
The VLDB Journal (2008) 17:1445–1463
DOI 10.1007/s00778-007-0086-6

REGULAR PAPER

ArchIS: an XML-based approach to transaction-time
temporal database systems

Fusheng Wang · Carlo Zaniolo · Xin Zhou

Received: 29 August 2006 / Revised: 17 September 2007 / Accepted: 7 October 2007 / Published online: 4 January 2008
© Springer-Verlag 2007

Abstract Effective support for temporal applications by
database systems represents an important technical objective
that is difficult to achieve since it requires an integrated solu-
tion for several problems, including (i) expressive temporal
representations and data models, (ii) powerful languages for
temporal queries and snapshot queries, (iii) indexing, clus-
tering and query optimization techniques for managing tem-
poral information efficiently, and (iv) architectures that bring
together the different pieces of enabling technology into a
robust system. In this paper, we present the ArchIS system
that achieves these objectives by supporting a temporally
grouped data model on top of RDBMS. ArchIS’ architec-
ture uses (a) XML to support temporally grouped (virtual)
representations of the database history, (b) XQuery to express
powerful temporal queries on such views, (c) temporal clus-
tering and indexing techniques for managing the actual his-
torical data in a relational database, and (d) SQL/XML for
executing the queries on the XML views as equivalent que-
ries on the relational database. The performance studies pre-
sented in the paper show that ArchIS is quite effective at
storing and retrieving under complex query conditions the
transaction-time history of relational databases, and can also

F. Wang (B)
Integrated Data System Department, Siemens Corporate Research,
Princeton, NJ 08540, USA
e-mail: fusheng.wang@siemens.com

C. Zaniolo
Computer Science Department, University of California,
Los Angeles, Los Angeles, CA 90095, USA
e-mail: zaniolo@cs.ucla.edu

X. Zhou
Teradata Division, NCR Corporation,
Los Angeles, CA 90245, USA
e-mail: xin.zhou@ncr.com

assure excellent storage efficiency by providing compres-
sion as an option. This approach achieves full-functionality
transaction-time databases without requiring temporal exten-
sions in XML or database standards, and provides critical
support to emerging application areas such as RFID.

Keywords Temporal database · XML database ·
Temporal grouping · Temporal query · XQuery

1 Introduction

The interest in and user demand for temporal databases have
only increased with time [1]. For example, the emerging
RFID applications generate large amount of history data for
tracking and monitoring physical objects [2]. Unfortunately,
DBMS vendors and standard groups have not moved aggres-
sively to extend their systems with support for transaction-
time or valid-time. Given the strong application demand and
the significant research efforts spent on these problems [3],
the lack of viable solutions suggests that (i) the technical
challenges posed by the problem are many and severe, (ii)
their severity is exacerbated by the inflexibility of the rela-
tional data model and the lack of extensibility of SQL, and
(iii) the addition of temporal extensions to SQL standards
is not to be expected any time soon. In this paper, we ins-
tead introduce a novel low-cost solution, by showing how
XML and its query languages can be used to overcome most
of these difficulties, and propose transaction-time extensions
for database systems that require no modification of existing
standards. Indeed, unlike the relational model, XML pro-
vides excellent support for temporally grouped data models,
which have long been advocated as the most natural and
effective representations of temporal information [4]. Moreo-
ver, unlike SQL, XQuery [5] is Turing-complete and natively

123

1446 F. Wang et al.

extensible [6]. Thus many additional constructs needed for
temporal queries can be defined in XQuery itself, without
having to depend on difficult-to-obtain extensions by stan-
dard committees. However, in this paper we show that XML/
XQuery can play a very useful role in bringing temporal
support to database systems while retaining current stan-
dards, and such extensions are needed in emerging appli-
cation areas, such as the management of RFID data [2].
Because of these new applications, and since database ven-
dors who were torpid on temporal extensions for RDBMS
are now moving feverishly to add support for XML and
XQuery to their systems, we see a window of opportunity for
the approach proposed in this paper. In fact, most database
systems now support the publishing and viewing of data-
base tables through XML views, which can be queried using
XQuery and other languages. These queries are then suppor-
ted by mapping them into equivalent queries on the under-
lying database [7,8]. Database vendors and standard groups
are adding these capabilities to SQL through the SQL/XML
initiative [9].

In this paper, we propose a very useful generalization of
this idea, by showing that the evolution history of a relational
database can also be viewed naturally using XML and que-
ried effectively using XQuery. Moreover, the ArchIS system
discussed in this paper demonstrates that the temporal data
and temporal queries can be supported efficiently via the
data-compression, clustering, indexing and query-mapping
techniques discussed in the paper.

The paper is organized as follows: in Sect. 2 we show that
XML provides a natural vehicle for implementing a tempo-
rally grouped data model for representing the evolution his-
tory of a relational database. In fact, in Sect. 3 we show that
complex temporal and snapshot queries can be expressed on
such views using XQuery. Next, in Sect. 3.4, we show that the
approach can be used quite naturally to support RFID appli-
cations. In Sects. 4 and 5, we focus on the efficient imple-
mentation of such queries on RDBMS, where queries on the
XML views are translated into SQL/XML queries on the rela-
tional tables, and various indexing/clustering techniques are
used to make the execution of these queries efficient. Query
performance study in Section 6 shows that ArchIS is quite
effective, and in Sect. 7, we propose database compression
as an option, and present a simple but effective technique for
compressing archived databases. Related work is discussed
in Sect. 8, followed by conclusions and future work.

2 Viewing relation history in XML

Table 1 describes the history of employees as they would
be viewed in traditional transaction-time databases [3] using
a temporally ungrouped representation, where id is the key

Table 1 The snapshot history of employees

Id Name Salary Title Deptno Start End

1001 Bob 60000 Engineer d01 1995-01-01 1995-05-31

1001 Bob 70000 Engineer d01 1995-06-01 1995-09-30

1001 Bob 70000 Sr Engineer d02 1995-10-01 1996-01-31

1001 Bob 70000 Tech Leader d02 1996-02-01 1996-12-31

Fig. 1 Temporally grouped history of employees

of the table and remains invariant in the history.1 With this
approach, any change of an attribute value will lead to a new
history tuple, thus causes redundancy information between
tuples, e.g., the name of Bob appeared the same but was
stored in all the tuples. Moreover, temporal queries need to
frequently coalesce tuples. Temporal coalescing is a source of
complications in temporal databases, which is complex and
hard to scale in RDBMS. For instance, a temporal coalescing
query can take more than 20 lines of SQL with SQL92, and
the best performance of coalescing on RDBMS is quadratic
[11].

These problems can be overcome using a representation
where the timestamped history of each attribute is grou-
ped under the attribute (Fig. 1)[4], i.e., with the values of
each attribute, we associate a set of time intervals denoting
their validity—intervals that are adjacent or overlap for the
same attribute value are coalesced. While this nested repre-
sentation is hard to be represented in a flat table, it can be
naturally represented by an XML-based hierarchical view
shown in Fig. 2. We call these H-documents or H-views when
these are virtual representations. Here for simplicity, we only
show examples for employee table, other tables like dept
table can be modeled in similar way. The root element in
an H-document represents the corresponding table’s history
(the creation and deletion of a table), and its child elements

1 In the remainder of this paper, our granularity for time is a day; how-
ever, all the techniques we present are equally valid for any granularity
used by the application. For finer granularity, techniques in [10] can be
used. Furthermore, throughout this paper, we assume that relation keys
remain invariant.

123

ArchIS 1447

Fig. 2 The history of the employee table is viewed as
employees.xml

represent the grouped history of attribute values. Each ele-
ment in an H-document is assigned two attributes tstart
and tend, to represent the inclusive time-interval of the ele-
ment. The value of tend can be set to now, to denote the
ever-increasing current time. (This will be further discussed
in Sect. 3.3.) Note that there is a temporal covering constraint
that the interval of a parent node (table history) always covers
that of its child nodes (attribute histories).

In general, consider a relation R and let K denotes its
primary key. Then the corresponding H-document contains
an entity E for each maximal period of validity of a value
of K . Thus in Fig. 2, id is our key and the period of vali-
dity of id = 1001 is T = (1995-01-01–1996-12-31]. Thus,
our H-document contains an entity timestamped with this
validity period. Then the successive values of the attributes
for tuples with id = 1001 are represented as subelements
of E timestamped with their periods of maximal validity for
the values of the corresponding attributes. The attribute in
K always has one period of validity, while the others have
one or more; in our example, Bob has only one period, salary
and deptno have two and title has three. Thus, H-documents
have a simple and well-defined schema which can be easily
generated from that of the relation whose history they want
to preserve.

Our H-documents use a temporally grouped data model
[4]. Clifford et al. [4,12,13] show that temporally grouped
models are more natural and powerful than temporally
ungrouped ones, and can significantly reduce the need for
coalescing, since an attribute history is already grouped. For
instance, in Fig. 2 we can project out the salary entries without
having to change the title ones, and vice versa. If we ins-
tead use a relational representation, such as that of Table 1,
we will have to perform a coalescing operation after these
projections. Using the relational model, an alternative solu-
tion consists in decomposing Table 1 into four tables sharing
the id column. This solution will avoid coalescing, inasmuch
as H-documents do, but requires frequent joins on such
tables. Therefore, H-views combine the benefits of both

representations and support queries on the whole view and
its projections without requiring neither joins nor coalescing
operations. On the other hand, these benefits are restricted to
non-key attributes: coalescing is still required when we pro-
ject out attributes from the primary key. For instance, a query
such as “For how long has department d01 been without a
Sr. Engineer?”, would require projecting out name, salary,
title and id—and a coalescing operation will then be needed
because of the elimination of the key attribute id.

However, even for such cases, other XML’s advantages
remain, particularly since we can now use XQuery—a query
language that is significantly more powerful than SQL [6]—
to express coalescing and other temporal queries. In fact, as
discussed next, complex historical queries can be expressed
in standard XQuery, thus avoiding the need for a special-
purpose temporal query language.

3 Temporal queries using XQuery

The key advantage of our approach is that powerful tempo-
ral queries can be expressed in XQuery without requiring
the introduction of new constructs in the language. We next
show how to express the main classes of temporal queries
as discussed in [14,15]: temporal projection, temporal snap-
shot, temporal slicing, temporal join, temporal aggregate,
and restructuring, on employees.xml document(Fig. 2)
and depts.xml document(which is the H-document of the
department table, including the histories of attributes deptno,
deptname, and mgrno).

QUERY 1: Temporal Projection. Retrieve the title history of
employee “Bob”:

element title_history{
for $t in doc("employees.xml")/employees/
employee[name="Bob"]/title
return $t}

This query returns all title elements of employee
“Bob”, using a single XPath /employees/employee/
title, with a predicate on the name element. This query
illustrates the benefits of avoiding the need for coalescing
the query results. Since the history of titles is grouped, the
projected result is already coalesced—whereas coalescing
on the results would have to be performed in a temporally
ungrouped representation.

QUERY 2: Temporal Snapshot. Retrieve the managers on
1994-05-06:

for $m in doc("depts.xml")/depts/dept/mgrno
[tstart(.)<=xs:date("1994-05-06") and
tend(.) >= xs:date("1994-05-06")]
return $m

This query returns all managers in the history whose inter-
val overlap with the timestamp 1994-05-06. Note that

123

1448 F. Wang et al.

xs is the namespace of XML Schema (the declaration of
namespaces is ignored here).tstart($e) andtend($e)
are user-defined functions that respectively extract the star-
ting date and ending date of an element. By using such
functions, the implementation details of our timestamping
schemes can be made transparent to users. This will be fur-
ther discussed in Sect. 3.2.

QUERY 3: Temporal Slicing. Find employees who worked
at any time between 1994-05-06 and 1995-05-06:

for $e in doc("employees.xml")/employees
/employee[toverlaps(.,
telement(xs:date("1994-05-06"),
xs:date("1995-05-06")))]
return $e/name

This query checks if the interval of anemployee element
overlapped with a given interval. Here, toverlaps
($a, $b) is a function that returns true if the temporal
intervals of elements a and b overlap, and false otherwise;
telement($x, $y) constructs an element with x and y
as its attributes.

QUERY 4: Temporal Join. Find the history of employees that
each manager manages:

element manages{
for $d in doc("depts.xml")/depts/dept
for $m in $d/mgrno
return
element manage {$d/deptno, $m,
element employees {
for $e in doc("employees.xml")/employees
/employee/deptno
where $e = $d/deptno and not(
empty(overlapinterval($e, $m)))
return ($e/../name, overlapinterval ($e, $m))
}}}

This query joins thedepts.xml andemployees.xml
documents and generates a hierarchical XML document
grouped by dept and manager: for each mgrno in
depts.xml, all employees inemployees.xml are retur-
ned if they were in the same department as and during periods
that overlapped with those of the manager. Here,overlap-
interval($a, $b) is a user-defined function that
returns an interval element describing the overlapping
period. If this period is empty, then the XQuery built-in func-
tion empty($e) is satisfied and nothing is returned.

QUERY 5: Temporal Aggregate. Retrieve the history of the
average salary:

let $s := document("emp.xml")/employees/
employee/salary
return tavg($s)

Here tavg($s) is a temporal aggregate function that
can be efficiently computed in a single scan of the database.

Other temporal aggregates such as TSQL2 rising [15] and
moving window aggregates, can also be supported through
user-defined functions.

QUERY 6: Restructuring. Find the maximum length of time
during which Bob worked continuously without changing
title or department:

for $e in doc("emp.xml")/employees/
employee[name="Bob"]
let $d := $e/dept
let $t := $e/title
let $overlaps := restructure($d, $t)
return max($overlaps)

The user-defined function restructure takes two lists
and returns all their overlapping intervals.

3.1 More complex queries

Here, we discuss more advanced temporal queries, such as
until, since, and contain, which are often used as a test for the
expressive power of temporal languages [16]. For instance,
the following is a since query:

QUERY 7: A Since B. Find the employee who has been a
Senior Engineer in dept “d001” since he/she joined the dept:

for $e in doc("employees.xml")/employees/employee
let $m:= $e/title[.="Sr Engineer" and
tend(.)=current-date()]
let $d:=$e/deptno[.="d001" and
tend(.)=current-date() and
tcontains($m, .)]
where not empty($d) and not empty($m)
return <employee>
{$e/id, $e/name}</employee>

Heretcontains($p,$c) is a user-defined function to
check if one interval contains another. The first let clause
returns current “Sr Engineers”, and the second let clause
returns those currently in dept “d001”, with the period contai-
ning the title period.

QUERY 8: Period Containment. Find employees with the
same employment history as employee “Bob”, i.e., they wor-
ked in the same department(s) as employee “Bob” and
for exactly the same periods:

for $e1 in doc("employees.xml")/employees
/employee[name = "Bob"]
for $e2 in doc("employees.xml")/employees
/employee[name != "Bob"]
where every $d1 in $e1/deptno satisfies
some $d2 in $e2/deptno satisfies
(string($d1)=string($d2)
and tequals($d2,$d1))
and every $d2 in $e2/deptno satisfies
some $d1 in $e1/deptno satisfies
(string($d2)=string($d1)
and tequals($d1,$d2))
return <employee>{$e2/name}</employee>

123

ArchIS 1449

Here tequals($d1,$d2) is a user-defined function
that checks whether two nodes have the same time periods
(i.e., sametstart andtend). For this query, we check that
for each department Bob worked, if there is a person who
once worked in that department as well, and with exactly the
same period, and vice versa.

3.2 Temporal functions

The use of functions such as tequals($d1,$d2),
tstart($e), and tend($e) offers the advantage of
divorcing temporal queries from the low-level details used in
representing time, e.g., if the interval is closed at the end, or
how now is represented. Other useful functions predefined in
our system include interval functions as defined Allen’s tem-
poral operators; during/date/time functions that will extract
time from the database by hiding the implementation details;
functions to handle now, and restructuring function for hand-
ling coalescing, which is very common for temporal data-
bases.

Restructuring functions: coalesce($l) will coalesce a
list of nodes, and restructure($a,$b) will return all
the overlapped intervals on two set of nodes.

Interval functions:tequals($a,$b),tmeets($a,$b),
toverlaps($a,$b), tprecedes($a,$b) and
tcontains($a,$b) return true or false according to the
positions of the two intervals. The overlapinterval
($a,$b) returns the overlapping portion of the intervals,
if this is not empty, with the following form: <interval
tstart= "d1" tend="d2"/>.

Duration and date/time functions:
timespan($e) returns the scalar time span of a node;
tstart($e) returns the start time of a node;
tend($e) returns the end time of a node;
tinterval($e) returns the interval of a node;
telement($Ts, $Te) constructs an empty element
telement with attributes tstart and tend;
rtend($e) recursively replaces all the occurrence of
“9999-12-31” with the value of current_date;
externalnow($e) recursively replaces all the occurrence
of “9999-12-31” with the string “now”.

All these temporal functions must also support the special
‘now’ timestamp, which is discussed in Sect. 3.3, below.

In particular, because of the internal representation we use
for ‘now’, the function tcontains($a,$b) can simply
be defined as follows:

define function tcontains($a, $b){
if($a/@tstart<= $b/@tstart and
$a/@tend >= $b/@tend)
then true()
else false()
}

3.3 Support for “now”

An important issue in temporal databases is how to handle
now or UC (until changed) [17,18]. In a transaction-time
database, now means that the values in the tuple are still cur-
rent at the time the query is asked. In our strategy, we replace
the symbol “now” with the value current_timestamp
(or current_date, depending on the used time granu-
larity). Such instantiation is performed conservatively only
when needed.

Internally, we use the “end-of-time” value (e.g., “9999-
12-31” for date) to denote the “now” symbol; this represen-
tation can assure that the current search techniques based
on indexes and temporal ordering can be used without any
change. The user does not access this value directly, he/she
will access it through built-in functions tstart($e) and
tend($e). While the function tstart($e) returns the
start of the interval, the tend($e) function returns its end,
if this is different from “9999-12-31” and current_date
otherwise. Also, many situations call for a different solution.
For instance, the XML nodes returned by QUERY 1, use the
“9999-12-31” internal representation for now, which makes
it easier to use this as input in other temporal queries.

However, for data returned to the end-user, two different
representations are preferable. One is to return the
current_date by applying function rtend($e) that,
recursively, replaces all the occurrence of “9999-12-31” with
the value of current_date. The other is to return a spe-
cial string, such as “now” or “until-changed” to be displayed
on the end-user screen. As discussed in [17], this is often
more intuitive and appealing for users, and is supported by
our built-in function externalnow($e) that does that for
the node e and its sub-nodes.

3.4 RFID applications

The need for supporting temporal queries is pervasive
in many new and important application areas, and in the
previous section, we have shown how the classical queries
from the temporal database literature can be effectively
expressed in ArchIS. In this section, we will focus on the
emerging application area of RFID data management, since
temporal queries play a key role in this important application
domain [2].

RFID (radio frequency identification) is a key technology
for automatic identification and data capture that uses radio
frequency waves to transfer data between readers and EPC. 2

Using RFID, objects can be automatically identified, catego-
rized, and tracked, without requiring a line of sight or contact

2 (EPC—Electronic Product Code—is an identification scheme for uni-
versally identifying physical objects, defined by standard committees
[19].)

123

1450 F. Wang et al.

1: Cases packed onto pallet
2: Pallet loaded onto truck
3: Pallet unloaded to retail store
4. Cases checked out at register

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

� ��

��

��

��

��

��

��

��

��

��

��

��

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

�� ���
�� ���

�

Supplier Warehouse

Retail Store

��

��

11��

��

��

��

��

��

44

33

22

Fig. 3 Location driven changes in RFID-enabled applications

between readers and tagged objects. Because of its significant
advantages, RFID technology is being gradually adopted and
deployed in a wide area of applications.

There are several important entities in RFID applications,
including EPC-tagged objects, RFID readers, and locations.
Figure 3 demonstrates an example of an RFID enabled sup-
ply chain, where cases are packed onto pallets and shipped
through trucks to retail stores to be sold to customers. During
the process, these RFID-tagged entities interact with each
other and experience various events, such as change of loca-
tions, and change of containers. There are also other types
of events, such as business operations, and change of legal
owners. Thus RFID data are temporally oriented [2]. One
major goal of RFID applications is to track and monitor phy-
sical objects, thus a temporal database is essential to support
such applications. Temporal support, however, is missing in
past RFID middleware systems [20,21]. Next, we show that
our approach is a perfect fit for tracking and monitoring RFID
objects.

3.4.1 Representing RFID data in XML

The history of RFID objects can be directly represented in an
H-view, as shown in an example in Fig. 4. In this example,
the H-view represents the history of an object’s along the

<objects tstart="2005-08-01" tend="now">
<object tstart="2005-08-01" tend="now">

<epc tstart="2005-08-01" tend="now">A1B2C3</epc>
<location tstart="2005-08-01" tend="2005-08-05">warehouse1</location>
<location tstart="2005-08-06" tend="2005-08-09">routeA</location>
<location tstart="2005-08-10" tend="2005-08-15">retailerW</location>
<location tstart="2005-08-16" tend="2005-08-17">sold</location>
<location tstart="2005-08-18" tend="2005-08-19">retailerW</location>
<location tstart="2005-08-20" tend="UC">sold</location>
<containerepc tstart="2005-08-01" tend="2005-08-05">A1EFGD</containerepc>
<containerepc tstart="2005-08-06" tend="2005-08-09">A1C3DF</containerepc>
<owner tstart="2005-08-01" tend="2005-08-04">Supply A Co.</owner>
<owner tstart="2005-08-05" tend="2005-08-15">Retail W Co.</owner>
<owner tstart="2005-08-16" tend="2005-08-17">Customer</owner>
<owner tstart="2005-08-18" tend="2005-08-19">Retail W Co.</owner>
<owner tstart="2005-08-20" tend="UC">Customer</owner>

</object>
<!-- more ... -->

</objects>

Fig. 4 RFID object history in XML (rfid.xml)

three dimensions of location, containment, and ownership.
Thus, the <location> history of our object identified by
the EPC tag A1B2C3 is generated by the steps 1–4 of Fig. 3;
its <containerpc> history instead records the placement
first into a case and then into a pallet that also occurred during
the steps shown in Fig. 3.

Next, we show that powerful RFID queries for tracking
and monitoring can be supported in ArchIS with XQuery.

3.4.2 Temporal RFID queries with ArchIS

QUERY R1: Track the location history of object with EPC
“A1B2C3”:

element locationhistory{
for $l in doc("rfid.xml")/objects/
object[epc="A1B2C3"]/location
return $l }

QUERY R2: This case (with EPC “A1B2C3”) of product is
damaged. What other cases have ever been put in the same
pallet with this case at the same time?

for $s in doc("rfid.xml")/objects/object
[epc="A1B2C3"]
for $c in $s/containerepc
for $o in doc("rfid.xml")/objects/object
[epc != "A1B2C3" and containerepc=$c]
where toverlaps($c, overlapinterval($s, $o))
return $o

This query checks if there are other objects in the same
container of object “A1B2C3” and with overlapping periods.
QUERY R3: Find how many items were returned by custo-
mers (with location “sold”) to the store (with location “retai-
lerW”) on 2005-11-11:

let $o := doc("rfid.xml")/objects/object
[location ="retailerW" and tstart(location)
=xs:date("2005-11-11")]
where every $i in $o satisfies
fn:exists($o[location = "sold" and
tend(location)=xs:date("2005-11-11")])
return count($o)

Since items sold to customers would begin a new loca-
tion, the query checks all objects whose locations started at
location “retailerW” on 2005-11-11.
QUERY R4: find missing objects at current location “L”,
which were available at location “S” at time “T”.

for $o in doc("rfid.xml")/objects/object
[location="S" and tcontains(location,
telement(xs:date("T"), xs:date("T")))]
where empty($o/location[. ="L" and
tend($o/location) = "UC"]
return $o

This query will search objects which passed through loca-
tion “S” at time “T”, but are not available on “L” at present.

The XML-based representation and query support also
facilitate the exchange of RFID data in distributed RFID

123

ArchIS 1451

applications, such as large distributed supply chain systems.
RFID observations are frequently exchanged among multiple
sites with PML (Physical Markup Language) [22]; therefore,
the RFID data history can be easily queried and exchanged
in our H-document format.

4 The ArchIS system

Two approaches are possible for storing and querying
H-documents: one is to use a native XML DBMS such as
Tamino XML Server [23]; the other is to use RDBMSs and
provide mappings of queries and query results between the
XML views and the underlying database systems. The query
performance and the storage efficiency of the two approaches
are compared in Sect. 6.

The main design issues that must be addressed for an effi-
cient realization of the second approach include i) how to map
(shred) the XML views representing the H-documents into
tables (which we call H-tables), ii) how to translate queries
on the XML views to the H-tables, and iii) which indexing,
clustering and query mapping techniques should be used for
high performance.

We will next discuss the solutions of these problems used
in our Archival Information System—ArchIS, which uses the
RDBMS-based approach (ArchIS-DB2 on DB2 and ArchIS–
ATLaS on ATLaS [24]—a compact implementation of an
RDBMS at UCLA. The architecture of ArchIS is shown in
Fig. 5. In our implementation, the “current database” and
H-tables are implemented as tables in a same database, but
the results are easily generalized to the situations where these
two are separate, or even the case where the current database
is a view containing the now snapshot of the H-tables.

4.1 H-tables

In ArchIS, each H-document is stored in the database as inter-
nal H-tables. For each table in the current relational database
we store a key table and several attribute history tables. An

Fig. 5 ArchIS: Archival Information System

attribute history table is built for each attribute to store the
history of such attribute. A key table is built for the key.
Each table will include two attributes tstart and tend to
represent the valid interval of that tuple. Besides, a global
relation table is used to record the history of relations.

For example, we have the following relation in the current
database:

employee(id, name, salary, title, deptno)

where id is the key. The history of the table is viewed as an
H-document, which is then stored as (i) a key table, (ii) the
attribute history tables, and a global relation table:

The key table:
employee_id(id, tstart, tend)

Since id will not change along the history, the interval
(tstart, tend) in the key table also represents the valid
interval of the employee.

For composite keys, for example, (supplierno,
itemno), we build a key table as lineitem_id(id,
supplierno, itemno, tstart, tend), whereid
is a unique value generated from (supplierno,itemno).
The use of keys is for easy joining of all attribute histories of
an object such as an employee.
Attribute history tables:
employee_name(id,name,tstart,tend)
employee_deptno(id, deptno, tstart,tend)
employee_salary(id, salary, tstart,tend)
employee_title(id, title, tstart,tend)

The values of ids in the above tables are the corresponding
key values, thus indexes on suchids can efficiently join these
relations.

A sample content of the employee_salary table is

ID SALARY TSTART TEND
===================================
100022 40000 02/20/1988 02/19/1989
100022 42010 02/20/1989 02/04/1990
100022 42525 02/20/1990 02/04/1991
100022 42327 02/20/1991 02/19/1992
...
100023 43162 07/13/1988 07/13/1989
...

When a new tuple is inserted, theTSTART for the new tuple is
set to the current timestamp, and TEND is set to now. When
there is a delete on a current tuple, we simply change the
TEND value in that tuple as current timestamp. An update
can be viewed as a delete followed by an insert.

Global relation table:
relations(relationname, tstart, tend)
will record all the relations history in the database schema,
i.e., the time spans covered by the various tables in the data-
base. This corresponds to the root elements of H-documents.

Our design builds on the assumption that keys (e.g., id)
remain invariant in the history. Otherwise, a system-
generated surrogate key can be used.

123

1452 F. Wang et al.

Algorithm 1 XQuery to SQL/XML translation algorithm
1: for each variable $vi in for and let clause of XQuery do
2: Find table Ti and Column Ai according to schema mapping
3: end for
4: for any variable v j which is defined by a relative XPath from vi ,

such as v j := vi /salar y do
5: Generate join condition Ci j−id : Vi .id = Vj .id
6: end for
7: for every condition Vi op Vj in where clause of XQuery do
8: Generate condition Ci j−where: Ti .Ai op Tj .A j
9: end for
10: for every function in XQuery f n($vi , $v j) do
11: Generate function f ni j (Ti .Ai , Ti .tstart , Ti .tend , Tj .A j ,

Tj .tstart , Tj .tend)
12: end for
13: for every $vi in return clause do
14: Generate Ei : XMLElement (Name vi ’s element name, XMLAt-

tributes (Ti .tstart as “tstart”, Ti .tend as “tend”), Ti .Ai)
15: end for
16: for every parent-child relationship vi (v j) in return clause do
17: Generate Ei j : XMLElement (Name vi ’s element name, XMLAt-

tributes (Ti .tstart as “tstart”, Ti .tend as “tend”), E j , Ti .Ai)
18: end for
19: Generate output SQL

4.2 Updating table histories

Changes in the current database can be tracked with either
update logs or triggers. For our testing on ArchIS-DB2, we
build triggers that successfully track changes in the cur-
rent database and archive them into H-tables. For ArchIS–
ATLaS, for better performance, we use update logs to track
and archive changes.

4.3 Query mapping

Very general translation mechanisms from XML documents
to RDBMS have been studied in [25] and middleware such
as XTABLES [7] can be used to publish our H-tables into
XML and support queries on such tables. After investigating
these general-purpose translation techniques and software,
for ArchIS we developed specialized techniques and soft-
ware, thus obtaining significant performance improvements
(see Sect. 6.2).

Therefore, ArchIS implements XQuery on H-views, by
translating them into equivalent SQL/XML expressions on
H-tables. SQL/XML [9] is now a standard efficiently sup-
ported in commercial DBMS. We also implemented it in our
experimental system ATLaS using the techniques described
in [26].

The expressions on H-tables use the SQL/XML constructs
XMLElement,XMLAttributes, andXMLAgg, which are
discussed next. The XMLElement and XMLAttributes
constructs are used to return elements and their attributes.
XMLAgg is an aggregate function, which constructs an XML
value from a collection of XML value expressions. For ins-
tance, to return a new_employees element containing all

the employees hired after 02/04/2003, we can map the
XQuery to the following SQL/XML query:

select XMLElement (Name "new_employees",
XMLAttributes ("02/04/2003" as "start"),
XMLAgg(XMLElement(Name "employee", e.name))
from employee_name as e
where e.tstart >= "02/04/2003"

Assuming that only Bob and Jack were hired after
02/04/2003, the previous query returns the following output:

<new_employees start="02/04/2003">
<employee>Bob</employee>
<employee>Jack</employee>
</new_employees>

These SQL/XML constructs simplify the translation from
queries expressed on H-views to equivalent queries on
H-tables. For instance, the SQL/XML translation of QUERY
1 in Sect. 3 is shown below:

select XMLElement(Name "title_history",
XMLAgg(XMLElement(Name "title",
XMLAttributes(T.tstart as "tstart",
T.tend as "tend"), T.title)))
from employee_title as T,employee_name as N
where N.id = T.id and N.name = "Bob"
group by N.id

Notice that the N.id = T.id condition in the where
clause is generated due to the [name="bob"] predicate in
the XPath expression. A group by clause is also added
to group all titles of an id into an element through the
XMLAgg() function.

As another example, QUERY 3 will be translated to:

select XMLElement (Name "emp",
XMLElement (Name "id", XMLAttributes (
e.tstart as "tstart",e.tend as "tend"),e.id),
XMLElement (Name "name", XMLAttributes(
n.tstart as "tstart",n.tend as "tend"),n.name))
from employee_id e, employee_name n
where e.id = n.id and toverlaps(e.tstart,
e.tend, "1994-05-06", "1995-05-06")

Here a join condition is needed to join e.id with n.id,
which is implied in the XPath expression $e/name. The
translation of UDF (user-defined function) toverlaps
takes in the tstart and tend values, and returns true or
false. More on built-in function translation is discussed in
Sect. 4.4.

The mapping of queries on H-views to H-tables can be
summarized as five main steps:

– Identification of variable range: For each variable defined
by afororlet expression in the original query, we iden-
tify whether, in the underlying H-tables, this corresponds
to (i) a tuple variable ranging over a key relation, or (ii)
a tuple variable ranging over an attribute table, or (iii) an
attribute variable such as T.A where T is a tuple variable
over a key table or an attribute table, and A denotes an

123

ArchIS 1453

attribute in such tables. For each distinct tuple variable in
the original query, a distinct tuple variable is created in
the from clause of the SQL/XML query.
For instance, QUERY 1 identifies two attribute variables,
from tables employee_title and employee_
name. Therefore, the from clause of the SQL/XML sta-
tement contains such two tuple variables with aliases T
and N.

– Generation of join conditions: There is a join condition
T.id and N.id for any pair of distinct tuple variables.

– Generation of the where conditions: these are the condi-
tions that are contained in the where clause of the
XQuery or specified in the path expression (e.g.,
[name="Bob"] in QUERY 1).

– Translation of built-in functions: Temporal functions
(such astoverlaps($a,$b)) are simply mapped into
the corresponding built-ins we have implemented for
ArchIS. We will have more discussion for function map-
ping in the next section.

– Output generation: This is achieved through the use of the
XMLElement and the XMLAgg constructs previously
described. Through expression of these constructs the
ArchIS compiler supports simple expressions, such as
return $t of QUERY 1, and more complex expres-
sions such as QUERY 4. Meanwhile, users have the opi-
ton to specify a table construct in the return clause to
bypass the SQL/XML transformation, so the results can
be returned as tables.

Algorithm 4.3 summarizes the overall translation algo-
rithm, which is implemented on Galax [27], an open source
parser of XQuery. The SQL generation at step 19 of
Algorithm 4.3 produces a statement which lists in the from
clause all the Ti tables, and lists in the select clause all the
entities Ei and subentities Ei j generated in the algorithms,
with the where clauses including the concatenation of all
conditions from both Ci j−id and Ci j−where conditions.

The translated SQL/XML queries on the H-tables often
contain many natural joins such as N.id = T.id. These
joins execute very fast (in linear time) since every table is
already sorted on its id attribute.

4.4 Function mapping

The temporal functions discussed in Sect. 3.2 were imple-
mented as C++ user-defined functions imported into the SQL
DBMS trough their standard UDF mechanism. These func-
tions are collected in a special library registered with the
ArchIS compiler which, therefore, embeds calls to these func-
tions in the equivalent SQL/XML code generated by trans-
lating the temporal XQuery statements. This simplifies the
mapping from XQuery to SQL. However, the mapping must

be modified according to the different situations of node types
in H-views, discussed next.
Leaf nodes: For leaf nodes such as id or salary, we can
identify a tuple variable T over either a key table or an attri-
bute history table. As a result, we can take the T.tstart
and T.tend attribute variables as input to the UDF, and
implement the functionality of the UDF.
Parent nodes of leaf nodes: For example, the employee
node in our H-document is a parent node of leaf nodes. Since
the tstart and tend attribute values are the same as those
of their id child nodes, we can identify the tuple variable T
over their key table, and pass T.tstart and T.tend as
the input of the UDF.

Extending ArchIS via a library of user-defined function
imported into the DSMS is similar to the approach widely
used in commercial DBMS—under a babel of names such as
DB extenders, snapins, cartridge, etc. The popularity of such
libraries is due to the fact that they enable software houses
and domain specialists to extend the DBMS without requiring
changes to the standards. ArchIS uses a similar approach to
bring about transaction-time databases.3

5 Temporal clustering and indexing

In our current RDBMS-based archiving scheme, tuples are
stored in a temporally grouped order (i.e., the salary history of
an employee before that of the next employee). Performance
on snapshot queries can be improved with a more effective
temporal clustering scheme. Thus, we use a segment-based
archiving scheme which has better temporal clustering, and
will boost the performance of most temporal queries, and is
also amendable to compression techniques.

5.1 Usefulness-based clustering

Assume that an attribute history is stored in a segment. For
each segment, we define its usefulness as U = Nlive/Nall,
where Nlive is the count of live (or current) tuples and Nall

is the count of all tuples. U begins with 100% and decreases
with updates. We also define a minimum tolerable usefulness
Umin.

Initially all tuples in an attribute history table are archi-
ved in a live segment SEG live with usefulness U = 100%.
Updates will be performed on the live segment, and when U
drops below Umin, we perform the following operations:

3 In our Tamino-based implementation we instead used temporal func-
tions written for and imported into Tamino. To limit the impact of the
different implementations, only one of the queries of our experiments
uses a function.

123

1454 F. Wang et al.

Fig. 6 Segment-based
archiving of history data

SEGlive

Update Update

U<=UminSEGlive

Update

SEGlive SEGlive

Update

U<=Umin

live tuple
non-active tuple

Si+1
[segstarti+1, segendi+1]

Si
[segstarti, segendi]

copy live

copy all

copy live

copy all

1. A new segment Si is allocated;
2. The interval of this segment is recorded in the table

segment(segno, segstart, segend), where
segstart and segend record the starting and ending
time for the segment respectively;

3. All tuples in SEG live are copied into the new segment
Si , sorted by ID;

4. All live tuples in SEG live are copied into a new live
segment SEG live′, and the old live segment is dropped.

After these operations are completed, segment SEGlive′
becomes the new live segment for updates, and the process
repeats. The process is illustrated in Fig. 6.

As an example, the segment-based scheme for
employee_salary table will be clustered on segno, as
shown follows:

SegNo ID SALARY TSTART TEND
===
001 100022 40000 02/20/1988 02/19/1989
001 100022 42010 02/20/1989 02/04/1990
001 100022 42525 02/20/1990 02/04/1991
001 100022 42727 02/20/1991 12/31/9999
002 100022 42727 02/20/1991 02/19/1992

Indexing Since the table is generated by bulk-copying sor-
ted by SegNo and ID, the physical clustering of the data
is guaranteed. By building traditional B+-Tree indexes on
SegNo and ID, we obtain a clustered B+-Tree index on the
segmented table. In this way, for history queries, only seg-
ments involved in the queries need to be retrieved.

And the content in segment table will be

SegNo segstart segend
==
001 01/01/1985 10/17/1991
002 10/18/1991 07/08/1995
...

An important feature of this usefulness-based clustering
is, the following two conditions are always satisfied for any
tuple in a segment:

tstar ttuple ≥ segstartSEG (1)

tendtuple ≤ segendSEG (2)

There are several advantages for segment-based
clustering: First, the current live segment always has a high
usefulness, which assures effective updates; second, records
are globally temporally clustered on segments; third, for
snapshot queries, only one segment is used, and for tem-
poral slicing queries, only segments involved are used, thus
such queries can be more efficient, as discussed in Sect. 6.3;
and last, we have the flexibility to control the number of
redundant tuples in segments by Umin, as discussed next.

5.2 Storage usage

Assume all segments have usefulness Umin, thus the total
number of invalid (non-current) tuples of all segments are
(1 -Umin) × Nseg, where Nseg is the total number of tuples
in archived segments. Assume for the worst case, all tuples
(Nnoseg) in the original relation (without segmentation)
become invalid, then Nnoseg ≥ (1 − Umin) × Nseg, or:

Nseg

Nnoseg
≤ 1

1 − Umin
(3)

Figure 7 shows the ratio of storage size with different Umin,
compared to that without segmentation.

Fig. 7 Storage size for different Umin

123

ArchIS 1455

When Umin increases, the number of segments increases,
and the storage overhead increases as well. There are three
segments when Umin = 0.2, five segments when Umin =
0.26, seven segments when Umin = 0.36, and nine segments
when Umin = 0.4. Observe that the storage overhead for
Umin = 0.26 is about the same as for database without seg-
mentation, since the average storage utilization is 75% in the
situation where records are inserted into arbitrary pages in
the file, rather than appended at the end.

The segment-based clustering can boost the performance
of most temporal queries and is amendable for efficient com-
pression, which will be discussed in the coming section.

The frequency with which new segments are generated is
determined by Umin and also the update rates. Suppose the
rates (number of tuples per second) for insertion, deletion,
and update are Rins, Rdel, and Rupd respectively, and the count
of tuples at the beginning of a segment is N0 (with U =
100%). An insertion will add a new live tuple, a deletion will
convert a live tuple to an invalid tuple, and an update will
generate a live tuple and an invalid tuple. Throughout its life
time a segment must satisfy the condition that the ratio of its
live tuples over its total tuples must exceed Umin. Thus we
must have: Nlive ≥ Umin × Ntotal, where Nlive = N0 + Rins ×
Tseg+ Rdel×Tseg and Ntotal = N0+ Rupd ×Tseg+ Rins×Tseg,
with Tseg as the age of the segment. In the situations where
the rate of insertions exceeds that of deletes and updates,
then the inequality Nlive ≥ Umin × Ntotal is always satisfied,
and no new segment is ever generated while the age of the
current one keeps increasing. Typically, however, this is not
the case, and the usefulness of the segment diminishes as
time passes, and soon the old segment must be terminated
and a new one will be initiated. We can estimate the time
when this occurs, by letting Nlive = Umin × Ntotal, and thus
compute the average age of a segment as follows:

Tseg = N0(1 − Umin)

Umin Rupd − (1 − Umin)Rins + Rdel
(4)

Thus higher update rate and/or deletion rate will lead to
segments of shorter duration, and higher insertion rate will
lead to longer segments. Higher usefulness thresholds will
lead to shorter segments.

5.3 Query mapping with clustering

In Section 4.3, we have discussed the general mapping bet-
ween XQuery and SQL/XML, whereby XQuery upon
H-document is translated to SQL/XML upon H-tables. We
can now modify our queries in such a way that, when the
tstart and tend conditions are specified, we first find the
segment number satisfying those conditions and then we use
that to restrict the search to only segment(s) of the historical
database involved in the query. This operation is made very

efficient by the fact that all indexes are now augmented with
a segno information.

For example, for snapshot query QUERY 2, first, the seg-
ment number sn of the segment which contains the times-
tamp 1994-05-06 is searched in the segment table, then
the SQL query is modified by adding the segment number
condition to shrink the search space:

select XMLElement(Name "mgrno",XMLAttributes(
m.tstart as"tstart",m.tend as "tend"),m.mgrno)
from dept_mgrno as m where m.segno=sn and
m.tstart<="1994-05-06" and m.tend>="1994-05-06"

Observe that, unless the number of segments becomes
very large and exceeds the number of main-memory blocks
available for sort-merge joins, joining H-tables remains a
very efficient one-pass operation.

6 Performance study

The objective of this study was to determine the effectiveness
of alternative implementation approaches in terms of execu-
tion and storage cost. Therefore, we evaluated direct imple-
mentations of H-documents on native XML databases versus
implementation on RDBMS using shredding techniques. We
also evaluated the effectiveness of temporal clustering and
compression techniques in improving the performance and
the storage utilization of our system.

Therefore, in our performance study, we implemented
ArchIS on three different platforms: (i) the native XML data-
base Tamino (Enterprise Edition V4.1), (ii) ArchIS–DB2
built on IBM DB2 (Enterprise Edition V7.2), and (iii)
ArchIS–ATLaS built on ATLaS [24]. ATLaS is a compact
RDBMS developed at UCLA that uses BerkeleyDB as the
storage manager and builds an SQL query engine on top of
it. Both ArchIS–DB2 and ArchIS–ATLaS use the approach
discussed in Sect. 4, but access to the source code of ATLaS
allowed us to exercise finer control of optimization. The expe-
riments were performed on a Pentium IV 2.4 GHz PC with
RedHat 8.0, with 256 MB memory and an 80 GB ATA hard
drive.

We used a temporal employee data set for our testing.
The data set archives the history of employees over 17 years,
and describes salary raises, title changes, and the department
transfers occurred during those years. The total size of the
published H-document is 334 MB. As discussed later in this
section, an additional data set of 2.28 GB (seven times larger)
was also tested to evaluate the scalability of our system.

In our experiments, we made sure to eliminate the effects
of OS caching and database buffer pool caching, as follows.
To disable Linux OS caching, we first unmounted the hard
drive containing the data, and remounted it before running
each query. This guarantees the invalidation of Linux page-
cache [28]. To disable database buffer caching, the databases

123

1456 F. Wang et al.

Table 2 Temporal queries on archived history

Q1: Snapshot(single object): find the salary of an employee 100002 on 05/16/1993;
Q2: Snapshot: find the average salary of employees on 05/16/1993;
Q3: History(single object): find the salary history of employee ‘100002’;
Q4: History: find the total number of salary changes;
Q5: Temporal slicing: find the number of employees whose salary was more than 60K between 05/16/1993 and 05/16/1994;
Q6: Temporal join: find the maximum salary increase over a 2 years period after 04/01/2001.

were restarted for each query. We then tested the queries
on the following memory sizes: 256, 512 MB and 1 GB. No
difference was measured in the query performance, confir-
ming that caching was effectively disabled. We next report
the results of our experiments, obtained by taking the average
of each query executed seven times.

6.1 Query performance

We investigated three systems to test the query performance:
Tamino with H-documents, ArchIS–DB2 with segmented
data, and ArchIS–ATLaS with segmented data (9 segments,
with Umin as 0.4). On Tamino, the documents were auto-
matically compressed for performance (data compression
will be further discussed in Sect. 7). On ArchIS–DB2 and
ArchIS–ArchIS, the data were stored as H-tables clustered
on segments.

We prepared were a set of typical temporal queries such
as snapshot (on a single object and on all objects), tempo-
ral slicing (on a single object and on all objects), history,
and temporal join, as shown in Table 2. In addition, a set of
indexes were built for later query comparisons: indexes were
created for all nodes/attributes to which selection conditions
were applied.

Figure 8 shows the query performance on the three
systems. The results suggest that RDBMSs offer substantial

Fig. 8 Query performance of segment-based archiving on RDBMS vs
native XML DB

performance advantage over a native XML DB for most que-
ries. The difference of snapshot queries between RDBMS
and native XML databases is more significant. For instance,
snapshot query Q2 on ArchIS–ATLaS is 102 times faster, and
temporal slicing query Q5 is 66 times faster. History query
Q4 on ArchIS–ATLaS is nearly 4 times faster, and temporal
join Q6 is 35 times faster. Temporal aggregate queries were
not compared given that they require recursive user-defined
function in XQuery which are not yet supported in the cur-
rent version of Tamino. However, we were able to support
them efficiently on the RDBMSs using OLAP functions.

The better results obtained from relational systems reflect
the general performance and scalability edge that these still
hold over native XML database systems, but it is also due to
the fact that no segment-based clustering was used in our
Tamino-based implementation. Indeed, we briefly experi-
mented with temporal clustering schemes in Tamino, but we
could not find any simple way to cluster the different attri-
butes independently and obtain performance improvements
of any significance. The problem of introducing effective
temporal clustering and indexing schemes into native XML
systems was left for further research.
Performance on Snapshot We also validated the perfor-
mance of our clustering scheme by comparing the snapshot
query Q2 with the one that directly executed on the current
database: the former runs 27% slower than the latter. This
is consistent with the storage overhead in archived segments
caused by usefulness.
Scalability of ArchIS We used another data set with seven
times larger size (2.28 GB), and loaded it into RDBMS as
clustered segments. Figure 9 shows that the query execu-
tion time of most queries increases approximately linearly.
For temporal queries on single object −Q1 and Q3, the time
increase is even much less.

6.2 ArchIS versus XTABLES

We also explored the use of XTABLES [7] to support our tem-
porally grouped historical views on the stored H-tables. With
XTABLES, users could query the history of database rela-
tions using existing commercial software, rather than Arh-
cIS: however, they would also encounter major problems.
The first is that ArchIS’ library of special functions designed

123

ArchIS 1457

Fig. 9 Query time comparison on ArchIS-DB2 between two data sets
(with size ratio: 7/1)

Fig. 10 Comparing XTABLES and ArchIS: query execution time
ratios

for temporal queries can not be easily used in this approach.
Thus, some temporal queries become very difficult to express
and less efficient to execute. The second problem is that even
the queries that can be easily expressed without temporal-
library functions are significantly less efficient to translate
and execute. On the average, XTABLES takes 100 times
longer to translate our temporal XQuery statements. More
importantly, the execution time also increases dramatically;
this is shown in Fig. 10 that compares the execution time on
DB2 for queries produced by XTABLES and ArchIS. The
ratios between their execution time range between one and
two for queries Q2, Q4 and Q5; but XTABLES is more than
13 times slower than ArchIS on queries Q1, Q3 and Q6.

Our study shows that the reasons for this loss of perfor-
mance are many; however, the main reason is that XTABLES
produces additional joins that are redundant given the

Fig. 11 Query performance with and without segment-based cluste-
ring

particular semantics of the application at hand. These joins
are optimized but not eliminated by the query optimizer.

ArchIS provides additional performance benefits, in
addition to the significant ones just discussed; these include
the improvements from (i) segment-based temporal cluste-
ring, and (ii) storage compression techniques, which are dis-
cussed next.

6.3 The Effect of segment-based clustering

Figure 11 compares the query performance with and without
segment-based clustering on ArchIS–ATLaS. In our experi-
ments we used Umin = 0.4 whereby the data was stored in
nine segments. This shows that the segment-based clustering
scheme significantly boosts the speed for snapshot and tem-
poral slicing queries, e.g., snapshot query Q2 is 5.7 times
faster on clustered data than non-clustered data, while tem-
poral slicing query Q5 is 5.5 times faster. Temporal join Q6
is 1.7 times faster with segment-based clustering. The speeds
of temporal queries (both Q1 and Q3) on a single object are
close for clustering and non-clustering due to the effective-
ness of B+ tree index on object IDs. An exception is Q4,
which is slower due to the scanning of the whole historical
data, and the clustered scheme has a storage redundancy. The
value of Umin = 0.4 was selected on the basis of the expe-
rience gained with similar usefulness-based storage scheme
[29], which suggests that values in this range deliver a good
compromise between the better speed produced by smaller
values of Umin and the larger space required by such values.

6.4 Storage utilization

We also investigated the storage utilization on the three sys-
tems, and discovered that Tamino is very efficient in this

123

1458 F. Wang et al.

Fig. 12 Compression ratios of H-document storage on different
systems

respect, since Tamino automatically compresses documents
with an algorithm similar to gzip.

The compression ratio is defined as the final storage size
over H-document size. The compression ratios are 0.22 on
Tamino, 0.75 on ArchIS–DB2, and 1.02 on ArchIS–ATLaS
respectively (Fig. 12). The storage size in H-tables is half of
the H-document size. But with further segment-based clus-
tering, there are redundant tuples among different segments,
and the clustering index will take an additional overhead.
As a result, ArchIS–DB2 has a compression ratio of 0.75,
and ArchIS–ATLaS of 1.02 (ArchIS’ storage manager Ber-
keleyDB uses clustered index which causes extra overhead
on storage).

In the next section, we show that by compressing data in
RDBMS as an option, we can reduce the storage significantly
and the compression ratio in a RDBMS can reach that of
Tamino, while we still maintain efficient query performance.

7 Database history compression

Next, we propose a block-based compression technique
BlockZIP.

7.1 Block-based compression: BlockZIP

BlockZIP is based on zlib [30] (the library version of gzip).
Zlib uses the deflation algorithm(an LZ77 variant) and
Huffman encoding for data compression. The difference
between BlockZIP and zlib is that instead of compressing
the data as a whole, it compresses the data as block-sized
blocks, and after compression with BlockZIP, the output
consists of a set of block-sized compressed blocks conca-
tenated together (Fig. 13). Thus if we know which blocks to

…

1001-1100
1101-1203
1204-1400

…

1001-1100
1101-1203
1204-1400

Fig. 13 BlockZIP compresses data into blocks

access, we only need to read and uncompress those specific
blocks, so uncompressing of the whole file is not needed.
The uncompression of such blocks uses exactly the same
zlib library functions.

BlockZIP facilitates uncompression at the granularity of
a block, thus snapshot and temporal slicing queries can be
efficient, since only a small number of blocks need to be
uncompressed.

7.2 Storage utilization with compression

Compressed data blocks can be stored as BLOBs in a rela-
tional table, and user-defined uncompression table functions
are used to extract records from each BLOB. We first gene-
rate a unique sid from (segno, id), which is sorted
in the order of segno and id. For a salary history table
employee_salary(sid,salary,tstart,tend),
the content is BlockZIPed and each block is stored as a
BLOB in tablesalary_blob(blockno, startsid,
endsid, blockblob), wherestartsid andendsid
represent respectively the first sid and last sid in the com-
pression block. A BLOB size of 4000 bytes is chosen for
our experiments. An additional table salary_segrange
(segno, startblock, endblock, segstart,
segend) is used to keep the block range and interval for
each segment. Note that the current segment has a high use-
fulness and is used for updates, thus not compressed.

We then compared the storage of the three systems
with compression and without compression: Tamino
(H-documents), ArchIS–DB2 and ArchIS–ATLaS (the lat-
ter two with segment clustered data). Figure 14 compare
the compression ratios on different systems, where compres-
sion ratio is defined as the data size in the database sys-
tems over the size of original H-Documents as stored in the
file system. With compression, the storage sizes of ArchIS–
DB2 and ArchIS–ATLaS drop significantly and the com-
pression ratio for ArchIS–DB2 (0.23) and ArchIS–ATLaS
(0.23) reach very closely to that of Tamino (0.22). Without

123

ArchIS 1459

Fig. 14 Compression ratios of historical XML storage on different
systems

Fig. 15 Query performance with compression

compression, Tamino’s compression ratio is 1.47, a 47%
increase from original XML documents.

7.3 Query Performance with compression

We then investigated the query performance on three sets of
systems: (a) ArchIS–DB2 and ArchIS–ATLaS with clustered
data and with compression; (b) ArchIS–DB2 and ArchIS–
ATLaS with clustered data and without compression; and (c)
Tamino with non-clustered data and with compression. We
use the same queries from Table 2.

Figure 15 shows that RDBMSs without compression have
significant performance advantage over a native XML DB,
and the benefit of RDBMSs remains for compressed data.
With compression, ArchIS–ATLaS and ArchIS–DB2 run the
snapshot queries much faster than Tamino, e.g., for snapshot
query Q2, ArchIS–ATLaS is 67 times faster than Tamino,

and ArchIS–DB2 is 37 times faster than Tamino. Temporal
slicing queries are also much faster on both ArchIS–ATLaS
and ArchIS–DB2: Q5 on ArchIS–ATLaS is 46 times faster
than on Tamino, and ArchIS–DB2 is 26 times faster. All other
historical queries are also faster on ArchIS–ATLaS than on
Tamino. For temporal join Q6 on ArchIS–ATLaS, we effecti-
vely optimized the join through a user-defined aggregate [31]
in one scan, and it takes only 6 s for compressed data.

On ArchIS–ATLaS, the performance with compression is
very close to that without compression. We are also able to
get better performance from ArchIS–ATLaS than ArchIS–
DB2 for most queries on compressed data, since we used
ArchIS–DB2 as a closed box, while for ArchIS–ATLaS we
could control the internals of ArchIS–ATLaS for better query
optimization. ArchIS–ATLaS’ advantage increases on com-
pressed data inasmuch as ArchIS–ATLaS’ table functions
performed better than those of ArchIS–DB2.

Compression decreases the amount of data being read
from the disk—uncompressing one page only costs 0.26 ms,
while reading it costs 14ms. However, this doesn’t necessarily
improve the efficiency of queries, since database performance
is determined by many factors. For example, uncompres-
sion of a block incurs in the overhead of having to parse the
block to extract the records, and DMA reading of continuous
blocks can be much faster than seek reading. In queries
involving small number of block readings, the performance
of compressed mode and uncompressed mode is very
close, and the former can even be faster (as shown in Q1).

In summary, RDBMSs with temporal clustering show a
significant performance advantage over a native XML data-
base on most temporal queries. After introducing compres-
sion into RDBMSs, these still have a performance advantage
while the native XML system has a marginal advantage in
terms of storage efficiency.

7.4 Update performance

When an update happens in the current database, it is tracked
and ArchIS–ATLaS will update the live segment correspon-
dingly, and all historical data archived in the history segments
will not be touched. The situation is different for Tamino,
where live data and historical data are mixed together, and
insertions could cause page splits.

As an example, by updating the current salary of employee
“Bob” by 10%, it takes 1.2 s on Tamino, and only 0.29 s for
a segment-based clustering scheme on ArchIS–DB2.

As another example, for a simulated daily update, the cost
is 15 s for Tamino, and 1.52 s for ArchIS–DB2. While nor-
mally updates are significant faster in ArchIS–ATLaS than
in Tamino, with ArchIS–ATLaS we also have the occasional
situations where the current segment’s usefulness is below
the threshold, and all current data are archived into a new
segment. This takes 39 s, and if such segment is to be output

123

1460 F. Wang et al.

and compressed, it takes an additional 36 s. However, the
archiving of each segment only occurs once.

8 Related work

8.1 Temporal XML

The growing recognition of the importance of supporting
time in XML and representing the version history of XML
documents has produced a rich vein of recent research. Thus,
Grandi [32] provides a bibliography on temporal aspects in
the Web, while Ali and Pokorny [33] provide a comparison
of XML-based data models.

Marian et al. [34] propose an approach for managing web
data warehouse for the Xyleme project. Their approach is
based on structured diff algorithms for XML documents.
Efficient storage schemes based on structured diff represen-
tations and durable node numbers are presented by Chien et
al. [29], [35]. In [36], Buneman et al. present an archiving
technique for scientific data, where semantic continuity of
each data element in the archive is preserved through keys.
The paper by Buneman et al. must also be credited with intro-
ducing hierarchical timestamping in XML documents, an
idea used in our paper. However, the temporal query aspects
of the problem are not discussed in [36]. In [37,38],
Gergatsoulis and Stavraska propose a multidimensional XML
model where dimensions are applied to elements and attri-
butes to keep temporal information; however, they do not
discuss how to effectively query these temporal extensions.
In [39], Grandi et al. discuss the problem of managing tempo-
ral normative texts along the temporal dimensions of publica-
tion, validity, efficacy and transaction times; their approach
relies on Oracle XML extensions to manage XML documents
as CLOB type. In [40], Manukyan et al. analyze the tempo-
ral components of XMl document, while Currim et al. [41]
propose to extend XML Schema to support temporal XML
information.

While the before mentioned approaches do not delve deep
into query aspects, Amagasa et al. [42] introduce a tempo-
ral data model that is based on XPath. Extensions of XPath
based on the addition of special temporal axes are propo-
sed by Dyerson [43] for transaction-time support, and then
by Dyerson and Zhang [44] for valid-time support. Gao and
Snodgrass [45] introduce a valid-time generalization of
XQuery, called τXquery, which does not require extending
the XML data model: τXquery statements can be transla-
ted into equivalent XQuery statements [45], but questions
remain on the efficiency of the rewritten queries. Generally
speaking, achieving good performance for temporal queries
on large complex XML documents represents an unsolved
technical challenge, which researchers have been addressing
by special indexes or storage structures, or by recasting the
documents and the queries into relational DBMS and O-R

DBMS. For instance, an ORDBMS-based implementation
of temporal XML management with a temporal language
TXSQL is discussed by Norvag et al. [46,47]. In passing,
we observe that all these approaches confirm the native
ability of XML and its query languages to deal with tem-
poral information at the logical level.4

Among the various indexing techniques used to improve
performance of temporal queries we will mention the ToXin
approach by Mendelzon et al. [48], and the techniques for the
efficient support of temporal slicing of Mandreoli et al. [49].
In their recent work, Rizzolo and Waisman [50] propose a
new approach for summarizing and indexing temporal docu-
ments. The temporal XML representation used in [50] is not
strictly hierarchical since a node can point to a subelement
that, over time, has migrated to another node. Simple tempo-
ral queries and the complex operations needed to maintain
the semantic constraints on this non-hierarchical structure
are also discussed in [50].

Therefore, as described in [50], for deeply nested XML
documents there are situations in which it might be desirable
to go beyond hierarchies by allowing the sharing of com-
mon subelements. However, this is not the situation of our
H-documents, since the temporally grouped representation
of the history of flat relations produces shallow hierarchies.
Likewise, while the temporal indexing techniques above are
very desirable for general XML documents, ArchIS’
approach of shredding back into relations performs much bet-
ter on the regular and shallow structure of our H-documents,
as it is clearly demonstrated by the results of our
experiments.

8.2 Semistructured and Object-Oriented DBMS

Early work on semistructured and O-O DBMS contains the
seeds of ideas that were then used in XML. For instance,
Chawathe et al. [51] describe a model for managing historical
semistructured data where updates are represented by their
“deltas”. Oliboni et al. [52] propose a graph-based model and
query language for transaction-time semistructured DBMS
that was then refined in [53]. In [54], Dyreson et al. show
how annotations on the edges of the database graphs can be
used to capture transaction time and valid time, with other
kinds of information.

The problem of version management in object-oriented
and CAD databases has received a significant amount of
attention [55,56]. A formal temporal object-oriented data
model is proposed in [57] and a comparison between different
object-oriented temporal models was presented by Snod-
grass [58].

4 Unfortunately, the situation is quite different at the physical level,
since good query performance and scalability represent elusive goals
for native XML—and even more so for its temporal extensions.

123

ArchIS 1461

8.3 Relational databases

Relational databases provided the first battleground for tem-
poral database research—producing numerous advances and
retreats that we will not recount in this paper since they are
already covered in the authoritative survey by Ozsoyoglu and
Snodgrass [3]. Among the work discussed in [3], we would
like to acknowledge the contributions by Snodgrass[14] and
Chomicki et al. [16], which present a comprehensive set
of examples and a taxonomy of temporal queries that we
have used in this paper to verify the completeness of our
approach in terms of temporal query expressiveness. In terms
of data models, we have much relied on the seminal work
by Clifford et al. [4] who classify temporal representations
into the two main categories of temporally ungrouped and
temporally grouped data models. The second representation
has more expressive power and is more natural since it is
history-oriented [4]. TSQL2 [15] tries to reconcile the two
approaches [4] within the severe limitations of the relational
tables. Our approach is based on a temporally grouped data
model, which dovetails perfectly with the hierarchical struc-
ture of XML documents, although temporal implementations
based on nested relations in ORDBMS are also possible as
discussed in [59].

While the survey presented in [3] illustrates how the design
space for temporal extensions has been exhaustively explo-
red at the logical level, much work remains to be done at
the physical level. Thus, TimeDB [60] proposes a layered
architecture that translates temporal queries into RDBMS,
where temporal data is represented as tuples with intervals,
thus temporally ungrouped. Renewed interest on temporal
databases is now surfacing in the commercial world. For ins-
tance, Flashback [61] and ImmortalDB [10] allow users to
rollback to old versions of tables (e.g., to correct old errors)—
although they do not provide support for complex temporal
queries.

While previous research on temporal databases has mostly
focused on extending database data model and query lan-
guages, we have shown here that the existing primitives of
XML and relational DBMS can be skillfully combined to
realize a transaction-time temporal database that supports a
simple logical model, powerful temporal queries, and good
performance on current DBMS. The use of XML in publi-
shing and querying database history was previously proposed
in [62]. No efficient system implementation was however dis-
cussed in [62], and neither were the key pieces of the enabling
technology that make it run, including SQL/XML, temporal
indexing, clustering and compression.

9 Conclusion

In this paper, we have shown the history of a relational data-
base can be stored and queried efficiently by using (i) XML

to provide temporally-grouped representations of such his-
tories, and (ii) SQL/XML to implement temporal queries
expressed in XQuery against these representations. The
approach realized by ArchIS is efficient and general, and
can be used to add a transaction-time capability to exis-
ting RDBMS and applications (as in the employee/departmet
example), and to support fast growing new application areas,
such as RFID. The approach is also complete, since its reali-
zation does not require the invention of new techniques, nor
costly extensions of existing standards. This paper elucidates
the query mapping, indexing, clustering, and compression
techniques used to achieve performance levels well above
those of a native XML DBMS, as demonstrated by several
experiments presented in the paper.

Several opportunities for further research and improve-
ments have however emerged during our discussion. For
instance, many end-users would prefer to interact with gra-
phical user interfaces instead of XML/XQuery: the design
of friendly interfaces based on temporally grouped models
represents an interesting research problem.

At the physical level, many clustering and indexing tech-
niques have been proposed for temporal databases [63] and
deserve further investigations. Also other efficient data com-
pression techniques proposed for XML data deserve further
study [64].

Many interesting research questions also arise if we consi-
der natural generalizations of our approach, and its possible
applications to (i) valid-time databases and bitemporal data-
bases, (ii) O-R DBMSs, and (iii) arbitrary XML documents.
The question on whether the approach here proposed was
also applicable to valid-time and bitemporal databases was
studied in [65], where it was concluded that ArchIS’s tempo-
rally grouped XML model and temporal queries at the logical
level. At the physical level, however, the segment-based tem-
poral indexing and clustering used in ArchIS will no longer be
effective, and the query optimization and data compression
techniques presented also need changes. Thus the extension
of ArchIS for valid-time and bitemporal databases represents
a challenging topic for future research.

The second question involves the applicability of
approaches similar to the one we have proposed to other data
models, including object-oriented models and semistructu-
red data models other than XML. Our intuition suggests
that, not only the answer to these questions is largely posi-
tive, but, surprisingly enough, much of our approach to tem-
poral information management is applicable to SQL itself.
Indeed, the most recent SQL:2003 standards support nested
relations [66] that can be used to support a temporally grou-
ped data model. Simple temporal queries can be expressed
in SQL itself, while more complex queries could require the
use of a library of temporal functions and aggregates similar
to those that we have developed for ArchIS. This suggests
that standard database systems of the future will be able to

123

1462 F. Wang et al.

manage efficiently temporal information, and also give users
a choice on whether to operate under XML standards or SQL
standards—while their support is unified and optimized at the
internal level.

The temporally grouped data model and timestamping
scheme used here can be generalized to support evolution
queries on multi-version XML documents [67]. That scheme
makes it possible to ask interesting temporal queries on the
evolution of standards, e.g., the successive revision of XLink
standards, or, from the history of university catalogs, when
a new course was first introduced. Thus the XML-based
approach here introduced represents a significant first step
towards adding historical information management and query
capabilities to databases and web information systems, since
the preservation of digital artifacts represents a critical open
issue for the information age.

Acknowledgements The authors qouls like to thank Vassilis Tsotras
for many inspiring discussions, and Chang Luo for his assistance on
the implementation of ArchIS–ATLaS. We also acknowledge the gene-
rosity of Tamino AG and IBM for providing research and education
licenses for Tamino and DB2, respectively for the work. We also want
to thank the reviewers for their insightful suggestions, which resulted
in significant improvements to the quality of the paper.

References

1. Snodgrass, R.T.: Developing Time-Oriented Database Applica-
tions in SQL. Morgan Kaufmann, San Francisco (1999)

2. Wang, F., Liu, P.: Temporal Management of RFID Data. In: VLDB
(2005)

3. Ozsoyoglu, G., Snodgrass, R.T.: Temporal and real-time databases:
a survey. TKDE 7(4), 513–532 (1995)

4. Clifford, J., Croker, A., Grandi, F., Tuzhilin, A.: On temporal grou-
ping. In: Recent Advances in Temporal Databases, pp. 194–213.
Springer, Heidelberg (1995)

5. XQuery 1.0: An XML Query Language. http://www.w3.org/XML/
Query

6. Kepser, S.: A Simple Proof for the Turing-Completeness of XSLT
and XQuery. In: Extreme Markup Languages (2004)

7. Funderburk, J.E., Kiernan, G., Shanmugasundaram, J., Shekita,
E., Wei, C.: XTABLES: bridging relational technology and XML.
IBM Syst. J. 41(4), (2002)

8. Oracle XML. http://otn.oracle.com/xml/
9. SQL/XML.http://www.sqlx.org

10. Lomet, D., Barga, R., Mokbel, M.F., Shegalov, G., Wang, R., Zhu,
Y.: Transaction time support inside a database engine. In: ICDE
(2006)

11. Böhlen, M.H., Snodgrass, R.T., Soo, M.D.: Coalescing in temporal
databases. In: VLDB (1996)

12. Clifford, J.: Formal Semantics and Pragmatics for Natural Lan-
guage Querying. Cambridge University Press, Cambridge (1990)

13. Clifford, J., Croker, A., Tuzhilin, A.: On completeness of historical
relational query languages. ACM Trans. Database Syst. 19(1), 64–
116 (1994)

14. Snodgrass, R.T.: The TSQL2 Temporal Query Language. Kluwer,
Dordrecht (1995)

15. Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R.T., Subrah-
manian, V.S., Zicari, R.: Advanced Database Systems. Morgan
Kaufmann, San Francisco (1997)

16. Chomicki, J., Toman, D., Böhlen, M.H.: Querying ATSQL data-
bases with temporal logic. TODS 26(2), 145–178 (2001)

17. Clifford, J., Dyreson, C.E., Isakowitz, T., Jensen, C.S., Snodgrass,
R.T.: On the semantics of “Now” in databases. TODS 22(2), 171–
214 (1997)

18. Torp, K., Jensen, C.S., Snodgrass, R.T.: Modification semantics in
now-relative Databases. Inf. Sys. (2007, in Press)

19. EPC Tag Data Standards Version 1.1. Technical report, EPCGlobal
Inc, (2004)

20. Oracle Sensor Edge Server. http://www.oracle.com/technology/
products/iaswe/edge_server

21. WebSphere RFID Premises Server. http://www-306.ibm.com/
software/pervasive/ws_rfid_premises_server/, accessed on
December 2004

22. Floerkemeier, C., Anarkat, D., Osinski, T., Harrison, M.: PML Core
Specification 1.0. Technical report, Auto-ID Center (2003)

23. Schöning, H.: Tamino—a DBMS designed for XML. In: ICDE
(2001)

24. ATLaS. http://wis.cs.ucla.edu/atlas
25. DeHaan, D., Toman, D., Consens, M.P., Ozsu, M.T.: A comprehen-

sive XQuery to SQL translation using dynamic interval encoding.
In: SIGMOD (2003)

26. Shanmugasundaram, J., et al.: Efficiently publishing relational data
as XML documents. In: VLDB (2000)

27. Galax–an Open Source XQuery Implementation. http://www.
galaxquery.org

28. Bovet, D.P., Cesati, M.: Understanding the Linux Kernel, 2nd edn.
O’Reilly, Cambridge (2002)

29. Chien, S.-Y., Tsotras, V.J., Zaniolo, C.: Efficient schemes for
managing multiversion XML documents. VLDB J. 11(4), 332–
353 (2002)

30. Zlib. http://www.gzip.org/zlib/
31. Wang, H., Zaniolo, C.: Using SQL to build new aggregates and

extenders for object-relational systems. In: VLDB (2000)
32. Grandi, F.: Introducing an annotated bibliography on tempo-

ral and evolution aspects in the world wide web. SIGMOD
Record 33(2), 84–86 (2004)

33. Ali, K., Pokorny, J.: A comparison of XML-based temporal models.
In: SITIS (2006)

34. Marian, A., Abiteboul, S., Cobena, G., Mignet, L.: Change-centric
Management of versions in an XML warehouse. VLDB J. 581–590
(2001)

35. Chien, S.-Y., Tsotras, V.J., Zaniolo, C., Zhang, D.: Supporting com-
plex queries on multiversion xml documents. ACM Trans. Internet
Techn. 6(1), 53–84 (2006)

36. Buneman, P., Khanna, S., Tajima, K., Tan, W.: Archiving scientific
data. TODS 29(1), 2–42 (2004)

37. Gergatsoulis, M., Stavrakas, Y.: Representing changes in XML
documents using dimensions. In: Xsym (2003)

38. Gergatsoulis, M., Stavrakas, Y., Doulkeridis, C., Zafeiris, V.:
Representing and querying histories of semistructured databases
using multidimensional OEM. Inf. Syst. 29(6), 461–482 (2004)

39. Grandi, G., Mandreoli, F., Tiberio, P.: Temporal modelling and
management of normative documents in XML format. Data Know-
ledge Engr. 54(3), 327–254 (2005)

40. Manukyan, M.G., Kalinichenko, L.A.: Temporal XML. ADBIS’01
(2001)

41. Currim, F., Currim, S., Dyreson, C., Snodgrass, R.T.: A tale of two
schemas: creating a temporal schema from a snapshot schema with
τXSchema. In: EDBT (2004)

42. Amagasa, T., Yoshikawa, M., Uemura, S.: A data model for tem-
poral XML documents. In: DEXA (2000)

43. Dyreson, C.E.: Observing transaction-time semantics with
TTXPath. In: WISE (2001)

44. Zhang, S., Dyreson, C.: Adding valid time to XPath. In: DNIS
(2002)

123

http://www.w3.org/XML/Query
http://www.w3.org/XML/Query
http://otn.oracle.com/xml/
http://www.sqlx.org
http://www.oracle.com /technology/products/iaswe/edge_server
http://www.oracle.com /technology/products/iaswe/edge_server
http://www-306.ibm.com/software/pervasive/ws_rfid_premises _server/
http://www-306.ibm.com/software/pervasive/ws_rfid_premises _server/
http://wis.cs.ucla.edu/atlas
http://www.galaxquery.org
http://www.galaxquery.org
http://www.gzip.org/zlib/

ArchIS 1463

45. Gao, D., Snodgrass, R.T.: Temporal slicing in the evaluation of
XML Queries. In: VLDB ArchIS 35 (2003)

46. Nørvåg, K., Limstrand, M., Myklebust, L.: TeXOR: temporal XML
database on an object-relational database system. In: PSI (2003)

47. Nørvåg, K.: The design, implementation, and performance of
the v2 temporal document database system. Inf. Software Tech-
nol. 46(9), 557–574 (2004)

48. Mendelzon, A.O., Rizzolo, F., Vaisman, A.: Indexing temporal
XML documents. In: VLDB (2004)

49. Mandreoli, F., Martoglia, R., Ronchetti, E.: Supporting temporal
slicing in XML databases. In: EDBT (2006)

50. Rizzolo, F., Vaisman, A.: Temporal xml: modeling, indexing and
query processing. Int. J. Very Large Databases (Published Online
7 July 2007)

51. Chawathe, S.S., Abiteboul, S., Widom, J.: Managing historical
semistructured data. TAPOS 5(3), 143–162 (1999)

52. Oliboni B., Quintarelli E., Tanca L. (2001) Temporal aspects of
semistructured data. TIME 119–127

53. Combi, C., Oliboni, B., Quintarelli, E.: A graph-based data model
to represent transaction time in semistructured data. In: DEXA
(2004)

54. Dyreson, C.E., Böhlen, M.H., Jensen, C.S.: Capturing and querying
multiple aspects of semistructured data. In: VLDB 290–301 (1999)

55. Chou, H., Kim, W.: A unifying framework for version control in a
CAD environment. In: VLDB (1986)

56. Beech, D., Mahbod, B.: Generalized version control in an object-
oriented database. In: ICDE 14–22 (1988)

57. Bertino, E., Ferrai, E., Guerrini, G.: A formal temporal object-
oriented data model. In: EDBT (1996)

58. Snodgrass, R.T.: Temporal object-oriented databases: a criti-
cal comparision. Addions-Wesley/ACM Press, Reading/London
(1995)

59. Wang, F., Zhou, X., Zaniolo, C.: Bridging relational database his-
tory and the web: the XML approach. In: WIDM (2006)

60. Steiner, A.: A generalisation approach to temporal data models and
their implementations. PhD thesis, ETH Zurich (1997)

61. Oracle Flashback Technology. http://otn.oracle.com/deploy/
availability/htdocs/flashback_overview.htm

62. Wang, F., Zaniolo, C.: An xml-based approach to publishing and
querying the history of databases. World Wide Web 8(3), 233–
259 (2005)

63. Salzberg, B., Tsotras, V.J.: Comparison of access methods for time-
evolving data. ACM Comput. Surv. 31(2), 158–221 (1999)

64. Liefke, H., Suciu, D.: XMILL: an efficient compressor for XML
data. In: SIGMOD 153–164 (2000)

65. Wang, F., Zaniolo, C.: XBiT: an XML-based bitemporal data
model. ER (2004)

66. Database Languages SQL, ISO/IEC 9075-*:2003
67. Wang, F., Zaniolo, C.: Temporal Queries in XML document

archives and web warehouses. In: TIME-ICTL (2003)

123

http://otn.oracle.com/deploy/availability/htdocs /flashback_overview.htm
http://otn.oracle.com/deploy/availability/htdocs /flashback_overview.htm

	ArchIS: an XML-based approach to transaction-timetemporal database systems
	Abstract
	1 Introduction
	2 Viewing relation history in XML
	3 Temporal queries using XQuery
	3.1 More complex queries
	3.2 Temporal functions
	3.3 Support for ``now''
	3.4 RFID applications

	4 The ArchIS system
	4.1 H-tables
	4.2 Updating table histories
	4.3 Query mapping
	4.4 Function mapping

	5 Temporal clustering and indexing
	5.1 Usefulness-based clustering
	5.2 Storage usage
	5.3 Query mapping with clustering

	6 Performance study
	6.1 Query performance
	6.2 ArchIS versus XTABLES
	6.3 The Effect of segment-based clustering
	6.4 Storage utilization

	7 Database history compression
	7.1 Block-based compression: BlockZIP
	7.2 Storage utilization with compression
	7.3 Query Performance with compression
	7.4 Update performance

	8 Related work
	8.1 Temporal XML
	8.2 Semistructured and Object-Oriented DBMS
	8.3 Relational databases

	9 Conclusion
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

