MaxSim algorithm

Fig. 13 IB algorithm

approach. While similar in spirit to the method of Andritsos
et al. [2], our method is designed specifically for dirty string
data. Assume again that R is the set of all records, T is the
set of qgrams of the records, C is the set of all the clusters
and Tci is the set of all qgrams in the records inside cluster
ci ∈ C . Giving equal weight to each record r ∈ R, we define
p(r) = 1

n . The probability of a qgram given a record can be
set as p(t |r) = 1

|r | (equal values, as shown in the example

below) or p(t |r) = id f (t)∑
t ′∈r id f (t ′) (based on importance of the

tokens, which is our choice for the experiments). For c ∈ C ,
the elements of R, T and C are related by Eqs. 10 and 11 in
Sect. 4. Merging two clusters ci and c j is performed by the
merge operation using Eq. 12 (Sect. 4).

Figure 13 shows the steps involved in this algorithm. To
find a cluster representative for cluster ci , we merge the
records in the cluster using the merge operation. The result
is the probability distribution p(t |ci ) for all qgrams t ∈ Tci .
We define the cluster representative to be (Tci , p(t |ci )), i.e.,
the set of all the qgrams of the records in the cluster ci along
with their probability values p(t |ci ). Note that a cluster rep-
resentative does not necessarily consist of qgrams of a single
record in that cluster. The probability value for each record
in the cluster is basically the sum of the values of the proba-
bilities p(t |ci ) for the qgrams in the record r divided by the
length of the record, normalized so that the probabilities of
the records inside a cluster sum to 1. The intuition behind
this algorithm is that by using the information from all the
q-grams in the cluster, a better cluster representative can be
found. This is based on the assumption that in the cluster ci ,
the q-grams that belong to a “clean” record are expected to
appear more in the cluster and therefore have a higher p(t |ci )
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Fig. 14 Example IB representative calculation

value. As a result, the records containing q-grams that are fre-
quent in the cluster (and are more likely to be clean) will have
higher probability values.

Example 3 Suppose R is a set of four strings r1 = “William
Turner”, r2 = “Willaim Turner”, r3 = “Willliam Turnet”,
and r4 = “Will Turner” in a cluster. Figure 14 shows the
initial p(t |r) values for each record r and q-gram t , as well
as the final probability distribution values for the cluster rep-
resentative.3 The output of the algorithm is pc(r1) = 0.254,
pc(r2) = 0.240, pc(r3) = 0.233 and pc(r4) = 0.272.

5.2 Evaluation

Measure We evaluate the effectiveness of the probability
assignment techniques by introducing a measure that shows
how sorting by the assigned probability values will preserve
the correct order of the error in the records. We call this
measure order preserving ratio (OPR). OPR is calculated
as follows. For each cluster, we create an ordered list of
records Loutput = (r1, . . . , rk) sorted by the probability val-
ues assigned to the records, i.e., pa(ri ) ≤ pa(r j ) iff i ≤ j
where pa(r) is the probability value assigned to the record
r . Suppose the correct order of the records is Lcorrect and the
true probability value of the record r being the clean one is
pt (r). We can measure the extent to which the sorted output
list preserves the original order by counting the percentage
of pairs (ri , r j ) for which ri appears before r j in both Loutput

and Lcorrect, i.e.,

OPRC = |(ri , r j )|ri , r j ∈ Loutput, i ≤ j, pt (ri ) ≤ pt (r j )|(k
2

)

(21)

Note that
(k

2

)
is the total number of pairs in Loutput. OPR is

the average of OPRc−0.5
0.5 over all clusters. Since 0.5 is the

average value of OPRc if the records are sorted randomly,
OPR shows the extent to which the ordering by probabilities
is better than a random ordering.

Results We use the same data generator to create a dataset
of strings with different amounts of error within the strings,

3 We omit the initial and ending grams ’ w’, ’t ’, ’r ’ to fit this on the
page.

Table 3 OPR values/times for IB & MaxSim algs

Algorithm OPR Time (ms)

IB 0.683 749

MaxSim WJaccard 0.674 4324

SoftTfIdf 0.653 1280

GES 0.490 1249

HMM 0.485 3852

BM25 0.480 4009

Cosine w/tfidf 0.470 5397

marking each string with the percentage of error in that string
which allows sorting the records based on the relative amount
of error and obtaining the ground truth. We ran experiments
on datasets with varying sizes and degree of error made out
of the company names and DBLP titles datasets (Table 1).
The trends observed are similar over all datasets. We report
the results for a dataset containing 1000 clusters generated
out of our clean company name dataset. Table 3 shows the
OPR values for this dataset for IB and MaxSim algorithm.
We have tried MaxSim with different string similarity func-
tions described in Sect. 3 for similarity join module, namely
Weighted Jaccard (WJaccard), SoftTfIdf, Generalized Edit
Similarity (GES), Hidden Markov Models (HMM), BM25
and Cosine similarity with tf-idf weights (Cosine w/tfidf).
Interestingly, MaxSim produces the best results when used
with Weighted Jaccard similarity, the measure of our choice
for the similarity join module described in Sect. 3. The IB
algorithm performs as well as MaxSim with the best choice
of similarity function in terms of accuracy. Table 3 also shows
the running time for these algorithms for a DBLP title dataset
of 20K records. The trend is similar for larger datasets and
the algorithms scale linearly. The IB algorithm is also signif-
icantly faster than MaxSim with weighted Jaccard. Another
advantage of IB over the MaxSim algorithm is that the cluster
representatives can be stored and updated very efficiently, but
for the MaxSim algorithm, when a record is added to data-
base, the algorithm must be run again to find the new rep-
resentative. This makes the IB algorithm suitable for large
dynamic databases, and also for on-line calculation of the
probabilities.
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5.3 Putting it all together

In Sect. 4, we showed how the quality of the clusters is
affected by the similarity measure and threshold used in the
similarity join module. However, the results presented so far
in this section are based on a perfect clustering as input to
the probability assignment module. In this part, we will show
the results of our experimental evaluation of the effect of the
quality of the clusters on the quality of the probabilities. Our
goal is to ensure that when creating a probabilistic database,
the errors introduced in the first two modules (the clustering
errors) do not compound the potential errors in our probabil-
ity assignment module in a way that makes the final proba-
bilities meaningless.

Measure We need to slightly modify OPR to measure the
quality of the probability values when the clustering is imper-
fect. We call this measure OPRt . Suppose that we have a set of
k ground truth clusters G = {g1, . . . , gk} of the base relation
R and let C denote a clustering of records into k′ clusters
{c1, . . . , ck′ } produced by a clustering algorithm. Consider
mapping f from elements of C to elements of G, such that
each cluster ci is mapped to a cluster f (ci ) that has the high-
est percentage of common elements with ci . Here again, we
create an ordered list of records L = (r1, . . . , rk) for each
cluster cl ∈ C , sorted by the probability values assigned to
the records, i.e., pa(ri ) ≤ pa(r j ) iff i ≤ j where pa(r) is the
probability value assigned to the record r . Let pt (r ∈ cl) be
the probability value of the record r being the ground truth
cluster f (cl) if t ∈ f (cl) and zero otherwise. We can mea-
sure the extent to which the sorted output list preserves the
original order in the matched ground truth cluster f (cl) by
counting the percentage of pairs (ri , r j ) for which at least one
of ri and r j are in f (cl), pt∈c(ri ) ≤ pt∈c(r j ) and ri appears
before r j in L , i.e.,

|(ri , r j )|ri , r j ∈ L , i ≤ j, pt (ri ∈ cl) ≤ pt (r j ∈ cl)| − e
(k

2

) − e

e = |(ri , r j )|ri , r j /∈ f (cl)|

This is based on the assumption that we are indifferent about
the order of the records that are not in the matched ground
truth cluster. OPRt is the average of the value calculated in
the formula above over all output clusters in C .

Results The table below shows OPRt values for the same
dataset used for the results in Table 3. The values are shown
for a perfect clustering as well as clusters created by (dis-
joint) MERGE-CENTER algorithm performed on the output
of similarity join with Weighted Jaccard similarity measure
and different values of the similarity threshold, and using the
IB algorithm for probability assignment. Similar trends were
observed for other clustering algorithms. Moreover, the rel-
ative performance of IB and MaxSim algorithms remained

the same as Table 3 and, therefore, we do not report OPRt

values for them.

Similarity threshold F1 PCPr Cluster# OPRt

Perfect clustering 1.000 1.000 500 0.832
(No similarity join)

θ = 0.1 0.008 0.004 2 0.571
θ = 0.2 0.479 0.389 259 0.655
θ = 0.3 0.726 0.335 934 0.713
θ = 0.4 0.724 0.118 1673 0.700
θ = 0.5 0.614 0.042 2370 0.625

The results above show that the quality of the cluster-
ing does affect the effectiveness of the probability assign-
ment module. This effect is not significant when the clusters
have higher accuracy. However, the quality of the probabil-
ity values further decreases as the accuracy of the clustering
decreases.

6 Case study on real data

In this section, we report the results of applying our frame-
work to a real-world dirty data source. In order to effectively
evaluate our framework, we need a dirty data source that con-
tains several possibly dirty attributes with duplicate clusters
of various sizes and characteristics. Many real-world dirty
data sources meet these requirements. Examples include the
bibliographic data available on DBLP, CiteSeer and
DBWorld, the clinical trial data available on ClinicalTri-
als.gov, shopping information on Yahoo! Shopping, and hotel
information from Yahoo! Travel [9]. For the experiments in
this section, we use the Cora dataset [39], which contains
computer science research papers integrated from several
sources. It has been used in several other duplicate detec-
tion projects [2,5,13,39] and we take advantage of previous
labelings of the tuples into clusters. To the best of our knowl-
edge, Cora is the only real-world dirty database freely avail-
able for which the ground truth is known, and that meets the
requirements for evaluation of this framework.

We use a version of Cora that is available in XML format,
and transform the data into four relational tables: the pub-
str table contains a single string attribute which is obtained
by concatenation of the title, venue and author attributes,
pubtitles which contains the titles of the publications,
pubauthors that contains the author names, and pubv-
enues that contains the venue information including name,
date, and volume number. The statistics of these tables are
shown in Table 4.
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Fig. 15 Maximum F1 score for Cora datasets
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Fig. 16 Accuracy of clustering algorithms on Cora dataset, a maximum F1 score, b maximum PCPr score

6.1 Similarity join results

Figure 15 shows the maximum F1 score across different
thresholds for all the similarity measures over the four tables.
The relative performance of the similarity measures differs
considerably for each of these tables. This is expected since
(1) the attributes have different characteristics such as length,
amount and type of errors, and (2) these tables are rela-
tively small, and failure of an algorithm on a small sub-
set the records can notably affect the average values of the
accuracy measures. However, it can be seen that those algo-
rithms that performed better in our experiments in Sect. 3 are
more robust across the four tables. For example, the weighted
Jaccard similarity measure performs reasonably well for all

Table 4 Statistics of the tables in Cora dataset

Dataset #rec. #clusters Avg. len. #words/rec.

pubstr 1, 878 185 118.22 17.76

pubtitles 1, 878 185 50.84 6.13

pubauthors 714 240 13.76 2.78

pubvenues 615 131 47.07 8.58

the four tables, although it is not the best measure for any of
them. Note that again due to the small size of these tables,
weighted measures do not perform as expected since the IDF
weights over a small collection do not reasonably reflect the
commonality of the tokens. We would not expect this to be
the case for larger real-world dirty data.

6.2 Clustering algorithms results

In order to compare the performance of clustering algorithms
on the datasets, we again compare the maximum value of the
F1 score and PCPr that the algorithms can achieve using
different thresholds. Figure 16 shows the results. All the
clustering algorithms perform better on the pubstr and
pubtitles tables. The reason for this is that for the pub-
authors table, our framework’s duplicate detection phase
(i.e., a string similarity join along with a clustering algorithm)
results in many false positives due to the existence of highly
similar (or exactly equal) author names that refer to differ-
ent real-world entities. The same is true for the pubvenues
table. As stated in Sect. 2, previous work has addressed this
problem by using more complex, iterative clustering algo-
rithms that can take advantage of additional co-occurrence
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information existing in the data. However, the relative high
quality of the clusters for pubstr table shows the effective-
ness of our framework in detection of duplicate publications
by a simple concatenation of all the attributes and without
the use of co-occurrence information (indeed collective res-
olution has been developed precisely for highly ambiguous
domains like author name).

If the same threshold is used for all the algorithms, CEN-
TER produces clusters of much higher quality when used
with a low threshold, while the trend for Partitioning is the
opposite. MERGE-CENTER is more robust to the value of
the threshold than both Partitioning and CENTER when the
same threshold is used. Figure 17 shows this fact for pub-
str table. Similar trends were observed in all other data-
sets.

The following table shows the effectiveness of the non-
disjoint algorithms for the pubstr table. Again, similar
trends were observed for the other tables.

MC ND ND-IB
θ = 0.2 θ1 = 0.1, θ2 = 0.3 θ1 = 0.1, θ2 = 0.3

Diff.(MC) Diff.(MC)

F1 0.789 0.756 −0.033 0.833 +0.043
PCPr 0.728 0.965 +0.238 0.952 +0.224
CPr 0.975 0.998 +0.022 0.984 +0.009
C./rec. 1.0 2.7 +1.7 1.8 +0.8

6.3 Probability assignment

The evaluation of the probability assignment algorithms for
this dataset is inherently a difficult task since the ground truth
is not known (only the cluster labels are known). It is hard
to determine the correct ordering of the records within each
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Fig. 17 PCPr score for different thresholds on pubstr table

cluster. However, we have performed a qualitative evaluation
of the results over the output probabilistic tables using simple
queries similar to the queries in the examples of Sect. 2.4.2.
Overall results are consistent with the results shown in Sect. 5.
Moreover, the results clearly show the advantage of the prob-
abilistic approach for management of duplicated data, as
opposed to cleaning the data upfront. As one example, we
used a query retrieving conference title, volume and other
information for conferences held in 1995. Over a cleaned
database (where we have kept the most probable tuple in each
cluster), the query results are less informative, sometimes
omitting potentially valuable information about a
conference that was contained in attribute values of lower
probability tuples. However, using consistent query answer-
ing techniques [2], queries over our probabilistic database
can report how much collective evidence there is (among all
the tuples no matter how dirty) for different values. Our sam-
ple SQL queries, along with their rewritings obtained using
the approach discussed in Sect. 2.4.2 [2] and a subset of their
results are available online at our project’s web page: http://
dblab.cs.toronto.edu/project/stringer/evaluation/

Also, several probabilistic tables created from synthetic
and real dirty databases using different thresholds and algo-
rithms are published on the above page. We hope that these
probabilistic databases can serve as a benchmark for eval-
uation of probabilistic data management techniques in the
future. Our future plan includes extending the real datasets by,
for example, hand labeling a subset of the clinical trials data
we have gathered in our LinkedCT4 project. This could pro-
vide probabilistic databases for management of duplicated
data in an important real-world domain.

7 Conclusion

We proposed a framework for managing potentially dupli-
cated data that leverages existing approximate join algorithms
together with probabilistic data management techniques. Our
approach consists of three phases: application of a (scal-
able) approximate join technique to identify the similarity
between pairs of records; clustering of records to identify sets
of records that are potential duplicates; and the assignment of
a probability value to each record in the clusters that reflects
the error in the record. We presented and benchmarked a set
of scalable algorithms for clustering records based on their
similarity scores and on their information content. We also
introduced and evaluated algorithms for probability assign-
ment.

The modularity of our framework makes it amenable for
a variety of data-cleaning tasks. For example, in domains

4 http://linkedct.org.
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where aggregate constraints for deduplication are known
[18], these constraints can replace our unsupervised cluster-
ing techniques, and our probability assignment methods can
still be used to create a probabilistic database for querying
and analysis.
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Chen Li for their detailed reviews, insights, and support for this work.
We also thank Mohammad Sadoghi and George Beskales for their help-
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Appendix A: A Similarity join evaluation:
precision/recall curves

Figures 18 and 19 show the precision, recall, and F1 values for
all measures described in Sect. 2, over the datasets we have
defined with mixed types of errors. For all measures except
HMM and BM25, the horizontal axis of the precision/recall
graph is the value of the threshold. For HMM and BM25, the
horizontal axis is the percentage of maximum value of the
threshold, since these measure do not return a score between
0 and 1.

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Fig. 18 Accuracy of similarity join using edit-similarity, Jaccard and Weighted Jaccard measures relative to the value of the threshold on different
datasets
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(a) (b) (c)

(a) (b) (c)
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Fig. 19 Accuracy of similarity join using measures from IR and hybrid measures relative to the value of the threshold on different datasets
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