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Abstract In multimedia retrieval, a query is typically
interactively refined towards the “optimal” answers by exp-
loiting user feedback. However, in existing work, in each
iteration, the refined query is re-evaluated. This is not only
inefficient but fails to exploit the answers that may be com-
mon between iterations. Furthermore, it may also take too
many iterations to get the “optimal” answers. In this paper,
we introduce a new approach called OptRFS (optimizing
relevance feedback search by query prediction) for iterative
relevance feedback search. OptRFS aims to take users to
view the “optimal” results as fast as possible. It optimizes
relevance feedback search by both shortening the searching
time during each iteration and reducing the number of itera-
tions. OptRFS predicts the potential candidates for the next
iteration and maintains this small set for efficient sequential
scan. By doing so, repeated candidate accesses (i.e., random
accesses) can be saved, hence reducing the searching time for
the next iteration. In addition, efficient scan on the overlap
before the next search starts also tightens the search space
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with smaller pruning radius. As a step forward, OptRFS also
predicts the “optimal” query, which corresponds to “opti-
mal” answers, based on the early executed iterations’ que-
ries. By doing so, some intermediate iterations can be saved,
hence reducing the total number of iterations. By taking the
correlations among the early executed iterations into consi-
deration, OptRFS investigates linear regression, exponen-
tial smoothing and linear exponential smoothing to predict
the next refined query so as to decide the overlap of can-
didates between two consecutive iterations. Considering the
special features of relevance feedback, OptRFS further intro-
duces adaptive linear exponential smoothing to self-adjust
the parameters for more accurate prediction. We implemen-
ted OptRFS and our experimental study on real life data sets
show that it can reduce the total cost of relevance feedback
search significantly. Some interesting features of relevance
feedback search are also discovered and discussed.

Keywords Image retrieval · Relevance feedback ·
Query processing · Indexing

1 Introduction

With the popularity of digital imaging technologies, digital
images are becoming an important part of our life. This means
that tools to manipulate and manage a large collection of
images will continue to be in great demand.

Query processing in content-based systems involves
retrieving the top-K most relevant objects to the query (i.e.,
K nearest neighbors (KNN) search in database literature).
Given a query, the system searches the database or the
indexing structure if any, computes the similarity between
the query and each candidate object based on the under-
lying metric. As image features are typically represented
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as high dimensional feature vectors (varying from tens to
hundreds), the search process is computationally expensive.
Many indexing structures and query processing methods
[8,32,21] have been proposed to speed up the retrieval in a
high-dimensional space. However, the performances of most
indexing structures degrade rapidly as the dimensionality
increases. For exact KNN search, a linear scan on the whole
database turns out to outperform them when the dimensiona-
lity reaches high because of the “dimensionality curse” [36].
Recently, approximate KNN search has been investigated to
further improve the linear scan significantly [3,20]. Clearly,
designing an efficient content-based system is critical for it
to be scalable.

However, existing content-based systems that exploit low-
level features (such as color and texture) do not necessarily
return semantically relevant (based on human perception)
answers. One promising direction towards semantic retrieval
is the adoption of relevance feedback mechanism which has
been extensively studied recently [5,10,12,14,15,18,22–30,
34,35,37,39,40]. A relevance feedback process is interactive
and iterative in nature. From the current results returned by
the system, the user provides feedback to the system; based
on these feedback, the system will refine the query to get bet-
ter results which are closer to the user’s expectations. Feed-
back query is usually refined from either moving the query
to a new position or modifying the similarity metrics (i.e.,
weights of feature vectors), or both, based on the selected
objects. Recent proposal also allows multiple objects to be
a refined query [19]. A comprehensive survey on relevance
feedback in information retrieval can be found in [41].

While relevance feedback is well studied in information
retrieval community, it mainly focuses on accuracy issue and
neglects efficiency issue. As modern databases keep growing
rapidly, retrieval efficiency becomes more and more criti-
cal. Recently, the distance between database and informa-
tion retrieval research is actively eroding. Many works and
discussions on bridging database and information retrieval
research have appeared [11,2,9,4,31,17,19], driven by the
requirements of many applications which require fast retrie-
val. Particularly, in this paper, we aim to improve the perfor-
mance of relevance feedback by utilizing indexing and query
processing techniques.

Typically, two factors affect the overall efficiency of rele-
vance feedback:

Searching time during each iteration Since the feedback
query moves away from the previous one with updated simi-
larity metric, a complete KNN search has to be re-performed
in next iteration. Generally, random accesses on candidates
are the major concern in most research work.

Number of iterations Depending on the query, a number
of iterations may be processed before the results converge to
the user’s expectation. Given a query, the larger number of
iterations occurs, the longer the searching takes.

We intend to speed up relevance feedback search by
reducing both the random accesses during each iteration and
the total number of iterations. In feedback loop, a new search
is performed in each iteration due to the change of feedback
query. However, the search spaces of two consecutive queries
may overlap largely given that the query in current iteration
is refined based on the “good” results from the last iteration.
Furthermore, the refinement of feedback query may follow
certain patterns. In this paper, we propose OptRFS, a new
method to optimize the relevance feedback search, by dis-
covering the overlap between two consecutive iterations and
predicting the “optimal” query at an early stage.

OptRFS investigates three methods called linear regres-
sion, exponential smoothing and linear exponential Smoo-
thing to predict the new query to be searched in next iteration.
Taking the features of relevance feedback search into consi-
deration, OptRFS further introduces adaptive linear expo-
nential smoothing to achieve better prediction quality. By
forecasting the search space of the new query, the overlap
between two consecutive queries’ search spaces can then
be estimated. By performing sequential scan on the over-
lap, expensive random accesses on those candidates lying
in the overlap can be avoided in next iteration, hence the
total number of random accesses can be reduced. For further
improvement, OptRFS may also advance the prediction by
multiple iterations to reach (or get closer to) the “optimal”
query at a faster pace. By analyzing the changing trend of
the queries executed in the early iterations, OptRFS is able to
predict the “optimal” query accurately. By jumping to search
the predicted “optimal” query directly, multiple intermediate
iterations during the feedback loop can be avoided. Hence,
OptRFS achieves to improve relevance feedback search by
predicting the overlap and the “optimal” query. OptRFS can
be easily and well integrated with existing feedback mecha-
nisms and indexing structures. The strengths and weaknesses
of forecasting methods in relevance feedback search are also
analyzed. Experiments study proves both the effectiveness
and efficiency of OptRFS, and also discovers some interes-
ting features of relevance feedback search.

The rest of paper is organized as follows. Section 2
provides a review on preliminary work and related work.
OptRFS, including its prediction models and KNN algo-
rithms, is introduced Sect. 3. Experiments results are reported
in Sect. 4. Finally we conclude the paper in Sect. 5.

2 Preliminary and related work

2.1 Relevance feedback mechanism

Low-level feature representations of a multimedia object
often fail to capture its semantic meanings. Relevance feed-
back is a process to iteratively refine the user’s query to
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improve the accuracy based on user’s perception. After a
number of iterations, the feedback loop is terminated with
“optimal” results, corresponding to “optimal” feedback query
[6]. It can be summarized as follows.

1. Issue an initial query The user issues an initial query
Q(q,w) to start the search, where q is the query point,
and w is the similarity metric used.

2. Search the database Search engine compares the query
point q with objects in the database, or the candidate
objects if any indexing structure is applied, with under-
lyingw by using a distance function. Weighted Euclidean
function is a popular measure to compute the relevance
between the query and database objects. The K most
relevant objects are then returned to the user.

3. Iterative feedback loop The user judges the relevances
of the returned objects and identifies which are “good”
and “bad” (a relevance score can also be evaluated by the
user). Based on the relevance provided by the user, a new
feedback query Qt (qt , wt ) for the t th iteration, where qt

and wt are the new query point and similarity metric in
t th iteration, is then computed and passed to the search
engine for next round of search.

4. Terminate the loop The feedback loop is terminated
when the user feels the returned results are satisfactory.

Particularly, the feedback provided by users often affects
the progress of convergence to the “optimal” feedback query.
Different learning processes can be embedded into relevance
feedback to help users provide better feedback so that faster
convergence can be achieved [12,13,33,39]. In this paper, for
simplicity, users judge the (ir)relevance of the results without
applying any learning process.

As mentioned, a multimedia object is usually represented
by high- dimensional features vectors. The relevance bet-
ween two object features is usually computed based on some
distance functions. For easy illustration purpose, consider a
database of N objects. We denote the query in t th iteration
as Qt , its point as qt , its metric as wt , its results as Rt and
its candidate set as Ct . Let qt [i] represent the i th coordinate
value of qt . Correspondingly, let wt [i] represent the weight
of i th dimension of qt . The similarity between two objects
Q and P in t th iteration is usually computed by the popular
weighted Euclidean distance, i.e.,

d(Qt , Pt ) = d(qt , pt ;wt ) =
√
√
√
√

D
∑

i=1

wt [i] ∗ (qt [i] − pt [i])2

where D represents the dimensionality of feature space. A
table of notations is listed in Table 1 for easy lookup.

Table 1 A table of notations

Notation Description

N , D Number of objects and dimensionality of space

Qt , qt , wt A query, its point and metric in t th iteration

Q′
t , Q′′

t Prediction, double prediction of Qt

Qopt Optimal query of Q

Rt , Ct Results and candidate set for Qt

d Distance function

σt [i] Standard deviation along i th dimension

γt+1 K th largest upper bound found so far

θt+1 K th largest upper bound of Ct with wt+1

ru
t+1 upper bound on the distance of K th NN

rt+1 Tightest pruning radius

α, β Forecasting parameters

MSE Mean square error

2.2 Feedback query refinement

Different relevance feedback strategies may be adopted in
different systems. The most important issue is how to refine
the feedback query. There are two basic methods. The first
is to move the query to a new position. The second is to
re-weight the importance of feature components. Both met-
hods try to update the query towards the user’s expectation.

Query point movement The query point’s coordinate
values are modified iteratively based on the feedback. The
intuition of this method is to move the query point towards
the good results and away from the bad ones. Ishikawa et
al. [16] showed that the “optimal” query point is a weighted
average of good results.

Similarity metric modification The weighted similarity
metric is updated iteratively in feedback loop. The intuition
of this method is to assign higher weights to the feature
components that are more important in deciding the good
results. Ishikawa et al. [16] proved that the “optimal” assi-
gnment of weight for i th dimension at (t + 1)th iteration
is: wt+1[i] = 1

σt [i]2 where σt [i] is the standard deviation of
coordinates values along the i th dimension from all the good
results at t th iteration. The weight is further normalized as
follows: wt+1[i] = wt+1[i]

∑M
i=1 wt+1[i] where M is the number of

good results selected by the user. Rui and Huang [27] have
extended the above technique by considering multiple fea-
tures.

2.3 Existing proposals

While most previous works focus on the accuracy issue, very
little has been done to solve the efficiency issue. There are
two early attempts to speed up the relevance feedback by
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either reducing searching time during each iteration [38] or
reducing number of iterations [6].

2.3.1 Reduction of searching time during each iteration

Along the direction of reducing searching time during each
iteration, Wu and Manjunath [38] exploit the correlations bet-
ween two consecutive iterations when the underlying metric
is changing. The method applies the known indexing
structure—VA-file [36] with a tighter upper bound in its filte-
ring process. The vector approximation file (VA-file) divides
the data space into 2b rectangular cells where b denotes a
user specified number of bits (e.g. some number of bits per
dimension, typically 4–6). The VA-file allocates a unique
bit-string of length b for each cell, and approximates data
points that fall into a cell by that bit-string. The VA-file itself
is simply an array of these compact, geometric approxima-
tions. Nearest neighbor queries are performed by scanning
the entire approximation file, and by excluding the vast majo-
rity of vectors from the search (filtering process) based only
on these approximations.

The idea behind VA-file in [38] is to find a possible tighter
upper bound on the kth nearest neighbors in the two-phase
filtering process of VA-file. The two-phase filtering process
can be standardized as follows: (a) In the first phase, the
VA-file is sequentially scanned. The lower and upper bounds
on the distance for each object’s approximation (i.e., VA)
is then computed. A buffer is used to remember K th lar-
gest upper bound found so far. Denote the K th largest upper
bound found so far in (t + 1)th iteration as γt+1. If a VA’s
lower bound is greater than γt+1, the object can be safely
filtered. Otherwise, it is considered as a candidate and its
upper bound is used to update the buffer and γt+1. (b) In the
second phase, the candidates obtained from first phase are
increasingly ordered by their lower bounds. They are then
visited by random accesses. Once an object’s lower bound
reaches the K th actual largest distance computed so far, the
algorithm terminates and KNNs are returned.

Wu and Manjunath [38] improved the first phase of the
filtering process in VA-file by using a tighter upper bound
(denoted as rt+1) than γt+1. rt+1 enforces two more
constraints.

The first is an upper bound on the distance of K th nearest
neighbor in (t + 1)th iteration. Denote this upper bound as
ru

t+1. It is computed as:

ru
t+1 = max{d(qt+1, Rt [i];wt+1), i = 1, ..., k}.

The second is the K th largest upper bound of Ct (i.e.,
the candidates from t th iteration) based on wt+1 (i.e., the
similarity metric in (t + 1)th iteration). Denote this upper
bound as θt+1. As a result, for an object qualified to be a
candidate, its VA’s lower bound must be less than rt+1, where

rt+1 is computed as:

rt+1 = min{γt+1, ru
t+1, θt+1}

Obviously, rt+1 ≤ γt+1. Any object whose VA’s lower
bound is greater than or equal to rt+1 will be filtered away.
By enforcing the tighter constraint rt+1, fewer candidates can
be included.

However, this method is limited by the following draw-
backs. First and most importantly, repeated random accesses
during two consecutive iterations occur. Second, the issue of
the query point movement is not mentioned. Third, it does not
remember the information before the last iteration. This may
limit its capability to prune the search space significantly.
We will compare it with our method with greater details in
Sect. 3.4.

2.3.2 Reduction of number of iterations

Along the direction of reducing the number of iterations,
Bartolini et al. [6] proposed a technique called Feedback-
Bypass. By storing and maintaining the information on the
queries gathered from past feedback loops, FeedbackBypass
is possible to either ‘bypass’ the feedback loop completely
for already-seen queries or to ‘predict’ the near-optimal para-
meters for the new queries. In both cases, as an overall effect,
the number of feedback iterations can be reduced. However,
FeedbackBypass requires a learning process before it can
predict a near-optimal setting for the parameters.

3 The OptRFS

In this paper, our goal is to achieve efficient KNN search
during the feedback loop by reducing the searching time
during each iteration and reducing the number of iterations.
To the best of our knowledge, considering both factors (i.e.,
searching time during each iteration and number of iterations)
in relevance feedback search has never been addressed in the
database research.

Our approach is to achieve faster retrieval in the sub-
sequent iterations as the relevance feedback loop goes on and
terminate the feedback loop as early as possible. Based on the
information obtained from the early iterations, the number of
random accesses can be further reduced in the subsequent ite-
ration. Meanwhile, the number iterations can also be reduced
by skipping some intermediate iterations. Hence the key is
to maintain the information among the iterations and explore
their correlations.

Our inspirations come from the following observations
from relevance feedback search. First, from the methods in
recomputing the query point and similarity metric as shown
in Sect. 2.2, search space of the refined query Qt+1 is highly
likely to overlap with that of Qt . Second, relevance feedback
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mechanisms assume that the feedback query is modified
towards the “optimal” query further as more iterations are
processed. Third, queries executed in the early iterations may
suggest their changing trend.

If we know which candidate in the i th iteration will be
re-accessed in the (i + 1)th iteration, we could store them
for efficient scan to avoid the expensive random accesses.
Generally the number of candidates is very small compared
with the data size. And the overlap is expected to be smal-
ler. Maintaining such a small set of candidates for efficient
scan can speed up the search. Furthermore, pre-scan on the
overlap produces a potentially smaller pruning radius which
tightens the search space for the refined query. This provides
larger room of reducing the search space. On the other hand,
after very first few iterations, if we know where the “opti-
mal” query is, we can directly jump to the final iteration
without moving the query slowly towards the optimal posi-
tion. Apparently, integration of two powers has potential to
speed up relevance feedback search by a larger scale. Next,
let us look at how OptRFS discovers the overlap and the
“optimal” query respectively.

3.1 Overlap prediction

To discover the overlap, the key is to predict Qt+1 and its
search space. From the second observation that the query
changes over iterations towards to its destination, this ins-
pires OptRFS to explore using linear regression model and
exponential smoothing model to predict the overlap.

OptRFS forecasts Qt+1 and rt+1 by using the query and
search radius information from the first iteration to the t th

iteration. The prediction is made for every dimension of the
Qt+1, including the coordinate value and weight. Denote the
prediction of Qt+1 and rt+1 as Q′

t+1 and r ′
t+1 respectively.

We first look at how the linear regression can be adapted in
relevance feedback, followed by exponential smoothing [7].

3.1.1 Linear regression

The feedback queries are assumed to move along a direction
from initial query to its “optimal”. This satisfies the assump-
tion of linear regression (LR) that the data change over time
increasingly or decreasingly.

First, we look at how the i th dimensional value can be
predicted. We denote the prediction of qt+1 to be q ′

t+1. Hence
the forecast of i th coordinate value by using linear regression
is computed as follows:

q ′
t+1[i] = α + β ∗ t

where t represents the t th iteration,α andβ are the parameters
to be determined by regression and β indicates the amount
changed over each iteration. To decide α and β, we use the

least squares estimates as follows [7]:

β =
∑t

j=1 j ∗ q j [i] − t ∗ j ∗ q[i]
∑t

j=1 j2 − t ∗ j
2

α = q[i] − β ∗ j

where q[i] and j is the average of q[i] and j respectively,
i.e.,

q[i] =
∑t

j=1 q j [i]
t

and j =
∑t

j=1 j

t

The estimates of α and β give the least value of forecasting
SSE (sum of square error), where

SSE =
t

∑

j=1

(q j [i]−q ′
j [i])2 =

t
∑

j=1

(q j [i] − α − β ∗ j)2.

The model can be summarized in two steps. The values
of α and β are first estimated using the query information
from early iterations. By using the resulting values of α and
β, the forecast of qt+1 can be computed. Based on the above
regression model, the weight of each dimension can also be
predicted. Finally Q′

t+1, the prediction of Qt+1, is obtained.
So far we have seen how Qt+1 can be predicted by using

linear regression. To decide the search space of Q′
t+1, its

tightest pruning radius is also necessary to be known. Notice
that most real multimedia datasets are not uniformly distri-
buted. It is often that different regions in the space have dif-
ferent densities. In other words, given different queries in the
space, their KNN search radii might vary greatly. Apparently,
a query moving to a region with a smaller density tends to
have a larger search radius, and vice versa. In feedback loop,
as the query is refined from on position to another, its search
radius may correspondingly change too. Depending on the
change trend of space density, its radius may turn to be lar-
ger or smaller gradually. Intuitively, we also apply the same
regression model to predict the search radius, and denote it
as r ′

t+1, given all the radii in early iterations. Denote the pre-
dicted overlap of search spaces between the t th and (t +1)th
iterations as Overlap′

t,t+1. Then Overlap′
t,t+1 contains the

candidates in Ct whose distances to Q′
t+1 are not greater than

r ′
t+1.

Linear regression works with another assumption that the
amount of change every time is fixed. However, in relevance
feedback search, the changes over iterations may vary. Fur-
thermore, the importance of past queries in linear regression
is equal in predicting the next query. One interesting feature
in relevance feedback is that the refined queries get closer and
closer to the “optimal” over iterations, i.e., Qt+1 is assumed
to be closer to the “optimal” than Qt . This indicates that the
more recent query carries more information about the next.
It is thus natural for us to investigate an alternative approach,
simple exponential smoothing (or exponential smoothing)
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which assumes that the most recent query is most important
in determining the next prediction and whose quality is better
when few predictions are required.

3.1.2 Exponential smoothing

Exponential smoothing (ES) assigns unequal weight on dif-
ferent data, the largest weight on the most recent data, and
the least weight on the earliest data. It provides better pre-
dictions when the prediction is not greatly extended. When
applied to relevance feedback, exponential smoothing gives
greatest weight to the most recent query, and the least weight
to the initial query, i.e., it is more “responsive” to changes
occurring in the recent iterations. In exponential smoothing,
q ′

t+1[i] is computed as:

q ′
t+1[i] = α ∗ qt [i] + (1 − α) ∗ q ′

t [i]

where α is the smoothing parameter and 0 < α < 1.
Exponential smoothing is easy to use since only qt [i] and

its prediction q ′
t [i] are required.

Expanding the above smoothing equation, we get

q ′
t+1[i] = α ∗ qt [i] + (1 − α) ∗ q ′

t [i]
= α ∗ qt [i] + (1 − α) ∗ [α ∗ qt−1[i]

+(1 − α) ∗ q ′
t−1[i]]

= · · ·
=

t−1∑

j=0
α ∗ (1 − α) j∗qt− j [i] + (1 − α)t ∗ q ′

1[i]

where q ′
1[i] is the initial prediction. As we can see, the expo-

nential smoothing prediction is the weighted sum of all the
past queries with the weight increasing as the iteration goes
on. There is no general way to get the q ′

1[i]. A popular way
is to use the average of all the known values, i.e.,

q ′
1[i] =

∑t
j=1 q j [i]

t

Exponential smoothing is intuitively more appealing. One
major drawback of exponential smoothing is that there is no
intrinsic best value for α. To determine α, generally a set of
values are tested, and the value which best fits the queries
is selected. We use the set of [0.05, 0.1, ... , 0.9, 0.95] to
choose α. The value which gives the minimal SSE is then
chosen. That is, given a feedback query, using the α value
with minimal SSE is expected to achieve the most accurate
prediction. Clearly, a large α adjusts more quickly to recent
query changes. Notice that exponential smoothing tends to
lag behind a trend [7], which causes less accurate prediction.
Exponential smoothing is appropriate when the underlying
feedback queries behaves like a constant, i.e., when the mean
of queries is moving very slowly.

3.1.3 Linear exponential smoothing

In relevance feedback search, although the queries tend to get
closer to the “optimal” query, the trend does not necessarily
remain constant, i.e., the trend may vary slowly over time.
This could be more convincing when more data are included.
To capture the time-varying/local trends of feedback queries,
one method is to use linear (i.e., double) exponential smoo-
thing (LES).

LES modifies exponential smoothing for following a linear
trend, i.e., smooths the smoothed values obtained from double
application of exponential smoothing. Denote the predictions
of singly-smoothing and doubly-smoothing by exponential
smoothing as

q ′
t+1[i] = α ∗ qt [i] + (1 − α) ∗ q ′

t [i]
and

q ′′
t+1[i] = α ∗ q ′

t [i] + (1 − α) ∗ q ′′
t [i]

respectively. Notice that the same α is used. Then the final
prediction of LES will be:

qLES
t+1 [i] = a(t) + b(t)

where

a(t) = 2q ′(t) − q ′′(t)

and

b(t) = (α/(1 − α))(q ′(t) − q ′′(t))

a(t) is the estimated value and b(t) is the estimated trend
at t th iteration. Clearly, LES best fits the scenario when the
queries have a local trend. Our experiment results later will
suggested that local trends indeed exist for some relevance
feedback search. To select α, we use the same strategy as that
in exponential smoothing.

3.1.4 Adaptive linear exponential smoothing

Naturally, the underlying behavior of qt series may change
as relevance feedback search goes on. If the behavior seems
stable, queries in very early iterations can be used in forecas-
ting so as to take advantage of averaging. On the other hand,
if the behavior changes, recent queries are more desirable
since very early queries are no longer valid for current beha-
vior. Meanwhile, one distinguishable feature of relevance
feedback is that the number of iterations may be very small
(usually less than 10). That is, the number of past queries in
hand for prediction is rather limited. This simply suggests
that a noise (i.e., a query with suddenly abnormal change)
may affect the quality of prediction. For example, in ES or
LES, the selection of α is decided by SSE. A noisy query may
dominate the overall SSE. As a result, a α value far from best
may be selected.
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Fig. 1 Adaptive linear exponential smoothing

Considering above factors, we introduce adaptive pre-
diction for relevance feedback search. In this paper, we apply
the adaptive strategy particularly on LES for its effectiveness
as shown in experiments and name it as adaptive linear expo-
nential smoothing (ALES). The following Fig. 1 outlines the
algorithm of ALES.

ALES monitors the prediction error (i.e., |qt -qLES
t | for t th

iteration) and judges its changing trend (lines 1–2). From
the changing trends, ALES identifies and smooth the noisy
queries (lines 3–4). A query is identified as a noise if its pre-
diction error exhibits a sharp up or down along the changing
trend. In our experiments, we use the following heuristic. A
query is identified as a noisy query if the following inequality
holds:
∣
∣
∣
∣
qt − qt−1 + qt+1

2

∣
∣
∣
∣
≥ qt−1 + qt+1

2

That is, we compute a query’s change volume by looking
at its left and right neighbors. The above inequality also sug-
gests that the noise identification is more sensitive when the
query value is smaller. Bear in mind that the number of ite-
rations in relevance feedback is small. Instead of removing
the noisy queries, we smooth them by automatically repla-
cing them with their predictions. The purpose of doing so is
to have enough data for future prediction without sacrificing
the quality. The intrinsic changing trend is then re-identified.
If the prediction errors tend to be smaller and smaller over
iterations, far early queries well fit the current behavior and a
smaller α value is expected to reduce the error more quickly
(line 5–6). On the other hand, if the prediction errors tend to
be larger and larger over iterations, far early queries are out of
date for the current behavior and a larger α value is expected
to emphasize on more recent queries (line 7–8). Finally, new
prediction is made on the modified α value (line 9).

As we can see, ALES considers noises and modifies α

(its values has to be in the range of (0, 1)) to be adaptive
on the changing prediction error. Furthermore, in relevance
feedback search, ALES has the functionality of smoothing
noisy queries too.

So far, we have looked at four prediction models for query
point prediction. Similarly, for each prediction model, the
weight for each dimension and the pruning radius in next

iteration are also predicted to compute the overlap. Notice
that prediction methods need information of at least two
queries before it can make the first prediction. Hence, above
methods can only be applied after the second iteration. To pre-
dict Q2, we use the same methods as described in Sect. 2.2
applied on whole R1 by assuming that all the results are
“good”. If distance functions like weighted Euclidean func-
tion are used, generally speaking, the smaller the distance is,
the greater the relevance is. To transfer the distance value of
the i th nearest neighbor (except the query itself if it comes
from database) R1[i] into its corresponding weight, we use
the following formula:

w(R1[i]) =
∑K

j=1 d(Q1, R1[ j])
d(Q1, R1[i])

It is then normalized as follows:

w(R1[i]) = w(R1[i])
∑K

j=1 w(R1[ j])
The predicted query point q ′

2 is then computed:

q ′
2 =

K
∑

j=1

w(R1[ j]) ∗ R1[ j]

The weight for each dimension is assigned as formulated
in Sect. 2.2, where the standard deviation is computed based
on all the results.

3.2 “Optimal” query prediction

In the last subsection, we have discussed how to predict the
next refined feedback query Qt+1 and its search radius rt+1

based on Q1 to Qt and r1 to rt , so as to estimate the overlap
between t th and (t+1)th iterations. Given an initial query Q1,
we assume its “optimal” query, denoted as Qopt , is reached
after opt iterations. After the first t iterations, it still needs
(opt-t) iterations to terminate the feedback loop.

From the third observation that queries executed in the
early iterations may suggest their changing trend, it inspires
OptRFS to discover Qopt directly so that the intermediate
(t + 1)th to (opt − 1)th iterations can be saved in feedback
loop. That is, given the information in the past t iterations,
OptRFS tries to predict Qopt instead of Qt+1. However, this
is not trivial. To do so, the key is to know the value of opt.

In our forecasting models, as more data become available,
the prediction tends to be more accurate [7]. Hence in feed-
back loop, the prediction error in the next iteration is expec-
ted to be smaller than that of the current iteration. In the
ideal situation, the prediction error is zero when the “opti-
mal” query is reached. Motivated by this, we derive opt by
forecasting when the prediction error approaches zero. Here
we use the prediction error defined as |qt − q ′

t | for t th itera-
tion. Given the prediction errors in the past t iterations and
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Fig. 2 A general relevance
feedback architecture integrated
with OptRFS Graphic
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|qopt − q ′
opt|=0, the value of opt can be easily determined

when any of four prediction models is applied. After kno-
wing the value of opt , Qopt can be simply predicted based
on Q1 to Qt by treating the prediction of Qt+1 to Qopt−1 as
real refined queries.

Notice that our prediction of opt is based on the assump-
tion that the prediction error is zero when the feedback loop
is terminated. However, this may not always be the case
since the prediction models often carry prediction errors.
Consequently, the “optimal” query might be over-predicted.
Assume the prediction of “optimal” query is invoked after t
iterations. Generally, the larger the t is, the more accurate the
prediction is, and the less number of iterations is saved.

In short, by predicting the “optimal” query, OptRFS can
quickly direct the feedback search to the final iteration so
that the number of iterations can be reduced, with minor
accuracy sacrifice. The detailed embedment of OptRFS in
feedback search will be discussed in the next subsection.

3.3 System overhead

OptRFS investigates linear regression and exponential
smoothing. Their performances will be reported shortly. The
final output of OptRFS is Overlap′

t,t+1. As mentioned,
OptRFS can be nicely integrated with existing feedback
mechanisms and search methodologies. Figure 2 depicts a
general system architecture enriched with OptRFS. As we
can see, OptRFS receives the query information and candi-
date set, and returns the overlap to the search engine which
deploys some KNN search algorithms for the corresponding
indexing structures.

During the t th iteration, relevance feedback mechanism
generates Qt and passes it to both search engine and OptRFS.
OptRFS maintains the past queries. Upon completing the
t th iteration, search engine returns Rt to the user. Meanw-
hile, it passes rt and Ct to OptRFS. OptRFS then predicts
Overlap′

t,t+1 based on the past queries, rt and Ct . After pre-
dicting Overlap′

t,t+1, OptRFS discards rt and Ct by freeing
their memory locations. That is, rt and Ct are used on-the-fly.
So before the initialization of the (t + 1)th iteration, the sys-
tem storage overhead for OptRFS includes the past queries
and Overlap′

t,t+1. And Overlap′
t,t+1 is sequentially orga-

nized. After the search engine completes a sequential scan on

Fig. 3 OptRFS-based relevance feedback

Overlap′
t,t+1 during the (t +1)th iteration, Overlap′

t,t+1 is
then discarded. Notice that OptRFS also predicts the “opti-
mal” query after the first few iterations by using the past pre-
diction errors. If the prediction of “optimal” query is invoked
after t th iteration, then the feedback loop is terminated after
its (t + 1)th iteration. That is, Overlap′

t,t+1 is the predicted
overlap between t th iteration and final iteration.

3.4 The KNN search in relevance feedback

In this subsection, we look at how OptRFS can be easily
embedded into an existing KNN algorithm to improve its
performance significantly. A universal KNN algorithm can
be generalized into two steps (Fig. 3). In the first step, data
space is filtered based on certain techniques, and a set of
candidates are returned. In the second step, random accesses
are performed on the candidates to compute their real dis-
tances, and the results are ranked and returned. OptRFS can
be easily embedded as follows. Before the first step, a sequen-
tial scan is performed on the predicted overlap returned from
OptRFS. Interestingly, after sequentially scanning the pre-
dicted overlap, an initial set of results can also be computed.
And the tighter pruning radius is then passed to the first step.
In the second step, random accesses are performed on the
candidates excluding those in the predicted overlap, and the
results are correspondingly updated.

While OptRFS can be easily deployed in existing KNN
search methods, here we choose VA-file’s two-phase algo-
rithm as our example for its effectiveness and simplicity [36].
This also facilitates comparison with the proposal [38] des-
cribed in Sect. 2.3.1. In OptRFS, ru

t+1 is further tightened by
considering all the results from early iterations, i.e., ru

t+1 is
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the K th largest distance between Qt+1 and R1, ..., Rt with
wt+1. This provides a possible smaller rt+1 than that in [38].

The following algorithm shows how OptRFS can be
embedded into VA-file’s KNN search and how OptRFS
reduces the random accesses. We denote the standard first
and second phase filtering in VA-file as VA_P1 and VA_P2.
VA_P1 receives two parameters Qt and rt in the phase I filte-
ring and returns the candidate set Ct . VA_P2 accepts Qt , Ct -
Overlap′

t−1,t (i.e., candidate set for random accesses), Rt

(i.e., initial result set computed from the predicted overlap),
and returns the final results set Rt .

For the first iteration, a standard VA-file KNN search is
performed (lines 1–3). Starting from the second iteration,
OptRFS plays the role. It predicts the overlap between two
consecutive iterations. At the same time, it also returns rt

based on the past results (line 5). The predicted overlap is
then sequentially scanned and an initial set of results are
also computed (line 6). Function VA_P1 performs phase I
filtering by enforcing the rt (line 7). Function VA_P2 then
performs phase II filtering by randomly accessing on the can-
didates excluding those that have been sequentially scanned,
and the results are also correspondingly updated (line 8).
Notice that the above algorithm does not indicate the func-
tion of predicting the “optimal” query. In OptRFS, users can
specify after how many iterations this function can be invo-
ked. Once the “optimal” query is predicted, OptRFS then
estimates the overlap between current iteration and final ite-
ration, and passes the predicted “optimal” query, denoted as
Q′

opt, to functions Scan, VA_P1, and VA_P2 for the final
process of feedback loop (lines 5–8 except Qt is replaced by
Q′

opt).
Comparing with the approach in [38], OptRFS has seve-

ral distinctive features. First and most interestingly, repeated
random accesses on the same candidates in two consecutive
iterations are avoided. Instead, an efficient scan on the over-
lap leads to a much faster response. Generally, the overlap
size is much smaller than the candidate size [38]. Manipula-
ting overlap instead of whole candidate set in last iteration
saves both storage and scan overhead. Second, an initial set
of results are computed when the sequential scan is perfor-
med on the predicted overlap. It is potential that the initial set
contain some real results. This provides a chance for phase
II to stop earlier. Let us consider the best case. When the
initial set contains all real results and the lower bound of first
candidate in phase II is already greater than the K th actual lar-
gest distance, phase II stops immediately without consuming
single random access. Third, a tighter rt is computed, which
results in a smaller number of candidates. Fourth, OptRFS
is able to predict the “optimal” query so that the feedback
loop can be terminated earlier. It’s noticed that OptRFS is
more effective when there are indeed some considerable over-
lap between two iterations. While skipping many feedback
iterations improves the performance of feedback search, it

may also affect the result quality. Naturally, two questions
immediately follow up: how many percent of candidates in
Ct overlap with candidates in Ct−1, and how many iterations
are needed before an accurate “optimal” query prediction can
be made? We will see the answers in the next section.

4 Experiments

We have implemented OptRFS. In this section, we report
results of our experimental study on real image databases.

4.1 Experiments setup

All the experiments were performed on a Sun UtraSparc II
450 Mhz (2 CPU) with 1 Gb RAM. We use two real datasets
in our experiments.

− WWW image dataset: We created one data set extrac-
ted from 62,400 WWW images randomly crawled from
over 40,000 web sites. It consists of 159-dimensional
color histograms extracted from these images. The size
is about 40 Mb.

− Corel image dataset: The Corel image collection contains
68,040 images [1], from which a 32-dimensional HSV
Color Histogram feature space is extracted. The size is
about 8.7 Mb.

A VA-file is constructed for each image feature space.
The implemented VA-file uses 5 bits for each dimension. All
results reported are based on 50 queries for 20NN. The que-
ries are randomly selected from the database. We adopted the
weighted L2 norm for similarity measure. By default, every
dimension has the same weight. To avoid the subjectivity
involved in selecting “good” images to refine the query, by
default we choose the top 5 most relevant images as “good”
images, where the relevance is identified by the similarity.
Meanwhile, user studies were also conducted to further prove
our proposals. For each user study, a group of five students
perform subjective judgement on the ground truth for each
query. Each student reports average results on ten queries.

To study the effectiveness of our proposal, we consider
the following measures:

− (a) Percentage of overlap—PO: It is a precondition for
OptRFS to know in relevance feedback search how many
percent of candidates in the (t +1)th iteration have been
accessed in the t th iteration. Intuitively, the larger the PO
is, the more random accesses can be saved. Formally, the
PO is defined as:

PO = Ct ∩ Ct+1

Ct+1
.
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Fig. 4 Percentage of overlap
between two consecutive
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− (b) Precision of overlap prediction—POP: POP indi-
cates how accurate OptRFS can predict the overlap, and
it is formally defined as:

POP = Overlap′
t,t+1 ∩ Overlapt,t+1

Overlap′
t,t+1 ∪ Overlapt,t+1

where Overlapt,t+1=Ct ∩Ct+1, which is the actual over-
lap. Obviously, the large the POP, the more effective the
OptRFS.

− (c) Precision of “optimal” query prediction—PQP: PQP
indicates how accurate OptRFS can predict the “optimal”
query, and it is formally defined as:

PQP = Ropt ∩ R′
opt

Ropt

where Ropt and R′
opt are the results returned by the “opti-

mal” query and predicted “optimal” query.
− (d) Ratio of random access saved—RAS: Since data

objects reside in the secondary storage, one of our goals
is to know the random accesses saved by OptRFS in the
next iterations of relevance feedback by overlap predic-
tion. Note that we do not consider the effects of main
memory, including its cache sizes, replacement policies,
pre-fetch policies, etc. In t th iteration, denote the num-
ber of randomly accessed candidates of standard VA-file
search and OptRFS as CVA

t and COptRFS
t respectively.

Assume that a random access is ten times more expen-
sive than a sequential scan. For t th iteration, RAS is then
defined as:

RAS = CVA
t

COptRFS
t + Overlap′

t−1,t
10

Notice that the scan on the Overlap′
t−1,t is also included

as part of random access cost in OptRFS.
− (e) Ratio of iterations saved—RIS: The other goal is

to know the number of iterations saved by OptRFS in

feedback loop by “optimal” query prediction. Denote the
number of iterations with and without “optimal” query
prediction as opt′ and opt respectively, RIS is defined
as:

RIS = opt − opt′

opt

Obviously, the total number of random accesses in feed-
back loop can also be reduced due to the reduction of
iterations.

− (f) A comparison study: Finally, we would like to see how
significantly OptRFS can improve feedback search, by
considering both overlap prediction and “optimal” query
prediction as a whole. It is always more convincing to
show the superiority of one method over others by com-
paring their performances. Here we compare OptRFS
with the latest proposal in [38] (denote as tighter VA or
TVA for short). To measure the relative improvement,
we also use the ratio of random access saved (RAS) for
the whole relevance loop, which is defined as:

RAS = CTVA

COptRFS + Overlap′
10

where CTVA and COptRFS are the total number of ran-
domly accessed candidates from all iterations for TVA
and OptRFS respectively, and Overlap′ is the sum of
predicted overlaps from all iterations for sequential scan.

4.2 Percentage of overlap

We first confirm the existence of space overlap between two
consecutive iterations. Figure 4 shows the percentage of over-
lap (PO) between the i th and (i − 1)th iterations for both
WWW image dataset and Corel image dataset, where i ranges
from 2 to 8. Figure 4a shows the results when only the query
point movement is considered, while Fig. 4b takes both query
point movement and metric modification into account.
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Fig. 5 Precision of overlap
prediction

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3  4  5  6  7  8

PO
P

Iterations

ALES
LES

ES
LR

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3  4  5  6  7  8

PO
P

Iterations

ALES
LES

ES
LR

(a) (b)

Unsurprisingly, such overlaps exist and the volume of
overlap is considerably large. Both figures show that the
overlap becomes more significant as more iterations are
accomplished. And metric modification causes less overlap,
comparing Fig. 4b to 4a. As the number of iteration increases,
the PO grows and reaches above 90% in the 8th iteration.
Both datasets show similar trends. This unveils one feature of
relevance feedback search. The converging process towards
the “optimal” setting may slow down as more iterations have
been completed. At the beginning of the loop, the query may
be far away from the “optimal” one and the amount of query
modification could be large. As more good results are retur-
ned, the query refinement is expected to be less significant.

This experiment indicates that a large percentage of can-
didates in current iteration had been accessed before. Since
one candidate consumes one random access to retrieve the
actual data, a large number of repeated random accesses
occur. Saving those random accesses will further speed up
the retrieval.

Notice that there is a sharp jump in Fig. 4b when iteration
changes from 2 to 3. This indicates that the default equal
weight setting is too far away from the “optimal” setting.
To reduce the prediction error caused by the default weight
setting, we do not include the w1, the weight setting for the
first iteration, in our prediction models. That is, our prediction
starts from the third iteration in the following experiments.

4.3 Precision of overlap prediction

In this experiment, we show how accurate the prediction
models in OptRFS can achieve for overlap prediction.
Figure 5 depicts the precisions of prediction for four methods.
For both datasets, we have the following observations. First,
ALES achieves linearly increasing and best performance of
more than 0.9 after 6th iteration. The next best performer
is LES followed by ES who achieves stable performance of
about 0.8. This confirms that some noisy queries and local
trends exist in the relevance feedback search. Second, in the
first few iterations, there is no clear difference between three
models. The main reason we believe is due to the extremely

small number of available queries for prediction. As more
iterations are executed, the improvements turn to be obvious
(last few iterations). This is mainly because that after seve-
ral iterations, recent queries start converging steadily and
forming a local trend towards to “optimal” query. Adapti-
vity to the prediction errors and noises further distinguish
ALES from LES. Notice that when precision is high, little
improvement will cause significant improvement on the ran-
dom access saved. Third and surprisingly, linear regression
performs badly although it becomes more effective as ite-
rations go on. This may be caused by the followings. First,
from last experiment, it is noticed that the change of query
over iterations is not constant. Less is changed in later ite-
rations. However, linear regression assumes the change to
be fixed. Second, the number of iterations in relevance feed-
back is relatively small. Linear regression gives large predic-
tion error when only few data are available. This experiment
shows that ALES best matches the features of relevance feed-
back search. Its performance is linearly increasing, starting
from a high level.

4.4 Precision of “optimal” query prediction

Next we show how accurate the prediction models in OptRFS
can achieve for “optimal” query prediction. We conducted
this experiment by a user study. The user’s perceived color
relevance is used to construct the feedback query. At each ite-
ration, the user manually judges a number of relevant results
as “good” images based on his/her perception. Those “good”
images are then used to update the feedback query as des-
cribed in Sect. 2.2. The loop terminates until the user gets
“optimal” results based on his/her perception.

Figure 6 depicts the precisions of prediction for four
methods. Notice that here the x-axis indicates after how many
iterations the “optimal” query prediction is invoked. As we
can see, the precisions increase continuously for all methods
as more iterations are executed before the prediction. This
is expected since more data potentially better suggest the
query changing trend. ALES scores the highest precision
consistently, followed by LES, ES and LR. For both datasets,
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Fig. 6 Precision of “optimal”
query prediction with human
perception
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Fig. 7 Ratio of random access
saved by overlap prediction
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ALES predicts “optimal” query with more than 90% accuracy
when the prediction is made after 4th iteration. Hence, after
four iterations have been executed, OptRFS is ready to per-
form “optimal” query prediction. This experiment further
confirms the greatest prediction power of ALES in feedback
search.

Due to the best performance of ALES in both overlap
prediction and “optimal query” prediction, consequently we
only use ALES as the prediction model for OptRFS in the
following experiments.

4.5 Ratio of random access saved

In this experiment, we see how effective our OptRFS per-
forms in saving random access by overlap prediction. Recall
that OptRFS reduces the number of random accesses by two
factors. The first is the much tighter pruning radius generated
by considering all previous iterations’ results. The second is
the overlap prediction to avoid duplicate random accesses.
Here we tested OptRFS with and without overlap prediction
function by comparing with the number of random accesses
of the standard VA-file search algorithm. Figure 7a shows the
results for WWW image dataset. As we can see, as iterations
go on, OptRFS without overlap prediction improves stan-
dard VA-file algorithm by more than an order of magnitude,

while OptRFS with overlap prediction further outperforms
standard VA-file algorithm by more than two orders of magni-
tude. The results on OptRFS without overlap prediction sug-
gest that the number of candidates drops dramatically in next
iterations of relevance feedback. And the results on OptRFS
with overlap prediction reconfirms that a large portion of can-
didates in current iteration have been accessed in the pervious
iteration, and scan on the predicted overlap further reduces
the number of random accesses greatly.

Figure 7b shows similar results for Corel image dataset.
However, comparing Fig. 7a and b, the results of WWW
and Corel image datasets are surprisingly similar. It might be
caused by the following reasons. First, relevance feedback
process always converges after a few iterations, regardless of
queries, datasets and their feature types. Although different
queries may reach convergence in different numbers of
iterations, most queries in either dataset finish converging in
similar pace. Second, both datasets are color features which
exhibit similar skewness. Most images have significant values
on very few dimensions only. It is expected that VA-file per-
forms similarly on both datasets. Third, our ALES method is
self-adaptive to data distributions by automatically adjusting
α values. That is, ALES considers local distribution/density
to self-adjust its predictions. This eliminates the effect of
different distributions to certain degrees. On the other hand,
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Fig. 8 Ratio of iterations saved
by “optimal” query prediction
with human perception
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Fig. 9 A comparison on total
improvement with human
perception
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similar results on two different color datasets also indicate
the consistency of our method on effective prediction.

4.6 Ratio of iterations saved

Next, we see how effective our OptRFS performs in saving
the number of iterations by “optimal” query prediction. We
conducted this experiment by a user study where the user
manually judges when relevance loop is terminated (i.e.,
when the “optimal” results are found) based on his/her per-
ception. Figure 8a shows the results for WWW image data-
set. Obviously, RIS drops as the “optimal” query prediction
takes place after more iterations have been executed. When
the prediction is invoked after three iterations, the number
of iterations can be saved by more than 60%. Look back at
Fig. 6 which suggests to invoke “optimal” query prediction
after four iterations, OptRFS can still reduce the number of
iterations by half. Figure 8b shows similar results for Corel
image dataset. This experiment confirms the effectiveness of
OptRFS by using “optimal” query prediction.

4.7 A Comparison study

Finally, we test OptRFS as a whole by considering both
overlap prediction and “optimal” query prediction. Here we

compare OptRFS with the latest proposal TVA in [38] by
using the ratio of random access saved (RAS) as defined in
Sect. 4.1, where the total numbers of random accesses from
all iterations during feedback search for TVA and OptRFS are
compared. This experiment was conducted by a user study,
where the user determines the relevance of results and the
termination of feedback search. Notice that for OptRFS, the
loop is automatically terminated once the predicted “opti-
mal” query is executed.

Figure 9 shows the improvement achieved by OptRFS,
where the x-axis indicates after how many iterations the
“optimal” query prediction is triggered. OptRFS is clearly
superior over the scheme in [38], by being able to achieve a
significant further reduction in the number of random
accesses by times (i.e., the total response time for feedback
search can be improved by times). As more iterations are
performed before the “optimal” query prediction, the impro-
vement degrades slightly. This is expected since less number
of iterations are saved in OptRFS. However, compared with
Fig. 8, this deterioration is much slower. The reason behind is
clear. At early iterations, both overlap prediction and “opti-
mal” query prediction achieve significant improvement. As
more iterations are executed, the improvement achieved by
overlap prediction increases, which offsets the deterioration
on ratio of iterations saved. When the “optimal” query is
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predicted after later iterations, overlap prediction will
dominate the overall improvement. In short, OptRFS
improves the existing method TVA greatly. It performs better
when larger overlaps occur and early “optimal” query predic-
tion is made. In machines whose random access is even more
expensive, the improvement is expected to be even higher.

5 Conclusion

In this paper, we proposed a new method called OptRFS to
reduce the total cost in relevance feedback search. The key
is to predict the overlap between two consecutive iterations
and the “optimal” query after early iterations. OptRFS stu-
died four prediction models, linear regression, exponential
smoothing, linear exponential smoothing and adaptive linear
exponential smoothing to forecast the future query (inclu-
ding “optimal” query) and its space to discover the overlap.
Our experiments confirm the effectiveness and the improve-
ment over an existing proposal achieved by OptRFS. And
the new proposal—adaptive linear exponential smoothing is
the most effective alternative for relevance feedback search. It
will also be interesting to extend the idea of OptRFS to query
processing methods in other areas which consume extensive
random accesses.
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