
The VLDB Journal (2009) 18:1241–1260
DOI 10.1007/s00778-009-0134-5

REGULAR PAPER

HE-Tree: a framework for detecting changes in clustering
structure for categorical data streams

Keke Chen · Ling Liu

Received: 28 June 2007 / Revised: 29 January 2009 / Accepted: 29 January 2009 / Published online: 28 February 2009
© Springer-Verlag 2009

Abstract Analyzing clustering structures in data streams
can provide critical information for real-time decision mak-
ing. Most research in this area has focused on clustering
algorithms for numerical data streams, and very few have
proposed to monitor the change of clustering structure. Most
surprisingly, to our knowledge, no work has been proposed on
monitoring clustering structure for categorical data streams.
In this paper, we present a framework for detecting the change
of primary clustering structure in categorical data streams,
which is indicated by the change of the best number of clus-
ters (Best K) in the data stream. The framework uses a Hier-
archical Entropy Tree structure (HE-Tree) to capture the
entropy characteristics of clusters in a data stream, and detects
the change of Best K by combining our previously devel-
oped BKPlot method. The HE-Tree can efficiently summa-
rize the entropy property of a categorical data stream and
allow us to draw precise clustering information from the data
stream for generating high-quality BKPlots. We also develop
the time-decaying HE-Tree structure to make the monitoring
more sensitive to recent changes of clustering structure. The
experimental result shows that with the combination of the
HE-Tree and the BKPlot method we are able to promptly and
precisely detect the change of clustering structure in categor-
ical data streams.

Keywords Data stream mining · Categorical data
clustering · Change detection

K. Chen (B)
Department of Computer Science and Engineering,
Wright State University, Dayton, USA
e-mail: keke.chen@wright.edu

L. Liu
College of Computing, Georgia Institute of Technology,
Atlanta, USA

1 Introduction

With the wide deployment of sensor systems and Internet-
based continuous-query applications, the scalability of data
mining methods is constantly being challenged by a tre-
mendous amount of data generated at unprecedented rates.
Examples of such data streams include network event logs,
telephone call records, credit card transactional flows, and
blog discussions, etc. As an important method in data anal-
ysis, recently clustering data streams has become a research
topic of growing interest [2,27]. The initial research has
shown that clustering stream data can provide important clues
about emerging data patterns, so that decision makers can
predict new coming events and react promptly. As many
data streams also include categorical data, discretizing the
numerical part and unifying both types of data under the cat-
egorical data clustering framework [5,13,34] is one conve-
nient method. Surprisingly, very few [5] have addressed the
problems of clustering categorical data streams, and none
addressed the problems of monitoring the change of cluster-
ing structure in categorical data streams.

Other than its huge data volume, data streams also have the
unique evolving nature. In particular, the change of cluster-
ing patterns often indicates something important is happen-
ing. For example, clustering network event streams can help
us understand the normal patterns, and attack alarms can be
raised if the clustering pattern changes. Unfortunately, many
data stream clustering algorithms use certain fixed param-
eters, which do not address the evolving nature. Specifi-
cally, they often assume a fixed number of clusters in the
data stream, such as the K-Median algorithm for numerical
data streams [27] and the Coolcat [5] algorithm for categori-
cal data streams, which is certainly not right for an evolving
data stream. We argue that monitoring the change in the crit-
ical clustering structure, particularly, the change of best K

123

1242 K. Chen, L. Liu

old

new

new
old

old
new

new
oldnew

new

Emerging clusters disappearing clusters overlapping clusters

Fig. 1 Challenges in detecting the change of clustering structure

number of clusters in data streams, is one of the most impor-
tant tasks in categorical data stream mining.

The change of critical clustering structure in data streams
involves three major aspects: drifting of the cluster center,
new emerging clusters, and disappearing clusters. Clusters
often keep growing if the historical members are not dis-
carded. The growing clusters may change cluster centers.
When clusters grow to certain extent, they may merge and
the previous clustering structure disappears. We notice that
emerging clusters and disappearing clusters can be possibly
indicated by the “Best K” number of clusters. By monitor-
ing the change of best K number of clusters, we will know
whether the underlying critical clustering structure is chang-
ing. In this paper, we design the HE-Tree based algorithms
to make it possible to monitor the change of best K number
of clusters in categorical data streams.

Briefly, we want to design a summarization structure,
which captures the clustering characteristics of the data
stream. There are two outstanding challenges in this design:
(1) In order to make time-critical detection of the changes,
this structure must be able to swiftly adapt to the change
of the clustering structure, i.e., emerging and disappearing
of clusters; (2) To capture up-to-date or transient clustering
patterns in the stream, this structure must also be able to
efficiently discount the effects of historical examples. With-
out this discounting function, a so-called cluster overlapping
problem (Fig. 1) may prevent prompt detection of new cluster
patterns that happen on the historical large cluster.

To address the first challenge, we design a summarization
tree structure, called the Hierarchical Entropy Tree (HE-Tree
for short). The HE-Tree is able to utilize a small amount of
memory to efficiently summarize the cluster entropy charac-
teristics of the data stream and group the data records into
a bunch of coarse clusters, which are saved at HE-Tree leaf
nodes. The working mechanism makes it possible to swiftly
adapt to the change of the clustering structure. The subcl-
usters (often a few hundreds) at HE-Tree leaf nodes can be
easily dumped as a snapshot. An extended ACE algorithm
[13] is designed to work on the snapshot and generate an
approximate BKPlot at certain time interval. The difference
between clustering structures can be conveniently identified
by comparing these snapshot BKPlots.

To avoid stocked historical data records interfering the det-
ection of transient changes, we also design a time-decaying

HE-Tree. To use the time-decaying HE-Tree, the data stream
has to be processed in windows, and each window consists
of time units that is the time interval a BKPlot can be gener-
ated. The old HE-Tree from the last window is inherited and
proportionally discounted to adapt to the possible changes
happening in this window. Experimental results show that
the HE-Tree can effectively detect the change of clustering
structure and the decaying structure can efficiently discount
the effect of the historical data.

The rest of the paper is organized as follows. Section 2
sets down notations and basic concepts in entropy-based
categorical clustering. Section 3 briefly introduces the
BKPlot method for finding the best K in static categorical
datasets. In Sect. 4, we develop the HE-Tree structure and
describe its working mechanism. In Sect. 5, we propose the
framework for detecting the change of clustering structure
in categorical data streams. Experimental results are shown
in Sect. 6 to address several questions. Finally, we review
some related work of categorical clustering and data stream
mining.

2 Entropy-based categorical clustering

Clustering techniques for categorical data are very differ-
ent from those for numerical data, mainly because of the
definition of similarity measure. Most numerical clustering
techniques have been using distance functions, for example,
Euclidean distance, to define the similarity measure. How-
ever, there is no such inherent distance meaning between
categorical values.

In contrast to distance-based similarity measures for pairs
of data records, similarity measures based on the “purity” of
a bulk of records seem more intuitive for categorical data.
Entropy [18] is a well defined concept measuring the purity
of a dataset. Originated from information theory, entropy
has been applied in various areas, such as pattern discovery
[8], numerical clustering [17] and information retrieval [40].
Due to the lack of intuitive distance definition for categorical
values, recently entropy has been applied in clustering cate-
gorical data [5,11,13,20,34]. Initial results have shown that
the entropy criterion can be very effective in clustering cate-
gorical data. Paper [34] also shows that the entropy criterion
can be formally derived in the framework of probabilistic
clustering models, which strongly supports that the entropy
criterion is a meaningful and reliable similarity measure, par-
ticularly good for categorical data.

In entropy-based categorical clustering, the quality of clus-
tering is essentially evaluated by the entropy criterion,
namely, the Expected Entropy of clusters [5,34]. Other vari-
ants, such as minimum description length (MDL) [11] or
mutual information [3,20], can also be unified under the prob-
abilistic clustering framework [34]. We categorize all these

123

HE-Tree: a framework for detecting changes in clustering structure for categorical data streams 1243

Data Stream

A data record at time i

xi = (0, 1, a, b,…)

C1

C3
C2

C1

C3

C2

Clustering structure
at some time window

Fig. 2 A multi-dimensional categorical data record in the data stream
and a clustering pattern at some time window

approaches as entropy-based categorical clustering. The main
goal of these algorithms is to find a partition that minimizes
the expected entropy for K clusters, if K is known. However,
this problem, similar to the pairwise distance-based cluster-
ing problem, is computationally intractable even for a dataset
of median size. A common approach to solving this problem
is approximation. Typically, in approximation algorithms we
have to sacrifice some optimality to obtain reasonable com-
putational cost. Apparently, stream data makes the balance
between the optimality and the computational efficiency even
harder.

Figure 2 shows the basic setting of clustering categorical a
data stream. Below, we first give the notations and definitions
used in this paper, and then describe an important measure,
namely Incremental Entropy (IE), which is a key measure
used to approximately describe clustering relationships in
our algorithms.

2.1 Notations and definitions

Consider that a dataset (data stream) S with N records and
d columns, is a sample set of the discrete random vector
X = (x1, x2, . . . , xd). For each component x j , 1 ≤ j ≤ d,
x j takes a value from the domain A j . There are a finite num-
ber of distinct categorical values in domain A j and we denote
the number of distinct values as |A j |. The total cardinality
m =∑d

j=1 |A j |will be an important factor in this paper. Let
p(x j = v), v ∈ A j , represent the probability of x j = v. We
introduce the classical entropy definition [18].

H(X) =
d∑

j=1

H(x j) = −
d∑

j=1

∑

v∈A j

p(x j = v) log2 p(x j = v)

Here, entropy H(X) is based on the column entropy
H(x j), while the correlations between columns are ignored
for easy manipulation without affecting the results [5,34].
H(X) is often estimated with the sample set S, we define the
estimated entropy as H(X | S).

H(X | S) = −
d∑

j=1

∑

v∈A j

p(v | S) log2 p(v | S)

where p(v | S) is the empirical probability estimated on S.
To further simplify the notation, we also define the column
entropy of A j as

H(A j | S) = −
∑

v∈A j

p(v | S) log2 p(v | S)

The estimated entropy on S is simply the sum of the column
entropies.

Now we can define the concept of cluster entropy. Sup-
pose the dataset S is partitioned into K clusters. Let C K =
{C1, . . . , CK } represent the partition, where Ck is a clus-
ter and nk represent the number of records in Ck . Thus, the
cluster entropy of Ck is the dataset entropy H(X | Ck). For
simpler presentation, we use H(S) and H(Ck) to represent
the dataset entropy and cluster entropy, respectively.

The classical entropy-based clustering criterion tries to
find the optimal partition, C K , which maximizes the follow-
ing entropy criterion [7,9,34].

Opt(C K) = 1

d

(

H(S)− 1

n

K∑

k=1

nk H(Ck)

)

Since H(S) is fixed for the given dataset, maximizing
Opt(C K) is equivalent to minimizing the item 1

n

∑K
k=1 nk

H(Ck), which is named as the expected entropy of partition
C K . Let us denote it as H̄(X | C K), or simply H̄(C K). For
convenience, we also name nk H(Ck) as the weighted entropy
of cluster Ck .

Intuitively, the expected entropy describes the overall dis-
orderliness in each cluster. The purer the clusters are, the
higher quality the clustering result is. While the entropy cri-
terion can also be applied to numerical data [17] if the numer-
ical data is appropriately discretized, it loses the ability of
describing most of the nice geometric features for numerical
data [12].

2.2 Incremental entropy

Individually, cluster entropy cannot determine the structural
difference between clusters. However, we observe that the
structural difference can be observed by mixing (merging)
two clusters. By the entropy definition, the structural char-
acteristic of a dataset is determined by the value frequencies
in each column. Intuitively, mixing two clusters that are sim-
ilar in the inherent structure will not change the value fre-
quencies, thus, will not change the expected entropy of the
partition as well. However, merging dissimilar ones will inev-
itably change the value frequencies, increasing the expected
entropy. Therefore, the increase of the expected entropy in
merging clusters has some correlation with the similarity
between clusters.

By the definition of expected entropy, after merging
two clusters in a partition the difference in expected entropy

123

1244 K. Chen, L. Liu

can be equivalently evaluated by the difference between
the weighted entropies, i.e., (n p + nq)H(C p ∪ Cq) and
n p H(C p) + nq H(Cq). We have the following first result
about weighted entropies.

Proposition 1 (n p+nq)H(C p∪Cq)≥n p H(C p)+nq H(Cq)

Proof Sketch This proposition formally states that mixing
two clusters will not reduce the weighted entropy. The first
step of the proof is to expand both sides of the formula with
the entropy definition. Let p(x j = v|C p) be the estimated
probability of x j = v in the column A j within the cluster C p.

−
d∑

j=1

∑

v∈A j

(n p + nq)p(x j = v|C p ∪ Cq)

· log2 p(x j = v|C p ∪ Cq)

≥ −
d∑

j=1

∑

v∈A j

n p p(x j = v|C p) log2 p(x j = v|C p)

−
d∑

j=1

∑

v∈A j

nq p(x j = v|Cq) log2 p(x j = v|Cq) (1)

It is straightforward to prove that the above formula is true
if the following relation is satisfied for each value v in each
column A j . Namely, if we can prove that for each categorical
value in each column the following formula is true, then the
proposition is established.

n p p(x j = v|C p) log2 p(x j = v|C p)

+nq p(x j = v|Cq) log2 p(x j = v|Cq)

≥(n p + nq)p(x j =v|C p∪Cq)·log2 p(x j =v|C p∪Cq)

(2)

Without loss of generality, suppose C p having x rows and
Cq having y rows with value v at j th attribute, x, y > 0 (if
x = 0 or y = 0, the inequality is trivially satisfied), i.e.,
p(x j = v|C p) = x

n p
, p(x j = v|Cq) = x

nq
, and p(x j =

v|C p ∪ Cq) = x+y
n p+nq

. Then, the inequality 2 can be trans-

formed to x log2
x

n p
+ y log2

y
nq
≥ (x+ y) log2

x+y
n p+nq

, which
is exactly the “log-sum inequality” [18]. ��

We name M(C p, Cq) = (n p + nq)Ĥ(C p ∪ Cq)−
(n p Ĥ(C p) + nq Ĥ(Cq))≥ 0 as the “Incremental Entropy
(IE)” of merging two clusters C p and Cq . Note that
M(C p, Cq) = 0 suggests that the two clusters have the iden-
tical structure—for every categorical value v in any arbitrary
attribute x j , 1 ≤ j ≤ d, we have p(x j = v|C p) = p(x j =
v|Cq). The larger the M(C p, Cq) is, the more different the
two clusters are. IE also plays an important role in construct-
ing a hierarchical clustering scheme, because of the following
corollary.

Corollary 2 Minimizing the IE measure is equivalent to
minimizing the expected entropy criterion in hierarchical
clustering.

Proof Sketch Assume C p and Cq are selected to merge,
which minimizes the expected entropy from a C K+1 clus-
tering scheme to a C K scheme. Then, we want to find

min
C p,Cq

{
1

n

K∑

k=1

nk H(Ck)− 1

n

K+1∑

k=1

nk H(Ck)

}

Since in the K + 1 clusters only two clusters are selected to
merge, while the remaining K − 1 clusters are not changed,
the above objective function equals to

min
C p,Cq
{(n p + nq)H(C p ∪ Cq)− (n p H(C p)+ nq H(Cq))}

= min
C p,Cq

M(C p, Cq)

��
This property significantly differentiates the IE measure

from other entropy-related measures, such as KL divergence
[18].

3 BKPlot for determining the “Best K” for categorical
clustering

In order to better understand the entire framework for detect-
ing changes in the clustering structure for categorical data
streams, we briefly describe the BKPlot method for deter-
mining the candidate best K for static datasets. For detailed
description and analysis, please refer to the paper [13].

Traditionally, cluster analysis of numerical data uses sta-
tistical validity indices that are based on geometry and density
distribution to validate the clustering result [29]. A typical
index curve consists of the index values for different K num-
ber of clusters. Those K s at the peaks, valleys, or distinguish-
ing “knees” on the index curve, are regarded as candidates
of the optimal number of clusters (the best K). The BKPlot
method tries to find such kind of index for categorical data
clustering.

Let “neighboring partitions” be two clustering results
having K and K + 1 clusters, respectively. The basic idea of
the BKPlot is to investigate the entropy difference between
any two optimal neighboring partitions. Let the expected
entropy of the optimal partition be H̄opt(C K)= min{H̄i (C K)},
where i is the index of all possible K-cluster partitions. By
definition, the curve of H̄opt(C K) is non-increasing, i.e.,
H̄opt(C K) ≥ H̄opt(C L), for K < L ,

The first heuristic is to look at the shape of the H̄opt(C K)

curve (Fig. 3). However, experiments show that it usually has
no distinguishing peaks, valley, or knees. Therefore, from this
curve we cannot effectively identify the best K.

123

HE-Tree: a framework for detecting changes in clustering structure for categorical data streams 1245

o # of clusters

....

Hopt(C
k)

Fig. 3 Sketch of expected entropy curve

o
of clusters

I(k)

x
x

Dramatic structural change

x

o

Fig. 4 Sketch of I (K) graph

Soybean-small BkPlot, by ACE

-0.05

0

0.05

0.1

0.15

1 2 3 4 5 6 7 8 9 10 11 12

K

D
el

ta
2 I

The candidates
for best k

Fig. 5 Finding the best k with BKPlot (for soybean-small dataset)

But we are able to find the special meaning behind the
entropy difference of neighboring partitions, which can
direct us to the best K. Since the expected entropy is non-
decreasing with the decrease in the number of clusters, the
increasing rate of expected entropy might be interesting. Let
the increasing rate of entropy between the optimal neighbor-
ing partitions defined as I (K) = H̄opt(C K)− H̄opt(C K+1).
We can interpret I (K) with two levels of the difference
between neighboring partitions.

• I (K) is the level of difference between two neighboring
schemes. The larger the difference is, the more significant

the clustering structure is changed by reducing the number
of clusters by 1.

• Consider I (K) as the amount of impurity introduced from
K + 1-cluster scheme to K -cluster scheme. If I (K) ≈
I (K + 1), i.e., the K -cluster scheme introduces a simi-
lar amount of impurity as the K +1-cluster scheme does,
the change of clustering structure follows a “similar
pattern”. Thus, we can also consider there is no significant
difference from the K +2-cluster partition to the K -cluster
partition.

As the above heuristics suggest, we should look at the
changing rate, i.e., the differential of the expected entropy
curve − the I (K) curve (Fig. 4). At the I (K) curve, we
expect that the similar neighboring schemes with different
K are at the same “plateau”. From plateau to plateau, there
are critical points implying significant changes of clustering
structure, which could be candidates for the best K .

3.1 Definition of BKPlot

A common way to automatically identify such critical knees
on the I (K) curve is to find the peaks/valleys at the second-
order difference of the curve. Since an I (K) curve consists
of a set of discrete points, we define the second-order differ-
ence as δ2 I (K):δ I (K) = I (K)− I (K + 1) and δ2 I (K) =
δ I (K − 1)− δ I (K) to make K aligned with critical points.
These critical points are highlighted at the peak of the sec-
ond-order difference curve of I (K) (Fig. 5), which is named
as “Best-K Plot (BKPlot)”.

Exact BKPlots cannot be achieved in practice, since I (K)

is based on the optimal K-cluster scheme which involves
minimization of the expected entropy. However, since we
need only to identify these peak/valley points, approximate
BKPlots, which accurately identify the peaks/valleys, are as
useful as an exact BKPlot. A hierarchical clustering algo-
rithm ACE in [13] is proposed to generate such high-quality
approximate BKPlots, and we have shown in experiments
that ACE is a robust method for generating high-quality
BKPlots. ACE also has a nice property that we only need
to look at the peaks in BKPlots generated by ACE to deter-
mine best Ks. In next section, we will give a brief descrip-
tion of ACE algorithm. For further details, please refer to the
paper [13].

3.2 A brief description of the ACE algorithm

The ACE algorithm is based on IE. While a traditional hier-
archical algorithm needs to explicitly use the inter-cluster
similarity like “single-link”, “multi-link” or “complete-link”
methods [32], IE is a natural inter-cluster similarity measure,
ready for constructing a hierarchical clustering algorithm.

123

1246 K. Chen, L. Liu

Cluster i-1 Cluster i Clusteri+1

1 etubirttA

2 etubirttA
......

Cat 1Cat 2Cat 3 ...

Summary Table

...

323# of
categories

Fig. 6 The summary table and physical structure

1 i j N

1
i

 j N

X

X X X

X: the removed
items in merging(i, j)

X

X

X

U U U U

U : The updated
items in merging(i, j)

 : the merged
item (i, j)

 : IE valuesU

U

U

Fig. 7 The operation schedule after a merging operation

The ACE algorithm is a bottom-up process to construct a
clustering tree. It begins with the scenario where each record
is a cluster. Then, an iterative process is followed—in each
step, the algorithm finds a pair of clusters C p and Cq that are
most similar, i.e., M(C p, Cq) is minimum among all possi-
ble pairs of clusters. We use M (K) to denote the M value in
forming the K -cluster partition from the K +1-cluster parti-
tion.

Therefore, maintaining minimum IE in each step is one
of the major tasks of the algorithm. In order to efficiently
implement ACE algorithm, we maintain three data structures:
a summary table for conveniently counting occurrences of
values, an M-table for bookkeeping M(C p, Cq) of any pair
of clusters C p and Cq , and an M-heap for maintaining the
minimum M value in each step.

The Summary Table is used to maintain the fast calcula-
tion of the cluster entropy Ĥ(Ck) and each cluster has one
summary table (Fig. 6). Since computing the cluster entropy
is based on counting occurrences of each categorical value in
each column, we need the summary table to keep counters for
each cluster, totally m counters for d columns. Such a sum-
mary table enables fast merging operation—when merging
two clusters, the two summary tables are added up to form a
new summary table for the merged cluster.

The M-table is used to keep track of the IE between any
pair of clusters, which is then used to maintain the min M
in each round of merging. The M-table is a symmetric table
(thus, only a half of the entries are used in practice), where
the cell (i, j) keeps the value of M(Ci , C j) (see Fig. 7).

The M-heap is used to keep track of the globally mini-
mum IE. We define the most similar cluster to cluster u as
u.similar = arg minv{M(u, v), v �= u}. Let u.M repre-
sent the corresponding IE of merging u and u.similar , we
define <u, u.M, u.similar> as the feature vector of cluster
u. Feature vectors are inserted into the heap, sorted by u.M ,
for quickly locating the most similar pair of clusters.

Algorithm 1 shows the sketch of the main procedure.
When merging u and u.similar , their summary tables are
summed up to form the new summary table. Consider u as
the main cluster, i.e., u.similar is merged to cluster u, we
need to find a new u.similar and insert the new feature vec-
tor <u, u.M, u.similar > into the heap. This accounts for
the important procedure of updating the bookkeeping infor-
mation after the merging operation, illustrated by Fig. 7 and
detailed in Algorithm 2.

Algorithm 1 ACE.main()
Ts [] ← initialize summary tables
TM ← initialize M table
h ← heap
for Each record u do

h.push (<u, u.M, u.similar>)

end for
while not empty(h) do

<u, u.M, u.similar >← h.top()

Ts [u] ← Ts [u] + Ts [u.similar]
update <u, u.M, u.similar >

h.push (<u, u.M, u.similar >)

updating_after_merging() //Algorithm 2
end while

Algorithm 2 ACE.update_after_merging()
Ci ← master cluster, C j ← merged cluster
release Ts [C j]
invalidate M table entries (C j , ∗)
update M table entries (∗, Ci) and (∗, C j)

for Each valid cluster u, if u.similar == Ci or C j do
update <u, u.M, u.similar >;
relocate <u, u.M, u.similar > in h

end for

ACE is initially designed for static datasets and its
O(N 2 log N) complexity prevents it from working directly
on large datasets or data streams. It has been shown that
ACE can run on samples of static large datasets so that the
generated sample BKPlots are consistent with the one on
the entire dataset. However, the sampling approach cannot

123

HE-Tree: a framework for detecting changes in clustering structure for categorical data streams 1247

be directly applied to the data stream since the clustering
structure may change over time. In the next section, we will
design a data summarization tree structure, again, with the
help of IE. Combining this tree structure and an extended
ACE algorithm, we can continuously generate high-quality
BKPlots for data streams.

4 HE-Tree: capturing cluster entropy of the categorical
data stream

Data stream processing has an important feature that the
stream processor has only one chance to see any individual
record. It is impossible to retrieve historical data more than
once due to the huge amount of data, although some of the
latest records can be possibly buffered. Often, the strategy is
to preserve only the aggregate information over periods of
the stream with a focus on the recently processed data. In this
section, we design a summarization structure—Hierarchical
Entropy Tree (HE-Tree), to capture entropy characteristics
of the categorical data stream in aggregates and achieve low
cost and high precision in detecting the change of clustering
structure.

The basic idea of the HE-Tree is to coarsely and rapidly
assign the records from the data stream onto hundreds of
sub-clusters. Applying an algorithm similar to ACE to these
sub-clusters will give us a precise estimation of the clustering
structure. The HE-Tree determines which subcluster a new
record should be assigned to, only based on previously pro-
cessed data records, and the entire clustering structure keeps
evolving with aggregated new data records. In order to better
understand the structure, we will give a simple version first,
and a time-decaying structure will be discussed later.

A tree structure is good for efficient search. Therefore, we
organize subclusters in a tree, i.e., HE-Tree, for convenient
search and assigning a new coming record to a subcluster.
An HE-Tree consists of two key components:

1. An HE-node structure, which summarizes entropy char-
acteristics of a group of records and facilitate fast pro-
cessing of stream data items;

2. An Incremental-Entropy based lookup/assigning algo-
rithm, which helps adapt the changing clustering struc-
ture.

Given fixed tree height h and fanout f , an HE-Tree is
constructed in two stages:

1. a growing stage, which happens only at the beginning of
processing the data stream when the tree is not full;

2. an absorbing stage, which absorbs the new coming items
to the subclusters at the leaf nodes, when the tree is full.

Summary
Table

Pointer
to child

Leaf
Entries

Non-leaf
Entries

I_m table Heap
Summary

Table I_m table Heap

Fig. 8 Structure of the HE-Tree

We first describe the structure of the HE-Tree node, which
includes a few data structures for fast entropy calculation.
After that, we will focus on the algorithms for generating
and updating the HE-Tree.

4.1 Structure of the HE-Tree

Summary Table. The summary table is used to maintain fast
calculation of the entropy Ĥ(Ck). Each node in the HE-Tree
maintains one summary table, which has the same structure
as shown before in Fig. 6.

Nodes in the HE-Tree. The HE-Tree is a balanced tree
similar to the B-tree, where each node has f entries. Each
entry in the leaf nodes represents a subcluster and each in
the internal nodes represents the summary of its subtree. As
shown in Fig. 8, each entry in the leaf node contains a sum-
mary table, and a leaf node also has an M-table with (f +1)2

entries and an M-heap for fast locating or merging entries.
The structure of the M-table is shown before in Fig. 7. An
internal node (non-leaf) in the tree contains only the aggre-
gation information of its child nodes.

Concretely, the aggregation information in an entry of an
internal node is also stored in the summary table. This can
be easily maintained based on the subtree’s summary tables,
because of the property of entropy aggregation. Let vector
�s represent a summary table and the entropy characteristic
of any internal node Ci denoted as ECi (ni , �si), where ni is
the number of records summarized by its subtree. Let Ci j ,
1 ≤ j ≤ f represent the child nodes of Ci . The HE-Tree
maintains the following property.

ECi (n, �s) =
f∑

j=1

ECi j (ni j , �si j) = ECi

⎛

⎝
f∑

j=1

ni j ,

f∑

j=1

�si j

⎞

⎠

(3)

i.e., the parent node represents the merge of the child nodes.
This is recursively done from root to leaves.

The major benefit of the HE-Tree structure is to approx-
imately minimize the overall expected entropy by locally

123

1248 K. Chen, L. Liu

minimizing the expected entropy of the selected branch
H̄(C f

i), when a new record is inserted. This local mini-
mization is achieved through the following algorithms for
constructing a HE-Tree.

4.2 Constructing the HE-Tree

Building an HE-Tree consists of two phases: the growing
phase and the absorbing phase. The following algorithms
are carefully designed to minimize the expected entropy of
the subclusters and to adapt to the change of entropy in the
data stream with minimal computational cost.

Growing phase. In the growing phase, the tree grows until
the number of leaf nodes reaches �nc/ f . It turns to the next
phase (absorbing phase) when all entries in the leaf nodes
are filled. When a new coming record is inserted into the
existing tree, the first subroutine is to locate the target leaf
node for insertion. Let e denote the inserted record and ei

denote one of the entries in the current node. The search for
the target node begins at the root node. Since each entry in
the internal node contains the summarization information of
its sub-tree, we can find the most similar subtree to e by
finding the minimum value among M(e, ei), i = 1, . . . , f ,
i.e.

et = argminei
{M(e, ei), i = 1, . . . , f }

Iteratively, the same criterion is applied to the selected child
node until a leaf node is reached.

If there is an identical entry at the leaf node, i.e., M(e, ei)=
0, the record is merged to the identical entry with the sum-
mary table updated. Otherwise, if the target leaf node still
has empty entries, the record is assigned to one empty entry.
The corresponding summary tables of the nodes in the path
from root to the target leaf node are updated to maintain the
property Eq. 3. If all conditions are dissatisfied, it is going to
split the leaf node. We give the sketch of the subroutines in
Algorithms 3 and 4.

Algorithm 3 HE-Tree.locate(node, e)
node← target node, e← target entry
if node is leaf then

return node
end if
for Each entry ei in node do

Mi ← M(e, ei)

end for
et ← argminei {Mi }
return locate(et .subtree, e)

When the target leaf node is full but the tree size is not
grown to the presetting size, a split operation is applied. In the
split algorithm, the entries are partitioned into two groups.
First, a pair of pivot entries (er , es) is found in the target

Algorithm 4 HE-Tree.insert(node, e)
e← inserted entry, node← target node
for Each entry ei in node do

if M(e, ei) == 0 then
merge(e, ei), return

end if
end for
if node.have_empty_entry() then

node.enter(e)
if (node.num_entr y() == f − 1 and (not tree_full() or is_inter-
nal(node)) then

split(node)
end if

else
leaf-merging(node, e) //fine merging in absorbing phase

end if

node that has the maximum M—they are regarded as the
most dissimilar pair among all pairs.

(er , es) = argmaxer ,es
{M(er , es), i = 1, . . . , f }

These two pivot entries then become the two seed clusters.
The remaining entries are sequentially assigned to the two
clusters so that the overall expected entropy of the parti-
tion keeps minimized. Then, a new node is generated to
accommodate one of the two sets of entries, and one entry
is added into the parent node pointing to the new node. The
insertion/splitting continues until the number of leaf entries
reaches nc. Algorithm 5 gives the detailed description of the
split operation.

Algorithm 5 HE-Tree.split(node)
node← target node
(ea , eb)← argmax(ei ,e j){M(ei , e j)}
parti tiona ← ea , parti tionb ← eb
for Each entry ei in node do

if M(parti tiona, ei) < M(parti tionb, ei) then
parti tiona ← parti tiona ∪ ei

else
parti tionb ← parti tionb ∪ ei

end if
end for
if is_leaf(node) and not done then

re-insert(root, entries in parti tiona)
else

newnode← parti tiona , remove(node, parti tiona)
enew ← summary(newnode), insert(node.parent, enew)

end if

Absorbing phase. In the second phase, the same locat-
ing algorithm is applied to locate the target leaf node for the
new record. However, we have no insertion allowed since the
entries are all occupied. Instead, in the leaf node we need to
merge the most similar two items among the f +1 items—the
f entries in the leaf node plus the new record. This allows
the tree to rapidly adapt to the change of clustering structure
at the leaf entry level.

123

HE-Tree: a framework for detecting changes in clustering structure for categorical data streams 1249

In each leaf node, we maintain an M-table and an
M-heap for the f entries. When a new record comes, only
f IE calculations are needed to update the M-table and
the heap before the algorithm determines the most simi-
lar two to merge. Since f is small, this can be done very
quickly.

The locating algorithm with the IE criterion will assign a
new record to the approximately best leaf node and the merge
algorithm will adapt to the local structural change happen-
ing within the node. Although the whole process is based on
node-based local decision, which by no means is global opti-
mal, experiments show that the leaf summary entries gener-
ated with the above procedure can be used to precisely detect
the best K number of clusters—as we have discussed in pre-
vious paper [13], high-quality approximate BKPlot will still
give the best Ks.

4.3 Analysis of complexity

The time complexity of the HE-Tree construction differen-
tiates in the two phases. The first phase will be quickly fin-
ished. However, we still should guarantee that the cost will
be acceptable to a streaming setting. Let h be the height of
the tree (the root is at level 1). In the growing phase, about
f h records are inserted into the tree and each record needs
at most O(h f) comparisons to locate the target node. The
remaining costs will be negligible. In the absorbing phase,
besides the cost of locating, each record needs the merge
operation at the leaf, which costs O(f) incremental-entropy
calculations. Each incremental-entropy calculation involves
only weighted entropy, which costs O(m) space, where m
is the total column cardinality. Therefore, the cost for one
record is O((h + m) f) in the absorbing phase. Since f is
usually a small value, e.g. 10–20 and h = 2 or 3 in practice,
the total cost is only dominated by the total cardinality m of
the dataset.

There are O(f h) nodes in the tree. Each leaf node needs
approximately O(f m+ f 2) space, where the summary table
for each entry needs O(m) and the M-table needs O(f 2)

space. Each internal node needs only O(f m) space for hold-
ing the summary tables and the pointers to the children nodes.
Approximately, an HE-Tree needs O((m + f) f h+1) space.
With fixed small f and h, again only the factor m of the
dataset determines the size of the tree.

Except when the datasets have very large total cardinality
m, e.g., over 10k, an HE-Tree can be built up in any commer-
cial computers or even a PC. The computational cost will be
very acceptable as well. In summary, the HE-Tree can effi-
ciently summarize cluster entropy of a data stream with small
amount of time and space costs.

4.4 Discussion on setting of parameters

The setting of the two parameters f and nc can affect the
efficiency and quality of summarization. For simplicity, we
always construct full trees and allow nc = f h to vary from
hundreds to thousands. For example, for f = 15, we can
either use a two-layer tree, where the number of leaf entries
nc = 225, or a three-layer tree where nc = 3375. A small
f always results in faster summarization, but can undermine
the quality of summarization when the clustering structure
is evolving. The reason is that a small f may cause more
imprecise merges to happen in the absorbing phase. The less
entries the node has, the lower level of precision is guaran-
teed in each level of the merge operation. This is fine if the
clustering structure keeps unchanged or is slowly changing,
but such a tree will not easily adapt to dramatic changes. This
problem can be alleviated with a “time-decaying” structure,
which we will discuss later.

The setting of f also has concerns in the computational
cost. A larger f with the same height of tree will increase
the cost due to the complexity O((h+m) f) in the absorbing
phase. Increased cost will reduce the streaming rate that a
stream processor can handle. In practice, we need to balance
the performance and robustness according to the application
requirements. Experimental results show that if we set the
tree to be 2–3 layers, with f = 10–20, we can achieve a good
balance between performance and robustness.

5 A monitoring framework based on the HE-Tree

In last section, we have designed the HE-Tree algorithm for
summarizing the data stream. In this section, we discuss how
to use the HE-Tree to generate effective BKPlots. Overall,
we set two levels of granularity for change detection. First,
we cut the data stream into windows. A window covers a rel-
atively long period. Each window is divided into several time
units. A time unit is defined as the minimum interval that the
monitoring framework can dump summary information from
HE-Tree and generate a detection report (i.e., a BKPlot) with
an extended ACE algorithm. Within a time unit, many records
from the data stream are processed and absorbed by the
HE-Tree. Between windows, the HE-Tree from the previous
window is appropriately discounted, which is called time-
decaying HE-Tree. The time-decaying HE-Tree gives addi-
tional flexibility in tuning HE-Tree’s sensitivity to recent
changes in data streams. Therefore, the entire framework
for detecting the change of clustering structure is based on
the basic HE-Tree summarization algorithms, a time-decay-
ing HE-Tree algorithm, and the extended ACE algorithm
that generates BKPlots from HE-Tree. Below, we start with
the description of time-decaying HE-Tree, followed by the

123

1250 K. Chen, L. Liu

extended ACE algorithm and how to generate and analyze a
detection report.

5.1 Problem of time decaying summarization

The HE-Tree organizes the historical entropy characteristic
of a categorical data stream into a bunch of subclusters. How-
ever, in some cases, the historical structure should be out-
dated or discarded, and we may focus on the recent changes
more if the stream changes frequently. Although the basic
HE-Tree is able to adapt to the changes, it will be less sensi-
tive to the recent change of structure. Figure 24 (in Sect. 6)
illustrates such a scenario, where new patterns (C3 and C4)
are overlapped by old patterns. The recently emerged clus-
ters could be more important than the old ones. In this case,
it is necessary to discount the effect of historical clustering
structures and give more weight to new clustering structures.

Two approaches have been developed in other stream min-
ing techniques to address this problem. One approach is a
fading clustering structure [2], where each data point �xi is
associated with a time stamp and the weight of the point is
decayed with the time difference between its time stamp and
the current time. The other is a sliding window, which focuses
on the clustering structure of the data points collected in the
current time window. We will briefly discuss the related tech-
niques, and propose a window-based decaying structure for
the HE-Tree based change detection.

The fading clustering structure [2] was developed for clus-
tering numerical data with K-means-like algorithms, where
the first- and second-order moments, i.e.,

∑ �xi , and
∑ �x2

i ,
are enough to describe features of a cluster. A fading cluster-
ing structure associates each point �xi with a time-decaying
weight f (t), and the decayed moments become

∑
f (t)�xi ,

and
∑

f (t)�x2
i , correspondingly. The definition of f (t)

enables to incrementally update the weighted moments when
the time t increases. A typical f function is f (t) = 2−λ·t
[2]. There are two advantages of the fading clustering struc-
ture. First, it precisely describes the time difference between
points and the effect of old points is correspondingly dis-
counted. Second, it is simple to update such a fading clus-
tering structure, if the clustering structure can be sufficiently
described by some simple statistics like moments. Clearly,
to apply a fading clustering structure, we should have simple
and sufficient statistics for describing a clustering structure.
Since the weight is associated with each point, another major
concern is the cost of updating the structure.

Sliding-window based stream processing [4] handles data
points by time windows. The online processing part is based
on the data collected in the current time window and only the
summary information of some recent historical time windows
might be saved. In window-based processing, the informa-
tion from recent old windows are discarded or discounted
in the current window. Window-based stream processing is

widely used for lower level information aggregation [4] and
stream-join [19]. Compared to the fading structure, within
a window, the time related intensive update for each point
does not exist, which saves considerable cost. Obviously, the
lower cost is traded off by the granularity of time information.

5.2 The time-decaying HE-Tree

It is possible to combine the two approaches with our HE-
Tree based algorithm. Because the function of the summary
table is to aggregate occurrences of each categorical value
in each column, it is possible to discount historical occur-
rences in the summary table to implement a fading clustering
structure. However, the cost of the fading clustering structure
could be very high, since each insertion to the HE-Tree will
trigger an additional time-stamp update to all entries of the
summary tables in the path from the leaf node to the root.
Considering this cost, we propose the time-decaying HE-
Tree structure based on the combination of a fading structure
and window-based processing.

Concretely, we assume that the basic decaying unit is the
window, which can span over t time units. Within a window
no decaying operation happens. We allow the HE-Tree of
the last window Wi−1 to be inherited by the current window
Wi , with the following update to each node in the tree. Let
the decaying rate λ, 0 < λ < 1, represent the proportion
of the information that is preserved from the last window.
The window-to-window information passing can be simply
implemented in the following steps:

1. passing the HE-Tree from the last window to the current
window;

2. updating all summary tables in the tree by multiplying λ

to each entry of the table;
3. updating the count of aggregated record n in each entry

of node to nλ;
4. for the M-table in each leaf node, each entry is updated

by multiplying by λ, so is each entry in the M-heap.

Intuitively, the above steps are equivalent to uniformly sam-
pling nλ records from previous window Wi−1 that has n
records. In general, a previous window Wi−w that has nw

records will have nwλw preserved at the current window.
These steps can be done by scanning each node in the HE-
Tree once. In order to accommodate the above design, we
also change the counters in the summary table to floating
point, allowing non-integer entries generated by discounting
the historical structure. Here is a fast conclusion we can draw.

Proposition 3 Updating each entry in the summary table
and the aggregated record n by the rate λ preserves the clus-
ter entropy in the last window.

123

HE-Tree: a framework for detecting changes in clustering structure for categorical data streams 1251

Proof Sketch According to the entropy definition, the cluster
entropy is determined by

∑d
i=1

∑
v∈Ai

p(xi = v) log p(xi =
v), where v is a categorical value in column i and p(xi = v)

is the probability that v occurs in column i . Assume there
are nv records having value v at the column i . Due to the
fact that the probability p(xi = v) = nvλ

nλ
= nv

n , if we use
non-integer counters, the cluster entropy is not changed. ��

Theoretically, the non-integer counters will always pre-
serve the clustering structure with any decaying rate λ > 0.
However, the decaying process will surely downgrade the
weight of the old clusters, which relatively increases the
weight of the new coming records. As a result, the HE-Tree
will be more adaptive to changes. How does it happen? We
will take a deep look at the micro-level that eventually drives
the change of clustering structure.

Since the absorbing operation depends on the IE between
subclusters and the new coming record, we analyze the
change of the M-table entries. Remember that at the leaf
node where a new record reaches, it is either merged to one
entry (subcluster), or two entries merge and the new one
occupies the empty entry—all depend on the IE. When two
entries merge, it means the structure is adapted to the new
coming record that becomes the seed for the new subcluster.

To better understand why the decaying algorithm works,
consider what happens when the first record comes in the
new window. Let the new record denoted as a single cluster
C1, which has zero cluster entropy. Without decaying, the IE
in terms of any subcluster C p is

M(C p, C1) = (n p + 1)Ĥ(C p ∪ C1)− n p Ĥ(C p)

When n p � 1, Ĥ(C p ∪ C1) ≈ Ĥ(C p), we get
M(C p, C1) ≈ Ĥ(C p), i.e., the existing cluster entropy
determines the IE.

With decaying, each M-table entry is multiplied by λ, i.e.,
M(C (λ)

p , C (λ)
q) = λM(C p, Cq). Again, assume each window

accumulates significant amount of data records− n � 1 and
nλ � 1 are true. A new coming record in the new window
will still have

M
(
C (λ)

p , C1
) = (n pλ+ 1)Ĥ(C p ∪ C1)− n pλĤ(C p)

≈ Ĥ(C p ∪ C1) ≈ M(C p, C1)

M(C (λ)
p , C (λ)

q) has been decayed by the rate λ, while

M(C (λ)
p , C1) of absorbing the new record is not changed.

Therefore, old entries are more likely to be merged than those
in the non-decaying structure.

By decaying old records, the accumulated new records in
one entry will more easily dominate that entry as well. When
an old subcluster absorbs significant amount of similar new
records, with decaying structure it would appear more like
slow drifting of clusters (the right of Fig. 9), rather than sim-
ple expanding of the old cluster (the left of Fig. 9).

C_old

C_new

decayed C_old

C_new

Observed as cluster expanding Observed as cluster drifting

Fig. 9 The effect of decaying

Decaying rate and other factors It would be complicated
to determine the right decaying rate for a specific data stream,
since it is related to many factors, such as the size of large
historical clusters, the data pumping rate in the stream, the
length of interested observation period, and specific require-
ments from the application. Except the application-specific
factors that we do not know, we can use the following method
to estimate the setting of decaying rate based on the infor-
mation we have known.

First of all, we assume the data pumping rate is approxi-
mately r records per time unit, which can be easily estimated.
So a window having t time units will process r t records
approximately. Assume we are more interested on clusters
with more than n0 records. Apparently, the data rate r put a
limit on the size of the smallest cluster we want to observe,
i.e., r ≤ n0. Also, we are more interested in a period of w

windows. Then, we expect a cluster at Wi should be dimin-
ished to a size less than n0 at the window Wi+w.

With the above setting we are able to estimate the range of
appropriate λ. Based on the leaf entries in the HE-Tree and
the extended ACE algorithm, we can estimate the size of the
largest cluster in previous windows, assuming it is n. In order
to guarantee that a cluster with n items will be diminished to
at most n0, we need to establish the relation

n × λw ≤ n0

which leads to λ ≤ w

√
n0
n .

On the other hand, we do not want λ be too small. Other-
wise, the records from the last window will have only negli-
gible effect on the current window. In experiments, we will
further study how the decaying rate λ is related to the sensi-
tivity of change detection.

Cost Finally, it is easy to calculate the additional cost of
decaying the previous HE-Tree, which is about O(f h(m +
f 2)), since there are O(f h) nodes, while each summary table
has m entries and each M-table has f entries.

5.3 The extended ACE algorithm

At the end of each window, sub-clusters, usually hundreds to
thousands, in leaf nodes are output for detecting the change
in the clustering structure. The ACE algorithm is revised to
take the sub-clusters as input and generate BKPlots. Suppose
there are nc sub-clusters generated by the summarization.

123

1252 K. Chen, L. Liu

Data Stream

HE-Tree at T1 HE-Tree at T2

Snapshots

dumped

Best K =2

-0.02

0

0.02

0.04

1 42 3 5 6 7 8 9 10

K

D
el

ta
2
I

D
el

ta
2
I

Best K=2,3,50.03

0.01

-0.01 31 2 4 5 6 7 8 9 10

K

BkPlots

Time interval t
for snapshots

Fig. 10 Detecting the change of clustering structure in a categorical
data stream in one window

The property of ACE algorithm allows us to do this. Instead
of starting with each point as a cluster, it takes nc sub-clus-
ters as input and consecutively merges the pair of clusters
that minimizes the IE among the remaining clusters. With the
same set of structures, i.e., the summary table, the M-table
and the heap, which are used by ACE algorithm, the extended
ACE algorithm has complexity O(n2

c log nc). Since nc is only
several hundreds to thousands in practice, the extended ACE
algorithm can be done very quickly. The only question left
is whether the extended ACE algorithm together with the
HE-Tree can generate high-quality BKPlots, which will be
studied in experiments.

5.4 The monitoring procedure

With the time-decaying HE-Tree and the extended ACE algo-
rithm, we can precisely monitor the change of the cluster-
ing structure in the categorical data stream. The framework
is illustrated in Fig. 10. The working mechanism can be
described as follows.

1. The HE-Tree from the last window is decayed, which
costs O(f h(m + f 2)).

2. Records from the data stream are inserted into the HE-
Tree by their arrival order. Each insertion costs O((h +
m) f);

3. At certain time interval �t , the summary tables in the
leaf nodes are dumped out (to certain memory area or
to disk) as a snapshot of the clustering structure. It costs
O(mnc) bytes to store each snapshots;

4. The extended ACE algorithm is performed on the snap-
shot as needed, the result of which generates a BKPlot.
The cost is O(mn2

c log nc).

From step 2, we know that f is also an important cost
factor in processing a record. There is a tradeoff between the
precision and the capacity of the monitoring system, tuned by
the parameter f . The costs of steps 3 and 4 affect how often
we can generate a BKPlot. The time interval �t in step 3 can
be directly determined by the cost of generating the BKPlot.
If we want to maximize the number of BKPlots in unit time,
�t should be proportional to the cost O(m(f h+n2

c log nc)).
Therefore, smaller nc and f allow more snapshots to be pro-
cessed in unit time, and thus more details about the changes
to be observed. In experiments, nc = 400–1,000 and f =
15 shows it is sufficient to generate precise BKPlots for the
experimental data, which means the necessary �t is usually
very small. On the other hand, how often we need to monitor
the change in the data stream also depends on the application
requirement. For example, in monitoring a communication
network, we may need to detect the changes between sec-
onds, but in road traffic monitoring, we may only need to
check the change in every ten minutes.

The neighboring BKPlots can be analyzed to see the dif-
ference between the clustering structures. BKPlots can be
represented as a function B(K), where K is the number of
clusters and the peaks of B(K) indicate the candidate best Ks.
Without loss of generality, we suppose the corresponding Ks
of the highest κ peaks on BKPlots are � = {k1, k2, . . . kκ}.
Let �old and �new represent two set of Ks on the consecu-
tive BKPlots, respectively. There are two kinds of important
difference we need to notice.

1. If �old and �new are not identical, the clustering structure
is dramatically changed, which raises an “alarm” that we
need to analyze the snapshot of �new in detail.

2. If �old and �new are identical, but at certain ki that
|B(knew

i)− B(kold
i)| > θ , where θ is a threshold we need

to notice, we can infer that some minor changes hap-
pen in clustering structure: if B(knew

i) > B(kold
i), i.e.,

I (K) curve changes more dramatically at ki , the clus-
tering structure of ki clusters becomes more clear than
before; reversely, the boundaries between the ki clusters
may become vague and some clusters tend to converge.

Certainly, more diagnosis techniques, and other stream min-
ing methods can be combined with our framework to generate
valuable information.

6 Experiments

The goal of the experiments is three-fold. (1) We investigate
the parameter setting for the HE-Tree and give an estimate of
appropriate settings; (2) the non-decaying HE-Tree together
with the extended ACE algorithm will provide high-quality
BKPlots; and (3) we study the properties and benefits of the

123

HE-Tree: a framework for detecting changes in clustering structure for categorical data streams 1253

C11

r rows

r rows

r rows

0 0

s cols s cols s cols

0 0C3

C4

C12

C21

C22

 0

0

r rows

s cols

C11 C22C21C12

C1 C4C3C2

All data

Fig. 11 Clustering structure of DS1

C1

C2.1
C2.2

Fig. 12 Clustering structure of Census data

decaying HE-Tree structure, in terms of the factors, such as
the decaying rate λ and the size of old and new clusters.

Datasets We construct the first synthetic dataset DS1 with
the following way, so that the clustering structure can be intu-
itively identified and manually labeled before running exper-
iments. Such datasets can be used to evaluate the precision
of the clustering result. The synthetic dataset has a two-layer
clustering structure (Fig. 11) with 30 attributes and N rows. It
has four equal-sized clusters in the top layer. Each cluster has
random categorical values selected from {‘0’,‘1’,‘2’,‘3’,‘4’,
‘5’} in some distinct set of attributes (the dark area in Fig. 11),
while the remaining attributes are set to ‘0’. Two of the four
clusters also have a clustering structure in the second layer.
This synthetic data has a clearly defined clustering structure,
and each record in the dataset distinctly belongs to one clus-
ter. This dataset is primarily used to explore the effect of dif-
ferent parameter settings of the HE-Tree to (1) the precision
of the clustering result and (2) the efficiency of the summari-
zation. This dataset is also used to illustrate the time-decaying
effect.

We also use a real dataset: “US Census 1990 Data ” in the
experiment. This dataset is a discretized version of the raw
census data, originally used by [35]. It can be found in the

C1

C2

C3

5C4C

Fig. 13 Clustering structure of simulated data DMIX

UCI KDD Archive.1 Many of the less useful attributes in the
original data set have been dropped, the few continuous vari-
ables have been discretized and the few discrete variables that
have a large number of possible values have been collapsed
to have fewer possible values. The total number of preserved
attributes is 68, including the column of sequence number,
which is discarded in clustering. This dataset contains about
2 million records. Since this dataset is the discretized ver-
sion of the original numerical data and distances are approx-
imately preserved with the discretized values, we are able to
visualize it with the VISTA tool [15]. The visualization of its
sample dataset validates three major clusters, two of which
are close to each other and the third one is smaller than the
other two (Fig. 12). Experimental results of categorical clus-
tering should be consistent with the visualization.

The third dataset DMIX follows the similar idea of the
Census data, used for studying the effect of clusters of unbal-
anced sizes, noise data, and cluster overlapping caused by
historical large clusters. We simulate a Gaussian mixture
model with a structure visualized in Fig. 13, and then discret-
ize it. The five clusters in the order of {C1, C2, C3, C4, C5}
are pumped into the data stream. About 10% random noise
records are also injected, uniformly distributed over the
whole data stream. The cluster C1 is the largest cluster with
50% records, followed by the 4 equally sized clusters. Clus-
ters C4 and C5 are overlapped by the large cluster C1, which
is used to study how the time-decaying structure addresses
the sequential cluster overlapping problem.

Metrics: error rate Cluster labels in the synthetic dataset
DS1 allow us to precisely evaluate the quality of the clus-
tering result with the Error Rate measure. Suppose the best
K clusters are identified. Error Rate is defined based on the

1 http://kdd.ics.uci.edu/.

123

http://kdd.ics.uci.edu/

1254 K. Chen, L. Liu

confusion matrix, where each element ci j 1 ≤ i, j ≤ K
represents the number of points from the labeled cluster j
assigned to cluster i by the algorithm. Let {(1), (2), …,
(K)} be any permutation of sequence {1, 2, …, K}. There
is a permutation that best matches the clustering result and
the labeled result that maximizes the number of consistent
points mc.

mc = max

{
K∑

i=1

ci(i), for any {(1), (2), . . . , (K)}
}

We define the Error Rate as 1 − mc
N , where N is the total

number of points.

6.1 Parameter Setting for the HE-Tree

This set of experiments will roughly investigate the effect of
parameters, primarily, f and nc, for the HE-Tree, with the
non-decaying trees. To simplify the investigation and max-
imize the quality of the summarization, we always use full
trees in the experiments. Intuitively, for a fixed f , the higher
tree (the larger h), the finer granularity of summarization
will be delivered. In most cases, we care about only cluster-
ing structures having less than 20 clusters. Therefore, a short
tree, which generates less than one thousand subclusters, is
enough for achieving high-quality BKPlots with the extended
ACE clustering algorithm. The experiment will focus on full
short trees (e.g., h = 2) with varying fan-out f from 10 to
30. If the height of tree h is fixed, nc is determined by f .
Therefore, we will study only the effect of f . A set of data-
sets (20 datasets) in the same structure shown in Fig. 11 are
generated, and the result is based on the average and variance
of 20 runs.

Figure 14 shows that the cost of HE-Tree summarization
is linear to f , which is consistent with our analysis. Figure 15
shows the effect of different settings of f on the quality of the
final clustering result for “Unordered DS1”. Unordered DS1
randomly stores the records from different clusters, i.e., there
is little change of clustering structure in processing the data
stream. The result shows some variances between the error
rates for different f , but overall the error rates are similar
and low.

“Ordered DS1” shows a more interesting scenario, where
the clustering structure dramatically changes in one window.
In such situations, f may significantly affect the quality
of monitoring. Figure 16 shows the result of sequentially
processing the clusters C11–C4. A tree with larger f seems
more adaptive to the change of clustering structure. The phe-
nomenon be understood as follows. The initial records from
the same cluster already occupy the slots in the growing stage.
When a new cluster emerges, since there is no empty entry in
the tree belonging to the new cluster, new slots are created by
merging other similar entries. Small f may result in merging

Cost of DS1 with different
fanout

0

20

40

60

80

10k 30k 50k 70k 90k

of data records

T
im

e
(s

ec
o

n
d

s)

f=30

f=20

f=10

Fig. 14 Cost of HE-Tree summarization with different fanout f

0

0.2

0.4

0.6

0.8

10k 30k 50k 70k 90k

of data records
E

rr
o

r
ra

te
 (

%
)

f=30
f=20
f=10

Fig. 15 Error rate of clustering result with HE-Tree summarization on
randomly ordered records

0

2

4

6

10k 30k 50k 70k 90k

of data records

E
rr

o
r

ra
te

 (
%

)

f=30
f=20
f=10

Fig. 16 Error rate of clustering result with HE-Tree summarization on
ordered records

entries that belong to different cluster eventually. However,
it shows that increasing f from 10 to 20 can considerably
reduce the error, but f = 30 will not significantly improve
the result any more. Balanced with the time cost and the
robustness, we will use f = 15 in later experiments. Sim-
ilarly, the effect of ordered records may also happen across
windows. With the decaying HE-Tree, the confliction is kind
of relieved, compared to the scenario within a window.

6.2 Robustness of BKPlots by the HE-Tree/extended ACE

In this set of experiments, we compare the accuracy of
BKPlots generated by the ACE algorithm on small sample

123

HE-Tree: a framework for detecting changes in clustering structure for categorical data streams 1255

BkPlots for DS1

-0.01

0

0.01

0.02

0.03

1 2 3 4 5 6 7 8 9 10 11 12 13 14

K

D
el

ta
2
I

HE-Tree/ACE, N=30K

HE-Tree/ACE, N=10K

ACE, N=500

Fig. 17 BKPlots for DS1

-0.02

0

0.02

0.04

0.06

1 3 5 7 9 11

K

D
el

ta
2

I(
K

)

ACE, N=500

HE-Tree/Extended

ACE, N=10K

HETree/Extended

ACE, N=100K

Fig. 18 BKPlots for Census

sets and by the HE-Tree/extended ACE on large stream data.
We run the experiment on both the synthetic data and the real
US Census data. The small sample size is set to 500 for ACE,
and large streams consist of sample sets with 10K and 100K
records, respectively. Sample sets are uniformly drawn from
the original dataset, therefore, they are supposed to have the
same clustering structure for sufficiently large sample set.
Again, the study is done with non-decaying trees.

Figure 17 for DS1 shows that all of the three BKPlots can
identify the primary best Ks: 4 and 6, while a little noise
appears at K = 2 when the sample size is large. All BKPlots
for Census data (Fig. 18) strongly indicate K = 3 is the best,
while K = 2 is probably another candidate(which groups
the cluster C2.1 and C2.2 together). The result confirms that
HE-Tree summarization can preserve the primary clustering
structure.

6.3 Detecting changes

We demonstrate the progressive monitoring results of the two
data streams: DS1-stream and Census-stream, with non-over-
lapping clustering structures and non-decaying HE-Tree (λ=
1). DS1-stream simulates the 4/6-cluster structure
shown in Fig. 11. The clusters enter the stream in the sequence
of C11, C12,C21,C22, C3, and C4, without overlapping. Each
of the small clusters has 5K records and each of the large
clusters have 10K records. Snapshots are saved at three
windows corresponding to N = 10K, 20K, and 30K, respec-
tively.

The progressive result for DS1-stream in Fig. 19 clearly
identifies the change of clustering structure. At T1:N = 10K,
C11 and C12 have been present at the stream, thus two clus-
ters are identified. At T2:N = 20K, C21 and C22 emerge and
the two-layer structure is identified (the best K = 2, 4). At
T3:N = 30K, C3 appears, and the BKPlot detects that the
primary two-layer structure is changed to K = 3, 5, while
the BKPlot also suggests an additional layer at K = 2, which
consists two cluster (C11, C12, C21, C22) and (C3).

We partition the census dataset into four parts and feed the
parts sequentially into the HE-Tree, so that the special clus-
tering structures appear in different stage as Fig. 20 shows.
At the first snapshot, there are clearly two clusters; in the
second one, the third cluster shows vaguely; finally, a two-
layer clustering structure (K = 2 and 3) appears in the third

Fig. 19 Monitoring
DS1-stream

DS1 Data Stream

C11

C12

T1 T2 T3

C11

C12

C21

C22

C11

C12

C21

C22

C3

Best K =2

-0.02

0

0.02

0.04

K

D
el

ta
2 I

Best K=2, 4

-0.02

0

0.02

0.04

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

K

Best K=2,3,5

-0.01

0.01

0.03

1 2 3 4 5 6 7 8 9 10

K

D
el

ta
2 I

D
el

ta
2 I

123

1256 K. Chen, L. Liu

Fig. 20 Monitoring
Census-stream

Data Evolving

-0.02
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14

1 3 5 7 9 11

K

D
el

ta
2 I(

K
)

D
el

ta
2 I(

K
)

D
el

ta
2 I(

K
)

-0.02

0

0.02

0.04

0.06

0.08

0.1

1 3 5 7 9 11

K

-0.01

0

0.01

0.02

0.03

0.04

0.05

1 3 5 7 9 11

K

Fig. 21 Sequential overlapping
clusters in data stream

C1

C2

C3

C4 C5

C1

C2

C3

C4 C5

Data Stream

-0.02

0

0.02

1 2 3 4 5 6 7 8 9 10 11

K

D
el

ta
2
 I

-0.02

0

0.02

0.04

0.06

1 2 3 4 5 6 7 8 9 10 11

K

D
el

ta
2
 I

-0.02

0

0.02

0.04

0.06

0.08

1 2 3 4 5 6 7 8 9 10 11

K

D
el

ta
2
 I

snapshot. Snapshot 2 demonstrates that the HE-Tree can also
capture the fine changes in the clustering structure (Fig. 20).

The DMIX stream has a more complicated structure,
which includes a large cluster (C1), noise (10% of the overall
data records), and overlapping clusters. The five DMIX clus-
ters are pumped into the data stream sequentially: C1 is in
the first window, C2&3 are in the second window, and C4&5
in the third. With non-decaying HE-Tree, we see that the first
two windows can clearly identify the change of major cluster-
ing structure, although considerable amount of noise exists
(Fig. 21). When it comes to the third window, the new two
clusters C4 and C5 are overlapped by the old cluster C1. The
corresponding BKPlot shows some changes of the peak val-
ues but the best clustering structure is still at K = 2 and K =
3. This sequential cluster overlapping problem may delay the
prompt decision making. To further address this problem, we
turn to the discussion on the time-decaying structure.

6.4 Effect of the time-decaying HE-Tree

To further study the properties of time-decaying HE-Tree,
we start with a simple case. We simulate a scenario with
two consecutive windows based on the DS1 data structure
as Fig. 22 shows. The simulated data has 40 columns and
each column can have 6 distinct categorical values. In the
window i , we have two clusters: C1 has non-zero values on
the first 20 columns and C1 has non-zero values on the last
20 columns. In window i + 1 a stream is fed in with two
clusters, C3 has non-zero values on the first 10 columns and
C4 on the second 10 columns. We fix the size of clusters in
window i : C1 and C2 have 5K records, respectively. The tree
parameters are also fixed crossing windows, f = 15 with
the height h = 2.

In the first set of experiments, we change the decaying
rate λ from 0.1 to 0.7 while keeping the stream fed into

123

HE-Tree: a framework for detecting changes in clustering structure for categorical data streams 1257

C1

C2

C1

C2

C3

C4

C3

C4× λ + = ?

Window i Window i+1

Fig. 22 Experiment with two consecutive windows

0

1

2

3

4

0 0.2 0.4 0.6 0.8

Lambda

o

f
cl

u
st

er
s

Fig. 23 Each cluster in window i + 1 has 2K records. The detected
best number of clusters changes with different decaying rate λ

window i + 1 unchanged, with 2K records in clusters C3
and C4, respectively. Figure 23 shows the detected number
of clusters in window i + 1 with respect to different settings
of decaying factor λ. With a larger λ, λ = 0.5, 0.6, 0.7, the
clustering structure of window i plays a dominant role in
window i +1 as Fig. 24 shows. Starting at λ = 0.4 the effect
of clustering structure at window i is reduced to a similar
level of the new clustering structure at window i + 1, which
shows a two-layer structure (Fig. 25). Reducing λ further,
the clustering structure of window i +1 dominates the result
(Fig. 26).

We then increase the size of data in window i+1 to 5K per
cluster. Figure 27 shows the “switching point” happens later
at λ= 0.5 and 0.6. This is consistent with the earlier discus-
sion based on Fig. 24, higher decaying rate preserves more
of the old clustering structure. When the size of new clus-
tering structure is sufficiently large compared to that of the
decayed old clustering structure, the effect of the old structure
will become secondary.

Lastly, we go back to the problem of DMIX stream to
show how time-decaying structure helps. Different decaying
rates will certainly affect the result. Table 1 lists the detection
results at sample decaying rates at window 3. With λ = 0.7,
C1 still plays the dominating role, so the best Ks are as same
as the non-decaying structure. At λ = 0.5, the C1 effect
is significantly reduced, and C4 and C5 become one of the

C1

C2

C3

C4

Two dominant
clusters

Fig. 24 With higher decaying rate, the old clustering structure
dominates. Therefore, there are two clusters

Fig. 25 At the switch point
(λ = 0.4 and each cluster has
2K records in the new data) , a
two-layer structure emerges

C1+C3+C4 C2

C1+C3 C1+C4

C1

C2

C3

C4

Three dominant
clusters

Fig. 26 With small decaying rate, the new clustering structure domi-
nates and absorbs part of C1 in the old clustering structure. Therefore,
there are three clusters

0

1

2

3

4

0 0.2 0.4 0.6 0.8

Lambda

o

f
cl

u
st

er
s

Fig. 27 Each cluster in window i + 1 has 5K records. The detected
best number of clusters changes with different decaying rate λ

123

1258 K. Chen, L. Liu

Table 1 Detected best number of clusters with different decaying rate
λ for DMIX-stream

λ 0.7 0.5 0.2

of clusters 2,3 2,4,5 3,4

C1

C2

C3

C4 C5

Fig. 28 C1 still affects clustering structure at λ = 0.5 at window 3 of
DMIX-stream

major clustering structures (K = 4). Figure 28 illustrates
what happens after decaying with rate 0.5. The color repre-
sents the population (density) of the records in each cluster.
The darker the area is, the more records it has. C1 keeps
residual effect on the C1, C2, C4, and C5 regions, which pre-
serves the upper level structure at K = 2, as illustrated by
the dot lined area in Fig. 28. At the same time, part of the
C1 residue that is not overlapped by C4 and C5 might appear
as noise to give a noisy prediction K = 5. Figure 29 shows
the corresponding BKPlot of the clustering structure, where
K = 2 still appears as a dominating structure.

The expected decayed structure appears at λ = 0.2, which
captures the emerging structure of C4 and C5. We have
discussed the similarity between decaying and sampling in
Sect. 5.2. To reflect this property, the size and the density
of the cluster from previous windows are further reduced
(Fig. 30). Correspondingly, the BKPlot (Fig. 31) from the
decaying HE-Tree suggests two candidate clustering struc-
tures with three and four clusters, respectively. This exactly
describes the expected major clustering structure.

The above experiments have shown some intrinsic interac-
tions between the decaying rate, the size of old/new clusters
and the detected clustering structure. In practice, it will be
delicate to set single decaying rate and window size, which
are indirectly related to the cluster distribution in the stream.
Multiple decaying HE-Trees with different settings might be
applied to digest the same data stream.

BKPlot, lambda=0.5, at window 3

-0.02

0

0.02

0.04

0.06

0.08

1 2 3 4 5 6 7 8 9 10 11

K

D
el

ta
2 I

Fig. 29 BKPlot at λ = 0.5

C1

C2

C3

C4 C5

Fig. 30 Expected emerging pattern appears at λ = 0.2 at window 3 of
DMIX-stream

BKPlot, lambda=0.2, at window 3

-0.02

0

0.02

0.04

0.06

0.08

1 2 3 4 5 6 7 8 9 10 11

K

D
el

ta
2 I

Fig. 31 BKPlot at λ = 0.2

7 Related work

While many numerical clustering algorithms [31,32] have
been published, only a handful of categorical clustering
algorithms appear in literature. Some are based on the design
of distance between a pair of categorical records, such as,
K-Modes [30], ROCK [28], and CACTUS [22]. Gibson et

123

HE-Tree: a framework for detecting changes in clustering structure for categorical data streams 1259

al. introduced STIRR [26], an iterative algorithm based on
non-linear dynamical systems. A few algorithms utilize con-
cepts in information theory. Coolcat [5] and Monte-Car-
lo method [34] use the same entropy criterion as we do.
Cross Association [11] uses the principle of MDL to par-
tition boolean matrix along row direction and column direc-
tion at the same time. Co-clustering [20], Information Bot-
tleneck [37] and LIMBO [3], are based on KL divergence
[18].

Clustering data streams becomes one of the important
techniques for analyzing data streams [27]. In [2], a frame-
work CluStream is proposed for clustering evolving numer-
ical data streams, which mainly concerns summarizing and
storing the sketch of the data stream. It uses the novel fading
clustering structure. Other frameworks include the one based
on velocity density estimation [1]. The problem of cluster-
ing categorical data stream was first addressed by Coolcat
[5], but no more related issues such as detecting the change
of clustering structure were addressed for categorical data.
Recently, we propose the BKPlot method [13] that is based
on the change of cluster entropy characteristics that corre-
lates to the change of the number of clusters. Based on the
BKPlot method, we proposed to detect the change of clus-
tering structure in data streams [14], which covers the basic
concepts of the HE-Tree. In this journal paper, we present
more details of HE-Tree, the framework for change detec-
tion, and experimental study. Most importantly, we develop
the new time-decaying structure and perform the correspond-
ing experimental study to address the effect of stocked his-
torical data records in the HE-Tree.

Supervised learning from data streams, or incremental or
online learning algorithms is another category of stream min-
ing algorithms, which assumes the data stream contains both
feature vectors and labels for prediction. Typical algorithms
include regression on multidimensional data streams [16] and
incremental decision tree algorithms [21,25,38]. Similar to
the change of clustering structure in data streams, the under-
lying classification/regression models may also change,
which is often called “concept drifting”. There are algorithms
proposed to address this problem, such as ensemble classifi-
ers for capturing drifting concepts [39].

In addition, nonparametric testing is used to monitor the
information change in data streams [6], as well as various sta-
tistical testing [23,24]. Other loosely related work includes
indexing categorical data with KL divergence as the distance
function [36] and efficiently calculating entropy of a data
stream [10].

Note that data stream clustering has very different set-
ting from clustering times series data [33]. If we treat a data
stream as a table with fixed number of columns but endless
number of rows, clustering times series data tries to find col-
umn similarity between same or different periods, while data
stream clustering tries to find row similarity.

8 Conclusion

In this paper, we address the problem of detecting the change
of clustering structure in categorical data streams with a novel
framework. The key of the framework is the combination of
BKPlot method and Hierarchical Entropy Tree (HE-Tree)
summarization structure and its algorithms. The HE-Tree is
designed as a memory-efficient structure—the tree is usually
a short tree (height = 2 or 3) with a small number of leaf nodes,
which store the information of summarized sub-clusters. In
order to observe the change of clustering structure, snapshots
of leaf entries are dumped in certain time intervals, which is
then processed by the extended ACE clustering algorithm
to generate high-quality approximate BKPlots, with which
we can easily identify whether and how the clustering struc-
ture in the stream is changed. A time-decaying HE-tree is
also proposed to appropriately discount the historical clus-
tering structure and to make the framework more sensitive to
recently emerging clustering structures. Experiments show
that with the HE-Tree and the BKPlot method we can effec-
tively detect the change of critical clustering structure, which
is indicated by the best number of clusters, in categorical data
streams. There are still outstanding research issues on how to
set the appropriate window sizes and decaying rates to adapt
to different types of clustering structures.

Acknowledgments This research is partially supported by NSF CNS,
NSF CCR, NSF ITR, DoE SciDAC, DARPA, Georgia Tech CERCS
Research Grant, IBM Faculty Award, IBM SUR grant, HP Equipment
Grant, and LLNL LDRD.

References

1. Aggarwal, C.C.: On change diagnosis in evolving data streams.
IEEE Trans. Knowl. Data Eng. 17, 5 (2005)

2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.: A framework for pro-
jected clustering of high dimensional data streams. In: Proceedings
of Very Large Databases Conference (VLDB) (2004)

3. Andritsos, P., Tsaparas, P., Miller, R.J., Sevcik, K.C.: Limbo: scal-
able clustering of categorical data. In: Proceedings of Intternational
Conference on Extending Database Technology (EDBT) (2004)

4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Mod-
els and issues in data stream systems. In: Proceedings of ACM
Conference on Principles of Database Systems (PODS) (2002)

5. Barbara, D., Li, Y., Couto, J.: Coolcat: an entropy-based algorithm
for categorical clustering. In: Proceedings of ACM Conference on
Information and Knowledge Management (CIKM) (2002)

6. Ben-David, S., Gehrke, J., Kifer, D.: Detecting change in data
stream. In: Proceedings of Very Large Databases Conference
(VLDB) (2004)

7. Bock, H.: Probabilistic aspects in cluster analysis. In: Conceptual
and Numerical Analysis of Data. Springer, Berlin (1989)

8. Brand, M.: An entropic estimator for structure discovery. In:
Proceedings Of Neural Information Processing Systems (NIPS),
pp. 723–729 (1998)

9. Celeux, G., Govaert, G.: Clustering criteria for discrete data and
latent class models. J. Classif. (1991)

123

1260 K. Chen, L. Liu

10. Chakrabarti, A., Cormode, G., McGregor, A.: A near-optimal algo-
rithm for computing the entropy of a stream. In: Annual ACM-
SIAM Symposium on Discrete Algorithms (2007)

11. Chakrabarti, D., Papadimitriou, S., Modha, D.S., Faloutsos, C.:
Fully automatic cross-associations. In: Proceedings of ACM SIG-
KDD Conference (2004)

12. Chen, K., Liu, L.: VISTA: Validating and refining clusters via visu-
alization. Inf. Vis. 3 4, 257–270 (2004)

13. Chen, K., Liu, L.: The “best k” for entropy-based categorical
clustering. In: Proceedings of International Conference on Scien-
tific and Statistical Database Management (SSDBM), pp.253–262
(2005)

14. Chen, K., Liu, L.: Detecting the change of clustering structure in
categorical data streams. In: SIAM Data Mining Conference (2006)

15. Chen, K., Liu, L.: iVIBRATE: Interactive visualization based
framework for clustering large datasets. ACM Trans. Inf. Syst. 24,
2 (2006)

16. Chen, Y., Dong, G., Han, J., Wah, B.W., Wang, J.: Multidimensional
regression analysis of time-series data streams. In : Proceedings of
Very Large Databases Conference (VLDB) (2002)

17. Cheng, C.H., Fu, A. W.-C., Zhang, Y.: Entropy-based subspace
clustering for mining numerical data. In: Proceedings of ACM SIG-
KDD Conference (1999)

18. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, NY
(1991)

19. Das, A., Gehrke, J., Riedewald, M.: Approximate join processing
over data streams. In: Proceedings of ACM SIGMOD Conference
(2003)

20. Dhillon, I.S., Mellela, S., Modha, D.S.: Information-theoretic co-
clustering. In: Proceedings of ACM SIGKDD Conference (2003)

21. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Pro-
ceedings of ACM SIGKDD Conference, pp. 71–80 (2000)

22. Ganti, V., Gehrke, J., Ramakrishnan, R.: CACTUS-clustering cat-
egorical data using summaries. In: Proceedings of ACM SIGKDD
Conference (1999)

23. Ganti, V., Gehrke, J., Ramakrishnan, R.: Demon: Mining and mon-
itoring evolving data. IEEE Trans. Knowl. Data Eng. 13, 1 (2001)

24. Ganti, V., Gehrke, J., Ramakrishnan, R., Loh, W.: A framework for
measuring differences in data characteristics. J. Comput. Syst. Sci.
64, 3 (2002)

25. Gehrke, J., Ganti, V., Ramakrishnan, R., Loh, W.-Y.: BOAT—
optimistic decision tree construction. In: Proceedings of ACM SIG-
MOD Conference, pp. 169–180 (1999)

26. Gibson, D., Kleinberg, J., Raghavan, P.: Clustering categorical
data: An approach based on dynamical systems. In: Proceedings of
Very Large Databases Conference (VLDB), pp. 222–236 (2000)

27. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.:
Clustering data streams: Theory and practice. IEEE Trans. Knowl.
Data Eng. 15 (2003)

28. Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algo-
rithm for categorical attributes. Inf. Syst. 25 5, 345–366 (2000)

29. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster validity meth-
ods: Part I and II. SIGMOD Record 31 2, 40–45 (2002)

30. Huang, Z.: A fast clustering algorithm to cluster very large cate-
gorical data sets in data mining. In: Workshop on Research Issues
on Data Mining and Knowledge Discovery (1997)

31. Jain, A., Murty, M. Flynn P.: Data clustering: A review. ACM
Comput. Surv. 31, 264–323 (1999)

32. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice
hall, New York (1988)

33. Keogh, E., Lin, J., Truppel, W.: Clustering of time series sub-
sequences is meaningless: Implications for previous and future
research. In: Proceedings of International Conference on Data Min-
ing (ICDM) (2003)

34. Li, T., Ma, S., Ogihara, M.: Entropy-based criterion in categorical
clustering. In: Proceedings of International Conference on Machine
Learning (ICML) (2004)

35. Meek, C., Thiesson, B., Heckerman, D.: The learning-curve sam-
pling method applied to model-based clustering. J. Mach. Learn.
Res. 2, 397–418 (2002)

36. Singh, S., Mayfield, C., Prabhakar, S., Shah, R., Hambrusch, S.:
Indexing uncertain categorical data. In: Proceedings of IEEE Inter-
national Conference on Data Engineering (ICDE) (2007)

37. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck
method. In: Proceedingd of the 37-th Annual Allerton Conference
on Communication, Control and Computing (1999)

38. Utgoff, P.E.: Incremental induction of decision trees. Mach.
Learn. 4, 161–186 (1989)

39. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept drifting data
streams using ensemble classifiers. In: Proceedings of ACM SIG-
KDD Conference (2003)

40. Yang, Y., Pedersen, J.O.: A comparative study on feature selection
in text categorization. In: Fisher, D.H. (ed.) Proceedings of ICML-
97, 14th International Conference on Machine Learning (Nashville,
US, 1997), pp. 412–420. Morgan Kaufmann, San Francisco (1997)

123

	HE-Tree: a framework for detecting changes in clustering structure for categorical data streams
	Abstract
	1 Introduction
	2 Entropy-based categorical clustering
	2.1 Notations and definitions
	2.2 Incremental entropy

	3 BKPlot for determining the ``Best K'' for categorical clustering
	3.1 Definition of BKPlot
	3.2 A brief description of the ACE algorithm

	4 HE-Tree: capturing cluster entropy of the categorical data stream
	4.1 Structure of the HE-Tree
	4.2 Constructing the HE-Tree
	4.3 Analysis of complexity
	4.4 Discussion on setting of parameters

	5 A monitoring framework based on the HE-Tree
	5.1 Problem of time decaying summarization
	5.2 The time-decaying HE-Tree
	5.3 The extended ACE algorithm
	5.4 The monitoring procedure

	6 Experiments
	6.1 Parameter Setting for the HE-Tree
	6.2 Robustness of BKPlots by the HE-Tree/extended ACE
	6.3 Detecting changes
	6.4 Effect of the time-decaying HE-Tree

	7 Related work
	8 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

