The VLDB Journal (2009) 18:1219-1240
DOI 10.1007/s00778-009-0152-3

SPECIAL ISSUE PAPER

Scalable processing of snapshot and continuous nearest-neighbor
queries over one-dimensional uncertain data

Jinchuan Chen - Reynold Cheng -
Mohamed Mokbel - Chi-Yin Chow

Received: 15 September 2008 / Revised: 4 April 2009 / Accepted: 12 May 2009 / Published online: 10 July 2009

© Springer-Verlag 2009

Abstract In several emerging and important applications,
such as location-based services, sensor monitoring and bio-
logical databases, the values of the data items are inherently
imprecise. A useful query class for these data is the Probabi-
listic Nearest-Neighbor Query (PNN), which yields the IDs
of objects for being the closest neighbor of a query point,
together with the objects’ probability values. Previous stud-
ies showed that this query takes a long time to evaluate. To
address this problem, we propose the Constrained Nearest-
Neighbor Query (C-PNN), which returns the IDs of objects
whose probabilities are higher than some threshold, with a
given error bound in the answers. We show that the C-PNN
can be answered efficiently with verifiers. These are methods
that derive the lower and upper bounds of answer probabil-
ities, so that an object can be quickly decided on whether it
should be included in the answer. We design five verifiers,
which can be used on uncertain data with arbitrary probabil-
ity density functions. We further develop a partial evaluation
technique, so that a user can obtain some answers quickly,

J. Chen

Key Labs of Data Engineering and Knowledge Engineering,
MOE, Renmin University of China, Beijing,

People’s Republic of China

e-mail: csjcchen@gmail.com

R. Cheng (<)

Department of Computer Science, University of Hong Kong,
Pokfulam Road, Hong Kong, Hong Kong

e-mail: ckcheng @cs.hku.hk

M. Mokbel - C.-Y. Chow

Department of Computer Science and Engineering, University of
Minnesota-Twin Cities, 200 Union Street SE, Minneapolis,

MN 55455, USA

e-mail: mokbel @cs.umn.edu

C.-Y. Chow
e-mail: cchow @cs.umn.edu

without waiting for the whole query evaluation process to
be completed (which may incur a high response time). In
addition, we examine the maintenance of a long-standing, or
continuous C-PNN query. This query requires any update to
be applied to the result immediately, in order to reflect the
changes to the database values (e.g., due to the change of
the location of a moving object). We design an incremental
update method based on previous query answers, in order
to reduce the amount of I/O and CPU cost in maintaining
the correctness of the answers to such a query. Performance
evaluation on realistic datasets show that our methods are
capable of yielding timely and accurate results.

Keywords Uncertain data - Probabilistic nearest-neighbor
query - Continuous query - Partial evaluation - Incremental
evaluation

1 Introduction

In several important and emerging applications, the values
of the data items are inherently imprecise. As an example, a
habitat monitoring system employs sensors to acquire tem-
perature, humidity, and UV-light index values from the envi-
ronment. Due to the imperfection of these sensing devices,
the data obtained are noisy [1]. A similar situation happens
in the global-positioning system (GPS), where the location
values collected have some measurement error [2,3]. In bio-
metric databases, the attribute values of the feature vectors
stored are also not certain [4]. In some scenarios, data impre-
ciseness is introduced deliberately. In Location-Based Ser-
vices (LBS), for instance, the “dead-reckoning” approach is
often used, where each mobile device sends an update to
the system when its value has changed significantly. This
reduces the need for the mobile object to report its location

@ Springer

1220 J. Chen et al.
Fig. 1 Location and sensor A paf
uncertainty pdf (histogram)
distance (Gaussian)
threshold —
temp.
; 10°C 20°C >
location uncertainty uncertainty
(in database) region |— region

change. Here, the location is modeled in the database as a
range of possible values [2,5]. Recently, the idea of injecting
location uncertainty to a user’s location in an LBS has been
proposed [6,7], in order to protect a user’s location privacy.

To provide high-quality query answers, it is important
to capture and manage data uncertainty carefully. A well-
studied model assumes that the actual data value is located
within a closed area, known as the uncertainty region. In this
region, a probability density function (pdf) of the value is
defined, and the integration of the pdf inside the region is
equal to one [2-5]. The exact form of the pdf is application-
dependent. For example, in a sensor-monitoring system, we
can collect a number of temperature-value samples over a
week, model these observations as a Gaussian pdf, and com-
pute the mean and variance values of these samples.

Gaussian distributions are also used to model the mea-
surement error of vehicles’ locations in moving object
environments [3], and also the feature vectors in biometric
databases [4].

Figure 1b shows the histogram of temperature values in a
geographical area observed in a week. The PDF, represented
as a histogram, is an arbitrary distribution between 10°C and
20°C. In this paper, we assume that a PDF is represented
as a histogram. Also, we focus on uncertain objects in the
one-dimensional space (i.e., a PDF defined inside a closed
interval). However, our techniques are generally applicable
to multi-dimensional data.

An important query for uncertain objects is the probabi-
listic nearest neighbor query (PNN in short) [5]. This query
returns the non-zero probability (called qualification prob-
ability) of each object for being the nearest neighbor of a
given point g. The qualification probability augmented with
each object allows us to place confidence onto the answers.
Fig. 2 illustrates an example of PNN on four uncertain objects
(A, B, C and D). The query point ¢ and the qualification
probability of each object are also shown.

A PNN could be used in a scientific application, where
sensors are deployed to collect the temperature values in a
natural habitat. For data analysis and clustering purposes,
a PNN can be executed to find out the district(s) whose

@ Springer

temperature values is (are) the closest to a given centroid.
Another example is to find the IDs of sensor(s) that yield
the minimum or maximum wind-speed from a given set of
sensors [1,5]. A minimum (maximum) query is essentially a
special case of PNN, since it can be characterized as a PNN
by setting g to a value of —oo (00).

Although PNN is useful, its evaluation is not trivial. Par-
ticularly, since the exact value of a data item is not known,
one needs to consider the item’s possible values in its uncer-
tainty region. Moreover, an object’s qualification probability
depends not just on its own value, but also the relative val-
ues of other objects. If the uncertainty regions of the objects
overlap, then their PDFs must be considered in order to derive
their corresponding probabilities. In Fig. 2, for instance, eval-
uating A’s qualification probability (20%) requires us to con-
sider the PDFs of the other three objects, since each of them
has some chance of overtaking A as the nearest neighbor
of g. Existing solutions either perform numerical integration
on PDFs [1,5,8] or use Monte—Carlo sampling methods [9].
These solutions can be quite costly. Also, the accuracy of
the solution depends on the precision of the integration or
the number of samples used. It is worth mention that the
indexing solution proposed in [8] successfully prunes away
a large fraction of objects (with zero qualification probabili-
ties). Nevertheless, their experiments show that the time for
evaluating the probabilities for the remaining objects is still

}Fj D (29%)
’Q‘ C (10%)

R e R ©)

B (41%)

A (20%) }

Fig. 2 Probabilistic NN query (PNN)

Scalable processing of snapshot and continuous nearest-neighbor queries

1221

expensive. As a result, the user has to wait for a long time
before obtaining the query answer from the system.

1.1 Probabilistic verifiers

Although calculating qualification probabilities is expensive,
aquery user may not always be interested in the precise prob-
ability values. A user may only require answers with confi-
dence that are higher than some fixed value. In Fig. 2, for
instance, if an answer with probability higher than 30% is
required, then object B (41%) would be the only answer. If a
user can tolerate with some approximation in the result (e.g.,
he allows an object’s actual probability to be 2% less than the
30% threshold), then object D (29%) can be another answer.

Here the threshold (30%) and tolerance (2%) are require-
ments or constraints imposed on a PNN. We denote this
variant of PNN as the constrained probabilistic nearest-
neighbor query (or C-PNN in short). A C-PNN allows the
user to control the desired confidence and quality in the query.
The answers returned, which consist of less information than
PNN, may also be easier to understand. In Fig. 2, the C-PNN
only includes objects (B,D) in its result, as opposed to the
PNN, which returns the probabilities of all the four objects.

The C-PNN has another advantage: its answers can be
more efficiently evaluated. In particular, we have developed
probabilistic verifiers (or verifiers in short), which can assist
in making decisions on whether an object is included in the
final answer, without computing the exact probability val-
ues. The verifiers derive a bound of qualification probabil-
ities with algebraic operations, and test the bound with the
threshold and tolerance constraints specified in the C-PNN.
For example, one of our verifiers may use the objects’ uncer-
tainty regions to deduce that the probability of object A in
Fig. 2 is less than 25%. If the threshold is 30% and the tol-
erance is 2%, then A must not be the answer, even though
we do not know about A’s exact probability. In this paper,
we have developed two classes of verifiers. The first group of
verifiers (called subregion-based verifiers) utilize an object’s
PDF information to derive the lower and upper probability
bounds. Another type of verifiers (called result-based veri-
fiers) makes use of the information produced by the subre-
gion-based verifiers. All these verifiers can handle arbitrary
PDFs. We also propose a framework for stringing these ver-
ifiers together, in order to provide an efficient solution. We
will also explain the data structure required for this solution.
We remarked that even if an object cannot be decided by the
verifiers (and so that object’s qualification probability has
to be evaluated), the knowledge generated by the verifiers
can still facilitate the probability computation process. We
show experimentally that the price paid for using verifiers is
justified by the lower cost of refinement. In some cases, the
evaluation time of the C-PNN is an order of magnitude faster
with the use of verifiers.

The C-PNN solution requires the knowledge of distance
probability function information of the objects from g.
Obtaining these values can be expensive. To save these costs,
we devise a method that derives these function values only
when they are needed. We also extend the C-PNN solution
to handle the situation when the main memory cannot hold
all the objects that are not pruned. In particular, we propose
a simple extension to support efficient disk-based access.

1.2 Partial evaluation and incremental update

The second problem we study is related to the “timeliness”
of reporting PNN and C-PNN query answers. Since these
queries may take a long time to complete, it is desirable for
part of the query answers to be visible to the user before
the completion of the whole query computation process. For
instance, a certain C-PNN query yields 100 objects as its
answer. The traditional option is to wait for the probabilis-
tic query to complete (which may need a lot of time) and
return 100 objects together to the user. The other alterna-
tive (which we call partial evaluation) returns the object to
the user once it is confirmed to be the answer. The latter
method could be more preferable since the user can see his
results more quickly without waiting for the whole query to
be completed. In other words, this technique can shorten the
response time of a query.

Partial evaluation is also useful for the computation of con-
tinuous queries, which reside in the system for a substantial
amount of time.! A continuous query is useful in applications
like intrusion detection, road-traffic control, and advertise-
ment of messages to customers in a shopping mall [10]. For
these queries, any update to the database can invalidate the
previous query answers, requiring the query to be re-evalu-
ated. Waiting for a PNN/C-PNN query to finish may not be a
very wise option, since an update to the object may arrive at
the system during query computation. Thus, the query needs
to be recomputed immediately after its evaluation on the old
data values has just been completed. Partial evaluation allows
the user to see fragments of answers during query compu-
tation; upon receiving any data update, the user can decide
whether to finish or restart the query. In this paper, we show
how partial evaluation can be implemented in the probabilis-
tic verifier framework. We propose two methods, which differ
in their ways of evaluating the objects. We also propose two
metrics to measure the responsiveness of these queries.

As we have mentioned, a continuous query needs to have
its results recomputed in order to reflect the database changes.
Recomputing the whole query can be expensive (in terms
of both I/O and computation), especially for a continuous
C-PNN. We tackle this problem by two means. First, we pro-
pose an incremental evaluation technique, which reuses the

1 'We call a query which is only executed once the “snapshot query”.

@ Springer

1222

J. Chen et al.

query results before update arrival, in order to reduce the I/O
overhead in executing the query. Second, to reduce the com-
putation cost, we observe that when an object gets updated,
the changes in probabilities of other objects in the query
answer are bounded. For example, in Fig. 2, if the qualifica-
tion probability of C increases from 10 to 20%, we show that
the probabilities of other objects cannot decrease by more
than 10%. For example, B’s probability is at least 31% after
the update of C. If the probability threshold is 0.3, then B
must still satisfy the query after this update, and so we do not
need to change the answer. Essentially, we use the change
of C to derive the knowledge about B, without recomputing
B’s actual probability. We call this a lazy approach, since
an object can be determined on whether it still satisfies the
query without going through the whole verification/refine-
ment process. We illustrate how this approach can efficiently
handle insertion, deletion, and updates of objects. Our exper-
iments indeed show that this method significantly reduces the
chance that a C-PNN has to be recomputed.

To the best of our knowledge, there are no past studies on
partial evaluation techniques on probabilistic queries. We are
also not aware of any work on efficient update algorithms for
continuous probabilistic queries. Our contributions are sum-
marized as follows:

Introduce the notion of C-PNN;
Design five different verifiers for efficient evaluation of
C-PNN;

e Study partial evaluation techniques for shortening query
response time;

e Present an on-demand method for computing distance
probability functions;

e Extendthe query evaluation method to support disk-based
access;

e Develop efficient approaches for reducing I/O and com-
putation of continuous C-PNN; and

e Perform experimental evaluations on both real and syn-
thetic datasets.

The rest of this paper is organized as follows. We discuss
the related work in Sect. 2. In Sect. 3, we present the formal
semantics of the C-PNN, and its basic evaluation method.
We then present the details of the probabilistic verifiers and
partial evaluation in Sect. 4. The details of continuous query
evaluation are presented in Sect. 5. We describe the experi-
mental results in Sect. 6, and conclude the paper in Sect. 7.

2 Related work
Uncertain databases Recently, database systems for man-

aging uncertainty have been proposed [1, 1 1-14]. Two major
types of uncertainty are assumed in these works: tuple- and

@ Springer

attribute-uncertainty. Tuple-uncertainty refers to the
probability that a given tuple is part of a relation [11, 15-17].
Attribute-uncertainty generally represents the inexactness in
the attribute value as a range of possible values and a PDF
bounded in the range [2-5,18]. The imprecise data model
studied here belongs to the attribute uncertainty.

An R-tree-based solution for PNN over attribute uncer-
tainty has been presented in [8]. The main idea is to prune
tuples with zero probabilities, using the fact that these tuples’
uncertainty regions must not overlap with that of a tuple
whose maximum distance from the query point is the mini-
mum in the database [5,8] discuss the evaluation of qualifi-
cation probabilities by transforming each uncertainty region
into two functions: PDF and CDF of an object’s distance
from the query point. They show how this conversion can
be done for 1D uncertainty (intervals) and 2D uncertainty
(circle and line). The probabilities are then derived by eval-
uating an integral of an expression involving distance PDFs
and CDFs from multiple objects. While our solution also uses
distance PDFs and CDFs, it avoids a significant number of
integration operations with the aid of verifiers. This paper is
based on our previous work in [19], where the C-PNN query
is proposed and evaluated by using a verification-refinement
framework. This paper is not only a detailed version of [19],
but also contains several new issues such as the continuous
C-PNN query, partial evaluation, and several new verifiers.

Another method for evaluating a PNN is proposed in [9],
where each object is represented as a set of points (sam-
pled from the object’s PDF). In this method, the samples of
each object are grouped into clusters using the k-means algo-
rithm. Then, the qualification probabilities of the objects are
computed by comparing the minimum and maximum dis-
tances of the samples (clusters) from the query point. Com-
pared with that work, our solution is tailored for a constrained
version of PNN, where threshold and tolerance conditions
are used to avoid computation of exact probabilities. Also,
we do not need the additional work of sampling the PDF
into points. Notice that this sampling process may introduce
another source of error if there are not enough samples. We
will experimentally evaluate and compare the method in [9]
with ours in Sect. 6. In [20], a method for evaluating the prob-
ability that an object (represented as a histogram) is before
another object in the time domain is presented. Their result
could be adapted to answer a PNN that involves two objects,
by viewing the time domain as the space domain. Our solu-
tion, on the other hand, addresses the PNN problem involving
two or more objects.

Some related works about PNN can also be found in [21,
22], where the existential probabilities are used to derive
lower and upper bounds and pruning for nearest-neighbors,
and [23], where the authors address how to efficiently retrieve
data objects that minimize the aggregate distance to a query
set.

Scalable processing of snapshot and continuous nearest-neighbor queries

1223

Besides PNN, probabilistic top-k queries (i.e., queries that
return k tuples with the highest probabilities) have been con-
sidered for tuple uncertainty [11,15-17]. These works con-
sidered issues like efficient query evaluation and query plans.
The evaluation of k-NN queries for attribute uncertainty have
been considered in [24]. Ljosa et al. [18] investigated the
problem of evaluating k-NN queries over multi-dimensional
uncertain data, where the query answers are ranked accord-
ing to expected Manhattan distance from the query point.
Other probabilistic queries studied include range queries [25]
and location-dependent queries [6]. The issues of uncertainty
have also been considered in similarity matching in biometric
databases [4].

Continuous query evaluation Recently, there are plenty
of works on continuous queries, which can be used in numer-
ous applications, including intrusion detection, road-traffic
control, and advertisement of messages to customers in some
confined area (e.g., a shopping mall). Since the answers to
a continuous query may be affected by data updates, they
have to be recomputed periodically [10,26]. The handling
of frequent data updates and continuous queries place heavy
burden on the system. Thus, a number of approaches have
been proposed to address these problems. In particular, effi-
cient indexing schemes have been proposed that can adapt to
the high frequency of location updates, including [10,27,26].
Xiong and Mokbel [28] developed an efficient incremental
algorithm for k-nearest-neighbor queries. Its main idea is to
use the fact that the newest query result can be obtained by
applying the location update on the original result by using
an “incremental algorithm”. This method has been proven
to be more effective than re-evaluating the whole query. To
our best knowledge, there is no prior attempts for saving
recomputation costs due to data update for continuous prob-
abilistic nearest-neighbor queries. In this paper, we propose
a lazy update approach to reduce the chance of query recom-
putation. We also study how probabilistic query answers can
be partially returned to the user, and this has also not been
investigated before.

3 Snapshot and continuous PNN queries

Let us now present the semantics of the snapshot C-PNN
and its continuous counterpart (Sect. 3.1). We then present
the solution framework in Sect. 3.2.

3.1 C-PNN and CC-PNN

Let X be a set of uncertain objects in 1D space (i.e., an arbi-
trary PDF defined inside a closed interval), and X; be the
ith object of X (wherei = 1,2, ..., |X|). Essentially, each
object X; has an arbitrary PDF defined inside a closed region,
as illustrated in Fig. 1. At each discrete time instant, a set S

of objects (where S € X) reports its new information (e.g.,
a new region and a new PDF) to the system. In a LBS, for
example, an update may be generated and reported by the
moving object and reported to the system.

Next, suppose that ¢ € N is the query point, and p; €
[0, 1] is the probability (i.e., qualification probability) that
X is the nearest neighbor of ¢ at time . We call p;.I € [0, 1]
and p;.u € [0, 1] the lower and upper probability bound of
pi respectively, such that p;.l < p;.u, and p; € [p;.l, pi.ul.
In essence, [p;.l, p;.u] is the range of possible values of p;,
and p;.u — p;.l is the error in estimating the actual value of
pi. We denote the range [p;.l, p;.u] as a probability bound
of Di-

Definition 1 A Constrained probabilistic nearest neigh-
bor query (C-PNN) returns a set {X;|i = 1,2,...,|X]}
such that p; satisfies both of the following conditions:

e piu>P~P
e pil>Porpiu—pil <A

where P € (0, 1]and A € [0, 1].

Here P is called the threshold parameter. An object is
allowed to be returned as an answer if its qualification prob-
ability is not less than P. Another parameter, called folerance
(A), limits the amount of error allowed in the estimation of
qualification probability p;.

Figure 3 illustrates the semantics of C-PNN. The prob-
ability bound [p;.l, p;.u] of some object X; (shaded) is
shown in four scenarios. Let us assume that the C-PNN has a
threshold P = 0.8 and tolerance A = 0.15. Case (a) shows
that the actual qualification probability p; of some object
X; (i.e., pj) is within a closed bound of [p;.[, p;.u] =
[0.8, 0.96]. Since p; mustnot be smaller than P, according to
Definition 1, X ; is the answer to this C-PNN. In (b), X is
also a valid answer since the upper bound of p; (i.e., p;.u)is
equal to 0.85 and is larger than P. Moreover, the error of esti-
mating p; (i.e., 0.85-0.75), being 0.1, is less than A = 0.15.

(c) (d)

4

§0.7|i| §0.65|_i_|

Fig. 3 C-PNN with P = 0.8 and A = 0.15

@ Springer

1224

J. Chen et al.

Table 1 Symbols for C-PNN and CC-PNN

Symbol Meaning

X; Uncertain objecti of aset X (i = 1,2, ..., |X])
q Query point

pi Prob. that X; is the NN of ¢ (qualification prob.)
[pi.l, pi.u] Lower and upper probability bounds

P Threshold

A Tolerance

Thus the two conditions of Definition 1 are satisfied. For
case (c), X; cannot be the answer, since the upper bound of
pj (.e., 0.78) is less than P, and so the first condition of
Definition 1 is violated. In (d), although object X ; satisfies
the first requirement (p;.u = 0.85 > P), the second condi-
tion is not met. According to Definition 1, it is not an answer
to the C-PNN. However, if the probability bounds could later
be “shrunken” (e.g., by verifiers), then the conditions can be
checked again. For instance, if p;.[is later updated to 0.81,
then X ; will be the answer.

We also study the continuous C-PNN query (or CC-PNN
in short), which resides in the system for an extensive amount
of time. Whenever an update is received by the system, this
query may have to be recomputed, in order to reflect the
change in the database. Formally, the CC-PNN is defined as
follows:

Definition 2 Given a query point g, a Continuous con-
strained probabilistic nearest neighbor query (CC-PNN)
returns X(¢) = {X;|i = 1,2,...,|X]}, where X(¢) is the
result of the C-PNN query for g evaluated over X at time
instant 7.

Table 1 summarizes the symbols used in the definition of
(snapshot) C-PNN and CC-PNN.

3.2 Solution overview

Now let us outline our approach for answering C-PNN. As
shown in Fig. 4, our solution consists of three phases. The
first step is to prune or filter objects that must not be the
nearest neighbor of ¢, using an R-tree based solution [8]. The
objects with non-zero qualification probabilities (shaded) are
then passed to the verification phase, where verifiers are used
to decide if an object satisfies the C-PNN. In this figure, two
objects have been determined in this stage. Objects that still
cannot be determined are passed to the refinement phase,
where the exact probability values are computed. We can see
that the object with 0.4 probability is retained in the answer,
while the other object (with 0.1 chance) is excluded.

In this paper, we assume that objects that are not pruned
by the filtering phase can be stored in the main memory.

@ Springer

Remove tuples that
cannotaffect

qualification probabilities
of other tuples

Verification CEI—H 5 verifiers for identifying
F— X tuples that satisfy or fail
] C-PNN
Vi

Calculate qualification

——] X probabilities of
b——[1 X remaining tuples
v

Fig. 4 Solution framework of C-PNN

As our experiments and previous studies (e.g., [5,8]) show,
few (less than 100) objects remain after filtering. It is also
worth mention that some applications (e.g., LBS) assume
that the data about the moving objects can be stored in the
main memory [29]. We focus on the verification and refine-
ment issues of C-PNN. In particular, we present five verifiers,
which utilize an object’s uncertainty information in different
ways, in order to derive lower/upper bounds of qualifica-
tion probabilities in a cost-effective manner. In the next sec-
tion, we will examine the principles of these verifiers, and
how they are integrated in our solution. We will also discuss
how the knowledge derived by the verifiers can facilitate the
refinement phase. We then study the adaptation of the ver-
ifier framework for yielding partial C-PNN query answers,
in order to improve query response time. We also propose
useful metrics to quantify query responsiveness. In Sect. 5,
we study the problem of updating CC-PNN queries due to
update arrivals. By using previous query results, we propose
an incremental update method for reducing the I/O required
in the filtering phase. We also present a lazy update method,
so that the verification and refinement effort of re-evaluat-
ing a CC-PNN can be reduced without violating tolerance
requirements.

4 Verification and refinement

Let us now have an overview of the verification phase for
evaluating the C-PNN. As we have discussed, uncertain
objects that cannot be filtered (shaded in Fig. 4) require fur-
ther processing. This set of unpruned objects, called the can-
didate set (or C in short), are passed to probabilistic verifi-
ers, which report a list of probability bounds of these objects.
This list is sent to the classifier, which labels an object by
checking its probability bounds against the definition of the
C-PNN. In particular, an object is marked satisfy if it quali-
fies as an answer (e.g., Fig. 3a, b). It is labeled fail if it cannot

Scalable processing of snapshot and continuous nearest-neighbor queries

1225

Candidate set (from filtering)

3

Subregion
Construction (Sec 4.1)

Subregion- @

based
Verifiers @

(Sec 4.2-4.3) @

U-SR

Result-based @
i Verifiers

(Sec 4.4) @

Incremental
Refinement (Sec 4.5)

Fig. 5 The verification framework

satisfy the C-PNN (Fig. 3c). Otherwise, the object is marked
unknown (Fig. 3d). This labeling process can be done easily
by checking an object’s probability bounds against the two
conditions stated in Definition 1.

Figure 5 shows the five verifiers (in shaded boxes), as well
as the classifier. During initialization, all objects in the can-
didate set are labeled unknown, and their probability bounds
are set to [0, 1]. Other information like the distance PDF and
CDF is also precomputed for the candidate set objects. The
candidate set is then passed to the first verifier (RS) for pro-
cessing. The RS produces the newly computed probability
bounds for the objects in the candidate sets, and sends this
list to the classifier to label the objects. Any objects with the
label unknown are transferred to the next verifier (L-SR) for
another round of verification. The process goes on (with the
order of execution of verifiers numbered in Fig. 5) until all
the objects are either labeled satisfy or fail. When this hap-
pens, all the objects marked satisfy are returned to the user,
and the query is finished. Thus, it is not always necessary for
all verifiers to be executed.

Notice that a verifier only adjusts the probability bound
of an unknown object if this new bound is smaller than the
one previously computed. The subregion-based verifiers are
arranged in the order of their running time, so that if a low-
cost verifier (e.g., the RS verifier) can successfully determine
all the objects, there is no need to execute a more costly veri-
fier (e.g., the L-SR verifier). In the end of verification, objects
that are still labeled unknown are passed to the refinement
stage for computing their exact probabilities.

From Fig. 5, we can also see that the verifiers are classified
into subregion-based and result-based. The main difference
between these two classes of verifiers lies in the way they
derive probability bounds. Subregion-based verifiers uses the
information of subregions to compute the probability bounds.
A subregion is essentially a partition of the space derived
from the uncertainty regions of the candidate set objects.
This information is used by the RS, L-SR and U-SR verifi-
ers. On the other hand, the result-based verifiers (i.e., U-PB
and L-PB) uses results derived by the subregion-based veri-
fiers to infer the bounds. For example, the U-PB verifier uses
the lower-bound information derived by the L-SR verifier. As
we will explain, a subregion-based verifier is more powerful
than a result-based verifier, but are also more costly to use.

The rest of this section is organized as follows. Sect. 4.1
discusses how subregions are produced. We then present the
RS-verifier in Sect. 4.2, followed by the L-SR and U-SR
verifiers in Sect. 4.3. In Sect. 4.4 we examine the result-
based verifiers. We then describe the “incremental refine-
ment” method, which uses the verifiers’ information to
improve the refinement process, in Sect. 4.5. We also discuss
how to extend our solution to handle partial query evaluation
and other issues in Sect. 4.6.

4.1 Computing subregion probabilities

The initialization phase in Fig. 5 performs two tasks: (1) com-
putes distance PDF and CDF for each object in the candidate
set, and (2) derives subregion probabilities.

We start with the derivation of distance PDF and CDF. Let
R; € N be the absolute distance of an uncertain object X;
from ¢g. That is, R; = |X; — ¢|. We assume that R; takes on
a value r € N. Then, the distance PDF and CDF of X; are
defined as follows [5,8]:

Definition 3 Given anuncertainobject X;, its distance PDF,
denoted by d; (r), is a PDF of R;; its distance CDF, denoted
by D;(r), is a CDF of R;.

Figure 6a illustrates an uncertain object X1, which has
a uniform PDF with a value of ﬁ in an uncertainty region
[/, u]. Two query points (g1 and g») are also shown. Figure 6b
shows the corresponding distance PDF (shaded) of R; =
| X1 — q1l, with g1 as the query point. Essentially, we derive
the PDF of X’s distance from ¢, which ranges from 0 to
u — q1.In [0, g1 —], the distance PDF is obtained by sum-
ming up the PDF on both sides of g1, which equals to %
The distance PDF in the range [q1 — [, u — q1] is simply
ﬁ. Figure 6¢ shows the distance PDF for query point ¢».
For both queries, we draw the distance CDF in solid lines.
Notice that the distance CDF can be found by integrating the
corresponding distance PDF. From Fig. 6, we observe that
the distance PDF and CDF for the same uncertain object vary,
and depend on the position of the query point.

@ Springer

1226

J. Chen et al.

Fig. 6 Distance PDF and CDF

—

d107“

<
|
~

‘ Pk
N

A pdf

A A5

0

l / ! u
qz q1

(a) Uncertain object (uniform pdf)

A Dy(r) dq(r) A A Dy(r)
1 1

<
|
~

b
u—I[

pdfofX; distance pdf (d,(r))

Z. .
(@

Fig. 7 Histogram PDF

(b)

We represent the distance PDF of each uncertain object
as a histogram. Note that this distance PDF/CDF can con-
ceptually be found by first decomposing the histogram into
a number of “histogram bars”, where the PDF in the range
of each bar is the same. We can then compute the distance
PDF/CDF of each bar using the methods (for uniform PDF)
described in the previous paragraph, and combine the results
to yield the distance PDF/CDF for the histogram. Figure 7a
illustrates the histogram PDF of an uncertain object, and its
corresponding distance PDF (in (b)). The corresponding dis-
tance CDF is a piecewise linear function. In practice, we store
a histogram as an array of the histogram bars’ end-points and
their corresponding PDFs. Then, given a query g, we split
the histogram into two halves (as shown in the two shaded
parts in Fig. 7). A merge sort is then performed on these
end-points, during which their distance PDFs and CDFs are
computed. If there are a total of 4 end-points in a histogram
PDF, the process of generating distance PDFs and CDFs can
be done in O (h) time.

@ Springer

ns=l-q;
je— v —

(c) 9=9:

Although we focus on 1D uncertainty, we only need dis-
tance PDFs and CDFs. In fact, our solution can conceptually
be used in multi-dimensional space, as long as the function
for converting an uncertainty PDF into distance PDF/CDF is
provided. For example, the problem of generating distance
PDF in 2D space was studied in [8], where the authors pro-
posed to derive the exact form of the distance CDF of an
object by calculating the probability that the distance between
the object and the query point is less than a given value. The
issue of efficiently converting multi-dimensional PDF into
distance PDF/CDF is left for future study. Next, we describe
the definitions of near and far points of R;, as defined in
[5,8]:

Definition 4 A near point of R;, denoted by n;, is the min-
imum value of R;. A far point of R;, denoted by f;, is the
maximum value of R;.

We use U; to denote the interval [n;, f;]. Figure 6b shows
that when ¢ is the query point, ny = 0, fi = u — qi,
and Uy = [0, u — ¢q1]. When ¢ is the query point, Uj =
[l — g2, u — g2] (Fig. 6¢). We also let frin and fmax be the
minimum and maximum values of all the far points defined
for the candidate set objects. We assume that the distance
PDF of X; has a non-zero value at any point in U;.
Subregion probabilities. Upon generating the distance PDFs
and CDFs of the candidate set objects, the next step is to gen-
erate subregions. Let us first sort these objects in the ascend-
ing order of their near points. We also rename the objects
as X1, X,..., X|c|, where n; < nj iff i < j. Figure 8a
illustrates three distance PDFs with respect to a query point
q, presented in the ascending order of their near points. The

Scalable processing of snapshot and continuous nearest-neighbor queries

1227

(a)
| | |
| S; S S S Ss |
| | | | | I
| I |
|
I | " 04 | 02 5
| | 03 ———1 o1 :
| I R; i —
| | |]
| | | |
| | | | | I
[q] i 03| gy 10t N ﬁ‘
| R, lr—1 |
| | |
S s S
! I R B . |
1" i | 1 | I fi
L 02 02 02
! | q I
R = : T = T T =) }
| | | | |
C) @

Fig. 8 Illustrating the distance PDFs and subregion probabilities

number above each range indicates the probability that an
uncertain object is at that range of distance from g.

In Fig. 8a, the circled values are called end-points. These
end-points include all the near points (e.g., e1, e and e3), the
minimum and the maximum of far points (e.g., es and eg),
and the point at which the distance PDF changes (e.g., e4).
Notice that if the probability of an object for being the nearest
neighbor of ¢ does not change when its distance from g is
within an interval, no end-points are needed to further split
this interval. Hence no end points are defined within (eq, e2),
because the qualification probability of X; must always be
equal to 1 when R; is inside this range. In the range (es, ¢g),
as we will explain in Sect. 4.2, all objects have zero chance to
be the nearest neighbor of ¢ if the distance PDF is located in
this range. Hence, no end-points are needed inside (es, eg).
We use ¢ to denote the jth end-point, where j > 1 and
ej < eji1. Moreover, e] = nj.

The adjacent pairs of end-points form the boundaries of
a subregion. We label each subregion as S;, where S is the
interval [e;, ¢j41]. Figure 8a shows five subregions, where
S1 = [e1, e2], S2 = [e2, e3], and so on. The probability that
R; islocatedin S is called the subregion probability, denoted
by s;;. Figure 8a shows thats), = 0.3, 511 = 0.14+0.2 = 0.3,
and 531 = 0.

For each subregion §; of an object X;, we evaluate the
subregion probability s;;, as well as the distance CDF of §;’s
lower end-point (i.e., D; (e;)). Figure 8b illustrates these pairs
of values extracted from the example in (a). For example, for
R3 in Ss, the pairs 535 = 0.3 and D3(e5) = 0.7 are shown.
These number pairs help the verifiers to develop the probabil-
ity bounds. Note that given a subregion S, it is possible that
sij = 0, for every object X; (due to the fact that uncertainty
PDF of X; may be zero at some points). This subregion §;
can be safely removed because the qualification probability
of each object in §; must be equal to zero. In the sequel, we
assume that every subregion must have at least one object
with non-zero subregion probabilities. Table 2 presents the
symbols used in our solution.

(b)

]
S; S 1S Sy Ss

I
|
|
N o)
I | |
| | |
—:—l 0.3,0 H—[03,03 H 0.4,0.6 |
i I |
I | | Rightmost
[R 1 030 k{0203 {0105 02,06 f-{0208]
} | |
| |
| |

Table 2 Symbols used by verifiers

Symbol Meaning

C {Xi € X|p;i > 0} (candidate set)

R; IXi —ql

d;i(r) PDF of R; (distance PDF)

D;(r) CDF of R; (distance CDF)

n;, fi Near and far points of distance pdf

U; The interval [n;, f;]

fimins fmax min. and max. of far points

ex The kth end point

S The jth subregion, where S; = [e;, e; 1]
M Total no. of subregions

cj No. of objects with non-zero subregion prob. in S
Sij Pr(R; €)

qij Qualification prob. of X;, given R; € S
lgij.l, qij-ul Lower and upper bounds of g;;

Next, we examine how verifiers use subregion informa-
tion, in Sects. 4.2 and 4.3.

4.2 The rightmost-subregion verifier

The rightmost-subregion (or RS) verifier uses the infor-
mation in the “rightmost” subregion. In Fig. 8b, Ss is the
rightmost subregion. If we let M > 2 be the number of sub-
regions for a given candidate set, then the following specifies
an object’s upper probability bound:

Lemma 1 The upper probability bound, p;.u, is at most
1 — s;p, where s;p is the probability that R; is in Sy.

The subregion Sy is the rightmost subregion. In Fig. 8b,
M = 5. The upper bound of the qualification probability
of object X1, according to Lemma 1, is at most 1 — sy5, or
1-02=0.38.

@ Springer

1228

J. Chen et al.

To understand this lemma, notice that any object with dis-
tance larger than fin cannot be the nearest neighbor of g.
This is because fmin is the minimum of the far points of the
candidate set objects. Thus, there exists an object X such
that Xy’s far point is equal to finin, and that X is closer to
g than any objects whose distances are larger than fi,. If
we also know the probability that an object is at a distance of
more than fn, from g, then its upper probability bound can
be deduced. For example, Fig. 8a shows that the distance of
X1 fromgq (i.e., R1) has a 0.2 chance of being more than fp.
Thus, X is not the nearest neighbor of g with a probability
of at least 0.2. Equivalently, the upper probability bound of
X1, 1.e., p1.u,is 1 — 0.2 = 0.8. Note that 0.2 is exactly the
probability that R lies in the rightmost subregion Ss, i.e.,
s15, and thus pj.u is equal to 1 — sy5. This result can be
generalized for any object in the candidate set, as shown in
Lemma 1.

Notice that the RS verifier only handles the objects’ upper
probability bounds. To improve the lower probability bound,
we need the L-SR verifier, as described next.

4.3 The lower- and upper-subregion verifiers

The lower-subregion (L-SR) and upper-subregion (U-SR)
verifiers use subregion probabilities to derive the objects’
probability bounds. For each subregion the L-SR (U-SR) ver-
ifier computes the lower (upper) probability bound of each
object. 2

We define the term subregion qualification probability (g; ;
in short), which is the chance that X; is the nearest neigh-
bor of g, given that its distance from g, i.e., R;, is inside
subregion ;. We also denote the lower bound of the subre-
gion qualification probability as g;;.l. Our goal is to derive
qij.l for object X; in subregion S;. Then, the lower proba-
bility bound of X;, i.e., p;.l, is evaluated. Suppose there are
cj(cj = 1) objects with non-zero subregion probabilities in
S;. For example, ¢3 = 3 in Fig. 8a, where all three objects
have non-zero subregion probabilities in S3. The following
lemma is used by the L-SR verifier to compute g;;./.

Lemma 2 Given an object X; € C, ife; < R; < ejq
(G=12,....,M —1), then

gijl = L H

c:
T UpnS j £ 0k #i

1
+ (1 - —) [T «-Diesy ()

C,' X
’ UkNSj DNk #i

(I = D(ej))

Lemma 2 calculates ¢;;./ for object X; by using the dis-
tance cdfs of all objects with non-zero subregion probabilities

2 The L-SR verifier presented here achieves a tighter lower bound than
that presented in [19]. We will also compare them experimentally.

@ Springer

in S;. We will prove this lemma in Sect. 4.3.1. To illustrate

the lemma, Fig. 8a shows that ¢g11./ (for X in subregion S;)

is equal to 1, since ¢; = 1. On the other hand, ¢»3./ (for X;

in §3) is =20U0=0 4 (1 — 1)1 —0.3)(1 - 0.6), 0r 0.35.
Next, we define a real constant Y j» where

vi= [] (1—Due) @)
UkNS 0
Then, Eq. 1 can be rewritten as:
gijl = ——2L——+ (1 - —) — L
cj(1 — Di(ej)) cj) 1 —=Di(ej+1)
By computing Y; first, the L-SR can use Eq. 3 to compute
qij -l easily for each object in the same subregion S ;.

After the values of ¢g;;./ have been obtained, the lower
probability bound (p;.l) of object X; can be evaluated by:

3)

M—1
pil = sij-qijl “
j=1

The product s;; - g;;./ is the minimum qualification probabil-
ity of X; in subregion s;;, and Eq. 4 is the sum of this product
over the subregions. Note that the rightmost subregion (S/)
is notincluded, since the probability of any object in Sy must
be zero.

The U-SR verifier uses Lemma 3 to evaluate the upper
subregion probability bound (g;;.u) of object X; in subre-
gion §;:

Lemma 3 Given an object X; € C, ife; < R < eji1
(G=12,....,.M — 1), then

1 ifj=1
giju =1 3 v zomnzi (L= Di(eje1) 5)
+ s, 2onnsi (1= Dile)))) ifj>1
Similar to L-SR, Eq. 5 can be simplified to:
1 ifj=1
= [%(1—;f(ej) + l—DYij(JreLJrl)) ifj>1 ©

where Y; and Y1 are given by Eq. 2. Thus, if the Y;’s are
known, we can conveniently compute g;;.u with Eq. 6. The
upper probability bound (p;.u) can be computed by replac-
ing g;;.1 with g;;.u in Eq. 4. Next, we present the correctness
proofs of the L-SR and U-SR verifiers.

4.3.1 Correctness of L-SR and U-SR

We first state a claim about subregions: if there exists a set
K of objects whose distances from ¢ (i.e., R;) are certainly
inside a subregion S, and all other objects (C\ K')’s distances
are in subregions j 4 1 or above, then the qualification prob-
ability of each objectin K is equal to ﬁ This is because all
objects in C \ K cannot be the nearest neighbor of ¢, and all

Scalable processing of snapshot and continuous nearest-neighbor queries

1229

objects in K must have the same qualification probability. In
Fig. 8a, for example, if the distances Ry and R, are within
the range S» = [e2, e3], then p; = pr = %, and p3 = 0. The
following lemma states this formally.

Lemma 4 Suppose there exists a nonempty set K(K € C)
of objects such that VX; € K,e; < R; < ejy1. If VX, €
C\ K, Ry, > ej41, then forany X; € K, p; = |17| where
| K| is the number of objects in K.

Proof Let us consider an object X; € K. When |K| = 1,
pi = 1. This is because the other |C| — 1 objects must be
further to ¢ than X;. Therefore, X; must be the nearest neigh-
bor to ¢, and the lemma is proved.

Now consider |K| > 1. Since d; (r) is a uniform distribu-
tion within S, and R; € [e;, e; 1], wehaved;(r) = e,-+117e,-
for r € [ej, ej11]. Moreover, for any X; € K, Di(r) =

r—e;
€j+1*j€j
estneighbor, since they must be farther than X; from g. Hence
pi can be calculated by considering only the objects in K:

. The remaining |C| — | K | objects cannot be the near-

Ji
1 — e
pi=/—~ Hgl—i)dr (7
ni cjrl—¢€j XreKNkF£Y €j+l—¢€j
€j+l1
y 1 ejy1—r IK1-1
= : dr ®)
J €ji+1 —¢€j €i+1 —€j
J

Equation 7 is obtained by observing that X; is the near-

est neighbor of ¢ if (1) it is at a distance r from g (with
1

probability - s) and (2) other objects in K are more than
J J
a distance of r from g (with probability (1 — :i’L -). The
J J

detailed explanation of this formula can be found in [5]. Note
that we can change the integration bounds from [#;, f;] to
lej,ej+1], since we only consider the objects in K, which
are known to be within [e;, e;41]. Equation 8 leads to the
conclusion p; = ﬁ, and the lemma is thus proved. O

Lemma 4 itself can be used to obtain the qualification
probabilities for the scenario when there is only one sub-
region (i.e., M = 1). Here, the distances of all objects in
the candidate set C from ¢q are located in one subregion, S;.
Using Lemma 4, we obtain p; = ﬁ, VX; e C.

We can now prove the correctness of L-SR and U-SR. Let
us examine when c;, the number of objects with non-zero
subregion probabilities in subregion S, is equal to 1. In fact,
this scenario happens to subregion Si,i.e., j = 1, since only
this region can accommodate a single distance PDF (e.g.,
di(r) in Fig. 8). If we also know that distance R; is in subre-
gion S, then X; must be the nearest neighbor. Thus, both the
lower and upper subregion qualification probability bounds
(gij-l and g;;.u) are equal to 1, as shown in Egs. 1 and 5.

For the case ¢; > 1, we derive the subregion qualification
probability, g;;. Let E denote the event that “all objects in

3] €541
S;
o o
<———><————————— ————————— IS

-—————— — ——————— —><——————>

Fig. 9 Correctness proofs of L-SR and U-SR

the candidate set C have their actual distances from g not
smaller than e;”. Also, let E be the complement of event
E, i.e., “there exists an object whose distance from ¢ is less
than e;”. We also let F' be the event “VX; € C, where k # i,
Ri > eji1”, and F be the event “IX; € C s.t. k #IiARy <
ej+1”. Figure 9 illustrates these four events.

If Pr(E) denotes the probability that event E is true, then
Pr(E) = 1 — Pr(E). We also have Pr(F) = 1 — Pr(F).
Let N be the event “Object X; is the nearest neighbor of g”.
Then, using the law of total probability, we have:

gij = Pr(N|E) - Pr(E) + Pr(N|E) - Pr(E))

If E is true, there is at least one object X whose distance Ry
is not larger than ¢; (Fig. 9). Since Ry < R;, object X must
be closer to ¢ than object X;. Consequently, Pr(N|E) = 0,
and Eq. 9 becomes:

qij = Pr(N|E) - Pr(E) (10)

which again, by using the law of total probability, can be
rewritten as

gij = Pr(NJENF)-Pr(ENF)
+Pr(N|ENF)-Pr(ENF) (11)

If E N F is true, then all objects except X; have their dis-
tances from g not smaller than e; . Since R; < ej1, it
must be the nearest neighbor. Thus, Pr(N|E N F) = 1. We
alsohave EN F = F since E — F. So Eq. 11 is reduced
to:

gij = Pr(F)+ Pr(N[ENF)- Pr(ENF) (12)

Next, suppose E N F is true. Then, in addition to X;,
m > 1 other object(s) is (are) on the left of e 1. Since E
is also true, the values of Ry for all these m objects must
also be in in §;. Using Lemma 4, we can then deduce that
Pr(N|ENF) = -1 The minimum value of Pr(N|E N F)
is Cij, which happens when VX, € C, where k # i and

skj > 0, Xx € ;. The maximum value of Pr(N|E N F)is
%, which happens when m = 1. Thus we have

1 _
— <Pr(NIENF)<
¢j

13)

N =

@ Springer

1230 J. Chen et al.
Notice that: probability of an object is given by:

Pr(ENF) = Pr(E) — Pr(F) (14)
Thus, the final steps are to obtain Pr(E) and Pr(F). To ~ Pi-#=max | 1 — Z pi-l, 0 (18)

obtain Pr(E), note that the probability that an object X;’s
distance is e or more is simply 1 — Dy (e;). We then multiply
all these probabilities, as

Hsze./Ak#- (1 — Dy(e;)). This can be simplified to:

Pr(E) = H

UrNS, £ Nk

(I = Dy(ej)) 15)

since any object whose subregion probability is zero in S;
must have the distance CDF at e}, i.e.,Dy(e;) equal to zero.
Similarly, Pr(F) = HUkﬁS_/+17é(()Ak7éi(1 — Di(ej1)).

Combining equations 12, 13, 15, and 14, we can obtain
the lower and upper bounds of ¢;;, i.e., ¢;;.l and ¢;;.u, as
stated in Eqgs. 1 and 5.

4.4 Result-based verifiers

This class of verifiers makes use of the information deduced
by the subregion-based verifiers. The intuition is that if we
know the maximum qualification probabilities of any of the
|C|— 1 objects in C, we can easily derive the lower probabil-
ity bound of the remaining object in C. Specifically, given an
object X;, its lower probability bound, p;.l, can be computed
as:

> peu0 (16)

XreCnrk#i

pil=max|1—

This is because the total probabilities of the |C| — 1 objects
(apart from X;) are at most ZXkGCAk;éi pr-u. Since the sum
of qualification probabilities of all objects in C must be equal
to 1, p;.l can be obtained by Eq. 16.

By using this principle, the lower probability bound (L-
PB) verifier refreshes the objects’ lower probability bounds.
It makes use of the new upper bound information yielded
by the U-SR verifier (Fig. 5). To implement L-PB, note that
Eq. 16 can be written as

pi-l = max(1 — pioal + pi-u, 0) a7

where pio@al = X,eC Pl Thus, we can compute piotal
first (in O(|C|) time), and use Eq. 17 to derive the lower
probability bound of every objectin C (alsoin O(|C|) time).
The total complexity for L-PB is thus equal to O(|C]).

The other result-based verifier, namely, the upper proba-
bility bound (U-PB) verifier, derives an object’s upper prob-
ability bound by using the lower probability bounds of other
objects. It can be used after the RS or L-SR verifier, which
yields lower bound information (see Fig. 5). The basic prin-
ciple is the same as that of L-PB, where the upper bound

@ Springer

XreCnrk#i

4.5 Incremental refinement

As discussed in the beginning of Sect. 4, some objects may
still be unclassified after all verifiers have been applied. The
exact probabilities of these objects must then be computed or
“refined’. This can be expensive, since numerical integration
has to be performed over the object’s distance PDF [5]. This
process can be performed faster by using the information pro-
vided by the verifiers. Particularly, the probability bounds of
each objectin each subregion (i.e., [g;;.[, g;j.u]) have already
been computed by the verifiers. Therefore, we can decom-
pose the refinement of qualification probability into a series
of probability calculations inside subregions. Once we have
computed the probability ¢g;; for subregion §;, we collapse
[gij.l, gij.u] into a single value ¢g;;, update the probability
bound [p;.l, p;.u], and test this new bound with classifier.
We repeat this process with another subregion until we can
classify the object. This “incremental refinement” scheme is
usually faster than directly computing qualification probabil-
ities, since checking with a classifier is cheap, and performing
numerical integration on a subregion is faster than on the
whole uncertainty region, which has a larger integration area
than a subregion. The time complexity of incremental refine-
ment has a worst-case complexity of O(|C |2M), as detailed
in [5].

We store the subregion probabilities (s;;) and the distance
CDF values (D; (e;)) for all objects in the same subregion as
alist. These lists are indexed by a hash table, so that the infor-
mation of each subregion can be accessed easily. The space
complexity of this structure is O (|C|M). It can be extended
to a disk-based structure by partitioning the lists into disk
pages. The complexities of the verifiers are shown in Table 3.
The complexity of running all verifiers (including initializa-
tion and sorting of candidate set objects) is O(|C|(log |C| +

Table 3 Complexity of verifiers

Verifier Probability Bound Cost
Subregion-based

RS Upper o(|C))
L-SR Lower o(|C|M)
U-SR Upper O(|C|M)
Result-based

L-PB Lower o(|C))
U-PB Upper o(C))

Scalable processing of snapshot and continuous nearest-neighbor queries

1231

M)), and is lower than the evaluation of exact probabilities
(O(ICI*M)).

We now explain how to arrange the verifiers in the order
shown in Fig. 5. We place the subregion-based verifiers in
the ascending order of running costs (see Table 3). For L-SR
and U-SR, which have the same complexity, their relative
ordering is dependent on factors like probability threshold
P and the density of the dataset used. If P is large and the
dataset is dense, then U-SR can be evaluated first, since the
number of candidate objects tend to be large. The qualifica-
tion probabilities of these objects will also be small, so that
they can be easily pruned by U-SR. On the other hand, for
sparse dataset and small P, L-SR can be used first, since the
candidate objects, with potentially high probabilities, can be
accepted by L-SR more easily. In Fig. 5, the result-based
verifier L-PB is executed after U-SR, and U-PB after U-SR.
Although L-PB can also be used after RS, we do not show
it in the framework because in most of our experiments, the
fraction of distance PDFs of objects beyond fiiy is small.
Hence, their upper probability bounds can only be slightly
reduced by RS. Consequently, most of the lower probabil-
ity bounds derived by L-PB are equal to zero. Therefore, we
only use L-PB after the execution of U-SR.

4.6 Extension

We conclude this section by discussing how our solution can
be extended to handle the following issues: (1) partial query
evaluation; (2) computing subregion probabilities in an on-
demand manner; and (3) disk-based query processing.

1. Partial Query Evaluation. As mentioned in Sect. 1,
sometimes a query user may not want to wait for the whole
query result to be generated. We now discuss how partial
query results can be returned to the user before the query
finishes. Particularly, the verification framework can be
easily modified in the following way: instead of verifying
the candidate objects in a verifier and sending them to the
classifier together, each object is completely verified (and
possibly refined). If it is discovered by the classifier as
acceptable, then the object will be returned immediately
to the user. This process is repeated until all the candidate
objects have been examined.

The order of verifying objects can affect how fast the
objects are returned to the user. For example, in Fig. 8, object
X requires longer time to process (since it spans five sub-
regions), whereas X3, using three subregions only, can be
verified and classified faster. We therefore propose two dif-
ferent policies of partial evaluation:

Leftmost Object First (LOF). This policy considers the
candidate objects in the ascending order of |%f"|. For
example, in Fig. 8, the evaluation order is: X1, X3, X3.
e Rightmost Object First (ROF). This policy evaluates
objects in the descending order of |%f"|. In Fig. 8, the
evaluation order is: X3, X», X].

We also compare experimentally the degree of “respon-
siveness” of the above policies. In particular, we propose two
metrics for quantifying responsiveness:

e Fraction of Classified Objects: this metric quantifies the
portion of candidate objects that have been processed.

e Sum of Lower-probability-bounds of Classified
Objects: this evaluates the sum of the lower-bounds of the
qualification probabilities, i.e., p;.l, for the objects that
have been classified. Intuitively, a user may want to see
objects with higher qualification probabilities, since these
objects may be considered more important than those with
smaller probabilities. Hence, if a policy scores high in this
metric, it means this policy prioritizes on objects with
higher qualification probabilities.

We will explain the details of the experimental results on
these policies in Sect. 6.

2. On-Demand Subregion Evaluation. So far, we have
assumed that the distance PDFs and CDFs of all objects
are precomputed before the verifiers are used. However,
obtaining distance pdfs/cdfs can sometimes be costly. In
fact, it is not always necessary to generate these data
beforehand—we can just fetch the subregion information
when needed. If the query is finished after all objects have
been verified by visiting some of the subregions, we save
the effort for not generating subregions that are not used,
as well as the space for maintaining the subregion infor-
mation. Consider an extreme case where the RS verifier
uses the rightmost subregion to verify objects. If it hap-
pens that all objects are successfully tested by RS, then
there is no need to use any subregions required by L-SR
and U-SR.

In order to use this “on-demand” method, we need to
change the solution framework: Instead of completely verify-
ing all the subregions of an object, we sequentially visit each
subregion, verify all objects with non-zero distance PDFs
inside that subregion, before retrieving the next subregion.
This change is feasible, since for our verifiers, the qualifica-
tion probability bounds within a subregion can be computed
without considering other subregions. In Sect. 6, we study the
effectiveness of this on-demand approach experimentally.

@ Springer

1232

J. Chen et al.

3. Disk-based Access. We have assumed that all non-
pruned candidate objects are stored in the main mem-
ory. If the uncertainty regions of the objects are large, it
is possible that they have a lot of overlap with each other.
Then, the main memory may not be big enough to store all
candidate objects. To handle this problem, we can extend
our query processing algorithm in the following way: we
store the subregion probability values of all objects within
the same subregion S;, in a bucket B; of pages. Hence,
if we have M subregions, M buckets will be needed. We
then visit each bucket sequentially, compute the probabil-
ity bounds of each object by using verifiers, and update
its probability (for details, please see Sect. 4.5). This pro-
cess is repeated until all buckets have been visited. Notice
that in this process, each bucket is retrieved only once for
minimizing the I/O access.

To generate page buckets, we first order the candidate
objects according to their maximum distances from ¢, with
the aid of some external sorting algorithm. We then store
the subregion information in buckets based on their histo-
gram information. The performance of this procedure can
also be improved by using approaches similar to the “on-
demand” method discussed earlier. Particularly, we can load
the distance PDF/CDF information to the bucket only when
its corresponding subregion is visited by verifiers. Another
issue is that during subregion construction, we may want to
avoid repeatedly reading all the PDF data of an object into
the main memory. This is because a PDF can be composed of
a large number of histograms, and so loading it to the main
memory is expensive. We may use a small index (e.g., a hash
table) for the histogram bars for the PDF, and retrieve only
the relevant part of the PDF to the main memory.

5 Incremental and lazy evaluation of continuous C-PNN

We now investigate how continuous C-PNN (or CC-PNN
in Definition 2) can be efficiently evaluated. As shown in
Fig. 4, evaluating a C-PNN requires three steps, namely fil-
tering, verification, and refinement. In an environment (e.g.,
sensor network) where update arrivals are frequent, repeating
these processes for a CC-PNN can be quite expensive. We
observe that given the previous query results, it is often not
necessary for the whole CC-PNN query to be recomputed.
We thus develop an incremental update method to reduce
the amount of I/O for finding the candidate set in the filtering
stage (Sect. 5.1). We also present a lazy update method where
verification and refinement can be effectively delayed with-
out query tolerance requirements, as discussed in Sect. 5.2.

In subsequent discussions, we assume that the initial
answer of the CC-PNN has been obtained at the time it starts
running in the system. This can be accomplished by executing

@ Springer

Table 4 Symbols for continuous C-PNN

Symbol Meaning

to time before U is applied to database
ty time after U is applied to database
X(z) Query result at time ¢

U Set of update changes, with U C X
C Candidate set at time 7y

C’ Candidate set at time t,

D Set of objects removed from C

A Set of objects inserted to C

2 Prob. of X; in X(t,)

the corresponding C-PNN query over the current database.
Also, let X(79) € X be the old query result at time #y, and
X(z,) be the newest query result (where 7, > fg), due to the
arrival of a set U of object updates at time #,. We assume
that U has been applied to the database before the query is
re-evaluated, and U is stored in the main memory. Table 4
shows the symbols used by our approach.

5.1 Incremental derivation of the candidate set

Let C be the candidate set produced by the filtering stage that
yields the old query result X(#p) (i.e., prior to the arrival of
updates U). Let C’ be the new candidate set, after applying
U to the database. We assume both C and C’ can be stored in
the main memory. Traditionally, finding C’ requires a branch-
and-prune processing of the R-tree index [8,30], which can
require a lot of I/O overhead. We now present a method that
considers C and U, in order to reduce the I/O cost of discov-
ering C'.

To understand how our method works, recall from Sect. 4.1
that finin is the minimum value of the far points of all the
objects in the candidate set C. If U N C = () and none of the
objects in U has a near point smaller than fi,i,, then we can
be assured there is at least one object in C completely closer
to all objects in U. Therefore, the candidate set C remains
unchanged, i.e., C' = C. In reality, some object in U may
have a near point less than fpy, in which case the contents
of C may be changed. However, if only a small fraction of
the objects in C is affected, we can still find out C without
using scanning the index. Let f; . be the minimum of the far
points of objects in C’. Also, if an object in C’ is also in U,
then there is no need to retrieve the object from the database.
Otherwise, there are two cases for considering whether an
object X; in C’ can be recovered from C, without loading it
from the database.

e Casel: f,. < fmin. Any object X; in C’ must have its
near pointn; suchthatn; < f. . Thisimpliesn; < fuin,

Scalable processing of snapshot and continuous nearest-neighbor queries

1233

and so X; € C. Thus, C' C C, and there is no need to
load any object from the index.

e Case 2: fl. > fmin. If the near points of objects are
within [finin, fr/nin], they cannot be found in C (since C
only contains objects with near points closer than fp).
Thus it is necessary to retrieve them from the database.

Algorithm 1 uses these observations to derive the new
candidate set C’. Tt is first initialized to C U U (Step 1) i.e.,
adhering the update set U to C. The value of f. 1is set to be
the minimum value of f; among all objects in C’ (Step 2). In
Step 3, we initialize N to a null set, the set which contains
objects with near points inside [fmin, fi,] (for . > finin)-
For this case, we need an range query on the R-tree index to
retrieve candidates and store them in N (Steps 4 and 5). We
then find the minimum f; of all objects in N, and decide
whether f, . should be updated (Steps 6 and 7). Next, we
insert the objects in N to C’ (Step 8). We then remove objects
from C’, whose minimum distances from the query point are
larger than f/. (Steps 9-11).

min

input : C, U, fmin;
output: C’, f. . D,A;
C' <~ CUU;
Jin < min(fi|Xi € C');

N < @,

if f) . > fuin then

N < objects where n; € [fumin, fiin)s
if /., > min(f;|X; € N) then

| Fi < min(fi|X; € N):

N U B W N

8C' <~ C'UN;
9 for each X; € C’' do
10 | ifn; > f;,, then

11 L C' < C'\ {X:};

2D« (C\CHUCNU):
BA« (C'\COUC NCNU);

Algorithm 1: Updating the Candidate Set.

The algorithm also produces two sets of objects, namely A
and D, in Steps 12 and 13. These two sets essentially records
the changes that yield C’. In particular, D, called the deletion
set, contains all objects that are in C but not in C’. On the
contrary, A, called the insertion set, contains objects that are
in C’ but not in C. Notice that if an object X; in C has its
value (e.g., PDF) updated, then we treat the update of X; as
a deletion followed by an insertion. In other words, we have:

C'=(C\D)UA (19)

As shown in Step 12, D is the union of the set of objects
removed from C (i.e., C \ C’) and the set of objects updated
(i.e., C N U). Step 13 illustrates that A is the union of the
objects inserted to C (i.e., C"\ C) and the objects updated in
C that also appears in C’ (i.e., C' N C N U).

The complexity of this algorithm is O (|X]|) (mainly due
to the execution of range query in Step 5). In practice, the
complexity is much lower since [fmin, f;;,]is a small range,
and the sizes of the sets being considered in the algorithm
are not large. Next, we show how A and D are extensively

used.

5.2 Lazy evaluation

Once the objects in the candidate set have been constructed
for the refreshed data, verification and refinement can be
applied to these objects. In this section, we examine how
the information of the previous query results can be reused to
facilitate this process. In particular, for an object previously in
the answer set X(#p), we develop a new and efficient method
to decide whether this object is still in X(z,), without going
through verification and refinement in Sect. 4. Notice that
this new method still maintains the query correctness require-
ments (i.e., threshold and tolerance). We call our method a
lazy approach, since the actual probability computation of an
object is deferred until the point that the correctness of the
query cannot be satisfied.

The main idea of our approach is to develop the probability
bounds of the candidate set objects, by using the information
of insertion set A and deletion set D. Again, C’ is equal to
(C \ D) U A. We first compute the qualification probability
bounds of objects in A. These are the objects that are new to
C, or those in C that are updated. For objects that are neither
deleted nor updated, i.e., the set C \ D, we use the following
lemmas to derive their probability bounds. We first consider
insertion and deletion separately. We then show how they can
be combined together.

Lemma 5 Suppose A = (. Then, if d = ijeD(pj), Di
and pl/. are the qualification probabilities of X; at time ty and
tu, then

pi>pi, ¥VX;eC (20)
pi<pi+d, VX;eC 21

Proof By assuming A = @, we have C’ = C \ D from
Eq. 19, that is, C’ is the result of applying removal of objects
from C. Also, C’ C C. To understand Inequality 20, notice
that the qualification probability of object X; is conceptually
computed by considering all the possible worlds (i.e., com-
binations) of the candidate objects [5,8]. Consider a possi-
ble world where X; is not the nearest neighbor of ¢ before
the database changes. If the object X; € D is the nearest
neighbor and it is deleted, then X; has more chance to be
the nearest neighbor of ¢. In another possible world, if X; is
the nearest neighbor before deletion, then it remains as the
nearest neighbor. Hence, the probability of X; for being the
nearest-neighbor of ¢ increases, and so p; > p;.

@ Springer

1234

J. Chen et al.

Moreover, with our conclusions of result-based verifiers
(Eq. 18), we can have

piu=1- z Pl (22)
X;eC'nj#i
=1- Z pj (23)
XjeC/Aj#i
=pit+ D P (24)
XreD
=pi+d (25)

Note that the second deduction step is obtained by using
pj as alower bound of p;. (Eq. 20). |

We may only know the objects’ probability bounds (e.g.,
in C-PNN, we only know [p;.l, p;.u] but not p;). However,
we can easily extend Lemma 5 to handle this. Let d.u =
le,eD(pj.u), then d.u > d. Also, since p;.u > p;, then
Eq. 21 can be rewritten as:

pi < piu+du VX, eC’ (26)

Next, we study the case with no deletion.

Lemma 6 Suppose D = 0. If s = ijeA(P‘//), then

pi <pi, ¥VX;eC 27)
> (pi—pp=s (28)
X;eC

pi>pi—s, VX;eC (29)

Proof Lemma 6 can be obtained by using the result of
Lemma 5 by considering the update backward in time. Spe-
cifically, we consider C as the candidate set obtained by delet-
ing the objects in A from C’. We can then obtain Lemma 6.

]

Lets.u = ijeA(p}.u). Then Eq. 29 can be written as

pi>pil—su, VX;eC 30)

The next important fact comes from Lemma 6 and
Lemma 5, which allows us to handle the case when an update
is present, i.e., both A and D are not null.

Lemma?7 Ifd =3 x cp(pj), and s = 3 x . 4(p)), then,
for object X; € C \ D, we have:

pi—s<p;<pi+d (31)

Proof Here we only consider the objects in C \ D, i.e., those
that are neither updated nor deleted from C. Since C’ =
(C\ D) U A (Eq. 19), we can consider the effect of D and
A on C in two separate steps, i.e., we first produce an “inter-
mediate” candidate set where C~ = C \ D, and then use
C~ to obtain C, where C = C~ U A. First, we consider

@ Springer

C~ = C\ D. By using Lemma 5, we know that the qual-
ification probability of object X; after deletion, denoted by
p; > must satisfy the following:

pi <p; <pit+d (32)

Next, when we apply insertion to C~, and through Lemma 6,
we have:

p; —s < p. <p; (33)

By combining Inequalities 32 and 33, we obtain Lemma 7.
[m]

We can similarly derive the following result for the probabil-
ity bounds of p;:

pil —su < p; <piu+du (34)

To utilize these results, we have developed Algorithm 2. Its
main goal is to utilize the difference information about C and
C’, in order to derive the probabilities for candidate objects.
It assumes the probability bounds of objects in the insertion
set A have already been computed. Steps 1 and 2 generate
the maximum deviation of the new probabilities from the
old ones. Then, for every object not deleted or updated (i.e.,
C \ D), we compute their new lower and upper bound prob-
abilities, using Inequality 34 (Steps 4-5). These new bound
information can then be checked against the classifier (Step
6). If X; cannot be classified, it is passed to the verification
phase developed for C-PNN (Step 7). As we can see, the
additional cost of this “lazy” way of computing the probabil-
ity is the computation of the bounds and classification (Steps
4-6), which can be done O (|C \ D]) time.

input : C, D, A
1du <~ ind) pi-u;
28U D xcq Pi
3 for X; e C\ D do
4 plf.l <~ pi.l —s.u;
piu < piu+du;
Pass (X;, p;.l, p;.u) to classifier;
if X; cannot be classified then
L Verity X;;

0 3w

Algorithm 2: Lazy computation of probability
bounds

6 Experimental results

We have performed experiments to examine our solution.
We describe the simulation setup in Sect. 6.1. We present the
results for C-PNN in Sect. 6.2, and CC-PNN in Sect. 6.3.

Scalable processing of snapshot and continuous nearest-neighbor queries

6.1 Experimental setup

We use the Long Beach dataset,> where the 53,144 inter-
vals, distributed in the x-dimension of 10K units, are treated
as uncertainty regions with uniform PDFs. We also use syn-
thetic datasets, where all items are distributed in the 1D space
of size [0, 10, 000]. The number of items varies from 1K to
100K. Each data value is represented by an uncertain inter-
val and a uniform PDF. The widths of the uncertain intervals
are uniformly distributed in [10, 100]. For both real and syn-
thetic datasets, the uncertainty PDF is assumed to be uniform.
We also consider Gaussian uncertainty PDF in some cases.
Unless stated otherwise, the results presented are performed
on the real dataset.

For each C-PNN, the default values of threshold (P) and
tolerance (A) are 0.3 and 0.01, respectively. We assume a
user of the C-PNN is not interested in small probabilities, by
assuming P > 0.1. The query points are randomly gener-
ated. Each point in the graph is an average of the results for
100 queries.

We also simulate the evaluation of CC-PNN based on the
real data set. At each time point, 1% of data objects are ran-
domly chosen to change their values. For each update, the
difference between the center of the new uncertain region
and its previous value is uniformly distributed in [0, 100].
The difference between the size of the new uncertain region
and the previous one is uniformly distributed in [0, 50]. Each
point in the graph is an average of 20 queries and 20 time
points.

The experiments, written in Java, are executed on a PC
with an Intel T2400 1.83GHz CPU and 1G of main mem-
ory. We implemented the filtering phase by using the R-tree
library in [31].

6.2 Results for C-PNN

We compare three strategies of evaluating a C-PNN. The first
method, called Basic, evaluates the exact qualification prob-
abilities using the formula in [5]. The second one, termed VR,
uses probabilistic verifiers and incremental refinement. The
last method (Refine) skips verification and performs incre-
mental refinement directly. All these strategies assume the
candidate set is ready i.e., filtering has already been applied
to the original dataset. On average, the candidate set has 96
objects.

1. Cost of the Basic Method. We first compare the time
spent on the Basic with filtering. Figure 10 shows that
the fraction of total time spent in these two operations
on synthetic data sets with different data set sizes. As the

3 Available at http:/www.census.gov/geo/www/tiger/.

1235
1
‘g 0.8 —Basic
O ——Filtering
g 06
£
©
'5 0.4
©
o
L 0.2
0 1 1 1 1
0 2 4 6 8 10
Total Set Size x 10°
Fig. 10 Basic versus Filtering
120 T T " :
100 1
——Basic
—. 80y © Refine|
(2]
£ < VR
) 60 [b
£
|_
40 1
20+ 1
O 1 1 2K
0 0.2 0.4 0.6 0.8 1
Threshold

Fig. 11 Probability computation time versus P

2.

total table size increases, the time spent on the Basic solu-
tion increases more than filtering, and so its running time
starts to dominate the filtering time when the data set size
is larger than 5,000. As we will show soon, other methods
can alleviate this problem.

Effectiveness of verification. In Fig. 11, we compare the
time required by the three evaluation strategies under a
wide range of values of P. Both Refine and VR perform
better than Basic. At P = 0.3, for instance, the costs for
Refine and VR are 80 and 16% of Basic, respectively. The
reason is that both techniques allow query processing to
be finished once all objects have been determined, with-
out waiting for the exact qualification probabilities to be
computed. For large values of P, most objects can be clas-
sified as fail quickly when their upper probability bounds
are detected to be lower than P. Moreover, VR is consis-
tently better than Refine; it is five times faster than Refine
at P = 0.3, and 40 times faster at P = 0.7. This can be
explained by Fig. 12, which shows the execution time of
filtering, verification and refinement for VR. While the fil-
tering time is fixed, the refinement time decreases with P.

@ Springer

http://www.census.gov/geo/www/tiger/.

1236 J. Chen et al.
100 T T T : T 0.25 T " . .
- [JL-SR
[| 1 0.2} Blo-L-SR|]
Wl Filtering
m [IVerification | | = 0.5 i
S [IRefinement e
2 2
< L |
= 0.1
0.051 1
0 \’_‘ \’_‘ I
03 05 07 09 526 27.62 57.34 111.94
Threshold ICI

Fig. 12 Analysis of VR

100 T T T T

P (o] o]
o o o

Response Time (ms)

N
o

! !

0 2 4 6 8 10
Total Set Size x 10

o

Fig. 13 Scalability

The verification takes only Ims on average, and it signifi-
cantly reduces the number of objects to be refined. In fact,
when P > 0.3, no more qualification probabilities need
to be computed. Thus, VR produces a better performance
than Refine.

Figure 13 examines the scalability of VR. We can see that
the overall query response time of VR scales well with the
dataset size.

3. Comparison of verifiers. We first compare the perfor-
mance of the L-SR verifier presented in this paper with
its previous version, which were presented in [19] (let us
call the old version the o-L-SR verifier). Figure 14 com-
pares their performance in terms of the average proba-
bility lower bounds over synthetic datasets. As we can
see, the L-SR yields higher average lower-bounds than
o-L-SR. This is because the current version of L-SR the-
oretically derives a tighter lower bound than o-L-SR (by
having an additional second term in Eq. 1). Thus, the cur-

@ Springer

Fig. 14 A tighter L-SR

0.8 : ; . ,

(/2]

2 0.7

Q.

5

F 06

S

3 05

C

X

c 0.4

>

S 03+]
[y

2 02t |
(&)

o

i 0.1 M

0 1 1 1 i
0.1 0.15 0.2 0.25 0.3 0.35
Threshold

Fig. 15 RS, L-SR, and U-SR

rent L-SR verifier performs better, and is used throughout
our experiments.

Then, Fig. 15 shows the fraction of objects labeled
unknown after the execution of verifiers in the order: {RS,
L-SR, U-SR}. This fraction reflects the amount of work
needed to finish the query. At P = 0.1, about 75% of
unknown objects remain after the RS is finished; 7% more
objects are removed by L-SR; 15% unknown objects are left
after the U-SR is executed. When P is large, RS and U-SR
perform better, since they reduce upper probability bounds,
so that the objects have a higher chance of being labeled as
fail. L-SR works better for small P (as seen from the gap
between the RS and L-SR curves). L-SR increases the lower
probability bound, so that an object is easier to be classified
as satisfy at small P. In this experiment, U-SR performs bet-
ter than L-SR. This is because the candidate set size is large
(about 96 objects), so that the probabilities of the objects
are generally quite small. Since U-SR reduces their upper
probability bounds, they are relatively easy to be verified as

Scalable processing of snapshot and continuous nearest-neighbor queries

1237

fail, compared with L-SR, which attempts to raise their lower
probability bounds.

L-PB and U-PB. We also examine the performance of
the result-based verifiers, i.e., L-PB and U-PB. We found
that they are not very effective when the size of the candi-
date set is large. Consider the L-PB verifier, which derives an
objects X;” lower probability by subtracting the sum of other
objects’ upper bounds from one (Eq. 16). If there is a large
number of these objects, then their sum can easily reach one,
so that a trivial lower bound is yielded for X; (i.e., equal to
zero). A similar problem happens with the U-PB verifier. We
note that, however, the costs of these verifiers are low (c.f.
Table 3). Moreover, they are more useful in smaller data-
sets. We have tested the performance of these verifiers over
a synthetic dataset of 1,000 objects, and we found that the
performance is improved by about 5%.

4. Effect of tolerance. Next, we measure the fraction of
queries finished after verification under different toler-
ance. Figure 16 shows that as A increases from O to 0.2,
more queries are completed. When A = 0.16, about 10%
more queries will be completed than when A = 0. Thus,
the use of tolerance can improve query performance.

5. Partial query evaluation. We then compare the effec-
tiveness of the LOF and the ROF policies, using the two
responsiveness metrics presented in Sect. 4.6. We first test
the performance on the fraction of objects classified. Fig-
ure 17 shows the result over the query execution time.
During the first 80 ms, the time is spent on filtering, and
so no objects are classified during this period. We observe
that ROF classifies more fraction of objects than LOF at
early stages. This is because ROF examine objects farthest
away from the query point first. These objects have fewer
subregions (created due to the near points of objects) than
those that are close to the query points. Hence, they need
less time to process than the LOF policy, which considers
objects with average distances closest to the query point
first.

On the other hand, LOF performs better than ROF in terms
of the sum of the lower-bound probabilities for the classified
objects, as shown in Fig. 18. This is because LOF examines
the objects which are potentially nearest to the query point.
Therefore, the objects returned tend to have higher qualifica-
tion probabilities. This metric can be useful if the user values
objects that yield high probabilities.

6. On-demand subregion evaluation. Next, we analyze the
effect of deriving subregion information in an online man-
ner, as discussed in Sect. 4.6. Figure 19 shows the aver-
age fraction of subregions visited by the time a query is
completed. Under a higher probability threshold, fewer
subregions are visited before determining that an object

0.75 T T T

0.7

0.65

0.6

0.55|

Fraction of Completed Queries

0.5

0 0.05 0.1 0.15 0.2
Tolerance

Fig. 16 Effectof A

~LOF
©ROF

100

B o] [oe]
o o o
T T T
L L L

% of Objects Classified
N
o

OC} L L L L L L
80 90 100 110 120 130 140 150

Time (ms)

Fig. 17 LOF, ROF versus Complete (Response)

—_

iiiﬁi ' ' ' ' '
©ROF
g 08¢ 1
:‘é
o 06} 1
©
S o4t 1
o
S
@ 02t :
0 ‘ : : : : :
80 90 100 110 120 130 140 150

Time (ms)

Fig. 18 LOF, ROF versus Complete (QP)

need to be pruned. Hence, the on-demand method is able
to save resources for deriving the subregion information
(i.e., the distance PDF and CDF) at a high probability
threshold.

7. Gaussian PDF. We now examine the effect of using a
Gaussian distribution as the uncertainty PDF for each
object. Each Gaussian PDF, has a mean at the center of
its range, and a standard deviation of 1/6 of the width of
the uncertainty region. Since we approximate a Gaussian

@ Springer

1238 J. Chen et al.
1 T T T T 10000 ; T T "
(2]
s
S 0.8F 1 8000 r 1
o
8 — —=—Basic
? 06 1 g 60001 | Refine 1
B ; < VR
Kz €
S 041 1 = 4000 r 1
S
el
= 02}] 2000 r 1
o
0 0 . . : &
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Threshold Threshold
Fig. 19 The on-demand method Fig. 21 Gaussian PDF
4
1 140 - T T T
0.2 x 10 ——Sample
——Avg. Relative Erroﬂ ‘+Time (ms)‘ | 120 = VR 1
— 14 —
e £ 100]
w —_)
2 g E 80 1
& oif PR
T 1o E $ 60]
: E ot
= @ 40 1
0.05 1
3 11 2
20 1
0.01F =7 — ‘ : 8:3
0510 20 40 50 60 80 100 % 200 400 600 800 1000
of Histogram Bars # of Samples
Fig. 20 Relative error versus PDF precision Fig. 22 Effect on the number of samples

PDF as a histogram, we first conduct a sensitivity test to
see how precise a Gaussian PDF should be represented
(in terms of the number of histogram bars). We notice that
the result qualification probabilities become stable when
more than 300 histogram bars are used. Hence we con-
sider this qualification probability as the “true” answer. In
Fig. 20, we can see that as more histogram bars are used, a
smaller relative error (compared with the true probability)
is attained. However, it also takes a longer time to obtain
the answer. When a PDF is represented as 20 histogram
bars, the average relative error is less than 5%, and the
time required is about 10 s. Hence, we adopt this setting
for Gaussian PDF.

Figure 21 shows the probability computation time for
Gaussian PDF. Again, VR outperforms the other two meth-
ods. The saving is more significant than when uniform PDF
is used. This is because the relatively more expensive eval-
uation of Gaussian PDF can be effectively avoided by the
verifiers. Hence, our method also works well with Gaussian
PDFE.

@ Springer

. Comparison with sample-based method. In the final

experiment of C-PNN, we compare our method with a
sample-based method described in [9]. For each uncer-
tain object, we randomly choose some samples from its
PDF. In this experiment, we assume that the PDF is uni-
form. As discussed in Sect. 2, the method in [9] first clus-
ters samples into small groups. In our experiment, each
cluster contains an average of ten samples. Figure 22
compares our method and the sample-based method, in
terms of the query response time, for a synthetic dataset
with 3, 000 objects. We see that the response time of the
sample-based method, which does not use the probabil-
ity threshold and tolerance during computation, increases
sharply with the number of samples. Moreover, at least
400 samples are required for achieving a relative error of
10%. Under this setting, the response time of the sam-
ple-based method is three times of that of ours. We also
performed the same experiment on the real dataset. We
found that 2,000 samples are required to guarantee a rela-
tive error of 10%, with aresponse time of 3 s. Our method
can perform the query in only 100 ms.

Scalable processing of snapshot and continuous nearest-neighbor queries

1239

140 T T T -
S 1201 [“-Reevaluation |
% 100+ © Incremental & Lazy |
°
&
D 80+t
(2]
8
= 60 r
(@)
G 4071
®?
20
0 1 1 1 1
0 2 4 6 8 10

Reponse Time (ms)

Fig. 23 Continuous C-PNN: Baseline versus Incremental (Response)

100 T - - .
gof O q
m
1S
o 60f ——Reevaluation 1
£ © Incremental
l_
& 40f 1
°
=
20}]
O 1 1 1 1
0 2 4 6 8 10

% of Objects Updated

Fig. 24 Continuous C-PNN: Baseline versus Incremental (Index)

6.3 Results for CC-PNN

In this section, we investigate the performance of continuous
C-PNN queries. For convenience, we call the naive method
that re-evaluates the query whenever an update is received
as the Reevaluation method. We name our incremental can-
didate set discovery method as Incremental, and the lazy
update approach as Lazy.

Figure 23 compares that the overall processing time of
our approach with Reevaluation, over the fraction of objects
updated at each time point (denoted as frac). Our method
clearly performs better than Re-evaluation. For example,
when frac=5%, an improvement of 66% is attained.

To understand why the overall processing time of our
approach increases with frac, we have further studied the
index and CPU time component, as shown respectively in
Figs. 24 and 25. We see that both components increase with
frac, which contributes to the overall time increase. This time
increase is expected, since the higher the value of frac, the
more objects are updated, and so the candidate set previously

60 i ; . .
G S S S D
50 1
. ——Reevaluation
2 S Lazy
E 4ot
]
E
[
) 301 b
o
O
20+ 1
10 1 1 1 1
0 2 4 6 8 10

% of Objects Updated

Fig. 25 Continuous C-PNN: Baseline versus Incremental (CPU)

35 T T T T T

——Index
< CPU

0 20 100 200 300 400 500
Maximum Change of Size

Fig. 26 Impact of size change

computed becomes less stable, i.e., more objects in the can-
didate set needs to be updated. Notice that when frac = 5%,
Incremental addresses an improvement of 85% in index time
over Reevaluation, while Lazy improves about 50% in terms
of CPU time. Thus, our methods improve the performance
in both index and CPU time.

Finally, we study the effect of §, i.e., the maximum change
of the uncertain region size when an object reports its update,
on the performance of our approaches. The value of frac is
set to 1%. The results are shown in Fig. 26. While the index
time does not change much, the CPU time increases with
8. This is because with a larger §, the object that reports its
update has a higher chance to affect the candidate set (e.g.,
its new uncertainty region may overlap with the regions of
objects in the candidate set). Thus, the probabilities of more
objects in the candidate set may be changed by the update
reports, necessitating the use of more CPU time to verify or
refine their probabilities.

@ Springer

1240

J. Chen et al.

7 Conclusions

The management of uncertain data has become an impor-
tant research area in recent years. In this paper, we examined
how probabilistic nearest-neighbor queries can be efficiently
evaluated on imprecise data. We proposed the C-PNN query,
which uses threshold and tolerance constraints, in order to
provide users with more flexibility in controlling the confi-
dence and quality of their answers. Moreover, by evaluating
C-PNN with the help of probabilistic verifiers, the problem
of high costs for computing exact probabilities can be allevi-
ated. These verifiers allow answers to be quickly determined,
by using the subregions to compute the probability bounds,
or by using the results of other verifiers. We also investigated
different techniques of providing partial C-PNN answers to
users, and developed metrics for measuring the responsive-
ness of these techniques. Furthermore, we developed incre-
mental and lazy update methods for continuous C-PNNs, so
that the I/O and CPU overhead is significantly reduced. In the
future, we will investigate how these methods can be applied
to other queries, such as k-NN and reverse-NN queries.

Acknowledgments Reynold Cheng was supported by the Research
Grants Council of Hong Kong (Projects HKU 5138/06E, HKU 513307,
HKU 513508), and the Seed Funding Programme of the University of
Hong Kong (grant no. 200808159002). Jinchuan Chen was supported
by RGC project HKU 5138/06E. Mohamed Mobkel and Chi-Yin Chow
are supported in part by the National Science Foundation under Grants
1IS0811998, 11S0811935, and CNS0708604. We also thank the review-
ers for their insightful comments.

References

1. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., Hong, W.:
Model-driven data acquisition in sensor networks. In: Proc. VLDB
(2004)

2. Sistla, P.A., Wolfson, O., Chamberlain, S., Dao, S.: Querying the
uncertain position of moving objects. In: Temporal Databases:
Research and Practice (1998)

3. Pfoser, D., Jensen, C.: Capturing the uncertainty of moving-objects
representations. In: Proc. SSDBM (1999)

4. Bohm, C., Pryakhin, A., Schubert, M.: The gauss-tree: efficient
object identification in databases of probabilistic feature vectors.
In: Proc. ICDE (2006)

5. Cheng, R., Kalashnikov, D., Prabhakar, S.: Evaluating probabilistic
queries over imprecise data. In: Proc. ACM SIGMOD (2003)

6. Chen, J., Cheng, R.: Efficient evaluation of imprecise location-
dependent queries. In: Proc. ICDE (2007)

7. Mokbel, M., Chow, C., Aref, W.G.: The new casper: query process-
ing for location services without compromising privacy. In: VLDB
(2006)

8. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise
data in moving object environments. IEEE TKDE 16(9) (2004)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

. Kriegel, H., Kunath, P., Renz, M.: Probabilistic nearest-neighbor

query on uncertain objects. In: DASFAA (2007)

Dyreson, C., Snodgrass, R.: Query indexing and velocity con-
strained indexing: scalable techniques for continuous queries on
moving objects. IEEE Trans. Comp. 51(10) (2002)

Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic
databases. In: Proc. VLDB (2004)

Mar, O., Sarma, A., Halevy, A., Widom, J.: ULDBs: databases with
uncertainty and lineage. In: VLDB (2006)

Mayfield, C., Singh, S., Cheng, R., Prabhakar, S.: Orion: A data-
base system for managing uncertain data, ver. 0.1 (http://orion.cs.
purdue.edu) (2006)

Jampani, R.F., Wu, M., Perez, L., Jermaine, C., Haas, P.: Mcdb:
a monte carlo approach to managing uncertain data. In: SIGMOD
(2008)

Ré, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on
probabilistic data. In: Proc. ICDE (2007)

Yi, K., Li, F, Kollios, G., Srivastava, D.: Efficient processing of
top-k queries in uncertain databases. In: Proc. ICDE (2008)
Soliman, M.A., Ilyas, LF., Chang, K.C.C.: Top-k query processing
in uncertain databases. In: Proc. ICDE (2007)

Ljosa, V., Singh, A.K.: APLA: indexing arbitrary probability dis-
tributions. In: Proc. ICDE (2007)

Cheng, R., Chen, J., Mokbel, M., Chow, C.Y.: Probabilistic verifi-
ers: evaluating constrained nearest-neighbor queries over uncertain
data. In: Proc. ICDE (2008)

Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., Hambrusch, S.:
Supporting valid-time indeterminacy. ACM Trans. Database Syst.
23(1) (1998)

Beskales, G., Soliman, M., Ilyas, L.E.: Efficient search for the top-k
probable nearest neighbors in uncertain databases. In: Proc. VLDB
(2008)

Qi, Y., Singh, S., Shah, R., Prabhakar, S.: Indexing probabilistic
nearest-neighbor threshold queries. In: Proc. Workshop on Man-
agement of Uncertain Data (2008)

Lian, X., Chen, L.: Probabilistic group nearest neighbor queries in
uncertain databases. IEEE Trans. Knowl. Data Eng. 20(6) (2008)
Cheng, R., Chen, L., Chen, J., Xie, X.: Evaluating probability
threshold k-nearest-neighbor queries over uncertain data. In: EDBT
(2009)

Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.:
Indexing multi-dimensional uncertain data with arbitrary probabil-
ity density functions. In: Proc. VLDB (2005)

Xiong, X., Aref, W.: R-trees with update memos. In: Proc. ICDE
(2006)

Cheng, R., Xia, Y., Prabhakar, S., Shah, R.: Change tolerant index-
ing on constantly evolving data. In: Proc. ICDE (2005)

Xiong, X., Mokbel, M., Aref, W.: Sea-cnn: scalable processing
of continuous k-nearest neighbor queries in spatio-temporal dat-
abases. In: Proc. ICDE (2005)

Kalashnikov, D.V., Prabhakar, S., Hambrusch, S.E.: Main mem-
ory evaluation of monitoring queries over moving objects. Distrib.
Parall. Databases 15(2), 117-135 (2004)

Cheng, R., Kalashnikov, D., Prabhakar, S.: Evaluation of probabi-
listic queries over imprecise data in constantly-evolving environ-
ments. Inform. Syst. (IS) 32(1) (2007)

M. Hadjieleftheriou: spatial index library version 0.44.2b URL
http://u-foria.org/marioh/spatialindex/index.html

http://orion.cs.purdue.edu
http://orion.cs.purdue.edu
http://u-foria.org/marioh/spatialindex/index.html

	Scalable processing of snapshot and continuous nearest-neighbor queries over one-dimensional uncertain data
	Abstract
	1 Introduction
	1.1 Probabilistic verifiers
	1.2 Partial evaluation and incremental update

	2 Related work
	3 Snapshot and continuous PNN queries
	3.1 C-PNN and CC-PNN
	3.2 Solution overview

	4 Verification and refinement
	4.1 Computing subregion probabilities
	4.2 The rightmost-subregion verifier
	4.3 The lower- and upper-subregion verifiers
	4.4 Result-based verifiers
	4.5 Incremental refinement
	4.6 Extension

	5 Incremental and lazy evaluation of continuous C-PNN
	5.1 Incremental derivation of the candidate set
	5.2 Lazy evaluation

	6 Experimental results
	6.1 Experimental setup
	6.2 Results for C-PNN
	6.3 Results for CC-PNN

	7 Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

