
The VLDB Journal (2009) 18:1091–1116
DOI 10.1007/s00778-009-0151-4

SPECIAL ISSUE PAPER

The trichotomy of HAVING queries on a probabilistic database

Christopher Ré · Dan Suciu

Received: 16 September 2008 / Revised: 31 March 2009 / Accepted: 1 May 2009 / Published online: 15 July 2009
© Springer-Verlag 2009

Abstract We study the evaluation of positive conjunctive
queries with Boolean aggregate tests (similar to HAVING in
SQL) on probabilistic databases. More precisely, we study
conjunctive queries with predicate aggregates on probabilis-
tic databases where the aggregation function is one of MIN,
MAX, EXISTS, COUNT, SUM, AVG, or COUNT(DISTINCT)
and the comparison function is one of =, �=,≥,>,≤, or <.
The complexity of evaluating a HAVING query depends on
the aggregation function, α, and the comparison function,
θ . In this paper, we establish a set of trichotomy results for
conjunctive queries with HAVING predicates parametrized
by (α, θ). For such queries (without self-joins), one of the
following three statements is true: (1) the exact evaluation
problem has P-time data complexity. In this case, we call
the query safe. (2) The exact evaluation problem is �P-hard,
but the approximate evaluation problem has (randomized)
P-time data complexity. More precisely, there exists an
fptras for the query. In this case, we call the query apx-safe.
(3) The exact evaluation problem is �P-hard, and the approx-
imate evaluation problem is also hard. We call these que-
ries hazardous. The precise definition of each class depends
on the aggregate considered and the comparison function.
Thus, we have queries that are (MAX,≥)-safe, (COUNT,≤)-
apx-safe, (SUM,=)-hazardous, etc. Our trichotomy result is
a significant extension of a previous dichotomy result for
Boolean conjunctive queries into safe and not safe. For each
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of the three classes we present novel techniques. For safe
queries, we describe an evaluation algorithm that uses random
variables over semirings. For apx-safe queries, we describe
an fptras that relies on a novel algorithm for generating a
random possible world satisfying a given condition. Finally,
for hazardous queries we give novel proofs of hardness of
approximation. The results for safe queries were previously
announced (in Ré, C., Suciu, D. Efficient evaluation of.
In: DBPL, pp. 186–200, 2007), but all other results are new.

Keywords Probabilistic databases · Query evaluation ·
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1 Introduction

We study the complexity of evaluating aggregate queries on
probabilistic databases. Our motivation is to manage data
produced by integration applications, e.g., data from object
reconciliation [24,52,53] or information extraction [8,23,27,
35]. Standard approaches require that we eliminate all uncer-
tainty before any querying can begin, which is expensive in
both man-hours to perform the integration and in lost reve-
nue due to down time. An alternative approach where data
are allowed to be uncertain, but uncertainty is captured using
probabilities has attracted renewed interest [10,15,19,51].

In SQL, aggregates come in two forms: value aggregates
that are returned to the user in the SELECT clause (e.g.,
the MAX price) and predicate aggregates that appear in the
HAVING clause (e.g., is the MAX price greater than $10.00?).
In this paper, we focus on positive conjunctive queries with
a single predicate aggregate that we call HAVING queries.
Prior art [6,26] has defined a semantic for value aggrega-
tion that returns the expected value of an aggregate query
(e.g., the expected MAX price) and has demonstrated its utility
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(a) (b)

Fig. 1 A probabilistic database with a Profit relation that contains
the profit an analyst forecasts for each item sold. Prior Art [26] has con-
sidered a semantic similar to the query in a, which returns the expected

value of an aggregate. In contrast, we study queries similar to b which
computes the probability of a HAVING style predicate, e.g., that the
SUM of profits exceeds a value (here, 0.0)

for OLAP-style applications. In this paper, we propose a
complementary semantic for predicate aggregates inspired
by HAVING (e.g., what is the probability that the MAX price
is bigger than $10.00?). We illustrate the difference between
the approaches with a simple example:

Example 1 Figure 1 illustrates a probabilistic database that
contains a single relation, Profit. Intuitively, a tuple in
Profit records the profit that one of our analysts forecasts if
we continue to sell that item. We are not certain in our predic-
tion, and so Profit records a confidence with each predic-
tion. For example, Alice is quite sure that we will lose money
if we continue selling widgets; this is captured by the tuple
(Widget , Alice, $ − 99K , 0.99) in Profit. Intuitively,
0.99 is the marginal probability of the fact (Widget, Alice,
$− 99k).

An example of a value aggregate is shown in Fig. 1a. In this
approach, the answer to an aggregation query is the expected
value of the aggregate function. Using linearity of expecta-
tion, the value of the query in Fig. 1a is 100M × 0.01 +
−99K × 0.99 ≈ 900 K. Intuitively, this large value suggests
that we should continue selling widgets because we expect to
make money. A second approach (that we propose and study
in this paper), is akin to HAVING style aggregation in stan-
dard SQL. An example is the query in Fig. 1b that intuitively
says: “What is the probability that we will make a profit?”.
The answer to this query is the probability that the value of
the SUM is greater than 0. Here, the answer is only 0.01: this
small probability tells us that we should stop selling widgets
or risk going out of business.

Our technical starting point is the observation that we can
evaluate a query q with an aggregate α on a deterministic
database using a two step process: (1) annotate the database
with values from some semiring, Sα , e.g., if α = COUNT,
then we can take Sα to be the natural numbers, and (2) prop-
agate these annotations during query processing (using the
rules in Green et al. [21]). In this scheme, each tuple output
by the query is annotated with a value in the semiring Sα that
is exactly the value of the aggregate, e.g., the COUNT of the
tuples returned by q. Thus, it is easy to check if the HAVING
query is true: simply test the predicate aggregate on the value

returned by the query, e.g., is the SUM returned by the query
greater than 0? If the answer is yes, return true.

To evaluate aggregate queries on probabilistic databases,
we generalize this approach. On a probabilistic database, the
output of an aggregate query Q is described by a random
variable, denoted sQ , that takes values in Sα . A HAVING
query Q whose predicate is, say, COUNT(∗) < k, can be
computed over a probabilistic database in two stages: (1)
compute the distribution of the random variable, sQ ; and (2)
apply a recovery function that computes the probability that
sQ < k, i.e., sum over all satisfying values of sQ . The cost
of this algorithm depends on the space required to represent
the random variable sQ , which may be exponential in the
size of the database. This cost is prohibitively high for many
applications.1 In general, this cost is unavoidable, as prior
art has shown that for SELECT-PROJECT-JOIN (SPJ) que-
ries (without HAVING), computing a query’s probability is
�P-Complete 2[12,20].

Although evaluating general SPJ queries on a probabilistic
database is hard, there is a class of SPJ queries (called safe
queries) that can be computed efficiently and exactly [12,40].
A safe query has a relational plan P , called a safe plan, that
is augmented to compute the output probability of a query
by manipulating the marginal probabilities associated with
tuples. The manipulations performed by the safe plan are
standard multiplications and additions. These manipulations
are correct because the safe plan “knows” the correlations
of the tuples that the probabilities represent, e.g., the plan
only multiplies probabilities when the events are indepen-
dent. To generalize safe plans to compute HAVING queries,
we provide analogous operations for semiring random vari-
ables. First, we describe marginal vectors that are analogous
to marginal probabilities: a marginal vector is a succinct, but
lossy, representation of a random variable. We then show that

1 A probabilistic database represents a distribution over standard,
deterministic instances, called possible worlds [18]. A probabilistic
database with n tuples can encode 2n possible worlds, i.e., one for
each subset of tuples. We defer to Sect. 2.1 for more details.
2 �P defined by Valiant [49] is the class of functions that contains the
problem of counting the number of solutions to NP-Hard problems
(e.g., �3-SAT). Formally, we mean here that there is a polynomial
reduction from a �P-Hard problem, and to any problem in �P . Since
technically, the query evaluation problem itself is not in �P .
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The trichotomy of HAVING queries on a probabilistic database 1093

the operation analogous to multiplying marginal probabili-
ties is a kind of semiring convolution. Informally, we show
that substituting multiplications with convolutions is correct
precisely when the plan is safe.

As we show, the running time of safe plans with con-
volutions is proportional to the number of elements in the
semiring, Sα . Thus, to compute HAVING queries with an
aggregate α efficiently, we need Sα to be small, i.e., Sα should
contain at most polynomially many elements in the size of
the instance. This condition is met when the aggregate α is
one of {EXISTS,MIN, MAX, COUNT}. For α ∈ {SUM,AVG,

COUNT(DISTINCT)}, the condition is not met. In these
cases, our algorithm is efficient only for a restricted type of
safe plans that we call α-safe. For α-safe plans, a HAVING
query with α can be computed efficiently and exactly. Fur-
ther, we show that α-safe plans capture tractable exact evalua-
tion for queries without self-joins.3 More precisely, for each
aggregate α above, there is a dichotomy for queries with-
out self-joins: either (1) Q is α-safe, and so has a P-time
algorithm, or (2) Q is not α-safe and evaluating Q exactly is
�P-Hard. Further, we can decide whether a query is α-safe in
P-time. The techniques for exact evaluation were described
in the preliminary version of this paper [43].

Exact evaluation is the gold standard, but in many
applications, approximately computing probabilities suffices.
For example, if the input probabilities are obtained heuristi-
cally, then computing the precise value of the output proba-
bility may be overkill. Alternatively, even if the probabilities
are obtained precisely, a user may not care about the dif-
ference between a query that returns a probability score of
0.9 versus 0.90001. Leveraging this observation, we show
that there are some queries that can be efficiently approxi-
mated, even though they are not α-safe (and so cannot be
computed exactly). More precisely, we study when there
exists a Fully Polynomial Time Randomized Approximation
Scheme (fptras) for approximating the value of a HAVING
query.4 Our key result is that there is a second dichotomy for
approximate evaluation for queries without self-joins: either
(1) an approximation scheme in this paper can approximate
a HAVING query efficiently, or (2) there is no such efficient
approximation scheme. Interestingly, we show that the intro-
duction of self-joins raises the complexity of approxima-
tion: we show a stronger inapproximability result for queries
involving self-joins.

In general, the complexity of evaluating a HAVING query
Q depends on the predicate that Q uses. More precisely,
the hardness depends on both the aggregate function, α, and

3 A self-join is a join between a relation and itself. The query
R(x, y), S(y) does not have a self-join, but R(x, y), R(y, z) does.
4 An fptras can be thought of as a form of sampling that is guaranteed
to rapidly converge and so is efficient. We refer to Definition 19 for
formal details.

the comparison function, θ , which together are called an
aggregate-test pair, e.g., in Fig. 1b the aggregate-test pair is
(COUNT,>). For many such aggregate test pairs (α, θ), we
show a trichotomy result: For HAVING queries using (α, θ)

without self-joins over tuple-independent probabilistic dat-
abases, exactly one of the following three statements is true:
(1) The exact evaluation problem has P-time data complex-
ity. In this case we call the query safe. (2) The exact evaluation
problem is �P-hard, but the approximate evaluation problem
has (randomized) P-time data complexity (there exists an
fptras to evaluate the query). In this case, we call the query
apx-safe. (3) The exact evaluation problem is �P-hard and
the approximate evaluation problem is also hard (no fptras
exists). We call these queries hazardous. It is interesting to
note that the third class is empty for EXISTS, which are
the class extensively studied by prior work [12]: That is, all
Boolean conjunctive queries have an efficient approximation
algorithm.

A key step in many Monte–Carlo-style approximation
algorithms based on sampling (including those in this paper)
is randomly generating instances (called possible worlds).
Computing a random possible world is straightforward in
a probabilistic database: we select each tuple with its cor-
responding marginal probability taking care never to select
two disjoint tuples. However, to support efficient techniques
like importance sampling [29], we need to do something
more: we need to generate a random possible world from the
set of worlds that satisfy a constraint that is specified by an
aggregate query. For example, we need to generate a random
world, W̃ , such that the MAX price returned by a query q on
W̃ is equal to 30. We call this the random possible world gen-
eration problem. Our key technical result is that when q is
safe (without aggregation) and the number of elements in the
semiring S is small, then we can solve this problem effi-
ciently, i.e., with randomized polynomial time data complex-
ity. The novel technical insight is that we can use safe plans as
a guide to sample the database. This use is in contrast to the
traditional use for safe plans of computing query probabilities
exactly. We apply our novel sampling technique to provide
an fptras to approximately evaluate some HAVING queries
that have �P-hard exact complexity. Thus, the approaches
described in this paper can efficiently answer strictly more
queries than our previous, exact approach (albeit only in an
approximate sense).

Contributions and outline

We study conjunctive queries with HAVING predicates on
common representations of probabilistic databases [4,41,51]
where the aggregation function is one of EXISTS, MIN,
MAX, COUNT, SUM, AVG, or COUNT(DISTINCT); and the
aggregate test is one of =, �=,<,≤,>, or ≥. In Sect. 2,
we formalize HAVING queries, our choice of representation,
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(a) (b) (c)

Fig. 2 A translation of the query “Which movies have been reviewed by at least two distinct reviewers?” into a SQL; b an extended syntax of this
paper, which is not Boolean; and c the syntax of this paper, which is Boolean and is a HAVING query

and define efficient evaluation. In Sect. 3, we review the
relevant technical background (e.g., semirings and safe pla-
ns). In Sect. 4, we give our main results for exact computation:
For each aggregate α, we find a class of HAVING queries,
called α-safe, such that for any Q using α:

• If Q is α-safe then Q’s data complexity is in P .
• If Q has no self-joins and is not α-safe then, Q has �P-

hard data complexity.
• We can decide in polynomial time (in the size of Q) if Q

is α-safe.

In Sect. 5, which is completely new, we state and solve
the problem of generating a random possible world when the
query defining the constraint is safe. In Sect. 6, we discuss
approximation schemes for queries that have α ∈ {MIN,MAX,

COUNT, SUM}. The hardness of an approximation algorithm
for a HAVING query depends on the aggregate, α, but also
on the predicate test, θ . We show:

• If Q is (α, θ)-apx-safe then Q has an fptras.
• If Q has no self-joins and is not (α, θ)-apx-safe then, Q

does not have an fptras and is (α, θ)-hazardous.
• We can decide in polynomial time (in the size of Q) if Q

is (α, θ)-apx-safe.

We show that the trichotomy holds for all combinations
of α and θ ∈ {=,≤,<,≥,>}, but leave open the case of
COUNT and SUMwith either of {≥,>}. Additionally, we also
show that queries with self-joins belong to a complexity class
that is believed to be as hard to approximate as any prob-
lem in �P . This suggests that the complexity for HAVING
query approximation is perhaps more subtle than for Bool-
ean queries.

2 Formal problem description

We first define the syntax and semantics of HAVING que-
ries on probabilistic databases and then define the problem
of evaluating HAVING queries.

2.1 Semantics

We consider the aggregate functions EXISTS, MIN, MAX,
COUNT, SUM, AVG, and COUNT(DISTINCT) as functions
on multisets with the obvious semantics.

Definition 1 A Boolean conjunctive query is a single rule
q = g1, . . . , gm where for i = 1, . . . , m, gi is a distinct,
positive extensional database predicate (EDB), that is, a rela-
tional symbol.5 A Boolean HAVING query is a single rule:

Q[α(y) θ k] :– g1, . . . , gn

where for each i , gi is a positive EDB predicate, α ∈ {MIN,

MAX, COUNT, SUM, AVG, COUNT(DISTINCT)}, y is a sin-
gle variable,6 θ ∈ {=, �=,<,≤,>,≥}, and k is a constant.
The set of variables in the body of Q is denoted var(Q).
We assume that y ∈ var(Q). The conjunctive query q =
g1, . . . , gn , is called the skeleton of Q and is denoted
sk(Q) = q. In the above syntax, θ is called the predicate
test; k is called the predicate operand; and the pair (α, θ)

is called an aggregate test.

Figure 2a shows a SQL query with a HAVING predicate
that asks for all movies reviewed by at least two distinct
reviewers. A translation of this query into an extension of
our syntax is shown in Fig. 2b. The translated query is not a
Boolean HAVING query because it has a head variable (m).
In this paper, we discuss only Boolean HAVING queries. As
is standard, to study the complexity of non-Boolean queries,
we can substitute constants for head variables. For example,
if we substitute ‘Fletch’ for m, then the result is Fig. 2c which
is a Boolean HAVING query.

Definition 2 Given a HAVING query Q[α(y) θ k] and a
world W (a standard relational instance), we define Y to be
the multiset of values v(y) where y is distinguished variable
in Q and v is a valuation of q = sk(Q) that is contained in
W . In symbols,

Y = {| v(y) | v is a valuation for sk(Q) and im(v) ⊆ W |}
5 Since all relational symbols are distinct, HAVING queries do not con-
tain self-joins: q = R(x, y), R(y, z) has a self-join, while R(x, y), S(y)

does not.
6 For COUNT, we will omit y and write the more familiar COUNT(∗)
instead.
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The trichotomy of HAVING queries on a probabilistic database 1095

Fig. 3 Sample data arising from integrating automatically extracted reviews from a movie database. MovieMatch is a probabilistic relation, we
are uncertain which review title matches with which movie in our clean database. Reviews is uncertain because it is the result of information
extraction

Here, im(v) ⊆ W denotes that image of sk(Q) under the
valuation v is contained in the world W . We say that Q is sat-
isfied on W and write W |� Q[α(y) θ k] (or simply W |� Q)
if Y �= ∅ and α(Y) θ k holds.

In the above definition, we follow SQL semantics and
require that Y �= ∅ in order to say that W |� Q. For exam-
ple, Q[COUNT(∗) < 10] :–R(x) is false in SQL if RW = ∅,
i.e., the interpretation of R in the world W is the empty table.
This, however, is a minor technicality and our results are
unaffected by the alternate choice that COUNT(∗) < 10 is
true on the empty database.

2.2 Probabilistic databases

In this paper, we use probabilistic databases described in the
block-independent disjoint (BID) representation [41,42] that
generalizes many representations in the literature including
p-?-sets and p-or-sets [22], ?- and x-relations [45], and tuple
independent databases [12,33]. The BID representation is
essentially the same as Barbara et al. [4].

Syntax. We think of a BID schema as a relational schema
where the attributes are partitioned into three disjoint sets.
We write a BID schema as R(K ; A; P) where the sets are
separated by semicolons. Here, K is a set of attributes called
the possible worlds key; A is a set of attributes called the
set of value attributes; and P is a single, distinguished attri-
bute that stores the marginal probability of the tuple called
the probability attribute. The values of K and A come from
some discrete domain, and the values in the attribute P are
numbers in the interval (0, 1]. For example, the BID schema
in Fig. 1 is Profit(Item;Forecaster,Profit;P): {Item} is the
possible worlds key, {Forecaster,Profit} is the set of value
attributes, and P is the probability attribute. Also pictured in
Fig. 1 is an instance of this schema.

Semantics. We think of an instance of a BID schema
as representing a distribution over instances called possible
worlds. The schema of these possible worlds is R(K , A),
i.e., the same schema without the attribute P . Let J be an
instance of a BID schema. We denote by t[K AP] a tuple in
J , emphasizing its three kinds of attributes, and call t[K A],
its projection on the K A attributes, a possible tuple. Define a

possible world, W , to be any instance of R(K , A) consisting
of possible tuples such that K is a key in W . Note that the key
constraints do not hold in the BID instance J , but must hold
in any possible world W . Let WJ be the set of all possible
worlds associated to J . In Fig. 1, one possible world W1 is
RW1 = {(Widget,Alice,−99k), (Whatsit, Alice, 1M)}.

We define the semantics of BID instances only for valid
instances, which are BID instances such that the values in P
can be interpreted as a valid probability distribution, i.e., such
that for every tuple t ∈ R J in any BID relation R(K ; A; P)

the inequality
∑

s∈R:s[K ]=t[K ] s[P] ≤ 1 holds. A valid
instance J defines a finite probability space (WJ , µJ ). First
note that any possible tuple t[K A] can be viewed as an event
in the probability space (WJ , µJ ), namely the event that a
world contains t[K A]. Then we define the semantics of J
to be the probability space (WJ , µJ ) such that (a) the mar-
ginal probability of any possible tuple t[K A] is t[P], (b)
any two tuples from the same relation t[K A], t ′[K A] such
that t[K ] = t ′[K ] are disjoint events (or exclusive events),
and (c) for any set of tuples {t1, . . . , tn} such that all tuples
from the same relation have distinct keys, the events defined
by these tuples are independent. From above, we see that
µ(W1) = 0.99.

Example 2 The data in Fig. 3 shows an example of a BID
database that stores data from integrating extracted movie
reviews from USENET with a movie database from IMDB.
The MovieMatch table is uncertain because it is the result
of an automatic matching procedure (or fuzzy-join [9]). For
example, the probability a review title ‘Fletch’ matches a
movie titled ‘Fletch’ is very high (0.95), but it is not certain
(1.0) because the title is extracted from text and so may con-
tain errors. For example, from ‘The second Fletch movie’,
our extractor will likely extract just ‘Fletch’ although this
review actually refers to ‘Fletch 2’. The review table is uncer-
tain because it is the result of information extraction. That
is, we have extracted the title from text (e.g., ‘Fletch is a
great movie, just like Spies Like Us’). Notice that t232a[P] +
t232b[P] = 0.95 < 1, which indicates that there is some
probability reviewid 232 is actually not a review at all.

Remark 1 Recall that two distinct possible tuples, say t[K A]
and t ′[K A], are disjoint if t[K ] = t ′[K ] and t[A] �= t ′[A].
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But what happens if A = ∅, i.e., all attributes are part of the
possible worlds key? In that case all possible tuples become
independent, and we sometime call a table R(K ; ; P) a tuple
independent table [12], which is also known as a ?-table [39]
or a p-?-table [22].

Finally, we generalize to probabilistic databases that con-
tain many BID tables in the standard way: tuples in distinct
tables are independent.

Query semantics. Users write queries on the possible
worlds schema, i.e., their queries do not explicitly mention
the probability attributes of relations. In this paper, all queries
are Boolean so the answer to a query is a probability score
(the marginal probability that the query is true). We define
this formally:

Definition 3 (Query semantics) The marginal probability of
a HAVING query Q on BID database J is denoted µJ (Q)

(or simply µ(Q)) and is defined by:

µJ (Q) =
∑

W∈WJ :W |�Q

µJ (W )

In general, for a Boolean conjunctive query q, we write
µJ (q) to denote the marginal probability that q is true.

Example 3 Figure 2c shows a query that asks for all mov-
ies that were reviewed by at least two different reviewers.
The movie ‘Fletch’ is present when the following formula
is satisfied: (m1 ∧ t231a) ∨ (m2 ∧ t232b) ∨ (m1 ∧ t235a). The
multiplicity of tuples returned by the query is exactly the
number of disjuncts satisfied. Thus, µ(Q) is the probability
that at least two of these disjuncts are true. Definition 3 tells
us that, semantically, we can compute this by summing over
all possible worlds.

2.3 Notions of complexity for HAVING queries

In the database tradition, we would like to measure the data
complexity [50], i.e., treat the query as fixed, but allow the
data to grow. This assumption makes sense in practice
because the query is generally orders of magnitude smaller
than the size of the database. Hence, a running time for
query evaluation of O(n f (|Q|)) where |Q| is the size of a
conjunctive query Q is P-time. In our setting, this intro-
duces a minor technical problem: by fixing a HAVING query
q, we also fix k (the predicate operand); this means that
we should accept a running time n f (k) as efficient. Clearly
this is undesirable: because k can be large.7 For example,
Q[SUM(y) > 200] :–R(x, y). For that reason, we consider
in this paper an alternative definition of the data complexity

7 If we fix the query than k is assumed to be a constant, and so we can
take even double exponential time in k. Thus, we would like to take k
as part of the input.

of HAVING queries, where both the database and k are part
of the input.

Definition 4 Fix a skeleton q, an aggregate α, and a com-
parison operator θ . The query evaluation problem is: given
as input a BID representation J and a parameter k > 0,
calculate µJ (Q) where Q[α(y) θ k] is such that sk(Q) = q.

The technical problem that we address in this work is the
complexity of the query evaluation problem. Later, we will
see that the query evaluation problem for the query in Exam-
ple 3 is hard for �P , and moreover, that this is the general
complexity for all HAVING queries.

3 Preliminaries

We review some basic facts about semirings (for a reference
see Lang [34]). Then, we introduce random variables over
semirings.

3.1 Background: queries on databases with semiring
annotations

In this section, we review material from Green et al. [21] that
tells us how to compute queries on a database whose tuples
are annotated with elements of a semiring. To get there, we
need some classical definitions.

A monoid is a triple (S,+, 0) where S is a set, + is an
associative binary operation on S, and 0 is the identity of +,
i.e., s + 0 = 0 for each s ∈ S. For example, S = N (the
natural numbers) with addition is the canonical example of
a monoid.

A semiring is a structure (S,+, ·, 0, 1) where (S,+, 0)

forms a commutative monoid with identity 0; (S, ·, 1) is a
monoid with identity 1; · distributes over+, i.e., s · (t+u) =
(s · t) + (s · u) where s, t, u ∈ S; and 0 annihilates S, i.e.,
0 · s = 0 for any s ∈ S.

A commutative semiring is one in which (S, ·, 1) is a
commutative monoid. As is standard, we abbreviate either
structure with the set S when the associated operations and
distinguished constants are clear from the context. In this
paper, all semirings will be commutative semirings.

Example 4 [Examples of Semirings] For an integer k ≥ 0, let
Zk+1 = {0, 1, . . . , k} then for every such k, (Zk, max, min,

0, k) is a semiring. In particular, k = 2 is the Boolean semir-
ing, denoted B. For k = 1, 2, . . . , another set of semirings
we consider are Sk = (Zk,+k, ·k, 0, 1) where +k(x, y) =
min(x + y, k) and ·k = min(xy, k) where addition and mul-
tiplication are in Z.

The idea is that database elements will be annotated with
elements from the semiring (defined next) and then these
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The trichotomy of HAVING queries on a probabilistic database 1097

annotations will be propagated during query processing. For
us, the important point is that aggregation queries can be
viewed as doing computation in these semirings.

Definition 5 Given a commutative semiring S and a Bool-
ean conjunctive query q = g1, . . . , gn , an annotation is a set
of functions indexed by subgoals such that for i = 1, . . . , n,
τgi is a function from tuples that unify with gi to S. We denote
the set of annotation functions with τ .

Remark 2 In the above definition, we restrict τ to assigning
values to tuples that unify with gi , since gi may incorporate
selections. For example, if gi = R(x, ‘a’) then τ does not
need to assign values to tuples whose second component is
‘b’. Implicitly, τ should assign all such tuples 0.

We now define the syntax of relational plans and some
related notions. This is completely standard, except for the
minor issue that we view projection as removing attributes
instead of the traditional view of projection as keeping
attributes.

Definition 6 (Query Plan Syntax)

• a plan P is inductively defined as (1) a single subgoal
that may include selections, (2) π−x P1 if P1 is a plan and
x is a variable, and (3) P1 � P2 if P1, P2 are plans.

• var(P), the variables output by P , is defined inductively
as (1) var(g), the variables in the subgoal g, if P = g; (2)
var(π−x P) = var(P) − {x}; and (3) var(P1 � P2) =
var(P1) ∪ var(P2).

• goal(P), the set of subgoals in P , is defined inductively
as (1) goal(g) = {g}; (2) goal(π−x P1) = goal(P1); and
(3) goal(P1 � P2) = goal(P1) ∪ goal(P2).

A graphical example query plan is shown in Fig. 4a along
with its description in the above syntax.

We view relational plans as computing relational tuples
that are annotated with elements of a semiring (following
Green et al. [21]). To be precise, fix a domain D, and denote
the value of a plan P on a deterministic instance W as ωW

P ,
which is a function D

|var(P)| → S. Informally, the value of
a plan maps each standard tuple returned by the plan to an
element of the semiring S. We define ωW

P inductively:

• If P = g then if t ∈ W and t unifies with g then ωW
P (t) =

τg(t) else ωW
P (t) = 0.

• If P = π−x P1, then ωW
π−x P1

(t) =
∑

t ′:t ′[var(P)]=t

ωW
P1

(t ′).

• else P = P1 � P2 and for i = 1, 2 let ti be t restricted
to var(Pi ) then ωW

P1�P2
(t) = ωW

P1
(t1) · ωW

P2
(t2)

An example of a plan computing a value in a semiring is
shown in Fig. 4a. The value of the plan in the figure is 6:

(b)(a)

Fig. 4 a This is a query plan P = π−x (π−y(R(x) � S(x, y))) for the
query q = R(x), S(x, y) over some database annotated in N. The value
of the query is q(W, τ ) = 6. b This is an extensional plan (Defini-
tion 12) for P (π I−x (π I−y(R(x) � S(x, y))). This plan is not safe, since
intermediate values may be neither independent nor disjoint. Thus, the
extensional value computed by this plan is not the correct marginal
probability of the query. For readability, we underline elements of the
semiring

Since the plan is Boolean, it returns the empty tuple which
is annotated with 6, more succinctly, ωW

P () = 6.
For a standard conjunctive query q, there may be many

distinct, but logically equivalent, relational plans to compute
q. Green et al. [21] show that ωW

P does not depend on the par-
ticular choice of logically equivalent plan P for q. In turn,
this justifies the notation q(W, τ ), as the value of a conjunc-
tive query q on a deterministic instance W under annotation

τ . Formally, we define this value as q(W, τ )
def= ωW

P () where
P is any plan for q and where ωW

P is applied to the empty
tuple. This notion is well defined precisely because the value
of q does not depend on the choice of plan, P . When τ is
clear from the context, we drop it and write simply q(W ) to
denote the value of q on a world W .

3.2 Background: random variables on semirings

In this section, we extend the idea of semirings on a stan-
dard database to probabilistic databases. Intuitively, in each
possible world, every tuple is annotated with a (potentially
different) semiring element. Hence, we think of each tuple as
being associated with a semiring random variable (defined
formally below). A naive representation of these random
variables can be large, which motivates us to define an effi-
cient (small) representation called marginal vectors (in full
analogy with marginal probabilities). In addition, we define
(efficient) operations on these marginal vectors that are fully
analogous with multiplying and adding marginal probabili-
ties. In the remainder of this section, we fix a BID instance

123



1098 C. Ré, D. Suciu

J , and denote by (W, µ) the distribution on possible worlds
induced by J (Sect. 2.1).

Definition 7 Given a semiring S, an S-random variable, r ,
is a function r :W → S. Given two S-random variables r, t
then r + t and r · t denote random variables defined in the
obvious way:

(r + t)(W ) = r(W )+ t (W ) and (r · t)(W ) = r(W ) · t (W )

We write r = s as a shorthand for the event that the
random variable r takes value s. We denote the probabil-
ity of this event as µ(r = s). More precisely, µ(r = s) =
µ({W ∈W | r(W ) = s}). Two basic notions on random vari-
ables are independence and disjointness:

Definition 8 Given a semiring S and a set of random vari-
ables R = {r1, . . . , rn} on S, R is independent if ∀N ⊆
{1, . . . , n} and any set s1, . . . , sn ∈ S, we have

µ

(
∧

i∈N

ri = si

)

=
∏

i∈N

µ(ri = si )

We say that R is disjoint if for any i �= j we have:

µ((ri �= 0) ∧ (r j �= 0)) = 0

If r and t are two disjoint random variables8 then µ(r =
0 ∨ t = 0) = µ(r = 0)+ µ(t = 0)− 1.

To represent a single S-random variable, we may need
space as large as the number of possible worlds (|W|). This
can be exponential in the size of the database J , and so, is
prohibitive for most applications. We now define an alter-
native representation called marginal vectors that have size
proportional to the size of the semiring, i.e., |S|.
Definition 9 Given a random variable r on S, the marginal
vector (or simply, the marginal) of r is denoted mr and is a
real-valued vector indexed by S defined by ∀s ∈ S µ(r =
s) = mr [s].

Two simple facts immediate from the definition are ∀s ∈
S mr [s] ≥ 0 (all entries are positive) and

∑
s∈S mr [s] = 1

(total probability). We use the following notation mr

[s1, . . . , sk] where s1, . . . , sk are semiring elements to be a
shorthand for the tuple of marginal probabilities (mr [s1], . . . ,
mr [sk]).

Marginal vectors for semiring random variables are the
analog of marginal probabilities for Boolean events: they are
a means to write down a simple, succinct (but lossy) rep-
resentation of a random variable. In the case of a Boolean
semiring (i.e., B = ({0, 1} , max, min, 0, 1)), a random var-
iable r is an event that is true (when r = 1) or false (when

8 A more illustrative way to write this computation is Pr[r = 0 ∨ t =
0] = 1− Pr[r �= 0 ∧ t �= 0] = 1− (1− µ(r = 0))+ (1− µ(t = 0)).

r = 0). Suppose that the marginal probability that r is true
is pr (and so it is false with probability 1 − pr ). Then, the
marginal vector has two entries one for each of the semiring
elements, 0 and 1:

mr [0] = 1− pr and mr [1] = pr

If r and t are independent Boolean events, then their
conjunction r ∧ t has marginal probability given by the sim-
ple formula Pr[r ∧ t] = Pr[r ]Pr[t]. We generalize the idea
of multiplying marginal probabilities to marginal vectors of
semiring elements; the resulting operation is called a mo-
noid convolution. In full analogy, when when r, t are disjoint
semiring random variables, we introduce a disjoint opera-
tion that is analogous to the rule Pr[r ∨ t] = Pr[r ] + Pr[t]
for disjoint Boolean events.

Definition 10 Given a monoid (S,+, 0), the monoid con-
volution is a binary operation on marginal vectors denoted
⊕. For any marginals mr and mt we define the s-entry (for
s ∈ S) of mr ⊕ mt by the equation:

(mr ⊕ mt )[s] def=
∑

i, j :i+ j=s

mr [i]mt [ j]

That is, the sum ranges over all pairs of elements from the se-
miring S whose sum (computed in the semiring S) is exactly
s. We emphasize that since the entries of the marginal vec-
tors are in R, the arithmetic operations on m in the above
equation are performed in R as well.

The disjoint operation for (S, 0,+) is denoted mr ∐
mt

and is defined by

if s �= 0 (mr ∐
mt )[s] def= mr [s] + mt [s]

else (mr ∐
mt )[0] def= (mr [0] + mt [0])− 1.

In a semiring (S,+, ·, 0, 1) we use ⊕ to mean the convo-
lution over addition, i.e., over the monoid (S,+, 0), and ⊗
to mean the convolution over multiplication, i.e., over the
monoid (S, ·, 1). Notice that the disjoint operation is always
paired with + (not ·).

Example 5 Consider the Boolean semiring B and two ran-
dom variables r and t taking values in B with marginal prob-
abilities pr and pt , respectively. Then mr = (1− pr , pr ) and
mt = (1− pt , pt ). If r and t are independent, then the distri-
bution of r∨t can be computed using r⊕t (in B, r∨t = r+t).
From the definition, we see that (r⊕t)[0] = (1− pr )(1− pt )

and (r ⊕ t)[1] = (1− pt )+ (1− pr )pt + pr pt .
If r and t are disjoint, then mr+t [1] = (mr ∐

mt )[1] =
(pr + pt ) and mr+t [0] = (mr ∐

mt )[0] = 1− mr+t [1].

The next proposition restates that the two operations in
the previous definition yield the correct results, and states
bounds on their running time:
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The trichotomy of HAVING queries on a probabilistic database 1099

Fig. 5 Semirings for the operators MIN, COUNT and SUM. Let g∗ be
the lowest indexed subgoal such that contains y. For all g �= g∗, ∀t ,
τg(t) equals the multiplicative identity of the semiring. Let Zk+1 =
{0, 1, . . . , k} and +k(x, y)

def= min(x + y, k) and ·k def= min(xy, k),

where x, y ∈ Z. Let Sk
def= (Zk+1,+k , ·k , 0, 1). MAX and MIN are sym-

metric. COUNT(DISTINCT) is omitted because it uses two different

algebras together. One important point to note is that, in the case of
SUM, if t is outside the semiring (i.e., larger) than τ(t) is set to the
largest element of the semiring. Since all values are present, once this
value is present it forces the value of the predicate θ , e.g., if θ =≥ then
the predicate is trivially satisfied

Proposition 1 Let r and s be random variables on the
monoid (S,+, 0) with marginal vectors mr and mt , respec-
tively. Then let mr+t denote the marginal of r + t . If r and
t are independent then mr+t = mr ⊕ mt . If r and t are
disjoint then mr+t = mr ∐

mt . Further, the convolution is
associative, so the convolution of n variables r1, . . . , rn can
be computed in time O(n |S|2):
⊕

i=1,...,n

mri def= mr1 ⊕ · · · ⊕ mrn

and disjoint operation applied to r1, . . . , rn denoted below
can be computed in O(n |S|).

∐

i=1,...,n

mr1 def= mr1
∐
· · ·

∐
mrn

Proof We include the proof of the convolution since it is
illustrative. We assume that mx [i] = µ(x = i) for x ∈ {r, t}
and i ∈ S, i.e., themarginalvectorsarecorrect, and thatr and t
are independent. We show that

(
mr ⊕ mt

) [s]=µ(r+ t = s).
Since s ∈ S is arbitrary, this proves the correctness claim.
(
mr ⊕ mt) [s] =

∑

i, j∈S:i+ j=s

mr [i]mt [ j]

=
∑

i, j∈S:i+ j=s

µ(r = i)µ(t = j)

=
∑

i, j∈S:i+ j=s

µ(r = i ∧ t = j)

= µ(r + t = s) = mr+t [s]
The first equality is the definition. The second equality is
by assumption that the marginal vectors are correct. The
third line is by the independence assumption. The final line is
because the sum is exhaustive. To see the time bound, observe
that we can simply consider all |S|2 pairs to compute the con-
volution (which we assume has unit cost). Since the semiring
is associative, and so is the convolution. This also means that
we can compute the n-fold convolutions pairwise.

The importance of this proposition is that if the number
of elements in the semiring is small, then each operation can
be done efficiently. We will use this proposition as the basis
of our efficient exact algorithms.

4 Approaches for HAVING

We define α-safe HAVING queries for α ∈ { EXISTS, MIN,

MAX, COUNT} in Sect. 4.3, for α = COUNT(DISTINCT) in
Sect. 4.4, and α ∈ {AVG,SUM} in Sect. 4.5.

4.1 Aggregates and semirings

We explain how to compute HAVING queries using semi-
rings on deterministic databases, which we then generalize
to probabilistic databases. Since HAVING queries are Bool-
ean, we use a function ρ : S → {true, false}, called the
recovery function, that maps a semiring value s to true if
that value satisfies the predicate in the having query Q, e.g.,
when checking COUNT(∗) ≥ 4, ρ(4) is true, but ρ(3) is
false. Figure 5 lists the semirings for the aggregates in this
paper, their associated annotation functions τ , and an associ-
ated Boolean recovery function ρ. The aggregation function
EXISTS essentially yields the safe plan algebra of Dalvi and
Suciu [12,13,40].

Example 6 Consider the query Q[MIN(y) > 10] : –R(y)

where R = {t1, . . . , tn} is a tuple independent database.
Figure 5 tells us that we should use the semiring (Z3, max,

min). We first apply τ : τ(ti ) = 1 represents that ti [y] >

10 while τ(ti ) = 2 represents that ti [y] ≤ 10. Let qτ =∑
i=1,...,m τ(ti ), the sum is in S, and so, qτ = maxi=1,...,m

τ(ti ). Now, ρ(qt ) is satisfied only when qτ is 1. In turn, this
occurs if and only if all ti [y] are greater than 10 as required.

A careful reader may have noticed that we could have used
Z2 to compute this example (instead of Z3). When we gener-
alize to probabilistic databases, we may have to account for
a tuple being absent (for which we use the value 0).
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More generally, we have the following proposition:

Proposition 2 Given a HAVING query Q, let q = sk(Q)

and S, ρ and τ be chosen as in Fig. 5, then for any determin-
istic instance W :

W |� Q ⇐⇒ ρ (q(W, τ ))

Proof Let q, the skeleton of Q, have n subgoals. We show
only MIN with ≤ in full detail. All other aggregate-test pairs
follow by similar arguments. We observe the equation

q(W, τ ) =
∑

v:im(v)⊆W

∏

i=1,...,n

v(gi )

Further, W |� Q[MIN(y) ≤ k] if and only if there there is
some valuation such that

∏
i=1,...,n v(gi ) = 2. Since, 2+s =

2 for any s ∈ S the existence of such a valuation implies
q(W, τ ) = 2. Conversely, if q(W, τ ) = 2 then there must
be some such valuation since x + y = 2 implies that either
x or y is 2 in this semiring. Hence, the claim holds.

Similarly, W |� Q[MIN(y) ≥ k], the query is satisfied if
and only if all elements are≥ k and so each term (valuation)
in the summation must evaluate to 0 or 1. Similar arguments
are true for =, �=. In the case of COUNT, if we want to count
from 1, . . . , k we also need two elements, 0 and k + 1: 0
encodes that a tuple is absent and k + 1 encodes that the
value is “bigger than k”.

In probabilistic databases, we view q(W, τ ) as a random
variable by fixing τ (the semiring annotation functions), i.e.,
we view q(W, τ ) as a function of W alone. We denote this
random variable qτ . Our goal is to compute the marginal
vector of qτ . The marginal vector of qτ , denoted mqτ , is suf-
ficient to compute the value of any HAVING query since we
can simply examine those entries in mqτ for which the recov-
ery function, ρ, is true. Said another way, a simple corollary
of Proposition 2 is the following generalization to probabi-
listic databases:

Corollary 1 Given a HAVING query Q, let q = sk(Q), S,
ρ, and τ be as in Proposition 2, then for any BID instance J
we have the following equalities:

µJ (Q) =
∑

k : ρ(k) is true

mqτ [k]

Corollary 1 tells us that we can compute µ(Q) by exam-
ining the entries of the marginal vector mqτ . Hence, our goal
is to compute mqτ [s] for each such index, s ∈ S.

4.2 Computing safely in semirings

We now extend safe plans to compute a marginal vector
instead of a Boolean value. Specifically, we compute mqτ ,
the marginal vector for qτ using the operations defined in
Sect. 3.2.

Definition 11 An extensional plan for a Boolean conjunc-
tive query q is defined recursively as a subgoal g and if P1, P2

are extensional plans then so are π I−x P1 (independent pro-
ject), π D−x P1 (disjoint project), and P1 � P2 (join). An exten-
sional plan P is safe if, assuming P1 and P2 are safe, the
following conditions are met:

• P = g is always safe
• P = π I−x P1 is safe if x ∈ var(P1) and ∀g ∈ goal(P1)

then x ∈ key(g)

• P = π D−x P1 is safe if x ∈ var(P1) and ∃g ∈ goal(P1),
key(g) ⊆ var(P), x ∈ var(g).

• P = P1 � P2 is safe if goal(P1) ∩ goal(P2) = ∅ and
for i = 1, 2, var(goal(P1)) ∩ var(goal(P2)) ⊆ var(Pi ),
i.e., we may not project away variables that are shared in
two subgoals before they are joined.

An extensional plan P is a safe plan for q if P is safe and
goal(P) = q and var(P) = ∅.

Intuitively, a safe plan tells us that the correlations of
tuples produced by intermediate stages of the plan are either
independent or disjoint, as opposed to correlated in some
unknown way. In particular, P = π I−x (P1) is a safe plan
whenever those tuples produced by P1 on any instance are
independent (provided the tuples differ on the variable x).
Hence, we call π I an independent project. Similarly, if P =
π D−x (P1) is safe, then the tuples produced by P1 are disjoint
whenever they differ on the variable x . Further, a join is safe
if the branches do not contain any common subgoals, i.e., any
tuple produced by P1 is independent of any tuple produced
by P2. For completeness, we state and prove a formal version
of this discussion in Appendix A.

Computing with safe plans

We now augment safe plans to compute marginal vectors.
Intuitively, we generalize the operation of multiplying mar-
ginal probabilities (as done in safe plans) to semiring convo-
lutions of marginal vectors, and we generalize the operation
of adding the marginal probabilities of disjoint events to dis-
joint operations on marginal vectors. We think of a plan as
computing a marginal vector: the marginal vector computed
by a plan P on a BID instance J is called the extensional
value of P and is denoted as ω̂J

P,S and is defined below.

Definition 12 Given a BID instance J and a semiring S. Let
P be a safe plan. Denote the extensional value of P in S on
J as ω̂J

P,S . ω̂J
P,S is a function that maps each tuple to a mar-

ginal vector. To emphasize the recursion, we fix J and S and
denote ω̂J

P,S as ω̂P . We define the value of ω̂P inductively:

• If P = g then ω̂P (t) = mt where mt [0] = 1− t[P] and
mt [τg(t)] = t[P] and all other entries are 0.
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• If P = π I−x P1 then ω̂P (t) =
⊕

t ′:t ′[var(P1)]=t

ω̂P1(t) where

⊕
denotes the convolution over the monoid (S,+, 0).

• If P = π D−x P1 then ω̂P (t) =
∐

t ′:t ′[var(P1)]=t

ω̂P1(t) where

∐
denotes the disjoint operation over the monoid

(S,+, 0).
• If P = P1 � P2 then ω̂P (t) = ω̂P1(t1)⊗ ω̂P2(t2) where

for i = 1, 2 ti is t restricted to var(Pi ) and⊗ denotes the
convolution over the monoid (S, ·, 1).

Figure 4b gives an example of computing the extensional
value of a plan: the plan shown is not safe, meaning that
the extensional value it computes is not correct, i.e., equal
to mqτ . This illustrates that any plan may be converted to an
extensional plan, but we need additional conditions (safety)
to ensure that the computation is correct. Interestingly, in
this case, there is an alternate safe plan: P0 = π−x (R(x) �

π−y(S(x, y))), i.e., we move the projection early.
The next lemma states that for safe plans, the extensional

value is computed correctly, i.e., the conditions insured by
the safe plan and the operator used in Definition 12 make
exactly the same correlation assumptions. For example, π I

indicates independence, which ensures that⊕ correctly com-
bines two input marginal vectors. The proof of the following
lemma is a straightforward induction and is omitted.

Lemma 1 If P is a safe plan for a Boolean query q and τ

is any annotation function into S, then for any si ∈ S on any
BID instance J , we have ω̂J

P ()[si ] = µJ (qτ = si ).

A safe plan (in the terminology of this paper) ensures that
the convolutions and disjoint operations output the correct
results, but it is not sufficient to ensure that the plan is effi-
cient. In particular, the operations in a safe plan on S take time
(and space) polynomial in |S|. Thus, if the size of S grows
super-polynomially in |J |, the size of the BID instance, the
plan will not be efficient. As we will see, this happens for
SUM in most cases. As we show in the next section, if α is
one of MIN, MAX, or COUNT, the number of elements in the
needed semiring is small enough, so the safety of sk(Q) and
Q coincide.

4.3 EXISTS-,MIN-, MAX- and COUNT-safe

We now give optimal algorithms when α is one of EXISTS,
MIN,MAX, or COUNT. The results onEXISTS are exactly the
results of Dalvi and Suciu [12]. We include them to clarify
our generalization.

Definition 13 Letα be one of {EXISTS,MIN,MAX,COUNT}
and Q[α(t) θ k] be a HAVING query, then Q is α-safe if the
skeleton of Q is safe.

Theorem 1 Let Q[α(y) θ k] be a HAVING query for α ∈
{ EXISTS, MIN, MAX, COUNT} such that Q is α-safe then
the exact evaluation problem for Q is in polynomial time in
the size of the data.

Correctness is straightforward from Lemma 1. Efficiency
follows because the semiring is of constant size for EXISTS,
MIN, and MAX. For COUNT, observe that an upper bound on
|S| is number of tuples returned by the query plus one (for
empty), thus count is polynomially bounded as well. Thus,
the entire plan has polynomial time data complexity.

Complexity

The results of Dalvi and Suciu [12,13,40] show that either
a conjunctive query without self-joins has a safe plan or it
is �P-hard. The idea is to show that a HAVING query Q is
satisfied only if sk(Q) is satisfied, which implies that com-
puting Q is at least as hard as computing sk(Q). Formally,
we have:

Theorem 2 [Exact Dichotomy for MIN,MAX, and COUNT]
If α ∈ {MIN,MAX,COUNT} and Q[α(y) θ k] does not con-
tain self-joins, then either (1) Q is α-safe and so Q has data
complexity in P , or (2) Q has �P-hard data complexity. Fur-
ther, we can find an α-safe plan in P .

Proof The first part of the dichotomy is Theorem 1. We
show the matching negative result. Consider the predicate
test MIN(y) ≥ 1; assuming that Q is not MIN-safe, we have
(by above) that sk(Q) = q is not safe in the sense of Dalvi
and Suciu, we show that this query can be used to compute
Pr[q] on an BID instance J . To see this, create a new instance
J ′ that contains exactly the same tuples as J , but recode all
values in attributes referenced by y as integers with values
greater than 1: this query is true precisely when at least one
tuple exists and hence with Pr[q]. We show below that this is
sufficient to imply that all tests θ are hard as well. The proof
for MAX is symmetric. COUNT is similar.

Lemma 2 Let α ∈ {MIN,MAX, COUNT, SUM, COUNT
(DISTINCT), if computing Q[α(y) = k] exactly is �P-
hard, then it is �P-hard for all θ ∈ Θ . Furthermore, if qτ

takes at most polynomially many values then the converse
also holds: if computing Q[α(y) θ k] exactly is �P-hard for
any θ ∈ Θ , then it is �P-hard for all θ ∈ Θ .

Proof We first observe that all aggregate functions α in the
statement are positive, integer-valued functions. We show
that we can use ≤,≥,>,<, �= as a black box to compute =
efficiently. We then show that we can compute the inequal-
ities in time O(k) (using =), thus proving both parts of the
claim.
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First, observe that q(W, τ ) = s is a function on worlds,
i.e., the events are disjoint for different values of s. Hence,

µ(Q[α(y) ≤ k]) =
∑

k′≤k

µ(Q[α(y) = k′]

From this equation it follows that we can compute any
inequality using = in time proportional to the number of
possible values. To see the forward direction, we compute

µ(Q[α(y)≤k + 1])−µ(Q[α(y)≤k])=µ(Q[α(y) = k])
similarly for a strict inequality. And, 1−µ(Q[α(y) �= k])−
µ(Q[α(y) �= 0]) = µ(Q[α(Y ) = k]). The �= 0 statement is
only necessary with SQL semantics.

The exact �P-hardness proofs in the remainder of this sec-
tion satisfy the requirement of this lemma. Interestingly, this
lemma does not hold for approximation hardness.

4.4 COUNT(DISTINCT)-safe queries

Intuitively, we compute COUNT(DISTINCT) in two stages:
(1) For the subplan rooted at π−y , we first compute the proba-
bility that each value is returned by the plan (i.e., we compute
the DISTINCTpart usingEXISTS). (2) Then, since we have
removed duplicates implicitly using EXISTS, we count the
number of distinct values using the COUNT algorithm from
Sect. 4.3.

The ordering of the operators, first EXISTS and then
COUNT, is important. As we show in Theorem. 4, this order-
ing exactly captures tractable evaluation. First, we need a
small technical proposition to state our characterization:

Proposition 3 If P is a safe plan for q, then for x ∈ var(q)

there is exactly one of π I−x or π D−x in P.

Proof At least one of the two projections must be present,
because we must remove the variable x (q is Boolean). If
there were more than one in the plan, then they cannot be
descendants of each other because x /∈ var(P1) for the ances-
tor and they cannot be joined afterward because of the join
condition for i = 1, 2 var(goal(P1)) ∩ var(goal(P2)) ⊆
var(Pi ).

Thus, it makes sense to talk about the unique node in the
plan tree where a variable x is removed, as we do in the next
definition:

Definition 14 A query Q[COUNT(DISTINCT y) θ k] is
COUNT(DISTINCT)-safe if there is a safe plan P for the
skeleton of Q such that if P1 is the unique node in the plan
where y is removed, i.e., either π I−y or π D−y in P , then no
proper ancestor of P1 is π I−x for any x .

This definition exactly insists on the ordering of operators
that we highlighted above.

Example 7 Fix a BID instance J . Consider

Q[COUNT(DISTINCT y) ≥ 2] :–R(y, x), S(y)

A COUNT(DISTINCT)-safe plan for the skeleton of Q
is P = π I−y((π

I−x R(y, x)) � S(y)). The subquery P1 =
(π I−x R(y, x)) � S(y) returns tuples (values for y). We use
the EXISTS algebra to compute the probability that each
distinct value appears.

Now, we must count the number of distinct values: since
we have eliminated duplicates, all y values are trivially dis-
tinct and we can use the COUNT algebra. To do this, we map
each EXISTS marginal vector to a vector suitable for com-
puting COUNT, i.e., a vector in Zk (here k = 2). In other
words, (1 − p, p) = ω̂J

P,EXISTS(t) = mt is mapped to
τ̂ (mt ) = (1 − p, p, 0). In general, this vector would be of
length k + 1.

Since P = π I−y P1, we know that all tuples returned by
P1 are independent. Thus, the correct distribution is given
by convolution over all such t ′, each one corresponding to
a distinct y value, i.e., ⊕t τ̂ (t ′). To compute the final result,
use the recovery function, ρ defined by ρ(s) = s ≥ 2

The proof of the following theorem is a generalization of
Example 7, whose proof we include in Appendix B.

Theorem 3 If Q is COUNT(DISTINCT)-safe then its eval-
uation problem is P-time.

Complexity. We now establish that for COUNT
(DISTINCT) queries without self-joins, COUNT
(DISTINCT)-safe captures efficient computation. We do this
in two stages: first, we exhibit some canonical hard patterns
for COUNT(DISTINCT), and second, in the appendix, we
reduce any other non- COUNT(DISTINCT)-safe pattern to
one of these hard patterns.

Proposition 4 The following HAVING queries are �P-hard
for i = 1, 2, . . .:

Q1[COUNT(DISTINCT y) θ k] :–R(x),S(x, y)

and,

Q2,i [COUNT(DISTINCT y) θ k] :–R1(x; y), . . . ,Ri (x; y)

Proof We prove Q1 is hard and defer Q2,i to the Appen-
dix B. To see that Q1 is hard, we reduce from counting the
number of independent sets in a graph (V, E) which is �P-
hard. We let k be the number of edges (|E |) and θ = ‘ ≥’.
Intuitively, with these choices Q will be satisfied only when
all edges are present. For each node u ∈ V , create a tuple
R(u) with probability 0.5. For edge e = (u, v) create two
tuples S(u, e),S(v, e), each with probability 1. For any set
V ′ ⊆ V , let WV ′ denote the world where the tuples cor-
responding to V ′ are present. For any subset of nodes, V ′,
we show that V ′ is an independent set if and only if WV−V ′
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satisfies Q1, i.e., all edges are present in its node-comple-
ment. Since f (N ) = V − N is one-to-one, the number of
possible worlds that satisfy Q1 are exactly the number of
independent sets, thus completing the reduction. Now, if N
is an independent set, then for any edge (u, v), it must be
the case that at least one of u or v is in V − N , else the set
would not be independent, since it would contain an induced
edge. Thus, every edge is present and Q is satisfied. If N is
not independent, then there must be some edge (u, v) such
that u, v ∈ N , hence neither of u, v is in V − N . Since this
edge is missing, Q1 cannot be satisfied. This completes the
reduction. The hardness of Q2 is based on a reduction from
counting the set covers of a fixed size and is in the appendix.

There is some work in showing that the patterns in the
previous theorem capture the boundary of hardness.

Theorem 4 [COUNT(DISTINCT) Dichotomy] Let Q[α(y)

θ k] be a HAVING such that α is COUNT(DISTINCT), then
either (1) Q is COUNT(DISTINCT)-safe and so has P data
complexity or (2) Q is not COUNT(DISTINCT)-safe and has
�P-hard data complexity.

Proof Part (1) of the result is Theorem 3. We sketch the
proof of (2) in the simpler case when only tuple independent
probabilistic tables are used in Q and defer a full proof to
Appendix B. Assume the theorem fails, let Q be the minimal
counter example in terms of subgoals; this implies we may
assume that Q is connected and the skeleton of Q is safe.
Since there is no safe plan projecting on y and only inde-
pendent projects are possible, the only condition that can fail
is that some subgoal does not contain y. Thus, there are at
least two subgoals R(x) and S(z, y) such that y �∈ x ∪ z and
x ∩ z �= ∅. Given a graph (V, E), we then construct a BID
instance J exactly as in the proof of Proposition 4. Only the
R relation is required to have probabilistic tuples, all others
can set their probabilities to 1.

Extending to BID databases requires more work because
our technique of adding extra tuples with probability 1 does
not work: doing so naively may violate a possible worlds
key constraint. The full proof appears in Appendix B. It is
straightforward to decide if a plan is COUNT(DISTINCT)-
safe: the safe plan algorithm of Dalvi and Suciu [13,40] sim-
ply tries only disjoint projects and joins until it is able to
project away y or it fails.

4.5 SUM-safe and AVG-safe queries

To findSUM- andAVG-safe queries, we need to further restrict
the class of allowable plans. For example, there are queries
involving SUM on a single table that are �P-hard, e.g., the
query Q[SUM(y) = k] :–R(y) is already �P-hard. There
are, however, some queries that can be evaluated efficiently:

Definition 15 A HAVING query Q[α(y) θ k] for α ∈ {SUM,

AVG} is α-safe, if there is a safe plan P for the skeleton of
Q such that π D−y in P and no proper ancestor of π D−y is π I−x
for any x .

The idea of the positive algorithm is that if the plan con-
tains π D−y , i.e., each value for y is present disjointly. Let
a1, . . . , an be the y values returned by running the standard
query q(y) [adding y to the head of sk(Q)]. Now consider
the query Q′ where sk(Q′) = q[y → ai ] (substitute y with
ai ). On this query, the value of y is fixed, so we only need
to compute the multiplicity of ai figure out if Q′ is true. To
do this, we use the COUNT algebra of Sect. 4.3 whenever q
is safe.

Theorem 5 If Q[α(y) θ k] for α ∈ {SUM,AVG} is α-safe,
then Q’s evaluation problem is in P-time.

Proof [Sketch] Since Q is α-safe, then there is a plan P sat-
isfying Definition 15. The consequence of this definition is
that on any possible world W , we have that the conjunctive
query q(y) (q = sk(Q)) returns a single tuple (i.e., a single
binding for y). This implies that the values are disjoint. So
for a fixed positive integer a returned by q(y), the predicate
SUM(y) θ k depends only on the multiplicity of a. Hence, we
can write:

Pr[Q] =
∑

a∈S

Pr[Qa

[

COUNT(∗) θ
k

a

]

Here, Qa denotes that sk(Qa) = q[y → a], i.e., y is substi-
tuted with a in the body of Qa . Since Q is α-safe, we have
that q[y → a] is safe, and so by Theorem 1, each term can be
computed with the COUNT algebra. Hence, we can compute
the entire sum in polynomial time and so Pr[Q]. For AVG, it
is slightly simpler: Since we are taking the value of m copies
of a, we have that the AVG is a if m > 0 (else the query is
false). Thus, we simply need to compute the probability that
the value a exists with multiplicity greater than 1 (which can
be handled by the standard EXISTS algebra).

Example 8 Consider Q[SUM(y) > 10] :–R(‘a’; y),S(y, u).
This query is SUM-safe, with plan π D−y(R(‘a’; y) � π I−u
S(y, u)).

Complexity. We show that if a HAVING query without
self-joins is not SUM-safe then, it has �P-data complexity.
AVG follows by essentially the same construction.

Proposition 5 Letα∈ {SUM,AVG}andθ ∈ {≤,<,=,>,≥}
then Q[α(y) θ k] :–R(y) has �P-data complexity.

Proof We only show SUM, deferring AVG to the appendix.
Consider when θ is =. An instance of �SUBSET-SUM is a
set of integers x1, . . . , xn and our goal is to count the num-
ber of subsets S ⊆ 1, . . . , n such that

∑
s∈S xi = B. We
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create the representation with schema R(X; ; P) satisfying
R = {(x1; 0.5), . . . , (xn; 0.5)}, i.e., each tuple present with
probability 0.5. Thus, µ(Q)∗2n is number of such S. Show-
ing hardness for other aggregate tests follows from Lemma 2.

Theorem 6 Let α ∈ {SUM,AVG} and let Q[α(y) θ k] be a
HAVING query, then either (1) Q is α-safe and hence has
P-time data complexity, or (2) Q is not α-safe and Q has
�P-data complexity.

We prove this theorem in Appendix C.

5 Generating a random world

In this section, we give an algorithm (Algorithm 5.2.1) to
solve the random possible world generation problem, which
informally asks us to generate a possible world W̃ such that
q(W̃ , τ ) = s, i.e., such that the value of q on W̃ is s. The
probability that we generate a fixed world W̃ is exactly the
probability of W̃ conditioned on the value of q being equal
to s. Our solution to this problem is a key a subroutine in our
fptras for SUM (in Sect. 6), but it is also an interesting prob-
lem in its own right. As pointed out by Cohen et al. [11], a
random world satisfying some constraints is useful for many
debugging and related tasks.

5.1 Problem Definition

Definition 16 Let J be a BID instance, q be a conjunc-
tive query, and τ be an annotation function. A BID random
world generator (simply, a random generator) is a random-
ized algorithm A that generates a possible world W̃ ∈ WJ

such that for any s ∈ S we have:9

Pr
A
[W̃ = W ] = µ(W | q(W, τ ) = s)

where PrA emphasizes that the probability is taken over the
random choices of the algorithm A. Further, we require that
A run in time poly(|J | , |S|).

This definition says that the probability a world is gen-
erated is exactly the conditional probability of that instance
(conditioned on the value of the query q being s). In this
section, we show that when sk(Q) is safe then we can solve
create a random generator for any BID instance and any anno-
tation function.

5.2 Possible world generation algorithm

9 Formally, if W = ∅, then we require that that a random generator
return a special value, ⊥. This value is like an exception and will not
be returned during the course of normal execution.

Algorithm 5.2.1 A random world generator for Jφ

Decl: RWHelper(φ : semiring parse tree,
s : a semiring value)

returns a random world denoted W̃ ⊆ Jφ .

if φ is a leaf, i.e., φ = (t, mt ) for some tuple t then
(* If s �= 0 then this implies the tuple must be present. *)
if s �= τ(t) then return {t}
elif s = 0 then return ∅ else return ⊥

(* Inductive case *)
Let φ have label (op, mr ) and children φ1 and φ2

with marginal vectors mφ1 and mφ2 , respectively.
if op = ⊕ then

Choose (s1, s2) s.t. s1 + s2 = s with probability mφ1 [s1]mφ1 [s2] 1
mφ [s]

if op = ⊗ then
Choose (s1, s2) s.t. s1 · s2 = s with probability mφ1 [s1]mφ1 [s2] 1

mφ [s]
if op =∐

then
Choose (s1, s2) = (s, 0) with probability mφ1 [s1] 1

mφ [s]
or (s1, s2) = (0, s) with probability mφ1 [s2] 1

mφ [s]
(* Union the results of the recursive calls *)
return RWHelper(φ1, s1) ∪ RWHelper(φ2, s2)

Algorithm 5.2.2 A random world generator for J
Decl: RandomWorld(φ : semiring parse tree,

J : A BID instance, s a semiring element
returns a random world of J denoted W̃ .

Let W̃ ← RWHelper(φ, s) and T = J − Jφ

for each t ∈ T do
Let K (t) = {

t ′ | t[K ] = t ′[K ]} = {t1, . . . , tm} with pi = Pr[ti ].
Let {tk+1, . . . , tm} = K (t) ∩ Jφ

if K (t) ∩ W̃ = ∅ then
select ti from i = 1, k with pi

1−∑
j=k+1,m p j

and W̃ ← W̃ ∪ {ti }
T ← T − K (t)

return W̃

To describe our algorithm, we need a notation to record
the intermediate operations of the safe plan on the marginal
vectors, i.e., a kind of lineage or provenance for the semir-
ing computation. Here, we view a safe plan as computing
the marginal vectors and as computing a symbolic semiring
expression (essentially, a parse tree of the extensional com-
putation performed by the plan).

Definition 17 A semiring parse tree φ is a binary tree where
a leaf is labeled with a pair (t, mt ) where t is a tuple and m is
a marginal vector on S; and an internal node is labeled with
a pair (op, m) where op ∈ {⊕,⊗,

∐}
and m is a marginal

vector.

Given a safe plan P and a BID instance J with annotation
τ , the parse tree associated to P and J is denoted φ(P, J, τ ).
We think of φ(P, J, τ ) as a record of the computation of
P on J . More precisely, φ(P, J, τ ) is a parse tree for the
semiring expression that we compute given P and J using
the rules of Definition 12. The operations in a safe plan are n-
ary: we can, however, transform these n-ary operations into
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(a)

(b)

Fig. 6 a A BID relation R(A; B) used in Example 9 along with a safe
plan P = π I−x (π

D−y(R)). The extensional computation is in the semir-

ing N. b φ(P, {R}) is shown where P = π I−x (π D−y(R)). The dotted
boxes map to the nodes in the tree, described in Definition 17. In the
figure, for readability, we only show the entry for 6 in the root. Also,

the entries in the marginal vectors are real (rational) numbers and are
written as expressions only for the sake of readability. There is a one-to-
one correspondence between intermediate marginal vectors and nodes
in the parse tree φ(P, J, τ )

a binary parse tree in an arbitrary way, since the operations
are associative. An example parse tree is shown in Fig. 6. We
observe that any safe plan can be mapped to a parse tree.

Example 9 Figure 6 illustrates howφ(P, J, τ ) is constructed
for a simple example based on SUM. Figure 6a shows a rela-
tion R(A; B) where A is a possible worlds key. Our goal is
to generate a random world such that the query Q[SUM(y) =
6] :–R(x; y) is true. The skeleton of Q is safe and so has a
safe plan, P = π I−x (π

D−y(R)). Figure 6a also shows the inter-
mediate tuples that are computed by the plan, along with their
associated marginal vectors. For example, the marginal vec-
tor associated to t1 is mt1[0, 1] = (1− p1, p1). Similarly, the
marginal vector for intermediate tuples like t6 is mt6 [1] = p2.
At the top of the plan is the empty tuple, t8, and one entry in
its associated marginal vector, i.e., mt8[6] = p1 p5 + p2 p4.

The parse tree φ(P, J, τ ) corresponding to P on the
instance J = {R} is illustrated in Fig. 6b. The bottom-most
level of internal nodes have op = ∐

, since they encode the
action of the disjoint projection π D−y . In contrast, the root has
op = ⊕, since it records the computation of the independent
project, π I−x . As we can see, the parse tree simply records
the computation and the intermediate results.

Algorithm Overview. Our algorithm has two phases: (1)
we first build a random generator for the tuples in the parse
tree φ (defined formally below); this is Algorithm 5.2.1. (2)
Using the tuples generated in step (1), we select those tuples
not in the parse tree and complete the generator for J ; this is
Algorithm 5.2.2. To make this precise, we need the following
notation:

Definition 18 Given a semiring parse tree φ, we define
tup(φ) inductively: if φ is a leaf corresponding to a tuple

t , then tup(φ) = {t}. Otherwise, φ has two child parse trees
φ1 and φ2, then tup(φ) = tup(φ1) ∪ tup(φ2). We also con-
sider tup+(φ) = tup(φ) − {t | τ(t) = 0}, i.e., tup+(φ) is
the set of tuples with non-zero annotations contained in φ.

If P is a safe plan, then tup has a particular simple form:

Proposition 6 Let P be a safe plan for q and J be a BID
instance, then for any internal node φ0 in φ(P, J, τ ) with
children φ1 and φ2, we have that tup(φ1)∩ tup(φ2) = ∅ and
tup+(φ1) ∩ tup+(φ2) = ∅.
Proof We observe that an⊕ or an

∐
node is introduced only

if there is a projection removing a variable x (Definition 11),
in which case the tuples in tup(φ1) and tup(φ2) disagree on
x , hence, are disjoint sets of tuples. Case two is that op = ⊗,
which is introduced only as a join of two tuples. In this case,
tup(φ1) and tup(φ2) come from different relations (since
there are no self-joins in q). Thus, tup(φ1) and tup(φ2) have
an empty intersection. The second statement follows since
tup+(φi ) ⊆ tup(φi ) for i = 1, 2.

For any parse tree φ, we can view the tuples in tup+(φ)

as a BID instance that we denote Jφ (any subset of a BID
instance is again, a BID instance). For a deterministic world
W and a semiring expression φ, we write φ(W ) to mean the
semiring value of φ on world W , which is computed in the
obvious way.

Step (1): A generator for Jφ . We now define precisely the
first step of our algorithm: Our goal is to construct a random
world generator for the worlds induced by the BID instance
Jφ . This is captured by the following lemma:

Lemma 3 Let P be a safe plan for a query q, φ=φ(P, J, τ ),
and Jφ = tup+(φ) then Algorithm 5.2.1 is a random gener-
ator for Jφ for any annotation function τ .
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Proof Let φ0 be a subtree of φ(P, J, τ ). Then, given any
s ∈ S, Algorithm 5.2.1 is a random generator for Jφ0 . We
induct on the structure of the parse tree φ. In the base case,
φ0 is a leaf node and our claim is straightforward: If s = 0,
then we return the empty world. If τ(t) = s, then we simply
return a singleton world {t} if τ(t) = s. Otherwise, we have
that τ(t) �= s, then the input is not well-formed and we return
an exception (⊥) as required. This is a correct random gen-
erator, because our input is conditioned to be deterministic
(i.e., µ has all the mass on a single instance).

We now write the probability that φ(W ) = s in a way that
shows that if we recursively can randomly generate worlds
for subtrees, then we can make a random generator. Induc-
tively, we consider an internal node φ with children φ1 and
φ2. Assume for concreteness that op = ⊕ (the argument
for op = ⊗ is identical and for op = ∐

is only a slight
variation). Let W denote a world of Jφ . Then,

Pr[φ(W ) = s]
= Pr[φ1(W ) = s1 ∧ φ2(W ) = s2 | s1 + s2 = s]

This equality follows from the computation of φ. We then
simplify this expression using the fact that for i = 1, 2, φi ’s
value is a function tup+(φi ). Let Wi = W ∩ tup+(φi ), we
get:

Pr[φ1(W1) = s1 ∧ φ2(W2) = s2 | s1 + s2 = s]
Observe that Pr[s1 + s2 = s] = Pr[φ(W ) = s]. Then,

for any fixed s1, s2 such that s1 + s2 = s, we can then apply
Bayes’s rule and independence to get:

Pr[φ1(W1) = s1]Pr[φ2(W2) = s2]
Pr[φ(W ) = s]

Notice that W1 (respectively, W2) is a possible world of Jφ1

(respectively, Jφ2 ) and so the inductive hypothesis applies.
Now, by Proposition 6, the worlds returned by these worlds
do not make conflicting choices. Since the recursive calls are
correct, we just need to ensure that we pick (s1, s2) with the
above probability. Examining Algorithm 5.2.1, we see that
we pick (s1, s2) with exactly this probability, since

Pr[φ1(W ) = s1 ∧ φ2(W ) = s2 | s1 + s2 = s]
= mφ1 [s1]mφ2 [s2]

mφ[s]
This completes the proof.

Example 10 We illustrate Algorithm 5.2.1 using the data of
Example 9. Our goal is to generate a random world such that
the query Q[SUM(y) = 6] :–R(x; y) is true. The algorithm
proceeds top-down from the root φ. The entry for 6 is selected
with probability equal to p1 p5 + p2 p4.

Assume we have selected 6, then we look at the child
parse trees, φ1 and φ2: there are two ways to derive 6 with
non-zero probability (1) the subtree φ1 takes value 1 and

φ2 takes value 5, written (φ1, φ2) = (1, 5) or (2) we set
(φ1, φ2) = (2, 4). We choose between these options ran-
domly; we select (φ1, φ2) = (1, 5) with probability equal to

p1 p5
p1 p5+p2 p4

(the conditional probability). Otherwise, we select
(φ1, φ2) = (2, 4). Suppose we have selected (φ1, φ2) =
(1, 5), we then recurse on the subtree φ1 with value s1 = 1
and the subtree φ2 with value s2 = 5.

Recursively, we can see that to set φ1 = 1, it must be that t1
is present and t2 is absent. Similarly, we conclude that t4 must
be absent and t5 must be present. Hence, our random world
is W̃ = {t1, t5}. If we had instead chosen (φ1, φ2) = (2, 4)

then we would selected W̃ = {t2, t4}. Notice that our algo-
rithm never selects (φ1, φ2) = (3, 3) (i.e., this occurs with
probability 0). More generally, this algorithm never selects
any invalid combination of tuple values.

Step (2): A generator for J . We randomly include tuples
in J that are not mentioned in φ, i.e., tuples in J − Jφ . These
are tuples that do not match any selection condition in the
query, and can be freely added to W̃ without affecting the
query result. Here, we need to exercise some care to not insert
two tuples with the same key into W̃ , and so, we only consider
tuples whose possible worlds key differs from those returned
by Step (1). Formally, we prove the following lemma:

Lemma 4 Let φ(P, J, τ ) be a parse tree for a safe plan P, a
BID instance J , and an annotation τ . Then, given a random
generator for Jφ , Algorithm 5.2.2 is a random generator for
J .

Proof We first use the random generator to produce a random
world of Jφ , call it Wφ . Now, consider a tuple t ∈ J − Jφ ,
let K (t) = {

t ′ | t ′[K ] = t[K ]} = {t1, . . . , tm}, i.e., tuples
distinct from t that share a key with t . If K (t) ∩ Wφ �=
∅, then t cannot appear in this world because it is disjoint
from the set of K (t). Otherwise, K (t) ∩ Wφ = ∅, and let
K (t)− Jφ = {t1, . . . , tk} (without loss) with marginal prob-
abilities p1, . . . , pk , i.e., those key tuples not in tup+(φ).
These tuples do not affect the value so all that matters is add-
ing them with the correct probability, which is easily seen to
be the conditional probability:

Pr[ti is included ] = pi

1−∑
j=k+1,...,m p j

This conditional simply says that it is conditioned on none
of the tuples in K (t) ∩ Jφ appearing. This is exactly Algo-
rithm 5.2.2

The main result We now state the main technical result
of this section: It follows directly from the lemma above:

Theorem 7 Let q be a safe conjunctive query, then Algo-
rithm 5.2.1 is a random generator for any BID instance J
and annotation τ .
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An immediate consequences of Theorem. 7 is that if the
semiring S does not contain too many elements, then Algo-
rithm 5.2.1 solves the random possible world generation
problem.

Corollary 2 If q is safe and |S| = poly(|J |), then Algo-
rithm 5.2.1 solves the random possible world generation
problem in time poly(|J |).

We use this corollary in the next section to design an
fptras for SUM.

6 Approximating HAVING queries with MIN, MAX
and SUM

In this section, we study the problem of approximating
HAVING queries. First, we describe an fptras for having
queries that have α = MIN where the test condition is < or
≤, orα = MAXwhere the condition is one of {≥,>}. This first
fptras applies to arbitrary such HAVING queries, including
queries whose skeleton is unsafe. Second, we describe an
fptras for HAVING queries whose skeleton is safe, whose
aggregate is SUM, and where the test condition is any of <,
≤, >, or ≥.

Our fptras for SUM uses the random possible world gen-
erator of the previous section. These fptrases apply to a
class of queries that we call (α, θ)-apx-safe. Additionally,
we study the limits of any approach, and prove an approxi-
mation dichotomy for many (α, θ) pairs of HAVING queries
without self-joins: either the above scheme is able to provide
an fptras and so the query is (α, θ)-apx-safe, or there is no
fptras: we call these queries (α, θ)-hazardous.10

6.1 Background: approximation of �P-hard problems

Although �P-problems are unlikely to be able to be solved
exactly and efficiently, some problems have a strong approxi-
mation called a Fully Polynomial Time Randomized Approx-
imation Scheme or fptras [36], which is intuitively like a
1+ ε approximation.

Definition 19 Given function f that takes an input J and
returns a number f(J ) ∈ [0, 1], where J is a BID instance,
we say that an algorithm A is an fptras for f if given any
δ > 0, a confidence, and any ε > 0, an error, A takes J , ε,
and δ as input and produces a number denoted f̃(J ) such that

Pr
A
[
∣
∣
∣f(J )− f̃(J )

∣
∣
∣ ≤ ε f(J )] > 1− δ

where PrA is taken over the random choices of the algorithm,
A. Further, A runs in time polynomial in ε−1, |W |, and log 1

δ
.

10 Formally, we mean that the �BIS problem would have an fptras,
an unlikely outcome [16,17].

This definition asks for a relative approximation [36],
which means that if f is exponentially small, but non-zero,
our algorithm is required to return a non-zero value. This is
in contrast to an absolute approximation, that is allowed to
return 0 (and could be constructed using naïve random sam-
pling). In this section, we fix a query Q and consider the
function f (J ) = µJ (Q), where J is a BID instance. We
study whether this function admits an fptras.

We define three counting-like problems that are all
�P-hard and will be of use later in this section:

Definition 20 The �CLIQUE problem is given a graph
(V, E), compute the fraction of the subsets of V that are
cliques. The �BIS problem is given a bipartite graph
(U, V, E), compute the fraction of of the subsets of U × V
that are independent sets. The �KNAPSACK problem is given
a set of positive integers Y = {y1, . . . , yn} and a positive
integer value k, compute the fraction of sets W ⊆ Y such
that

∑
i∈W yi ≤ k.

All three problems are �P-hard11. In a celebrated result,
Jerrum and Sinclair [47] showed that �KNAPSACK does have
an fptras using a sophisticated Markov Chain Monte
Carlo technique. It is believed that neither �CLIQUE nor
�BIS have an fptras. Interestingly, they are not equally hard
to approximate (see Dyer et al. [16]). In particular, �BIS is a
complete problem with respect to approximation preserving
reductions. We do not need these reductions in their full gen-
erality, and simply observe that polynomial time computable
1–1 reductions (bijections) are approximation preserving. In
this section, we say that a problem is �BIS-hard if there is a
1–1, polynomial–time reduction to �BIS.

The �KNAPSACK problem is related to the problem of
computing HAVING queries with the aggregate functions
SUM on a single table.

6.2 An fptras for MIN with {≤,<} and MAX with {≥,>}

Consider a query Q[MIN(y) ≤ k] : –g1, . . . , gl then an
equivalent condition to W |� Q is that W |� q ′ where
q ′ :–g1, . . . , gl , y ≤ k. In other words, Q is equivalent to a
conjunctive query, q ′, that contains an inequality predicate.
As such, the standard algorithm for conjunctive queries on
probabilistic databases [12,20,41] based on Karp–Luby [29]
can be used. A symmetric argument can be used to find an
fptras for the aggregate test (MAX,≥). Thus, we get essen-
tially for free the following theorem:

Theorem 8 If (α, θ) ∈ {(MIN,≤), (MIN,<), (MAX,≥)} ,
{(MAX,>)} then Q[α(y) θ k] has an fptras.

11 We mean here that there is a 1–1 correspondence with the counting
variants of these problems, which are canonical �P-complete problems.
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Although this theorem is easy to obtain, it is interesting
to note that Q[MIN(y) > k] has an fptras only if sk(Q) is
safe (as we show in Lemma 8). If sk(Q) is safe, then, we can
compute its value exactly, so the fptras is not very helpful.
In contrast, Theorem 8 has no such restriction – sk(Q) can
be an arbitrary conjunctive query. This is a striking exam-
ple that approximation complexity may be more subtle than
exact evaluation. In particular, an analog of Lemma 2 does
not hold.

6.3 An fptras for safe queries using SUM with
{<,≤,≥,>}

The key idea of the fptras is based on a generalization of
Dyer’s observation: for some k ≥ 0, the query Q[SUM(y) ≤
k] is only hard to compute if k is very large. If k is small,
i.e., polynomial in the instance size, then we can compute Q
exactly. Dyer’s idea is to scale and round down the values,
so that the y-values are small enough for exact computa-
tion. The cost of rounding is that it introduces some spuri-
ous solutions, but not too many. In particular, the fraction of
rounded solutions is large enough that if we can sample from
the rounded solutions, then we can efficiently estimate the
fraction of original solutions inside the rounded solutions.

To perform the sampling, we use Algorithm 5.2.1 from the
previous section (via Algorithm 6.3.2). Pseudo-code for the
entire fptras is shown in Fig. 6.3.1. We show only (SUM,≤)

in detail, and explain informally how to extend to the other
inequalities at the end of the section.

Theorem 9 Let Q be a HAVING query Q[SUM(y) θ k] such
that θ ∈ {≤,<} and sk(Q) is safe, then Algorithm 6.3.1 is
an fptras for Q.

It is interesting to note that Theorem 9 implies that we
can efficiently evaluate a much larger set of queries than
the previous, complete exact algorithm (albeit only in an
approximate sense). In particular, only a very restricted class
of SUM-safe queries can be processed efficiently and exactly
(cf. Definition 15).

Our algorithm makes two technical assumptions: (1) in
this section, unlike the rest of the paper, our semantics differ
from SQL: In standard SQL, for a Boolean HAVING query
q, if no tuples are returned by sk(Q) then Q[SUM(y) ≤ k] is
false. In contrast, in this section, we assume that Q[SUM(y) ≤
1] is true, even if sk(Q) = q is false, i.e., we choose the math-
ematical convention

∑
y∈Y = 0, over SQL’s choice, and (2)

we make a bounded odds assumption:12 for any tuple t there
is exists β > 1 such that β−1 ≤ pt

1−pt
≤ β. These technical

restrictions can be relaxed, but are chosen to simplify our
analysis.

12 For example, that this rules our pt = 1 for any tuple and allows any
tuple to not be present with some probability.

Algorithm 6.3.1 An fptras for SUM
Decl:Sample(Q:a query Q[SUM(y)≤k] with a safe skeleton q,

an instance I , a confidence δ and error ε)
returns estimate of µI (Q).

Let body(q) = {g1, . . . , gl } and ni = |pred(gi )|, i.e., the size of
the i th relation.
Let n =∏

i=1,...,l ni .
Let Q R[SUM(y) ≤ n2] with the same body as q (see below).

Let τ R(y) = � n2 y
k � and y > k �→ n2 + 1

Construct an expression parse tree, φ = φ(P, I, τ R) where P is a
plan for q R .
For i = 1, . . . m Wi ← SampleHelper(φ, k)

(* Run m samples, for m a polynomial in δ, ε, n *)

return
∣
∣
{
Wi |Wi |�QO

}∣
∣

m ∗ µ(Q R) (* ≈ µ(QO )

µ(Q R )
µ(Q R) = µ(QO ) *)

(* Compute fraction of Wi that satisfy the original query QO . *)

Algorithm 6.3.2 Sampling Helper Routine
Decl:SampleHelper(φ: safe aggregate expression, b: a bound)

returns a world

Select s ∈ 0, . . . , b with probability mφ [s]∑
s′ mφ [s′] .

(* Select a final value for the query that is less than the bound b *)
return RandomWorld(φ, s)

6.3.1 The rounding phase

The goal of the rounding phase is to produce a query and
an annotation function that rounds the values in the instance
down enough so that (1) the exact processing algorithms of
Sect. 4.2 for SUM queries can be used, and (2) we can ran-
domly generate a world using the algorithm of Sect. 5. Algo-
rithm 6.3.2 shows pseudo code for how these two steps are
put together. The main result of this section is that the result-
ing algorithm is efficient (runs in time polynomial in the size
of the BID instance J ).

To get there, we construct two things: (1) an annotation
function, τ R , to do the rounding and (2) a query, Q R , that
uses the annotation function τ R and the semiring Sn2+1 to
compute the exact distribution of the rounded sum in poly-
nomial time.

The Annotation Function. Let g be the first subgoal of
q such that var(g) � y and R = pred(g), i.e., R is some
relation containing y values. We scale down the values of
y in R via the (rounding) annotation function denoted τ R .
Let n = ∏

g∈goal(q) |pred(g)|, i.e., the product of the sizes
of all relations in q. Observe that n is polynomial in the
instance size.13 The rounded annotation function maps into
the much smaller, rounded semiring SR = Sn2+1. We define
the rounded annotation function τ R to agree everywhere with
the original annotation function τ O , except on g (the R rela-

13 Recall that the query is fixed so if the database contains m tuples
then n = mO(1) where O(1) hides a constant depending only on q, e.g.,
the number of subgoals suffices.
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tion): Here, τ O
g (t) = t[y]. In the rounded annotation func-

tion, we have τ R
g (t) = � n2

k t[y]�, i.e., the y values are scaled
down by a factor of n2/k and rounded-down to the next
highest integer. Additionally, if t[y] is greater than k, then
τ R(t) = n2 + 1. Intuitively, this mapping is correct since if
such a tuple is in the output of the query, then we are sure the
summation is greater than k.

The Query. We construct a rounded query Q R[SUM(y) ≤
n2] with the same body as QO . Let q be the skeleton of both
QO and Q R , i.e., q = sk(Q R) = sk(QO). We observe that
since n2 is polynomial in the instance size, the generic semir-
ing algorithm of Sect. 4.2 can be used to compute the entire
distribution q(W, τ R) exactly in time polynomial in the size
of the instance. Since we will always use Q R with the rounded
annotation function it makes sense to write W |� Q R if
q(W, τR) ≤ n2. Similarly, we will always use QO with the
original annotation function so that it makes sense to write
W |� QO if q(W, τO ) ≤ k.

Definition 21 Let W be a possible world from some BID
instance J . If W |� QO , then we call W an original solu-
tion. If W |� Q R then we call W a rounded solution. Further,
denote the set of original solutions with W O

J and rounded
solutions with W R

J :

W O
J =

{
W ∈WJ | W |� QO

}

and W R
J =

{
W ∈WJ | W |� Q R

}

We drop the subscript J when the BID instance is clear from
the context.

We observe an essential property of our scheme: all origi-
nal solutions are rounded solutions, i.e., W O

J ⊆ W R
J .

Formally,

Lemma 5 For any possible world W , W |� QO �⇒ W |�
Q R, and more precisely, there exists a δ ∈ [0, n) such that
q(W, τ R) = q(W, τ O)− δ.

Proof Let q = sk(QO) = sk(Q R) and V be the set of all
valuations for q. Let W be a possible world:

W |� QO ⇐⇒
∑

v∈V :im(v)⊆W

τ O(v(g)) ≤ k

⇐⇒
∑

v∈V :im(v)⊆W

n2

k
τ O(v(g)) ≤ n2

�⇒
∑

v∈V :im(v)⊆W

τ R(v(g))+ δv ≤ n2

⇐⇒ W |� Q R

Here, δv ∈ [0, 1) and accounts for the round-off of the
floor function. Since 0 ≤ ∑

v δv < n, we have the more
precise statement.

The importance of this lemma is that by sampling within
the rounded solutions, we have a chance of hitting any orig-
inal solution. Let W̃ be a random rounded solution created
using Algorithm 6.3.2, then let f be the Boolean-valued esti-
mator (random variable) that takes value 1 iff W̃ |� QO . It
is not hard to see that this estimator satisfies:

EA[f] =
µJ

(
W O

)

µJ
(
W R

)

Here, A is written to emphasize that the expectation is taken
with respect to the (random) choices of Algorithm 6.3.2.
Importantly, this is exactly an individual trial of Algorithm
6.3.1.

6.3.2 Analysis of the convergence

Using Algorithm 6.3.2, we can efficiently conduct an indi-
vidual (random) trial. The last technical piece to show that
Algorithm 6.3.1 is an fptras, is to show that the number of
trials m that are needed to guarantee that the estimator con-
verges is small enough, i.e., m = poly(|J |). The first lemma
that we need is the standard {0, 1}-estimator lemma [36],
which is an application of a Chernoff Bound.

Lemma 6 ([36]) Let m > 0 be an integer. Given a sequence
of independent Boolean-valued ({0, 1}) random variables
f1, . . . , fm with mean E[f], then the estimator

fm = 1

m

∑

i=1,m

fi

achieves a relative error of ε with probability 1− δ for some
m = O(E[f]−1ε−2 log δ−1).

Observe that the estimator used in Algorithm 6.3.1 is
exactly of this type. The second lemma that we need is that
the probability mass of the original solutions contained in
the rounded solutions is “big enough” so that our sampling
scheme will converge quickly.

Lemma 7 Let Q R and QO defined as above, J be a BID
instance, and µJ be J ’s induced probability measure, then,

(n + 1)−1β−1 ≤ µJ (W O)

µJ (W R)
≤ 1

where n =∏
g∈goal(q) |pred(g)|.

This lemma is the technical heart of the argument: it intui-
tively places bounds on the variance of our estimate. We give
a full proof in Appendix D. The importance of Lemma 7 is

that it shows that E[f] = µJ (W O )

µJ (W R)
≥ n−1β, and so, apply-

ing Lemma 6, we see that we need at most m = O(nβ−1ε−2

log δ−1) samples. We observe that a relative estimate for E[f]
implies that we have a relative estimate for E[f]µJ (W R) =
µJ (W O), the probability that we want to estimate. Thus, the
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algorithm is efficient as long as the the number of samples is
bounded by a polynomial in |J |; a sufficient condition for this
to hold is β−1 = poly(|J |) which follows from the bounded
odds assumption. Thus, under the bounded odds assumption
with β = poly(|J |), we have:

Theorem 10 Let Q be a HAVING query Q[α θ k] with α =
SUM and θ ∈ {<,≤,>,≥}, if the skeleton of Q is safe then
Q has an fptras.

Extending to Other Inequalities. A virtually identical
argument shows that θ = ‘ < ’ has an fptras. To see
that ≥ has an fptras with SUM on tuple independent data-
base, the key observation is that we can compute a number
M = maxW q(W, τ ). Then, we create a new BID instance J̄
where each tuple t ∈ J , we map t to t ′ where t = t ′ except
that t[P] = 1 − p. We then ask the query Q[SUM(y) <

M − k], which is satisfied precisely on a world W when
Q[SUM(y) ≥ k].

6.4 The limits of any approach and a dichotomy

We now study the limit of any approach to approximating
HAVING queries. We see two interesting phenomenon: (1)
the approximation depends not only the aggregate, but also
the test. For example, Q[MIN ≤ k] has an fptras while, in
general, Q[MIN(y) ≥ k] does not. (2) The introduction of
self-joins results in problems that are believed to be harder
to approximate than those without self-joins; this suggests
a more interesting complexity landscape for approximate
query evaluation than exact query evaluation [17].

In this section, we only consider θ ∈ {=,<,≤,>,≥}, i.e.,
we omit �= from consideration. To compactly specify aggre-
gate tests, e.g., (MIN,>), we write (α,Θ0) where α is an
aggregate and Θ0 is a set of tests, i.e., Θ0 ⊆ {=,<,≤,>,≥}
= Θ; (α,Θ0) is a short hand for the set

⋃
θ∈Θ0
{(α, θ)}. We

let Θ≤ = {≤,<,=} and Θ≥ = {≥,>,=}. With this nota-
tion, we can state our first lemma.

Lemma 8 Let (α, θ) be in {(MIN,Θ≥), (MAX,Θ≤),
(COUNT,Θ≤), (SUM,Θ≤)} then the following HAVING
query is �BIS-hard:

QBIS[α(y) θ k] :–R(x), S(x, y), T (y)

Let Q[α(y) θ k] be a HAVING query such that sk(Q) is not
safe and consider only tuple-independent databases, then Q
is �BIS-hard.

The second statement identifies the precise boundary of
hardness for approximation over tuple independent
databases.

Proof We give a general construction that will be used in
every reduction used to prove that QBIS is �BIS-hard. Given

a bipartite graph (U, V, E), we create an instance of three
relations R, S and T . The skeleton of our query in the reduc-
tion is R(x), S(x, y), T (y). Without loss, we assume that
U, V are labeled from 1, . . . |U | + |V |. Here, we encode a
bipartite graph with u ∈ U �→ R(u) and v ∈ V �→ T (v), we
assign each of these tuples probability 0.5. We let S encode
E . It is not hard to see that there is a bijection between possi-
ble worlds and subsets of the graph. In particular, if a possible
world corresponds to an independent set then no tuples are
returned. We now add in a deterministic set of tuples, i.e.,
all probabilities are 1, as {R(a), S(a, a), T (a)} for some a
that we will set below. These tuples are always present in the
answer. Actually, only these tuples are present in the output
if and only if this world encodes a bipartite independent set.

To see the reduction for MAX, set a = 0. We observe
that MAX(y) ≤ 0 if and only if the only tuple returned are
the 0 tuples, i.e., a bipartite independent set. For MIN let a =
|U |+|V |+1, now check ifMIN(y) ≥ a. TheCOUNT(y) ≤ 1
if only the a tuples are present. Similarly,SUM follows by set-
ting a = 1 and ensuring all values are encoded higher. Thus,
the bijection of the solution sets is the same.

Claim (2), that this reduction works for any unsafe query,
follows by a result of Dalvi and Suciu [12] that shows that
if a skeleton is not safe over tuple independent databases, it
must always contain the R(x), S(x, y), T (y) pattern used in
this reduction. All other relations can contain a single tuple.
This works because our reductions do not care about where
the distinguished variable y falls, so we can set everything to
1 (or 0) in another relation.

As a consequence of this lemma, the positive results of
this paper, and the completeness of the safe plan algorithm
of Dalvi and Suciu [12], we have the following:

Theorem 11 Assume that �BIS does not have an fptras.
Let (α, θ) be in

{
(MIN,Θ), (MAX,Θ), (COUNT,Θ≤)

}
,{

(SUM,Θ≤)
}

then for any HAVING query Q[α(y) θ k] over
a tuple independent database J , either (1) the query eval-
uation problem can be approximated in randomized poly-
nomial time and we call it (α, θ)-apx-safe or (2) the query
evaluation problem does not have an fptras and we call it
(α, θ)-hazardous. Further, we can decide in which case Q
falls in polynomial time.

In some cases deciding in which case a query falls is triv-
ial, e.g., a (MIN,≤) HAVING query is always (α, θ)-safe. In
the cases that the decision is non-trivial, we can reuse the safe
plan algorithm of Dalvi and Suciu [12] [applied to sk(Q)].
An immediate consequence of this dichotomy is a trichot-
omy which is obtained by combining the relevant theorem
from Sect. 4 with the above theorem. For example, to get
a trichotomy for the class of (COUNT,≤)-HAVING queries,
we combine Theorem 2 with the above theorem.

It is interesting to note that our positive algorithms work
for arbitrary safe plans over BID databases. However, it is
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Fig. 7 Summary of results for MIN,MAX and COUNT. They form a
trichotomy over tuple independent databases

not immediately clear that the known hardness reductions
(based on polynomial interpolation [13]), can be used to
prove approximate hardness. Further, we leave the case of
COUNT and SUM with open.

7 Summary of results

Figure 7 summarizes our results for MIN,MAX and COUNT.
If we restrict to HAVING queries over tuple independent
instances the lines of the table are crisp and form a trichot-
omy: any such HAVING query cleanly falls into exactly one
bucket. The positive results we have shown hold for all BID
database. Over general BID databases, however, we have
only established the weaker negative result that there exists
some hard query when the skeleton is unsafe14. For exam-
ple, the query R(x; y), S(y) is known to be �P-hard [13].
Our results show that Q[COUNT(y) ≥ y] :–R(x; y), S(y) is
�P-hard, but leave open whether it has an fptras.

The state of the results with (SUM,<) over tuple-inde-
pendent databases is more interesting: if Q is SUM-safe, then
its evaluation is in P-time (Theorem 5). If Q is not SUM-
safe, but sk(Q) is safe then Q is �P-hard (Theorem 6), but
does admit an fptras (Theorem 10). We call Q (SUM,<)-
apx-safe. If sk(Q) is not safe, then evaluating Q is �BIS-
hard (Theorem 11), and so likely has no fptras. We call Q
(SUM,<)-hazardous. We now show that with the addition of
self-joins, even a simple pattern becomes as hard to approx-
imate as �CLIQUE, which is as hard to approximate as any
problem in �P . This is interesting because it points out that
the complexity of approximation may be richer than we have
explored in this paper:

Lemma 9 Let (α, θ) be in {(MIN,Θ≤), (MAX,Θ≥),
(COUNT,Θ≤), (SUM,≤)} and consider the HAVING query:

QCLIQUE[α(y) θ k] :–R(x), S(x, y), R(x)

then QCLIQUE is as hard to approximate as �CLIQUE.

Proof The input instance of �CLIQUE is G = (V, E): for
each v ∈ V , we create a tuple R(v) that has probability 1

2 and
E encodes exactly the complement (symmetrically closed)
edge relation; here, (v, v) �∈ E . Notice that a possible world
is simply a subset of R. If in a possible world, q = sk(Q) is
satisfied then, this implies there is some pair of nodes (u, v)

14 It is an open problem to extend these results to all BID databases.

that are not connected by an edge in G and so W does not
represent a clique. Hence the query is false precisely when
�CLIQUE is true. Using exactly the same encoding as we
used in the previous proof, we can then test the probability
of this condition.

8 Related work

Probabilistic relational databases have been discussed by
Barbara et al. [4], the ProbView system [44], and more
recently, by Dalvi and Suciu [12], Ré et al. [41], Sen et
al. [46], MayBMS [2], MCDB [25], Orion [10], and Trio [51].
Trio, Mystiq, and MayBMS approaches have representations
that are similar to BID tables, so our results could be applied
to these systems. Currently, all of these approaches omit
HAVING style aggregation. MCDB [25] does have richer
aggregation queries, but takes a statistical approach and so
does not provide formal guarantees.

Koch [30] formalizes a language that allows predication
on probabilities and discusses approximation algorithms for
this richer language, though he does not consider HAVING
aggregation. This is in part due to the fact that his aim is to
create a fully compositional language for probabilistic dat-
abases [31]. Extending our style of aggregation to a fully
compositional language is an interesting open problem.

Soliman et al. [48] consider combining top-k with mea-
sures, such as SUM, which is similar in spirit to HAVING.
Their correlation model allows more complex distributions
to be specified much more succinctly, but they do not focus
on complex queries involving joins. Combining ranking with
HAVING queries is a powerful, but currently unexplored
idea.

Cheng et al. [10] and Desphande et al. [15] consider prob-
abilistic databases resulting from sensor networks so that the
database models continuous values, such as temperature. The
focus here is on rich correlation models, but simpler query-
ing. In this settings, the natural aggregation queries are effec-
tively over a singe relation. In this work, we consider a richer
class of aggregation queries, but with simpler probabilistic
models.

The problem of generating a random world that satisfies
a constraint is fundamental and is considered by Cohen et
al. [11]. They point out that many applications for this task,
and use it to answer rich queries on probabilistic XML dat-
abases. In this paper, we differ in the constraint language we
choose and that we use our sampling algorithm as a basis for
an fptras. There is also a connection to the recent work of
Koch and Olteanu on conditioning a probabilistic database
[32] who recognize the fundamental importance of finding
worlds conditioned on constraints, though they do not con-
sider constraints with SQL aggregation.
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In the OLAP setting, Burdick et al. [6,7] give efficient
algorithms for value aggregation in a model that is equiva-
lent to the single table model. Their focus is on the semantics
of the problem. As such, they consider how to assign the
correct probabilities, called the allocation problem, and han-
dling constraints in the data. The allocation problem is an
interesting and important problem. Our problem is orthogo-
nal: we assume the database has been specified and focus on
query evaluation.

Ross et al. [44] describe an approach to computing aggre-
gates on a probabilistic database, by computing bounding
intervals (e.g., the AVG is between [5, 600, 5, 700]). They
consider a richer class of aggregation functions than we dis-
cuss, but with an incomparable semantics. Their complex-
ity results show that computing bounding intervals exactly is
NP-Hard. In contrast, we are interested in a more
fine-grained static analysis: our goal is to find the syntac-
tic boundary of hardness. Trio also uses a bounded interval
style approach [37].

There is work on value aggregation on a streaming proba-
bilistic databases [26]. In addition, they consider computing
value approximations aggregates, such as AVG, in a stream-
ing manner. In contrast, computing the AVG for predicate
aggregates (as we do in this paper) on a single table is �P-
Hard. One way to put these results together is that computing
a value aggregate is the first moment (expectation) while a
HAVING aggregate allows us to capture the complete distri-
bution (in the exact case). Kanagal and Deshpande [28] also
work in the streaming context of aggregation that computes
an expected value style of aggregation. This work does not
look at complex queries, like joins.

Arenas et al. [3] consider the closely related problem of
the complexity of aggregate queries, similar toHAVING que-
ries, over data which violates functional dependencies. They
do not consider a probabilistic semantic, but instead con-
sider a semantic based on incomplete databases based on
repairs [5]. Hence, the query semantic of this work is greatest
lower bound or least upper bound on the set of all minimal
repairs. They also consider multiple predicates, which we
leave for future work. There is a deep relationship between
the repair semantics and probabilistic approaches. A repre-
sentative work in this direction is Andristos et al. [1].

Our trichotomy results are based on the conjecture that
�BIS does not have an fptras. Evidence of this conjecture
is given by Dyer [16,17] by establishing that this problem is
complete for a class of problems with respect to approxima-
tion preserving reductions. At this point, it would be fair to
say that this conjecture is less well established than �P �= P .
Any positive progress, i.e., showing that �BIS does have an
fptras, could be adapted to our setting. As we have shown,
some problems are as hard to approximate as any problem
in �P , e.g., as hard as �CLIQUE. An interesting open prob-
lem is to find if there is a corresponding syntactic boundary

of hardness: is it true that either a query is �BIS-easy or
�CLIQUE-hard? We conjecture that such a syntactic bound-
ary exists, though it remains open.

The EXISTS results of this paper are from Dalvi and
Suciu [12], who later proved a more general dichotomy res-
ults (allowing queries with self-joins) [14]. Recently, Ol-
teanu et al. [38] showed a dichotomy for conjunctive que-
ries with inequality predicates. All of these results rely inti-
mately on the BID model. This model is complete if views
are added [22,41], but alternate approaches (such as graphi-
cal models) may express some distributions much more suc-
cinctly. A more succinct representation tends usually raise
the complexity of any problem. It is an open question how to
extend these results to more succinct models such as consid-
ered by Sen et al. [46], Kanagal et al. [28], or to sample-based
models models [25].

9 Conclusion

In this paper, we examine the complexity of evaluating
positive conjunctive queries with predicate aggregates over
probabilistic databases called HAVING queries. For each
aggregate, we discuss a novel method to evaluate these que-
ries. Our method is based on computing the distribution of
random variables in a semiring. We prove that for conjunctive
queries without self-joins our methods are optimal. Addition-
ally, we study the problem of generating a random world that
satisfies a semiring element and provide an efficient solution.
We apply this sampling algorithm as a subroutine to design an
approximation for queries that are hard to compute exactly,
thus expanding the border of known tractable cases. We show
that our approximations capture efficient approximation.

Appendix A: Properties of safe plans

We formalize the properties that hold in safe extensional
plans in the following proposition:

Proposition 7 Let P = π I−x P1 be a safe plan then for any
tuples t1, . . . , tn ∈ D

|var(P1)| that disagree on x, i.e., such
that i �= j implies that ti [var(P)] = t j [var(P)] and ti [x] �=
t j [x] and then for any s1, . . . , sn ∈ S we have independence,
that is the following equation holds:

µ

⎛

⎝
∧

i=1,...,n

ωP1,S(ti ) = si

⎞

⎠ =
∏

i=1,...,n

µ
(
ωP1,S(ti ) = si

)

(1)

Similarly, let P = π D P1 then we have disjointness:

µ

⎛

⎝
∧

i=1,...,n

ωP1,S(ti ) = 0

⎞

⎠ =
∑

i=1,...,n

µ
(
ωP1,S(ti ) = 0

)

− (n − 1) (2)
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Let P = P1 � P2, then for any tuples ti ∈ D
|var(Pi )| for

i = 1, 2 then and s1, s2 ∈ S, we have independence:

µ
(
ωP1,S(t1) = s1 ∧ ωP1,S(t2) = s2

)

= µ
(
ωP1,S(t1) = s1

)
µ

(
ωP1,S(t2) = s2

)
(3)

Proof We prove Eq. 1. To see this observe that, directly from
the definition, the set of tuples that contribute to ti and t j

(i �= j) do not share the same value for a key in any relation.
It is not hard to see that ti and t j are functions of independent
tuples, hence are independent. The equation then follows by
definition of independence.

We prove Eq. 2. Assume for contradiction that the tuples
are not disjoint, that is there exists some possible world W
such that for some i �= j

{
ti , t j

} ⊆ W . By the definition,
there must exist some key goal g such that key(g) ⊆ var(P).
Thus, for ti and t j to be present in W it must be that there are
two distinct tuples with the same key value—but different
values for the attribute corresponding to x . This is a contra-
diction to the key condition, hence the tuples are disjoint and
the equation follows.

We prove Eq. 3. In a safe plan, goal(P1) ∩ goal(P2) = ∅
and distinct relations are independent. As a result, the tuples
themselves are independent.

Appendix B: Full proof for COUNT(DISTINCT)

Theorem 12 [Restatement of Theorem. 3] Let Q be COUNT
(DISTINCT)-safe then its evaluation problem is in P .

Proof Since Q is COUNT(DISTINCT)-safe, then there is
a safe plan P for the skeleton of Q. In the following let
P1 ≺ P2 denote the relationship that P1 is a descendant in P
of P2 (alternatively, containment). Let Py be a subplan which
satisfies P−y = π I−y(P ′) ≺ P or P−y = π D−y(P ′) ≺ P . P−y

is a safe plan, hence S-safe for S = Z2, i.e., the EXISTS
algebra. For each t , we can write ω̂I

P−y
(t) = (1− p, p), i.e.,

t is present with probability p. From this, create a marginal
vector in Z

k+1, as in COUNT, mt such that mt [0] = 1− p and
mt [1] = p and all other entries 0. Notice that if t �= t ′ then
t[y] �= t[y′]. Informally, this means all y values are distinct
“after” Py .

Compute the remainder of P as follows: if P0 is not a
proper ancestor or descendant of Py , then compute P0 as if
you were using the EXISTS algebra. To emphasize that P0

should be computed this way, we shall denote the value of t
under P0 as ω̂J

P0,EXISTS
(t). Since P is COUNT(DISTINCT)-

safe, any proper ancestor P0 of P−y is of the form P0 =
π D−x P1 or P0 = P1 � P2. If P0 = π D−x P1 then ω̂J

P0
(t) =

∐
t ′∈P1

ω̂J
P1

(t); this is correct because the tuples we are com-
bining are disjoint, so which values are present does not mat-
ter. Else, we may assume P0 = P1 � P2 and without loss

we assume that Py ≺ P1, thus we compute:

ω̂J
P1,COUNT(DISTINCT)(t) = ω̂J

P1
(t1)⊗ ω̂J

P2,EXISTS
(t2)

This is an abuse of notation since we intend that ω̂J
P2
∈ Z2

is first mapped into Zk+1 and then the convolution is per-
formed. Since we are either multiplying our lossy vector by
the annihilator or the multiplicative identity, this convolution
has the effect of multiplying by the probability that t is in P2,
since these events are independent this is exactly the value
of their conjunction.

Complexity

Proposition 8 [Second Half of Proposition 4] The following
HAVING queries are �P-hard for i ≥ 1:

Q2,i [COUNT(DISTINCT y) θ k] :–R1(x; y), . . . ,Ri (x; y)

Proof We start with i = 1. The hardness of Q2,i is shown by
a reduction counting the number of set covers of size k. The
input is a set of elements U = {u1, . . . , un} and a family of
sets F = {S1, . . . , Sm}. A cover is a subset of F such that for
each u ∈ U there is S ∈ S such that u ∈ S. For each element
u ∈ U , let Su = {S ∈ F | u ∈ S}, add a tuple R(u; S; |Su |−1)

where S ∈ Su . Every possible world corresponds to a set
cover and hence, if Wk is the number of covers of size k
then µ(Q) = Wk(

∏
u∈U |Su |−1). Notice that if use the same

reduction i > 1, we have that µ(Q) = Wk(
∏

u∈U |Su |−i ).

We show that if Q contains self-joins and is not COUNT
(DISTINCT)-safe, then Q has �P data complexity. First, we
observe a simple fact:

Proposition 9 Let Q be a HAVING query with an unsafe
skeleton then Q has �P-hard data complexity. Further, if Q
is connected and safe but not COUNT(DISTINCT)-safe then
there must exist x �= y such that ∀g ∈ goal(Q), x ∈ key(g).

Proof We simply observe that the count of distinct vari-
ables is ≥ 1 exactly when the query is satisfied, which is
�P-hard. The other aggregates follow easily. Since the skel-
eton of Q is safe, there is a safe plan for Q that is not
COUNT(DISTINCT)-safe. This implies that there is some
projection independent π I−x on all variables.

Definition 22 For a conjunctive query q, let Fq∞ be the least
fixed point of Fq

0 , Fq
1 , . . . , where

Fq
0 = {x | ∃g ∈ goal(Q) s.t. key(g) = ∅ ∧ x ∈ var(g)}

and

Fq
i+1 = {x | ∃g ∈ goal(Q) s.t. key(g) ⊆ Fi ∧ x ∈ var(g)}

Intuitively, Fq∞ is the set of variables “fixed” in a possible
world.
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Proposition 10 If q is safe and x ∈ Fq∞ then there is a safe
plan P such that π D−x ∈ P and for all ancestors of π D−x they
are either π D−z P1 for some z or P1 � P2.

Proof Consider the smallest query q such that the proposi-
tion fails where the order is given by number of subgoals
then number of variables variables. Let x1, . . . , xn according
to the partial order xi ≺ x j if exists Fq

k such that xi ∈ Fq
k but

x j /∈ Fq
k . If q = q1q2 such that x ∈ var(q1) and var(q1) ∩

var(q2) = ∅ then P1 satisfies the claim and P1 � P2 is a safe
plan. Otherwise let P1 be a safe plan for q[x1 → a] for some
fresh constant a. Since this has fewer variables P1 satisfies
the claim and π−x P1 is safe immediately from the definition.

We now define a set of rewrite rules⇒ which transform
the skeleton and preserve hardness. We use these rewrite rules
to show the following lemma:

Lemma 10 Let Q be a HAVING query using COUNT
(DISTINCT) such that q = sk(Q) is safe, but Q is not
COUNT(DISTINCT)-safe; and let there be some g such that
y /∈ key(g) and y /∈ Fq∞ then Q has �P-hard data
complexity.

For notational convenience, we shall work with the skel-
eton of a HAVING query Q[α(y) θ k] and assume that y is a
distinguished variable.

(1) q ⇒ q[z→ c] if z ∈ Fq∞
(2) q ⇒ q1 if q = q1q2 and var(q1)∩var(q2) = ∅

and y ∈ var(q1)

(3) q ⇒ q[z→ x] if x, z ∈ key(g) and z �= y

(4) q, g ⇒ q, g′ if key(g) = key(g′), var(g) = var(g′)
and arity(g) < arity(g)′

(5) q, g ⇒ q if key(g) = var(g)

We let q ⇒∗ q ′ denote that q ′ is the result of any finite
sequence of rewrite rules applied to q.

Proposition 11 If q ⇒∗ q ′ and q ′ has �P-hard data com-
plexity, then so does q.

Proof For rule 1, we can simply restrict to instances where
z → c. For rule 2, if q1 is hard then q is hard because we
can fill out each relation in q2 with a single tuple and use q
to answer q1. Similarly, for rule 3 we can consider instances
where z = x so q will answer q1. For rule 4, we apply
the obvious mapping on instances (to the new subgoal). For
rule 5, we fill out g with tuples of probability 1 and use this
to answer q.

Proof [Proposition 10] By Proposition 9, there is some x
such that x ∈ key(g) for any g ∈ goal(Q). Let q = sk(Q),

we apply rule 1 and 2 to a fixed point, which removes any
products. We then apply the rule 3 as ∀z �= y, q[z → x].
Thus, all subgoals have two variables, x and y. We then apply
rule 4 to a fixed point and finally rule 5 to a fixed point. It
is easy to see that all remaining subgoals are of the form
R(x; y) which is the hard pattern. Further, it is easy to see
that g ⇒∗ Ri (x; y) for some i .

We can now prove the main result:

Lemma 11 If Q is aHAVING query without self-joins and Q
is not COUNT(DISTINCT)-safe then the evaluation problem
for Q is �P-hard.

Proof If q is unsafe, then Q has �P-hard data complexity.
Thus, we may assume that q is safe but Q is not COUNT
(DISTINCT)-safe. If Q contains g ∈ goal(Q) such that
y ∈ var(g) but y �∈ key(g) then Q has �P-hard data com-
plexity by Lemma 10. Thus, we may assume that y appears
only in key positions.

First apply rewrite rule 2, to remove any products and so
we may assume Q is connected. If Q is a connected and
y ∈ key(g) for every g then Q is COUNT(DISTINCT)-safe.
Thus, there are at least two subgoals and one contains a vari-
able x distinct from y call them g and g′ respectively. Apply
the rewrite rule 3 as q[z→ x] for each z ∈ var(q)− {x, y}.
Using rules 4 and 5, we can then drop all subgoals but g, g′
to obtain the pattern R(x), S(x, y), which is hard.

Appendix C: Full Proofs for SUM and AVG

AVG hardness

Definition 23 Given a set of nonnegative integers a1, . . . ,

an , the �NONNEGATIVE SUBSET-AVG problem is to count
the number of non-empty subsets S ⊆ 1, . . . , n such that∑

s∈S as |S|−1 = B for some fixed integer B.

Proposition 12 �NONNEGATIVE SUBSET-AVG is
�P-hard.

Proof We first observe that if we allow arbitrary integers,
then we can reduce any �NONNEGATIVE SUBSET-SUM
with B = 0, which is �P-hard. Since the summation of any
set is 0 if and only if their average is 0. Thus, we reduce from
this unrestricted version of the problem. Let B = mini ai

then we simply make a′i = ai + B, now all values are posi-
tive, we then ask if the average is B. For any set S we have:
∑

s∈S

a′s |S|−1 =
∑

s∈S

(as + B)|S|−1 =
∑

s∈S

(as + B)|S|−1

=
∑

s∈S

|S|−1as + B

Thus, it is clear that the average is satisfied only when∑
s∈S as = 0.
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Proof of Theorem. 6

It is sufficient to show the following lemma:

Lemma 12 Let q = sk(Q), if If q is safe, but Q is not
SUM-safe then there is an instance I then for any set of val-
ues y1, . . . , yn let qi = q[y → yi ] and S ⊆ 1, . . . , n we
have µ(

∧n
s∈S qs) = ∏

s∈S µ(qs) = 2−|S|. Further, on any
world W and qi there is a single valuation v for qi such that
im(qi ) ⊆ W .

Armed with his lemma we can always construct the dis-
tribution used in Proposition 5.

Proof We observe that y /∈ Fq∞ else there would be a SUM-
and AVG-safe plan by Proposition 10. Now consider the
rewriting q[x → ’a’] for any x ∈ F∞ and q[x → y] if
x �∈ F∞. Thus, in any subgoal y = var(g). Pick one and add
each y1 value with probability 1

2 independently. Notice that
every relation either contains yi in each tuple or the constant
a. Since there are no self-joins, this implies in any valua-
tion either it must use a tuple containing yi or the relation
contains a single tuple with a for every attribute. Hence, the
multiplicity of yi is≤ 1 in any possible world. Since there is
only one relation with probabilistic tuples and all tuples have
µ(t) = 0.5, we have µ(∧s∈Sqs) = 2−|S| as required.

Proposition 13 If Q[SUM(y) = k] is not SUM-safe and on a
tuple independent instance, then Q does not have an fptras.

Proof We observe that (SUM,=) is hard to approximate on
even a single tuple-independent as a consequence of the pre-
vious reduction, which gives a one-to-one reduction showing
(SUM,=) is as hard as
�SUBSET-SUM, an NP-hard problem and so has no fptras.

Appendix D: Convergence Proof of Lemma 7

In the proof of this lemma, we need a technical proposition:

Proposition 14 Let q be a conjunctive query without self-
joins and R any relation contained in goal(q), then q(W, τ )

= ∑
t∈R q ((W − R) ∪ {t} , τ ). Here, the summation is in

the semiring S.

Proof By definition, the value of the query q(W ) can be
written as q(W, τ ) =∑

v∈V
∏

g∈g τ(v(g)). Since q does not
contain self-joins, each valuation contains exactly one mem-
ber of R. Hence, there is a bijection between the between the
two sums. Since semirings are associative, this completes the
proof.

We can now prove Lemma 7.

Proof of Lemma 7 We first observe that W O ⊆ W R , by

Lemma 5, which shows µ(W O )

µ(W R)
≤ 1. To see the other inequal-

ity, we construct a function f : W R → W O such that for
any W ∈ W O , µ(W )

µ( f −1(W ))
≥ (n + 1)−1β−1. This is suffi-

cient to prove the claim. We describe f : if W ∈ W O then
f (W ) = W else, W ∈ W R−W O then we show that there is a
tuple t ∈ W such that W−{t} ∈ W O , f (W ) = W−{t}. Since
there are at most n possible tuples to remove, this shows that∣
∣ f −1(W )

∣
∣ ≤ (n + 1), Using the bounded odds equation, we

have that µ(W )

µ( f −1(W ))
≥ (n + 1)−1β−1. Thus, all that remains

to be shown is that we can always find such a tuple, t .
Consider W ∈ W R−W O , which means that q(W, τ O) >

k and q(W, τ R) ≤ n2. There must exist a tuple t such that
q(W, τ O)− q(W − {t} , τ O) > k/n otherwise q(W, τ O) ≤
k, which is a contradiction. To see this, consider any relation
R in the query, we apply the above proposition to observe
that:
∑

t∈R

q(W − {t} , τ O) =
∑

t∈R

∑

s∈R:s �=t

q(W − R ∪ {s} , τ O)

= (|R| − 1)
∑

t∈R

q(W − R ∪ {t} , τ O)

= (|R| − 1)q(W, τ O )

The second to last equality follows by counting how many
times each term appears in the summation and that the
semiring is embeddable in the rational numbers (Q).

q(W, τ O)− q(W − {t} , τ O) ≤ k/n

�⇒ |R| q(W, τ O)+
∑

t∈R

q(W − {t} , τ O) ≤ k

�⇒ |R| q(W, τ O)+ (|R| − 1)q(W, τ O )=q(W, τ O)≤k

The second line follows by summing over t in R, using the
previous equation, and using that |R| ≤ n. Thus, we can con-
clude there is some t such that q(W, τ O )−q(W−{t} , τ O) >

k/n. By Lemma 5 we have:

q(W, τ R) ≤ n2 �⇒ n2

k
q(W, τ R)− δ ≤ n2

Where δ ∈ [0, n). In turn, this implies

q(W, τ O) ≤ k

n2 δ + k ≤ k + k

n

Since, q(W, τ O) − q(W − {t} , τ O) > k/n, we have that
q(W − {t} , τ O) ≤ k and so W − {t} |� QO and hence,
W − {t} ∈ W O .
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