
The VLDB Journal (2009) 18:1261–1277
DOI 10.1007/s00778-009-0136-3

REGULAR PAPER

Generic entity resolution with negative rules

Steven Euijong Whang · Omar Benjelloun ·
Hector Garcia-Molina

Received: 27 March 2008 / Revised: 7 January 2009 / Accepted: 12 January 2009 / Published online: 28 February 2009
© Springer-Verlag 2009

Abstract Entity resolution (ER) (also known as
deduplication or merge-purge) is a process of identifying
records that refer to the same real-world entity and merging
them together. In practice, ER results may contain “incon-
sistencies,” either due to mistakes by the match and merge
function writers or changes in the application semantics. To
remove the inconsistencies, we introduce “negative rules”
that disallow inconsistencies in the ER solution (ER-N). A
consistent solution is then derived based on the guidance
from a domain expert. The inconsistencies can be resolved
in several ways, leading to accurate solutions. We formalize
ER-N, treating the match, merge, and negative rules as black
boxes, which permits expressive and extensible ER-N solu-
tions. We identify important properties for the rules that, if
satisfied, enable less costly ER-N. We develop and evaluate
two algorithms that find an ER-N solution based on guidance
from the domain expert: the GNR algorithm that does not as-
sume the properties and the ENR algorithm that exploits the
properties.

Keywords Generic entity resolution · Inconsistency ·
Negative rule · Data cleaning

S. E. Whang (B) · H. Garcia-Molina
Computer Science Department,
Stanford University, Stanford, CA 94305, USA
e-mail: swhang@cs.stanford.edu

H. Garcia-Molina
e-mail: hector@cs.stanford.edu

O. Benjelloun
Google Inc., Mountain View, CA 94043, USA
e-mail: benjello@google.com

1 Introduction

Entity resolution (ER) is the process of matching records
that represent the same real-world entity and then merg-
ing the matching records. For example, two companies that
merge may want to combine their customer records: for a
given customer that dealt with the two companies they cre-
ate a composite record that combines the known informa-
tion.

The process for matching and merging records is most
often application-specific, complex, and error-prone. The
input records may contain ambiguous and not-fully specified
data, and it may be impossible to capture all the application
nuances and subtleties in whatever logic is used to decide
when records match and how they should be merged. Thus,
the set of resolved records (after ER) may contain “errors”
that would be apparent to a domain specialist. For example,
we may have a customer record with an address in a coun-
try we do not do business with. Or two different company
records where the expert happens to know that one com-
pany recently acquired the other, so they are now the same
entity.

A common approach to handle “application errors” is to
define integrity constraints that should be satisfied
(locally and globally) by the data [12,18]. The constraints
are typically written by people different from the applica-
tion writers, to avoid making the same mistake twice. After
(or while) the application runs, the constraints are indepen-
dently checked, and inconsistencies flagged. Of course, in an
ideal world, the application writers would enforce all integ-
rity constraints perfectly, and integrity checking would be
unnecessary. However, we do not live in an ideal world and
integrity checking represents a useful “sanity check.”

Integrity constraints tell us what data states are invalid
but do not tell us how to arrive at valid state. In this paper

123

1262 S. E. Whang et al.

we study how to modify the ER process, in light of some
integrity constraints that we call negative rules, so that we
arrive at a set of resolved records that satisfy the constraints.
Furthermore, since in general there can be more than one
valid resolved set, we also discuss how a domain expert can
“guide” the ER process to arrive at a “desirable” and valid
set of records using various methods for resolving records.
We also explore properties of the negative rules that make
this directed ER process less costly.

For concreteness, in this paper we focus on a type of ER
processing called generic pair-wise. In this case, a domain
expert writes two functions, a match and a merge function.
(Machine learning techniques could also be used to develop
these functions). The pair-wise match rule, M(r, s) evaluates
to true when two records r and s are determined to represent
the same entity. If M(r, s) is true, then a merge function is
used to create the composite record 〈r, s〉. Note that after a
merge we may identify new matches with other records. For
example, the combined information in 〈r, s〉may match with
a third record t , while neither r nor s had enough information
to generate a match with t .

The alternative to pair-wise ER is generally some type of
global “clustering” strategy that groups records that are sim-
ilar and are deemed to represent the same real-world entity
[5,23]. Both pair-wise and clustering ER are used in prac-
tice [2], and each approach has its advantages (and its pas-
sionate supporters). Briefly (and open to debate), pair-wise
may be easier to implement (and debug) since the domain
expert only needs to consider two records at a time, and pair-
wise may be more amenable to incremental and distributed
processing [1]. Clustering approaches may yield more accu-
rate results since decisions are global and have received much
more attention in the academic literature.

Note that both pair-wise and clustering approaches are
prone to errors and both schemes can benefit from integrity
checking. Indeed, there has been prior work on clustering
with constraints [3,6]. However, the integrity checking tech-
niques used in those works are not sufficient for integrity
checking in pair-wise ER. For example, our framework con-
siders record merges (which are not directly supported by
clustering approaches) and imposes constraints on merged
records. A more detailed comparison between our and other
work can be found in Sect. 8.

1.1 Motivating example

We conclude our introduction with a motivating example.
Consider the three people records shown in Fig. 1, which are
to be resolved. We would like to merge records that actually
refer to the same person. Suppose the match rule compares
r1 and r2 first and returns a match because they have sim-
ilar names. Records r1 and r2 are thus merged into a new
record r12:

Name SSN Gender
Pat 999-04-1234

Patricia F
Pat 999-04-1234 M

Fig. 1 A list of people

r12 Pat, Patricia 999-04-1234 F
Now suppose that r12 matches with r3 since they have similar
names and an identical social security number. The result is
a new record r123:

r123 Pat, Patricia 999-04-1234 M, F
In this case, r123 is the answer of the ER process.

However, it is easy to see there are “problems” with this
solution. These problems can be identified by “negative
rules,” i.e., constraints that define inconsistent states. In this
example, say we have a rule that states that one person can-
not have two genders, and hence record r123 violates the
constraint. The reader may of course wonder why this con-
straint was not enforced by the merge function that com-
bined r12 with r3. There are two reasons. One reason is that
the person writing the merge rule may be unaware of this
gender constraint or enforced it incorrectly. Keep in mind
that the constraints in practice will be much more complex
than what our simple example shows. For instance, the merge
rule (or the negative rule) may be a complex computer pro-
gram that considers many factors in making a decision. It
may have numerous “patches” added over time by differ-
ent people. Furthermore, the match and negative rules are
typically written by different people (as mentioned earlier),
so it is not surprising that the rules can reach conflicting
decisions.

A second reason why the gender constraint was not en-
forced by the merge rule may be that the constraint is “fix-
able”. In this application it may be acceptable to have a record
with two genders during the resolution (as opposed to in the
final answer), because future merges may resolve the gender.
For example, say r123 were to merge with another record that
indicated that Pat was Male. Then the merge rule may elimi-
nate the Female gender because there is now more evidence
that Pat is male. In this scenario it is OK to temporarily gen-
erate r123 since it is useful in constructing a valid final record.
However, it is not OK to leave r123 in the final answer.

To resolve the gender inconsistency, say we unmerge r123

back into {r12, r3}. In our example, the set {r12, r3} may
still not be a valid ER answer: we may have a negative rules
stating that no two final records should have the same social
security number. In our case, the problem occurred because
r1 was initially merged with r2 instead of r3.

The reader may wonder why the ER process did not first
merge r1 and r3 since they are “clearly” a better match than r1,
r2. First, our example is deceivingly simple, and in practice
there may be no obvious ordering to the merges. Furthermore,

123

Generic entity resolution with negative rules 1263

the person coding the match rule may not be aware of the SSN
check that will be performed by the negative rule. Second, an
inherent “feature” (some would say weakness) of pair-wise
matching is that merge decisions are done without global
analysis, a pair of records at a time. This feature is what
makes the approach simple and appealing to some applica-
tions, but is also the feature that can introduce problems like
the one illustrated by our example. Our approach here will
be to fix these problems via the definition of negative rules.

In our simple example, we can arrive at two possible solu-
tions that satisfy the negative rules presented above. One
solution occurs when we unmerge r12 and re-merge r1 and
r3, resulting in {r13, r2}. The other is when we simply discard
r3, resulting in {r12}. Note that {r1, r2} is not a good solution
because it is not “maximal,” i.e., r1 and r2 could have been
merged without problems. The precise definition of a valid
solution will be given in the next section.

Interestingly, many inconsistencies in real-world data can
be captured with negative rules that examine one or two
records at a time. For example, we can easily apply our rules
to hotel data saying that no hotel can have two different street
numbers on the same street and that no two hotels with dif-
ferent names can have the same street name, street number,
and phone number.

In this paper we address precisely the identification and
handling of inconsistent ER answers. We start by summariz-
ing the ER model of this paper (Sect. 2.1), which has been
introduced in our previous work [2], but does not use negative
rules to handle inconsistencies. We then define the concept
of negative rules (Sect. 2.2), both unary negative rules that
detect internal inconsistencies within one record, and binary
negative rules that detect problems involving a pair of records
(as in our example). We formally define what is the correct ER
answer in the presence of such negative rules (Sect. 2.3). We
define simple properties of the match, merge, and negative
rules that make it easier to find the correct solutions (Sect. 4),
and we present algorithms that find a solution based on guid-
ance from a domain expert (Sects. 3, 5). We experimentally
evaluate our algorithms using actual comparison shopping
data from Yahoo! Shopping and hotel information data from
Yahoo! Travel (Sects. 6, 7). We will see that our solutions
can be expensive, but worthwhile using in many cases. We
discuss related work in Sect. 8 and conclude in Sect. 9.

2 ER-N model

2.1 ER

We start with an instance I = {r1, . . . , rn}, which is a set of
records.

Match and merge rules A match rule M determines if two
records r1 and r2 refer to the same real-world entity. If the
records match, M(r1, r2) = true. We denote this as r1 ≈ r2.
Otherwise, M(r1, r2) = false (r1 �≈ r2).

A merge rule µ merges two records into one. The function
is only defined for matching records. The result of µ(r1, r2)
is denoted as 〈r1, r2〉.

We assume two basic properties for M and µ—idempo-
tence and commutativity. Idempotence says that any record
matches itself, and merging a record with itself yields the
same record. Commutativity says that, if r1 matches r2, then
r2 matches r1. Additionally, the merged results of r1 and r2

should be identical regardless of the merge ordering.

• Idempotence: ∀r, r ≈ r and 〈r, r〉 = r .
• Commutativity: ∀r1, r2, r1 ≈ r2 iff r2 ≈ r1, and if r1 ≈

r2, then 〈r1, r2〉 = 〈r2, r1〉.

We believe that most match and merge rules will naturally
satisfy these properties. Even if they do not, they can easily
be modified to satisfy the properties. To illustrate the second
point, suppose that idempotence does not hold because the
records have very little information (e.g., a person named
John is not necessarily identical to another person named
John when no other data is available). In that case, we can
be more strict in determining if two records are the same
by conducting a bitwise comparison between the records or
comparing the sources from which the records originated.

Merge closure A merge closure Ī contains all the possible
records that can be generated from I using M and µ. The
formal definition is given below.

Definition 2.1 The merge closure Ī of I satisfies the follow-
ing conditions:

1. I ⊆ Ī
2. ∀r1,r2 ∈ Ī s.t. r1 ≈ r2, 〈r1, r2〉 ∈ Ī .
3. No strict subset of Ī satisfies conditions 1,2.

We present an algorithm for computing Ī in Algorithm 1.
It is shown in [2] that Algorithm 1 is optimal in a sense that
no algorithm makes fewer record comparisons in the worst
case. Note that the merge closure can possibly be infinite if a
chain of merges produces new records indefinitely. In Sect. 4,
we will present some additional properties for M and µ that
prevent this case.

Domination Record r1 is dominated by r2 if both records
refer to the same entity, but r2’s information “includes” that
of r1. That is, r1 is redundant information and should be sub-
sumed by r2. What records dominate others is application
dependent. We can assume that for a given application there

123

1264 S. E. Whang et al.

1: input: a set I of records
2: output: the merge closure of I , Ī
3: Ī ← ∅
4: while I �= ∅ do
5: r ← a record from I
6: remove r from I
7: for all records r ′ in Ī do
8: if r ≈ r ′ then
9: merged ← 〈r, r ′〉
10: if merged �∈ I ∪ Ī ∪ {r} then
11: I ← I ∪ {merged}
12: end if
13: end if
14: end for
15: Ī ← Ī ∪ {r}
16: end while
17: return Ī

Algorithm 1: Computing the merge closure (Ī)

is some partial order relation (i.e., a reflexive, transitive, and
anti-symmetric binary relation) that tells us when domination
exists. The domination of r1 by r2 is denoted as r1 � r2. For
example, in some application where merges simply collect
all information in records, we may have r1 � r2 whenever
r2 = 〈r1, r ′〉 (for some r ′). We will use this domination in our
examples unless stated otherwise. In Sect. 4, we present a
canonical domination order that holds when some additional
properties for M and µ are satisfied.

Domination on records can be naturally extended to
instances as follows:

Definition 2.2 Given two instances I1, I2, we say that I1 is
dominated by I2 (denoted as I1 � I2) if ∀r1 ∈ I1, ∃r2 ∈ I2

s.t. r1 � r2.

2.2 Negative rules

A negative rule is a predicate that takes an arbitrary number
of records and returns either consistent or inconsis-
tent. Negative rules can be categorized according to their
numbers of arguments. In our work, we consider unary and
binary negative rules.

A unary negative rule N1 checks if a record r is valid by
itself. If r is internally inconsistent, N1(r) =inconsistent
(denoted as r � r). Otherwise, N1(r) = consistent (de-
noted as r ↔ r). An internally inconsistent record should
not exist in an ER solution.

A binary negative rule N2 checks if two different records
r1 and r2 can coexist. We require r1 and r2 to be different in
order to make a clean distinction between unary and binary
negative rules. If r1 and r2 are inconsistent, N2(r1, r2) =
inconsistent (denoted as r1 � r2). Otherwise, N2(r1,
r2) = consistent (denoted as r1 ↔ r2). Two inconsistent
records cannot coexist in an ER solution.

Neither type of negative rules can be incorporated into
the match and merge rules. As we illustrated in Sect. 1.1, a

unary negative rule cannot be supported by simply disallow-
ing two records to merge into an internally inconsistent record
because inconsistencies could be fixed in the future. Binary
negative rules also do not fit in the match and merge rules for
the same reason. Moreover, a match rule only has a local view
of two records and cannot tell whether the merged record will
generate any new binary inconsistencies with other records
“outside.” Thus, negative rules cannot be enforced by modi-
fying the match and merge rules.

We say that a set of records is inconsistent if there exists
a single record violating a unary negative rule or a pair of
records violating a binary negative rule.

We assume the basic commutativity property for negative
rules. That is, if r1 is inconsistent with r2, then r2 is also
inconsistent with r1.

• Commutativity (Negative rule):∀r1, r2 s.t. r1 � r2, then
r2 � r1.

Finally, the negative rules are black-box functions that can
be implemented in any way as long as they satisfy commu-
tativity.

2.3 ER-N

We now formally define entity resolution with negative rules.

Definition 2.3 Given an instance I and the merge closure, Ī ,
an ER-N of I is a consistent set of records J that satisfies the
following conditions:

1. J ⊆ Ī ,
2. ∀r ∈ Ī – J , either

• ∃r ′ ∈ J s.t. r � r ′ or
• J ∪ {r} is inconsistent,

3. No strict subset of J satisfies conditions 1 and 2.
4. No other instances satisfying conditions 1,2, and 3 dom-

inate J .

Intuitively, J is a maximal consistent subset of Ī (The
first three conditions of Definition 2.3 imply that J is con-
sistent; the proof can be done by contradiction). The second
condition ensures the maximality by saying that any record
from Ī that is not in J is either dominated by a record in J or
introduces an inconsistency to J . The third condition ensures
that J is consistent and has no dominated records. Last, the
fourth condition filters out “undesirable” solutions that are
dominated by other solutions. Returning to our example in
Fig. 1, suppose that every pair of records match and that the
merge closure Ī is {r1, r2, r3, r12, r13, r23, r123}. The instance
{r13, r2} is a valid ER-N solution because (1) {r13, r2} is a
subset of Ī ; (2) any other record from Ī (i.e., r1, r3, r12, r23,

123

Generic entity resolution with negative rules 1265

r123) is either dominated by a record in {r13, r2} (r1 � r13,
r3 � r13) or introduces an inconsistency (unary: r23 � r23,
r123 � r123; binary: r12 � r13); (3) {r13, r2} is consistent,
so no records can be dropped; and (4) {r13, r2} is not dom-
inated by the only other solution, {r12}. The instance {r12}
is also a valid solution for the same reasoning. To clarify the
role of the fourth condition (i.e., the first three conditions
do not imply the fourth condition), notice that the instances
{r1, r2} and {r2, r3} satisfy the first three conditions, but are
dominated by the solution {r13, r2}. Hence, {r1, r2} and {r2,
r3} are not valid solutions.

2.4 Resolving inconsistencies

There are two general approaches for resolving records in
the presence of negative rules:

• Late approach. The merge and match rules are used to
generate a set E R(I), which is after-the-fact checked
for inconsistencies. As inconsistencies are discovered,
appropriate “fixes” (see below) are taken, with the guid-
ance of a domain expert. We call this domain expert the
solver, to differentiate this person from that ones writing
match, merge and negative rules.

• Early approach. With the help of a solver, we start iden-
tifying records that we want to be in the final answer
J . Even before the final answer is known, we start “fix-
ing” problems between the selected records in J and other
records not yet selected.

In this paper, we follow an early approach because the late
approach involves backtracking (i.e., unmerging records),
which can be very expensive. There are several ways incon-
sistencies can be “fixed” with the help of the solver:

• Discard data. When an inconsistency is detected, the
solver may decide to drop one of the records causing
the problem. The dropped record will not be in the final
answer.

• Forced merge. The solver decides that two inconsistent
records should have been merged and manually forces
a merge. That is, it is deemed that the match rule made
a mistake. For example, if two hotels Comfort Inn and
Comfort Inn Milton are the same hotels but mistakenly
not matched by the match rule, the negative rule could
flag an inconsistency (because the names are suspiciously
similar), and the solver could merge them.

• Override negative rule. The solver decides that the flagged
record(s) are consistent after all, i.e., the negative rule was
incorrect in flagging an error. For example, Comfort Inn
and Comfort Inn Milton, which were flagged by the neg-
ative rule to be suspiciously similar, might be different

hotels after all. The records(s) are then allowed in the
final answer.

When we present our algorithms (Sects. 3, 5), we will use a
Discard technique. However, after each algorithm, we sum-
marize the changes that are necessary to handle the other
two approaches. In our experimental sections (Sects. 6, 7)
we will address the accuracy and performance of the three
approaches.

Note incidentally that with the Forced Merge and the
Override NR approaches, we should also modify Defini-
tion 2.3 slightly, so that overridden negative rules do not
count as inconsistencies, and so that forced merges are con-
sidered valid.

3 The GNR algorithm

The general algorithm for negative rules (GNR algorithm)
assumes the basic properties in Sect. 2 and that Ī is finite.
We also assume that a solver makes decisions when there is a
choice to be made. The solver looks at the records, and selects
one that is “more desirable” to have in the final answer. If no
solver is available, the algorithm could make the choice at
random or based on heuristics (e.g., a record with more data
fields is preferable to one with fewer). With human inter-
vention, the algorithm will be guided to one of the possible
solutions that is acceptable to the solver; without such guid-
ance, the algorithm will still find a valid ER-N solution, but
the solution may not be the “most desirable.”

In our algorithm, the solver starts by choosing the non-
dominated records from Ī . The management of inconsisten-
cies and domination are done by the algorithm. The algorithm
is shown in Algorithm 2. The merge closure Ī is computed
using Algorithm 1. Notice that we can automatically choose
records that are non-dominated and consistent with every
record in S because they will eventually be chosen by the
solver.

To illustrate how the GNR algorithm works, we again refer
to our motivating example in Fig. 1. Again, assume that Ī (and
thus S) is {r1, r2, r3, r12, r13, r23, r123}. Since we assume that
ri � r j whenever ri was used to generate r j , there is only one
non-dominated record in Ī , namely r123. Thus, there is really
no choice for the solver but to select r123 for the first iteration.
However, r123 is internally inconsistent and is discarded (step
9). For the second iteration, the solver has a choice among
{r12, r13, r23}. Suppose the solver chooses r13. At step 10,
r13 is included in J . Then the records that are dominated by
or inconsistent with r13 are removed from S, leaving S = {r2,
r23}. Choosing r2 and discarding r23 (since r23 is internally
inconsistent) results in our final solution {r13, r2}. Notice

123

1266 S. E. Whang et al.

1: input: a set I of records
2: output: J = ER-N(I)
3: S← Ī {Computed with Algorithm 1}
4: J ← ∅
5: while S �= ∅ do
6: nd S← the non-dominated records in S
7: r ← a record from nd S chosen by the solver
8: S← S�{r}
9: if r � r then continue (next iteration of loop)
10: J ← J ∪ {r}
11: for all r ′ ∈ S do
12: if r ′ � r or r ′ � r then
13: S← S�{r ′}
14: end if
15: end for
16: end while
17: return J

Algorithm 2: The GNR algorithm

that, if the solver had chosen r12 during the second iteration,
the final solution would have been {r12}.

Proposition 3.1 The GNR algorithm returns a valid ER-N
solution.

Proof The solution J should satisfy the four conditions in
Definition 2.3. First, J is a subset of Ī because we are not cre-
ating any new records. Second, each record r in Ī that is not
in J was discarded (step 9) due to an internal inconsistency
or deleted from S (step 13) because r was either inconsistent
with or dominated by a record being inserted into J . Third, no
stricter subset of J satisfies the second condition because any
r removed from J is not dominated by a record in J�{r} and
does not introduce an inconsistency to J�{r}. Finally, no
other solution dominates J : Suppose there exists such a solu-
tion J ′ (i.e., J � J ′). Let [rs1 ,rs2 , . . . , rs|J |] be the records
of J ordered by when they were added to J by Algorithm 2.
Looking at rs1 , we know that rs1 must also exist in J ′ because
rs1 is a non-dominated record in Ī (ignoring internally incon-
sistent records), and there exists a record in J ′ that dominates
rs1 (i.e., the record that dominates rs1 can only be rs1). Next,
define S1 as the records in Ī that are neither dominated by
nor inconsistent with rs1 . Note that S1 is what remains of the
original S, after the first iteration of Algorithm 2. According
to the second condition of ER-N, no record outside S1 can
be in J�{rs1 } or J ′�{rs1 }. Now looking at rs2 , we can see
that rs2 must also exist in J ′ because rs2 is a non-dominated
record in S1 (ignoring internally inconsistent records) and
there exists a record in J ′�{rs1 } that dominates rs2 . After
iterating through all the records of J in a similar fashion, we
can see that J is a subset of J ′. Moreover, J ′ cannot have more
records than J according to the third ER-N condition. Thus,
we conclude that J = J ′, which contradicts the assumption
that the two instances are different. In conclusion, the GNR
algorithm returns a valid ER-N solution.

While the GNR algorithm discards records to resolve
inconsistencies (see Sect. 2.4), it can also use alternative
strategies for resolving records. First, the algorithm can be
extended to support forced merges. Once the solver chooses
a record (step 7), that record is compared with every record in
the set S for new inconsistencies. The solver can then view
all the inconsistent pairs detected in step 12 and manually
merge the records that should have been merged. After the
merges, we can re-run the merge closure to identify addi-
tional matches that occur. While this step guarantees accu-
racy, it can be very expensive. An alternative approach is to
simply continue after the forced merge without re-running
the merge closure.

Second, the GNR algorithm can also support overriding of
negative rules using a similar process as for forced merges.
Looking at the new inconsistencies in steps 9 and 12, the
solver can manually override the inconsistencies that are con-
sidered incorrect. The decisions of the solver can be stored
in a hash table along with the records involved. Thus, two
records are inconsistent only if the binary inconsistency rule
says they are, and the pair of records is not in the override
hash table.

Finally, the solver can use a combination of all three strat-
egies to resolve inconsistencies. For unary inconsistencies in
step 9, the solver can either discard the record or override
the negative rule. For binary inconsistencies in step 12, the
solver can use one of the three strategies. If the binary rule is
incorrect, the solver overrides the negative rule. If the binary
rule is correct but merging the two records results in an incon-
sistent record, the solver discards a record. However, if the
merging does not introduce an inconsistency then the solver
uses the forced merge technique.

Human effort An important metric for the GNR algorithm
is the “human effort” made by the solver. Of course,
human effort is very hard to model and is seldom quanti-
fied in our database community. Nevertheless, because the
human solver plays a key role in entity resolution with neg-
ative rules, we feel it is important to analyze human effort,
even if our metric is far from perfect.

There are three ways the solver can be involved in the
algorithm. First, the solver must choose records from the
set nd S (step 7). Second, the solver must check whether a
record is internally inconsistent during step 9 (but only if
the unary negative rule returns inconsistent). Third, the
solver must check a pair of records for inconsistencies dur-
ing step 12 (only if the binary negative rule returns the result
inconsistent). The effort made for each type of effort
will vary depending on the strategy used by the solver.

Since it is difficult to predict the behavior of the solver, we
use the following simple model as a surrogate of the human
effort. For checking unary rules, we simply count the number
of checked records. For binary rules, we count the number

123

Generic entity resolution with negative rules 1267

of pairs checked. For choosing records, the cost of selecting
one record from a set of records nd S (step 7 in Algorithm 2)
is |nd S|. The total human cost for choosing records is then
the sum of costs for all such selections. For example, given
a set of ten records with no inconsistencies or domination
relationships, the total human effort for choosing all the ten
records is 10+9+· · ·+2 = 54. Notice that we do not count
the effort for choosing the last record.

We caution that the human effort values we present, by
themselves, are not very useful. The actual human effort will
vary depending on the strategies we use for resolving incon-
sistencies. For example, the discard data and forced merged
strategies can be run automatically and save most of the
human effort while using a combination of strategies might
require a significant amount of human effort (see Sect. 6.3).
However, we believe the human effort values can be helpful
in comparisons. For instance, if in Scenario A the cost is 10
times that in Scenario B, then we can infer that the solver
will be significantly more loaded in Scenario A.

4 Properties for the rules

Entity resolution is an inherently expensive operation (espe-
cially with negative rules) regardless of the solution used.
In general, practitioners use two types of techniques to
reduce the cost: semantic partitioning and exploiting proper-
ties.

With partitioning, the initial data set is divided into inde-
pendent blocks using semantic knowledge. For example,
product records can be partitioned using a “category” field
(book, CD, camera,. . .). The assumption is that records in
different blocks do not match, so an expensive algorithm like
our GNR algorithm only needs to be run within each much
smaller block. Of course, if some records do match across
partitions, this approach will miss those matches. Similarly,
inter-block inconsistencies will be missed. This partitioning
technique is commonly known as “blocking” [20,21]. If the
resulting blocks are relatively small, the GNR algorithm will
be feasible. Also, note that the GNR algorithm becomes more
attractive in scenarios where there are relatively few matches.
(The more matches, the larger Ī becomes.)

A second general approach to reducing cost is to exploit
properties of the match and merge rules to make it possible
to find the correct solution with less effort. In this section we
present such desirable properties: two for match and merge
rules, and one for negative rules. In Sect. 5 we then use these
properties to make the ER process significantly more effi-
cient.

Of course, note that the properties we propose will not
hold in all applications. If the properties do hold, then one
will be able to achieve the improved performance. If the prop-
erties do not naturally hold, the solver may want to modify

the rule so that the properties hold (e.g., by keeping more
information in a merged record, one may be able to achieve
the representativity property defined below). Finally, if the
properties below definitely do not hold in a given applica-
tion, the solver may nevertheless still want to use the efficient
algorithm of Sect. 5, in order to get an answer in a reasonable
time. The answer will not be correct because of the “wrong”
algorithm we used for this case, but the answer may be “rel-
atively close” to the correct answer.

The bound of incorrectness depends on the portion of
“problematic” records that do not make the rules satisfy the
properties. For example, the initial set of records I could con-
ceptually be divided into two sets X = {x1,x2, . . . , xn} and
Y = {y1, y2, . . . , ym} where the properties are satisfied when
resolving the records in X while not necessarily so when
resolving the records in Y . That is, Y includes all the records
that could possibly generate inconsistencies. We suspect that
the “incorrectness” of the ER solution would then be bounded
by the fraction Y

X+Y of the total records in the ER solution. In
practice, the problematic record set Y is only a small fraction
of the entire set of records (see Sect. 7.3). Further research
is required to refine this intuitive “incorrectness” bound.

4.1 Match and merge rules

Two desirable properties for M and µ are associativity and
representativity. Associativity says that the merge order is
irrelevant. Representativity says that a merged record repre-
sents its base records and matches with all records that match
with the base records.

• Associativity: ∀r1, r2, r3 such that 〈r1, 〈r2, r3〉〉 and 〈〈r1,

r2〉, r3〉 exist, 〈r1, 〈r2, r3〉〉 = 〈〈r1, r2〉, r3〉.
• Representativity: If r3 = 〈r1, r2〉 then for any r4 such that

r1 ≈ r4, we also have r3 ≈ r4.

Associativity and representativity together are somewhat
strict, but powerful properties. Combined with the two basic
properties, idempotence and commutativity, they are called
the ICAR properties. It is shown in [2] that, given the ICAR
properties, the merge closure of I is always finite.

Union class of match and merge rules There is a broad class
of match and merge rules that satisfy the ICAR properties
because they are based on union of values. We call this class
the Union class. The key idea is that each record maintains
all the values seen in its base records. For example, if a record
with name {John Doe} is merged with a record with name
{J. Doe}, the result would have the name {John Doe, J. Doe}.
Unioning values is convenient in practice since we record all
the variants seen for a person’s name, a hotel’s name, a com-
pany’s phone number, and so on. Keeping the “lineage” of our

123

1268 S. E. Whang et al.

records is important in many applications, and furthermore
ensures we do not miss future potential matches. Notice that
the actual presentation of this merged record to the user does
not have to be a set, but can be any string operation result
on the possible values (e.g., {John Doe}). Such a strategy is
perfectly fine as long as the records only use the “underlying”
set values for matching and merging. Two records match if
there exists a pair of values from the records that match. In
our example, say the match function compares a third record
with name {Johnny Doe} to the merged record obtained ear-
lier. If the function compares names, then it would declare a
match if Johnny Doe matches either one of the two names.
The match and merge functions in this Union Class satisfy
the ICAR properties as long as the match function is reflexive
and commutative (two properties that most functions have).

Beyond the Union Class, there are other rules that while
not strictly in this class, also record in some way all the values
they have encountered. For example, a record may represent
the range of prices that have been seen. If the record is merged
with another record with a price outside the range, the range
is expanded to cover the new value. Thus, the range cov-
ers all previously encountered values. Instead of checking if
the prices in the records match exactly, the match function
checks if price ranges overlap. It can be shown that match and
merge functions that keep all values explicitly or in ranges
also satisfy the ICAR properties.

Merge domination If the ICAR properties are satisfied, we
can use a natural domination order called merge domination.

Definition 4.1 r1 is merge dominated by r2 (denoted r1 ≤
r2), if r1 ≈ r2 and 〈r1, r2〉 = r2.

Reference [2] shows that merge domination is a partial
order on records given the ICAR properties. Merge domi-
nation is a natural way of ordering records and will be our
default domination order when the ICAR properties hold.

4.2 Negative rules

One desirable property for negative rules is called persis-
tence. In many applications, inconsistencies tend to hold
regardless of future merges. Persistence is defined for both
unary and binary negative rules.

Unary persistence is defined on unary negative rules. The
property states that an internally inconsistent record r stays
inconsistent regardless of its merging with other records.

Binary persistence is defined on binary negative rules.
This time, two inconsistent records r1 and r2 stay inconsis-
tent regardless of their merging with other records. The only
exception is when r1 and r2 merge together, either directly or
indirectly. In that case, the binary inconsistency is resolved
because the two records no longer coexist (〈r1, r2〉 could be
internally inconsistent).

1: input: a set I of records
2: output: J = ER-N(I)
3: P ← ER(I) {e.g., using R-Swoosh}
4: C ← the set of connected components of inconsistent packages in

P
5: for all ci ∈ C do
6: Ji ← GNR(

⋃
p∈ci

b(p))
7: end for
8: J = J1 ∪ ... ∪ J|C |
9: return J

Algorithm 3: The ENR algorithm

• Unary persistence: If r1 � r1 and r3 = 〈r1, r2〉, then
r3 � r3.

• Binary persistence: If r1 � r2 and 〈r1, r3〉 �= r2, then
〈r1, r3〉� r2.

We believe persistence holds in many applications. Unary
persistence mostly holds if the merge rule is in the Union
Class. For example, a hotel having two addresses will still
have at least two addresses after merging with other records.
Binary persistence is also reasonable—two hotels having the
same address will still have the same address regardless of
their merging with other hotels.

5 The ENR algorithm

The ENR algorithm (enhanced algorithm for negative rules;
shown in Algorithm 3) exploits the properties in Sect. 4 (i.e.,
the ICAR and persistence properties) to make the GNR algo-
rithm efficient. Rather than looking at the entire merge clo-
sure of I , we would like to partition I and look at the merge
closure of each partition. Note that the partitions here are dif-
ferent from the components produced by blocking techniques
(see Sect. 4). Specifically, we do not assume any semantic
knowledge, as exploited by blocking techniques. The parti-
tioning can be done in two steps. First, we partition I into
“packages” (introduced in [22] in another context) where
two records generated from different packages do not match.
Next, we deal with inconsistencies by connecting “inconsis-
tent packages” into connected components [26] so that two
records generated from different components are always con-
sistent with each other.

Packages partition I such that no two records generated
from different packages match. The two generated records
may be inconsistent. The (base) records of package p are
denoted as b(p), and the entire set of generated records (i.e.,
the merge closure) of p is denoted as c(p). All the records
in p can merge into a single representing record, which we
denote as r (p).

Packages are generated by running Algorithm 1, except
that when we merge two records r and r ′ (step 9), we remove
r and r ′ from further consideration. (Because of the ICAR

123

Generic entity resolution with negative rules 1269

r12

r1 r2 r3

r123

r4 r5

r45

r6

p1 p2 p3

Fig. 2 Package formation

properties any future record that would have matched r or
r ′ will now match the merged record.) Furthermore, we do
not explicitly remove dominated records at the end; the above
optimization takes care of that. These two optimizations (plus
a few other improvements) yield what is called the R-Swoosh
Algorithm, which is studied in detail in [2]. From our point of
view, the important point is that packages can be computed
efficiently, given the ICAR properties and an algorithm like
R-Swoosh.

Figure 2 illustrates the package formation step (ignore the
dotted line for now). The bottom records are the input records,
and the arrows show the merges that occur. In this example,
three packages result. For instance, the leftmost package has
record r123 as representative.

We next connect inconsistent packages together, form-
ing connected components of inconsistent packages. We say
two packages p and p′ are inconsistent if their representing
records, r (p) and r (p′), are inconsistent. In our example in
Fig. 2, packages p2 and p3 are inconsistent because r45 and r6

are inconsistent (dotted line). As a result, package p1 forms
one component by itself while packages p2 and p3 together
form another component. To give an illustration why p2 and
p3 should be connected although r45 and r6 do not match, it
could be the case that the name of the same hotel was written
in different languages for r45 and r6. While the match rule
might have considered the two records different because of
the different names, the negative rule could help fix that error
by connecting p2 and p3. Proposition 5.1 shows that no two
records generated from two consistent packages are incon-
sistent. Thus, there are no inconsistencies between records
generated from different components.

Proposition 5.1 Consider two consistent packages p, p′,
i.e., r (p)↔ r(p′). Then ∀r1 ∈ c(p), r2 ∈ c(p′), r1 ↔ r2.

Proof Suppose that r1 � r2. By the definition of pack-
ages, r1 and r2 can each merge with other records into r (p)
and r (p′), respectively. Then according to binary persistence,
r (p) � r (p′), which is a contradiction. ��

Finally, we run the GNR algorithm on the records of each
connected component of packages. Returning to our exam-
ple in Fig. 2, the first component contains the package p1.

Thus, we run the GNR algorithm on b(p1) = {r1, r2, r3}.
Notice that the solver only has to look at the merge closure
of three records instead of the original six. Next, we run the
GNR algorithm on the records of the second component con-
taining package p2 and p3. In this case, we start with the set
b(p2) ∪ b (p3) = {r4, r5, r6}. Combining the results of run-
ning the GNR algorithm on the two components gives us the
final ER-N solution.

Proposition 5.2 The ENR algorithm returns a valid ER-N
solution.

Proof It is sufficient to prove that running the ENR algo-
rithm on I is equivalent to running the GNR algorithm on
I . Adding all the merge closures of the partitions of I pro-
duced by the ENR algorithm results in Ī because records
generated from different components are independent, i.e.,
they are consistent with each other and never match. Thus,
the solver is looking at the same Ī for both algorithms. In the
ENR algorithm, however, the solver is handling one subset
of Ī at a time. ��

While the ENR algorithm assumes the Discard approach,
it can also support alternative strategies for resolving records.
Since the ENR algorithm only plays a role in isolating incon-
sistencies, the actual algorithmic changes are all done on the
GNR algorithm. Hence, the ENR algorithm does not change
regardless of the strategy used.

6 Precision and recall

To evaluate our GNR and ENR algorithms, there are two sets
of issues to consider: accuracy and performance. In this sec-
tion we consider accuracy, i.e., how and by how much can
precision and recall of a solution be improved by using neg-
ative rules and our algorithms. In the following section we
address the performance, i.e., the human effort and system
runtime needed for resolving records with negative rules.

6.1 Experimental setting

We ran our experiments on a hotel dataset provided by Yahoo!
Travel. In this application, hundreds of thousands of records
arrive from different travel sources (e.g., Orbitz.com), and
must be resolved before they are shown to the users.
Because of the volume of data, we used blocking techniques
(see Sect. 4) to partition the data into independent blocks
and then applied our algorithms on each block. In our exper-
iments, we used a partition containing hotels in the United
States; we will call these US hotels from now on.

To evaluate accuracy, we used a “Gold Standard” G also
provided by Yahoo. Gold standard G is a set of record pairs.

123

1270 S. E. Whang et al.

If a pair (A, B) is in G, then input records A and B are con-
sidered by a domain expert to be the same hotel. If a pair
A, B is not in G, then A and B represent different hotels. Set
G turns out to be transitive, i.e., if (A, B) and (B, C) are in
G, then (A, C) is also in G.

To evaluate an ER-N solution we proceed as follows. We
consider all the input records that merged into an output
record to be identical to each other. For instance, if hotels A
and B merged into 〈A, B〉 and then merged with C , all three
hotels are considered to be the same. Let S be the set of all
pairs found to be equal. In our example, (A, B), (B, C) and
(A, C) are all in S. Then the precision Pr is |G∩S|

|S| while the

recall Re is |G∩S|
|G| . In addition, we also used the F1-measure,

which is defined as 2×Pr×Re
Pr+Re , as a single metric for precision

and recall.
The GNR and ENR algorithms were implemented in Java,

and our experiments were run on a 2.0 GHz Intel Xeon pro-
cessor with 6GB of memory. Though our server had multiple
processors, we did not exploit parallelism.

6.2 Rules

Since we did not have access to the proprietary code in
Yahoo’s match and merge rules, we developed our own rules,
based on our understanding of how hotel records are handled.
Our rules are union rules, as described in Sect. 4.1. That is,
our merge rule µ retains all the distinct values of the base
records.

The match rule M compares two hotel records using eight
attributes: name, street address, city, state, zip, country, lat-
itude, and longitude. When comparing two records, we do
pairwise comparisons between all the possible attribute val-
ues from each record and look for a match. The names and
street addresses are first compared using the Jaro-Winkler
similarity measure1 [20], to which a threshold TM from 0 to
1 is applied to get a yes/no answer. We use the same thresh-
old TM for comparing names and addresses because they
have similar string lengths. If the names and street addresses
match, M returns true if at least one of the following holds:

• The cities, states, and countries are exactly the same.
• The zip codes and countries are exactly the same.
• The latitude and longitude values do not differ more than

0.1 degree (which corresponds to approximately 11.1km).

It is easy to show that the union operation for merging
and existential comparison for matching guarantee the ICAR
properties.

1 The Jaro-Winkler similarity measure returns a similarity score in the
0 to 1 range base on many factors, including the number of characters
in common and the longest common substring.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Best Point

Match and Merge Rules
Phone (Discard)

Phone (Forced Merge)
Phone (Solver)

Match Rule using Phone

Fig. 3 Precision and recall for different strategies

For our experiments we used two types of negative rules.
Here we describe the first type, and the second type is dis-
cussed later on in this section. Our initial negative rules are
based on the phone number attribute. This attribute is not as
robust as say hotel name or city and zip code for determining
matches, but is useful for detecting anomalies that should be
checked by the solver.

In particular, our initial unary negative rule N1 flags a hotel
with different phone numbers. In order to precisely com-
pare phone numbers, we first remove non-numeric charac-
ters (e.g., ‘(’,‘)’, and ‘-’). We then compare each digit starting
from the last position until we have compared all the digits of
either one of the phone numbers. We compare from the last
digit because some phone numbers include area codes while
others do not. For example, we consider “(650)123-4567”
and “1234567” to be equal by trimming the first phone num-
ber into “6501234567” and then comparing the last seven
digits. This strategy works very well in our dataset.

Our initial binary negative rule N2 checks if two hotels
have the same phone number. That is, N2 does a pairwise
phone number comparison between all the possible phones
of the two records, looking for existing matches. N2 uses the
same phone number comparison function as N1.

6.3 Strategies

We first resolved the records without using the negative rules,
using only M and µ (i.e., just step 3 of the ENR Algorithm).
We used as input 5,000 US hotel records, and we used var-
ious thresholds for TM . The solid line in Fig. 3 shows the
precision and recall curve for each threshold we used (ignore
the other data points for now). Among them, the threshold
that produces the highest F1-measure is 0.74, and the point
using that threshold is marked as the “Best Point.” To give
an idea on how many records actually merged together in
the Best Point result, we show in Fig. 4 the distribution of

123

Generic entity resolution with negative rules 1271

Record size Number of records
1 3477
2 725
3 21
4 0
5 2

Fig. 4 Distribution of base records per output record

base records per output record. While most input records did
not merge with any other record, a significant portion of the
output records were formed by a merge of two input records.

Discard strategy Next we ran the ENR Algorithm, using the
negative rules and the threshold (TM = 0.74) for the match
rule that yielded the Best Point. Recall that with
the Discard strategy, the solver only has to select records
for the final result. Any negative rule violations are simply
corrected by removing records. When choosing records dur-
ing step 7 in Algorithm 2, we emulated the solver’s decisions
by always selecting the record containing the largest number
of base records from the set nd S.

The resulting precision and recall of the Discard strategy
is shown in Fig. 3. Note that the dark triangle for the Dis-
card strategy overlaps with the square for a scheme that is
described below. Both schemes have approximately the same
performance. Compared to the Best Point, the precision has
increased while the recall has decreased. Intuitively, discard-
ing records reduces incorrectly merged records (increasing
the precision of merging), but may also mistakenly remove
correct merges (decreasing the recall).

The advantage of the Discard strategy is that the human
effort is relatively small compared to the Solver strategy
(see below) because the human solver only needs to choose
records and does not need to do any manual unary or binary
checks. As a matter of fact, if records are selected based on
size (as we did for our emulation), then the solver does no
actual work.

Automatic forced merge strategy An alternative to fixing
inconsistencies by discarding records is to force the merge
of records that violate the binary negative rule. When we
run ENR in this fashion (everything else unchanged) we
get the Forced Merge data point in Fig. 3. We see that the
Forced merge strategy decreases the precision while increas-
ing the recall of the Best Point. Forcing inconsistent records
to merge may create internally inconsistent records (decreas-
ing the precision) and also find correct matches (increasing
the recall).

The Forced merge strategy is effective when there are
many record matches that were not identified by the match
and merge rules. Since we are merging inconsistent records

automatically, without solver intervention, the solver cost is
the same as for the Discard strategy.

Solver strategy Finally, we tested a strategy where all neg-
ative rule violations are examined by the human solver, and
he decides in each case whether it is best to force a merge,
ignore the negative rule firing, or to discard a record. To emu-
late what a solver would do, we rely on the Gold Standard G.
When a unary inconsistency is detected in record r (step 9 of
GNR), we check if any pair of base records for r is not in G.
If all pairs are in G, then we ignore the negative rule. When
a binary rule violation is detected (step 12), we check if the
records can be safely merged. If the merged record would
only contain base record pairs in G, then we go ahead and
force a merge. Using G to drive the algorithm is fair since we
expect the human solver to make decisions that are consistent
with those made by the domain expert who created the gold
standard.

The accuracy of the solver strategy is shown in Fig. 3.
We can see that the Solver strategy significantly outperforms
any strategy both in precision and recall. However, note that
the solution is still not 100% correct. The reason is that the
solver can only fix problems flagged by the negative rules. If
an incorrect merge or a missing merge is not detected by the
negative rules, then the problem is not brought to the solver’s
attention. Of course, the Solver strategy is more expensive
for the solver, as he has to manually examine and resolve
all records flagged by the negative rules. Thus, it is impor-
tant to design negative rules that do not generate too many
unnecessary checks.

At this point the reader may wonder, if checking phone
numbers is so effective in detecting problems, why were
phone numbers not checked by the match rule? As we
argued in the introduction, negative rules are integrity checks
often developed after the match and merge rules are imple-
mented. It is often safer not to embed integrity checks in the
same code that is being checked. Furthermore, the match and
merge rules may be legacy code that is hard to modify, devel-
oped by programmers that did not have perfect knowledge.

It is also important to notice that adding phone number
checks to our original match function does not give the same
results as the Solver Strategy. For example, we could modify
our match rule so that hotels with different phone numbers
do not match (effectively incorporating our unary negative
rule into the match function). Figure 3 (point labeled “Match
Rule using Phone”) shows the result of using the new match
rule with the Best Point threshold (TM = 0.74). Compared
to the Best Point, the precision increased to 0.944 while the
recall dropped to 0.646. Incidentally, the result is very simi-
lar to that of the Discard strategy.) Hence, accuracy is much
better with the solver where hotels with questionable phone
numbers are being examined by an expert, so opposed to
simply not merged.

123

1272 S. E. Whang et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Best Point

Match and Merge Rules
Phone (Solver)

NameAddr (Solver)
NameAddr+Phone (Solver)

Fig. 5 Precision and recall for various negative rules

6.4 Other negative rules

To better understand how negative rules impact accuracy, we
implemented a second type of rule. These rules, sometimes
used in practice, flag “borderline cases” as suspicious so the
solver checks them out. For instance, say two hotels r and s
have very similar names and addresses, but not quite similar
enough that the match function fires (or perhaps other attri-
butes indicate a mismatch). Then we may want the solver to
look at r and s to decide what to do.

In particular, our binary negative rule states two records
are inconsistent if there exists a pair of names, one in each
record, that have a string similarity over TB , and a pair of
street addresses also have a similarity over TB . Our unary neg-
ative rule checks if the possible names and street addresses
in a record are “too far apart” to be in the same record. Spe-
cifically, given a unary threshold TU , a record is internally
inconsistent if two possible names differ more than TU and
two possible street addresses differ more than TU . We used
the Jaro-Winkler similarity measure for all string compari-
sons. We call these rules the NameAddr negative rules.

Figure 5 shows the result of testing the NameAddr nega-
tive rules on several TU and TB thresholds using the Solver
strategy. The nine points (black squares) are produced by
assigning TU the values 0.8, 0.9, and 0.99 while assigning
TB the values 0.75, 0.7, and 0.65. As TU increases, precision
increases, and as TB decreases, recall increases. For exam-
ple, the leftmost 3 points correspond to TB = 0.75, while the
bottom 3 points correspond to TU = 0.8. The top, rightmost
point is for TU = 0.99 and TB = 0.65. These trends are as
one would expect: the unary rule detects more inconsisten-
cies as TU increases while the binary negative rule does so as
TB decreases. And the more inconsistencies that are flagged,
the more opportunities the solver has to fix things (and of
course, the more work for the solver).

Because our negative rules have parameters that let us
vary how stringent they are, we can visualize the tradeoff

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0.7 0.72 0.74 0.76 0.78 0.8 0.82

H
um

an
 E

ffo
rt

Recall

Record selection cost
Binary checks
Unary checks

Fig. 6 Human effort versus recall

between accuracy and solver cost. For example, Fig. 6 shows
how recall and cost relate. The horizontal axis is the recall
achieved as we vary TB (keeping TU at its lowest value),
and the vertical axis shows the solver cost. For example, the
rightmost points are obtained with TB = 0.65 and we get a
recall of about 0.806. The top most curve shows our estimate
for the selection cost; the middle curve shows the number of
pairs of records manually checked by the solver for binary
inconsistencies, and the bottom curve shows the number of
records checked for unary inconsistencies. We can clearly
see that achieving the higher recall comes at a price, as the
solver needs to examine more records. Note that the record
selection cost can be eliminated if we automate the record
selection process, choosing the largest record as we did for
our experiments here. The analogous precision-cost graph
(not presented here) shows that, unlike recall, achieving a
higher precision does not significantly increase the solver
cost.

We also combined the NameAddr negative rules with the
phone number negative rules presented earlier. The combined
unary (binary) negative rule returns inconsistent when either
one of the two unary (binary) negative rules returns inconsis-
tent. In this case we set TU and TB to 0.99 and 0.65, respec-
tively. Figure 5 shows that the combined method gives the
highest precision and recall. Intuitively, the combined rules
identify the largest number of inconsistencies for the solver
to check. However, as a result, the solver does the most work.

In summary, the precision and recall of an ER-N solution
depends on the strategy used for resolving records as well as
the negative rules. However, in general:

• The Discard strategy increases precision, but decreases
recall.

• The Forced Merge strategy increases recall, but decreases
precision.

123

Generic entity resolution with negative rules 1273

Negative Rule(s) Description
C No hotel can have two different cities
L No two hotels can have latitudes that differ

less than 0.01 degree (i.e., 1.1km)
NA The NameAddr negative rules defined in Sec-

tion 6.4 where =0.8 and =0.75
P The Phone negative rules defined in Sec-

tion 6.2

Fig. 7 List of negative rules

Combination Precision/Recall Human Effort
NA 0.7/0.89 5968

NA + C 0.7/0.91 6017
NA + L 0.87/0.91 4692245

NA + C + L 0.87/0.93 4722335
P 0.94/0.95 934

Fig. 8 Results for various combinations of negative rules

• The Solver strategy lets a human decide how to fix incon-
sistencies on a case by case basis. The accuracy improve-
ment depends on how effectively the negative rules find
actual inconsistencies.

6.5 Choosing negative rules

In general, choosing the right number of negative rules that
maximize the precision and recall with a reasonable solver
cost requires application knowledge about “common errors”
of the match and merge rules. If the negative rules do not
properly point out the errors, then the solver might end up
checking unnecessary records without improving the preci-
sion or recall much.

Figure 7 shows several negative rules including the Phone
and NameAddr negative rules defined in the previous sec-
tions. Figure 8 shows the precision, recall, and human effort
results for various combinations of the negative rules. We
experimented on the 5,000 US hotel records using the Solver
strategy. Adding the City negative rule to the NameAddress
negative rules slightly increases the recall with a small addi-
tional human effort. The Latitude negative rule, on the other
hand, significantly increases the precision, but also requires a
much larger human effort because many different hotels can
be within 1.1 km (latitude) of each other. The Phone negative
rule alone already gives a better precision and recall (while
requiring a much smaller human effort) compared to previ-
ous combinations because it effectively pinpoints the errors
of the match and merge rules.

The experiments show that finding the best negative rules
requires a good understanding of the application and the
match and merge rules. Carefully thought-out negative rules
(like the Phone negative rules) will be able to find most of
the real inconsistencies of the match and merge rules with
little human effort. Other negative rules may either fail to
find many inconsistencies or end up increasing the human
effort too much.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1000 1500 2000 2500 3000 3500 4000 4500 5000

H
um

an
 E

ffo
rt

Number of records

GNR selection cost
GNR unary checks
GNR binary checks
ENR selection cost
ENR unary checks
ENR binary checks

Fig. 9 Human effort

7 Performance

In this section, we address the performances of the GNR
and ENR algorithms. First, we compare the human efforts
of the two algorithms and show that the ENR algorithm per-
forms significantly better than the GNR algorithm except for
cases where binary inconsistencies occur frequently. Next,
we compare the system runtimes of the algorithms by ana-
lyzing the major runtime factors and conducting scalability
tests. We also ran our experiments on a comparison shopping
dataset provided by Yahoo! Shopping, and the results are
analogous to those of the hotel dataset (see [30] for details).

7.1 Human effort

Record selection cost and rule checks We measured the
human efforts for the two algorithms on 1,000 to 5,000 US
hotel records using the phone number negative rules and the
threshold TM = 0.74. We used the Solver strategy from
Sect. 6 for resolving records.

Figure 9 shows that the ENR algorithm requires much
less solver effort than the GNR algorithm. The significantly
larger selection cost for the GNR algorithm compared to the
ENR algorithm is due to the highly redundant records views,
which can be illustrated by the following example. Suppose
that a set of initial records has a merge closure size of 100.
Moreover, suppose that the initial records form ten connected
components where each component has a merge closure size
of 10. For simplicity, we ignore the inconsistency and domi-
nation relationships among records. For the GNR algorithm,
the solver must view

∑100

i=2
i=5499 records; for the ENR algo-

rithm, the solver only needs to view 10×∑10

i=2
i=540 records,

which is about one-tenth the effort of the GNR algorithm
effort. Although the merge closure is the same for both algo-
rithms, the ENR algorithm saves a lot of redundant views

123

1274 S. E. Whang et al.

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 0.01 0.1 1

H
um

an
 E

ffo
rt

Binary Density (%)

GNR selection cost
GNR unary checks
GNR binary checks
ENR selection cost
ENR unary checks
ENR binary checks

Fig. 10 Binary density impact on human effort

because it partitions the merge closure into many smaller
independent components.

Binary density impact However, the ENR algorithm does
not always perform better than the GNR algorithm. In the
case where many binary inconsistencies occur, the ENR algo-
rithm loses the advantage of dividing the merge closure into
many smaller components and handling one component at
a time. To capture the degree of binary inconsistencies, we
define the binary density measure as the ratio between the
number of inconsistent record pairs in Ī and the number of
all the possible record pairs in Ī . For example, if five records
are inconsistent with each other among ten records of Ī , the
binary density is

(5
2

)
/
(10

2

)
= 10/45 ≈ 0.202. For our experi-

ments, we used the NameAddr negative rules on 5,000 US
hotel records and varied the binary density by changing the
binary threshold TB . A lower TB results in a higher binary
density because a pair of records is more likely to be incon-
sistent.

Figure 10 shows how human effort and binary density
relate. For small binary densities, the ENR algorithm has a
much lower record selection cost than GNR because the com-
ponent sizes are small, minimizing the time for running the
GNR algorithm on each component. As the binary density
increases, however, the components get larger, and running
the GNR algorithm on them takes longer. For high binary
densities, the benefits of the ENR algorithm disappear be-
cause the merge closure is no longer partitioned into smaller
components, and the selection cost of ENR becomes close to
that of the GNR algorithm.

7.2 System runtime

Runtime decomposition Figure 11 shows the runtime
decomposition of the GNR and ENR algorithms using the
phone number negative rules on 5,000 US hotel records. We

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
un

tim
e

(h
rs

)

Number of records

GNR total
GNR domination

GNR binary
ENR total

ENR connect components
ENR R-Swoosh

Fig. 11 Runtime decomposition

 0

 2

 4

 6

 8

 10

 12

 0 5000 10000 15000 20000 25000 30000

R
un

tim
e

(h
rs

)

Number of records

GNR
ENR

Fig. 12 Scalability

show the total runtimes and major runtime factors for each
algorithm. The majority of the GNR runtime is used for man-
aging the domination relationships between records in the
merge closure in order to find the non-dominated records
in S (step 6 of GNR). The next longest task for GNR is
invoking the binary negative rule. The major runtime factors
for the ENR algorithm are running the R-Swoosh algorithm
and connecting the inconsistent components. Comparing the
total runtimes, the ENR algorithm is 2.2–2.5 times faster than
GNR.

Scalability We conducted scalability tests for the GNR and
ENR algorithms using the phone number negative rules on
1,000 to 27,000 records randomly selected (regardless of the
country) from the entire hotel dataset provided by Yahoo!.
The entire dataset size was 27,049 records. We used a slightly
higher match threshold than usual (TM = 0.8) in order to
properly match non-US hotels. For example, using the thresh-
old TM = 0.74 on the French hotels resulted in many differ-
ent hotels incorrectly merging with each other. Figure 12

123

Generic entity resolution with negative rules 1275

shows that the GNR algorithm cannot handle more than
17,000 records in a reasonable time while the ENR algo-
rithm shows a quadratic growth in runtime. As the dataset
gets larger, ENR outperforms GNR by up to 3.89 times.

In summary, although the ENR algorithm outperforms the
GNR algorithm both in human effort and scalability, ER-N
is an inherently expensive process and thus only relatively
small sets of records can be handled. Thus, large data sets
need to be partitioned into smaller sets (e.g., using blocking
techniques) that can be resolved in detail. How large a data
set can be exhaustively resolved depends on the application.
For example, in our recent work on scaling ER on 2 mil-
lion Yahoo! Shopping records [31], the average block size
was 124 records while the maximum block size was 6,082
records. It is also possible to distribute the ER-N compu-
tations across multiple processors, in order to handle larger
data sets. We can use techniques similar to the ones in [1]
to distribute the data and computation among processors.
There are also applications that do not require an exhaustive
comparison on the entire data set. For example, a technique
called Data Dipping compares a given record only with a
small subset of candidate records that are likely to match the
record.

7.3 Without the properties

So far, we have only studied scenarios where the properties
for the negative rules (Sect. 4.2) hold. We now consider a
scenario where the properties do not hold. We still assume
the ICAR properties hold for the match and merge rules. See
reference [2] for an extensive study on using the R-Swoosh
algorithm without the ICAR properties. In this case, we need
to run the GNR algorithm for a correct ER-N answer. From
our previous results, however, GNR can be very expensive
in runtime. The alternatives are to either modify the negative
rules to satisfy the properties or run ENR even though we
might not get the correct ER-N answer. In this section, we
consider the second alternative and investigate how similar
the ENR result is to the GNR result.

We use a modified version of the NameAddress negative
rules (defined in Sect. 6.4) where we only compare the longest
strings. Specifically, the binary negative rule now compares
the longest names and addresses of the two records while the
unary negative rule compares the two longest names and two
longest addresses of a single record. Although the Commuta-
tivity property is satisfied, the Unary and Binary persistence
properties are not guaranteed because the longest name and
address of a record could change after a record merge, pos-
sibly making a previously inconsistent record consistent.

Figure 13 shows a comparison of the GNR and ENR
results when we use the modified NameAddress negative
rules and vary the TU and TB thresholds. We experimented
on the 5,000 US hotel records using the Solver strategy. For

/ GNR ENR Jaccard Similarity
0.65/0.8 4445 4445 100.0
0.65/0.9 4445 4445 100.0
0.65/0.99 4445 4445 100.0
0.70/0.8 4478 4454 99.38
0.70/0.9 4478 4454 99.38
0.70/0.99 4478 4454 99.38
0.75/0.8 4525 4475 98.85
0.75/0.9 4525 4475 98.85
0.75/0.99 4525 4475 98.85

Fig. 13 Result sizes and similarities

each possible threshold pair, we show the total number of
records for each result (columns 2 and 3) and the Jaccard
similarity between the two results (column 4). Given a GNR
solution G and ENR solution E , the Jaccard similarity be-
tween the two results is defined as |G∩E |

|G∪E | . The average Jaccard
similarity is 99.41%, making the ENR result almost identical
to the GNR result.

In summary, the ENR algorithm is a reasonable way to
compute an ER-N result even when the properties for the
negative rules do not hold. The experimental results show
that the incorrectness of the ENR result is very small in prac-
tice.

8 Related Work

Entity resolution has been studied under various names
including record linkage [24], merge/purge [19], deduplica-
tion [27], reference reconciliation [10], object identification
[29], and others (see [11,17,33] for recent surveys). Most of
these works focus on exploiting positive rules to improve the
accuracy of record matching. In contrast, our ER-N model
provides a general framework for both positive and negative
rules where the match, merge, and negative rules are black-
box functions.

Several works [3,8–10,28] have addressed the use of neg-
ative rules. Doan et al. [8,9] introduced constraints to per-
form sanity checks for object matching. Dong et al. [10] used
dependency graphs while Bhattacharya and Getoor [3] used
negative relational evidence to improve the accuracy of the
constraints. Shen et al. [28] provided a probabilistic interpre-
tation of constraints and categorized them according to their
semantics. However, the constraints used in the works above
are local in a sense that they only prevent two records from
incorrectly matching. To the best of our knowledge, our work
is the first to introduce binary negative rules, which require
a global view of records for detecting inconsistencies.

A recent work [6] uses aggregate constraints to improve
the accuracy of record clustering. Their goal is to partition
the initial set of records such that the number of constraint
violations is minimized. The textual similarity between tu-
ples is used to restrict the search space of partitions. Our
work complements the above work in several ways. First,

123

1276 S. E. Whang et al.

we guarantee a correct and maximal solution as opposed to
using the constraints as a search heuristic. Second, we take a
pair-wise approach, which is an alternative to their clustering
approach. Finally, we consider record merges, which a clus-
tering approach does not directly support, and do integrity
checks on the merged records. Record merges are important
for our pair-wise approach because they naturally provide
the lineage for each record in the ER result, making it easy
to view intermediate states of the ER process. Although neg-
ative rules could also be used in clustering approaches, we
would need to define the notion of intermediate states for
clusters.

A related topic to our work is maintaining integrity con-
straints in relational databases [12,18]. Active database sys-
tems [32] use triggers and rules to provide mechanisms for
integrity constraints. More recently, a line of research [4,7]
shows how to “repair” an inconsistent database into a consis-
tent one while minimizing the difference. The possible repair
actions are deleting, inserting, and modifying tuples. While
the motivations of providing integrity constraints are similar
to ours, the works above do not address the additional com-
plexity of iteratively matching and merging records. More-
over, their focus is on specific constraints such as functional
dependencies and inclusion dependencies.

Another related line of work is called statistical data edit-
ing [13,14,34] where missing or contradictory data is edited
and imputed for intended analytic purposes. While statistical
data editing is focused on fixing the data itself, our work com-
plements this approach by improving the matching process
of data (records) using negative rules.

An interesting analogy for negative rules can be found in
a topic called non-monotonic reasoning [15,16,25]. Unlike
conventional logic, a non-monotonic inference can later be
retracted by contrary information. Although retracting infer-
ences is similar to applying negative rules, the main focus
of non-monotonic reasoning is to deduce whether a single
statement is true or false. In contrast, we are trying to find all
the records in the solution (in logic terminology, the theory)
efficiently. Another difference is that, while non-monotonic
reasoning does not alter its basic beliefs, an ER-N algorithm
can discard base records that have incorrect data.

9 Conclusion

For the entity resolution process, unary and binary negative
rules capture “sanity checks” typically written by domain
specialists who are different from the ones writing the match
and merge rules. As far as we know, our work is the first
to formally define what correct and maximal entity resolu-
tion means in the context of negative rules (Sect. 2.3). Such a
logical and formal foundation is critical for developing ER-N
algorithms: it is easy to develop algorithms that apply rules in
an ad-hoc fashion and give “some sort of answer.” However,

here we have presented two algorithms that are proven to give
the correct answer. Another aspect that is often overlooked is
that entity resolution often requires human guidance to han-
dle unexpected situations and erroneous real-world data. Our
algorithms demonstrate how a human “solver” can guide the
resolution process. One of our algorithms (GNR) represents
a generic way to solve ER-N while the other (ENR) makes
the GNR algorithm less costly by exploiting additional prop-
erties for the match, merge, and negative rules.

Neither of our solutions is perfect: the GNR algorithm
can be expensive unless used for small data sets or when
there are few matching records. The ENR algorithm is only
guaranteed to return a correct solution if certain properties
hold, and these properties may not hold in some applications.
While the ENR algorithm improves the GNR algorithm, it
could still be expensive both in runtime and human effort.

Nevertheless, the algorithms are useful and can have rea-
sonable performance, especially in the following cases:

• As mentioned in Sect. 4, data is often partitioned into
blocks that are resolved independently. The resulting
blocks are typically not large. For example, in [31] we
studied blocking on 2 million Yahoo! Shopping records,
and found the average block size to be 124 records, while
the maximum block size was 6082 records.

• In some applications we may only need to carefully
resolve inconsistencies for “important” records, as op-
posed to for all records in the input data. For example,
the solver might only be interested in records that con-
tain the string “Bin Laden,” so we can run an automatic
strategy for the remaining records.

• In some scenarios, the high cost of resolution may be
acceptable for very valuable data (e.g., customer records,
potential terrorist records). In these cases, when records
contain critical information and need to be carefully re-
solved, spending hours or days resolving each block could
be acceptable.

• Finally, if one is willing to tolerate some loss in accuracy
(see Sect. 7.3), the ENR algorithm can be run even if the
properties of Sect. 4 do not hold (instead of the slower
GNR algorithm).

There may of course be applications where negative rules
simply introduce too much cost, even when shortcuts are
taken. Entity resolution with negative rules is clearly expen-
sive, but we believe it is important to understand the op-
tions and their costs, so that application developers can make
informed decisions.

References

1. Benjelloun, O., Garcia-Molina, H., Kawai, H., Larson, T.E.,
Menestrina, D., Thavisomboon, S.: D-swoosh: A family of algo-
rithms for generic, distributed entity resolution. In: ICDCS (2007)

123

Generic entity resolution with negative rules 1277

2. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Whang, S.E.,
Su, Q., Widom, J.: Swoosh: a generic approach to entity resolution.
VLDB J. (2008). doi:10.1007/s00778-008-0098-x

3. Bhattacharya, I., Getoor, L.: Relational clustering for multi-type
entity resolution. In: MRDM ’05: Proceedings of the 4th interna-
tional workshop on multi-relational mining, pp. 3–12. ACM Press,
New York (2005). doi:10.1145/1090193.1090195

4. Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A cost-based model
and effective heuristic for repairing constraints by value modifica-
tion. In: SIGMOD Conference, pp. 143–154 (2005)

5. Chaudhuri, S., Ganti, V., Motwani, R.: Robust identification of
fuzzy duplicates. In: Proceedings of ICDE. Tokyo, Japan (2005)

6. Chaudhuri, S., Sarma, A.D., Ganti, V., Kaushik, R.: Leveraging
aggregate constraints for deduplication. In: SIGMOD’07: Proceed-
ings of the 2007 ACM SIGMOD international conference on man-
agement of data, pp. 437–448. ACM Press, New York (2007).
doi:10.1145/1247480.1247530

7. Chomicki, J., Marcinkowski, J.: On the computational complexity
of minimal-change integrity maintenance in relational databases.
In: Inconsistency Tolerance, pp. 119–150 (2005)

8. Doan, A., Lu, Y., Lee, Y., Han, J.: Object matching for informa-
tion integration: A profiler-based approach. In: IIWeb, pp. 53–58
(2003)

9. Doan, A., Lu, Y., Lee, Y., Han, J.: Profile-based object matching
for information integration. IEEE Intell. Syst. 18(5), 54–59 (2003)

10. Dong, X., Halevy, A.Y., Madhavan, J.: Reference reconciliation in
complex information spaces. In: SIGMOD Conference, pp. 85–96
(2005)

11. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record
detection: A survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16
(2007)

12. Eswaran, K.P., Chamberlin, D.D.: Functional specifications of sub-
system for database integrity. In: VLDB, pp. 48–68 (1975)

13. Fellegi, I.P., Holt, D.: A systematic approach to automatic edit and
imputation. J Am. Stat. Assoc. 71(353), 17–35 (1976). http://www.
jstor.org/stable/2285726

14. Franconi, E., Palma, A.L., Leone, N., Perri, S., Scarcello, F.: Census
data repair: A challenging application of disjunctive logic program-
ming. In: LPAR’01: Proceedings of the Artificial Intelligence on
Logic for Programming, pp. 561–578. Springer, London (2001)

15. Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial
Intelligence. Morgan Kaufmann, Palo Alto (1988)

16. Ginsberg, M.L.: Readings in Nonmonotonic Reasoning. Morgan
Kaufmann, Los Altos (1987)

17. Gu, L., Baxter, R., Vickers, D., Rainsford, C.: Record linkage:
Current practice and future directions. Tech. Rep. 03/83, CSIRO
Mathematical and Information Sciences (2003)

18. Hammer, M., McLeod, D.: Semantic integrity in a relational data
base system. In: VLDB, pp. 25–47 (1975)

19. Hernández, M.A., Stolfo, S.J.: The merge/purge problem for large
databases. In: Proceedings of ACM SIGMOD, pp. 127–138 (1995)

20. Jaro, M.A.: Advances in record-linkage methodology as applied
to matching the 1985 census of tampa, florida. J. Am. Stat. Assoc.
84(406), 414–420 (1989)

21. McCallum, A.K., Nigam, K., Ungar, L.: Efficient clustering of
high-dimensional data sets with application to reference matching.
In: Proceedings of KDD, pp. 169–178. Boston, MA (2000)

22. Menestrina, D., Benjelloun, O., Garcia-Molina, H.: Generic
entity resolution with data confidences. In: First International
VLDB Workshop on Clean Databases. Seoul, Korea (2006)

23. Monge, A.E., Elkan, C.: An efficient domain-independent algo-
rithm for detecting approximately duplicate database records. In:
Proceedings of SIGMOD Workshop on Research Issues on Data
Mining and Knowledge Discovery, pp. 23–29 (1997)

24. Newcombe, H.B., Kennedy, J.M., Axford, S.J., James, A.P.: Auto-
matic linkage of vital records. Science 130(3381), 954–959 (1959)

25. Nilsson N.J.: Artificial Intelligence A New Synthesis. Morgan
Kaufmann, San Francisco (1998)

26. Rowland, T.: Connected component. http://mathworld.wolfram.
com/ConnectedComponent.html

27. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using
active learning. In: Proceedings of ACM SIGKDD. Edmonton,
Alberta (2002)

28. Shen, W., Li, X., Doan, A.: Constraint-based entity matching. In:
AAAI, pp. 862–867 (2005)

29. Tejada, S., Knoblock, C.A., Minton, S.: Learning object identifi-
cation rules for information integration. Inf. Syst. J. 26(8), 635–
656 (2001)

30. Whang, S.E., Benjelloun, O., Garcia-Molina, H.: Additional exper-
iments on negative rules. Tech. rep., Stanford University. http://
dbpubs.stanford.edu/pub/2005-5

31. Whang, S.E., Menestrina, D., Koutrika, G., Theobald, M.,
Garcia-Molina, H.: Entity resolution with iterative blocking. Tech.
rep., Stanford University (2008). http://dbpubs.stanford.edu/pub/
2008-19

32. Widom, J., Ceri, S. (eds.): Active Database Systems: Triggers
and Rules For Advanced Database Processing. Morgan Kaufmann,
San Francisco (1996)

33. Winkler, W.: Overview of record linkage and current research direc-
tions. Tech. rep., Statistical Research Division, US Bureau of the
Census, Washington, DC (2006)

34. Winkler, W.E.: State of statistical data editing and current research
problems. In: UN/ECE Work Session on Statistical Data Editing,
Working Paper n.29, pp. 2–4 (1999)

123

http://dx.doi.org/10.1007/s00778-008-0098-x
http://dx.doi.org/10.1145/1090193.1090195
http://dx.doi.org/10.1145/1247480.1247530
http://www.jstor.org/stable/2285726
http://www.jstor.org/stable/2285726
http://mathworld.wolfram.com/ConnectedComponent.html
http://mathworld.wolfram.com/ConnectedComponent.html
http://dbpubs.stanford.edu/pub/2005-5
http://dbpubs.stanford.edu/pub/2005-5
http://dbpubs.stanford.edu/pub/2008-19
http://dbpubs.stanford.edu/pub/2008-19

	Generic entity resolution with negative rules
	Abstract
	1 Introduction
	1.1 Motivating example

	2 ER-N model
	2.1 ER
	2.2 Negative rules
	2.3 ER-N
	2.4 Resolving inconsistencies

	3 The GNR algorithm
	4 Properties for the rules
	4.1 Match and merge rules
	4.2 Negative rules

	5 The ENR algorithm
	6 Precision and recall
	6.1 Experimental setting
	6.2 Rules
	6.3 Strategies
	6.4 Other negative rules
	6.5 Choosing negative rules

	7 Performance
	7.1 Human effort
	7.2 System runtime
	7.3 Without the properties

	8 Related Work
	9 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

