
The VLDB Journal (2009) 18:57–75
DOI 10.1007/s00778-007-0081-y

REGULAR PAPER

Approximate voronoi cell computation on spatial data streams

Mehdi Sharifzadeh · Cyrus Shahabi

Received: 18 August 2007 / Accepted: 20 August 2007 / Published online: 19 December 2007
© Springer-Verlag 2007

Abstract Several studies have exploited the properties of
Voronoi diagrams to improve the efficiency of variations of
the nearest neighbor search on stored datasets. However, the
significance of Voronoi diagrams and their basic building
blocks, Voronoi cells, has been neglected when the geome-
try data is incrementally becoming available as a data stream.
In this paper, we study the problem of Voronoi cell computa-
tion for fixed 2-d site points when the locations of the neigh-
boring sites arrive as a spatial data stream. We show that
the non-streaming solution to the problem does not meet the
memory requirements of many realistic scenarios over a slid-
ing window. Hence, we propose AVC-SW, an approximate
streaming algorithm that computes (1 + ε)-approximations
to the actual exact Voronoi cell in O(κ) where κ is its sample
size. With the sliding window model and random arrival of
points, we show both analytically and experimentally that for
given window size w and parameter k, AVC-SW reduces the
expected memory requirements of the classic algorithm from
O(w) to O(k log(w

k + 1)) regardless of the distribution of
the points in the 2-d space. This is a significant improvement
for most of the real-world scenarios where w � k.

Keywords Voronoi cell · Spatial data stream ·
Sliding window · Approximation

1 Introduction

Different variations of the Voronoi diagrams have been the-
oretically studied in the field of computational geometry.

M. Sharifzadeh (B) · C. Shahabi
Computer Science Department, University of Southern California,
Los Angeles, CA 90089-0781, USA
e-mail: sharifza@alumni.usc.edu

C. Shahabi
e-mail: shahabi@usc.edu

The Voronoi diagram of a set of points, termed site points,
partitions the space into a set of convex polygons so that
each polygon contains exactly one site point of the set. The
polygon corresponding to each point p covers the points in
space that are closer to the point p than to any other site
point. The computational geometry literature refers to the
polygons as Voronoi cells, Dirichlet regions, Thiessen poly-
topes, or Voronoi polygons [4,19]. The database literature
sometimes refers to the data points inside the cell of p as the
influence set of the point p [15,23,24].

In many problems, instead of constructing the entire Voro-
noi diagram, it is sufficient to compute the Voronoi cell of a
fixed point (or those of a small subset of all points) with
respect to the set of its neighboring site points. The cell
defines the set of data points/objects which are related to
or assigned to the fixed point in the context of a problem.
Korn and Muthukrishnan [15] describe four examples of the
cell computation problem drawn from different spatial/vec-
tor space domains in which the influence set of a given point
is required. Stanoi et al. [24] compute the Voronoi cell of
a query point to retrieve its influence set from a database
of points. Zhang et al. [25] determine the so-called valid-
ity region around a query point as the Voronoi cell of its
nearest neighbor. The cell is the region within which the
result of the nearest neighbor query remains valid as the loca-
tion of the query point is changing. To provide an efficient
similarity search mechanism in a peer-to-peer data network,
Banaei-Kashani et al. [3] propose that each node maintains
its Voronoi cell based on its local neighborhood in the content
space. As a more abstract computational geometry problem,
Arya and Vigneron [2] focus on approximating the exact
Voronoi cell of a fixed point in order to build a simplified
cell. The research goal in these studies is focused on improv-
ing the performance of the reverse nearest neighbor queries
when the data points are stored as a massive dataset [15,24],

123

58 M. Sharifzadeh, C. Shahabi

reducing the server-client communication overhead for a loca-
tion-based service [25], providing an efficient access method
[3], or simplifying an exact Voronoi cell [2]. They all assume
that the entire set of neighboring points required to compute
the cell is always available.

However, there are real-world scenarios in which the
locations of the neighboring points become incrementally
available through a spatial data stream. In this case, the con-
tribution of any newly arrived point to the current Voronoi
cell of the fixed point can easily be determined. Any point
with no contribution to the cell is dropped. Hence, the space
complexity of this approach is O(|υ(p)|) where |υ(p)| is
the number of points contributing to the cell of point p. The
more contributing points arrive, the smaller the Voronoi cell
becomes. Therefore, the cell eventually becomes identical to
the point itself which makes this update scheme unrealistic.
Instead, real-world applications require that the contribution
of any point to the cell end after some period of time (i.e., the
point expires). In this case, we can no longer drop a newly
arrived point which is not contributing to the cell. That is,
to compute the exact Voronoi cell, we require to store all
unexpired points arrived so far (i.e., O(w) space complexity
for w unexpired points). The reason is that even though an
arriving point may not be changing the cell at the time of its
arrival, it may cause a change in future due to the removal
of old expired points. To be precise, assuming that any point
expires after arriving w newer points, w arrivals and w expi-
rations occur during the lifetime of a point. The expiration of
any single point may cause any unexpired point to suddenly
contribute to the cell while any new arrival may end a point’s
contribution (see the updates to the cell in Fig. 2). Therefore,
no point can be dropped as even the points with no contri-
bution at their arrival time might contribute later when other
points’ contributions end. This results in a large memory
requirement per points in order to maintain its exact Voronoi
cell. Therefore, in this paper, we study various techniques to
keep only a subset of the arriving points and still maintain a
“good enough” approximation of the point’s Voronoi cell.

1.1 Motivation

As a motivating application, consider the sensor nodes in a
sensor network deployed to continuously monitor a physical
phenomena such as soil temperature. The average temper-
ature of an area can be computed as the weighted average
of the temperature values recorded by each sensor node to
provide a seamless average, independent of the density of the
network. In this case, each node’s weight can be the area of its
Voronoi cell [21]. Each immobile sensor node, knowing its
fixed location, receives the locations of other mobile/immo-
bile nodes as a spatial data stream and must independently
build its Voronoi cell with respect to the recently received
locations (e.g., those received in the last one hour). That is,

each node requires to maintain its cell considering a sliding
window over the stream of other nodes’ locations. In Sect. 3,
we show that a node must store all these locations for the
duration of one hour (i.e., window size) to continuously keep
its cell up-to-date as new points arrive and old points expire
(e.g., the corresponding nodes stop operating).

As another example, consider the case where a combina-
tion of soldiers’ wearable sensory devices and thousands of
immobile sensor nodes deployed in a battlefield are used to
guard an area. Each immobile node continuously receives
the locations of the friendly soldiers and through its sensory
devices detects the locations of the enemy soldiers. It main-
tains its Voronoi cell with respect to only the locations of
friendly soldiers. Consequently, it can compute its reverse
nearest neighbors as the enemy soldiers inside its Voronoi
cell. As an autonomous nonhuman guard, the node directs
its closest friendly soldier towards its location if the count
of enemies is unusually large (i.e., its neighborhood is under
a possible attack) or its Voronoi cell is becoming large (i.e.,
friendly soldiers are getting far from its neighborhood).

Our last example application is from the domain of simula-
tion-based games.1 Consider thousands of avatars simulating
soldiers in a real battlefield. The behavior of each soldier is
controlled by a process thread in the application. Each soldier
(i.e., its representing thread) should decide which soldier of
the opponent is the next one to shoot. The best candidates
are those in its Voronoi cell with respect to the up-to-date
locations of all other friendly soldiers. Here, when a soldier
is shot, its location is expired. Considering this as a face-
to-face fight, the movements of the soldiers can be ignored.
Hence, the Voronoi cells of a set of fixed locations must be
maintained where the locations of shot soldiers are continu-
ously expiring.

Note that in real-world scenarios the number of unex-
pired points w might be very large. From an application per-
spective, assuming that any point expires one day after its
arrival, a data stream with a rate of 40 points/min can result
in 57,600 unexpired points at any time while a sensor node
(e.g., Berkeley Mica2 Mote2) can only store up to 51,200
points of size 10 bytes each in its 512 Kb memory. This is
assuming the unrealistic case that the entire memory space
can be dedicated to this task! This shortage in memory intro-
duces a need to compute an approximation of the Voronoi
cell with deterministic error using only the available mem-
ory. On the other hand, many applications may require the
computation of an approximate cell within a user’s tolerable
error. Consequently, an approximation algorithm is required
to compute the cell with respect to the tolerable error utilizing
the minimum memory space. Hence, one can consider two
related optimization problems. Either minimize error for a

1 http://www.ict.usc.edu/.
2 http://www.xbow.com/.

123

http://www.ict.usc.edu/
http://www.xbow.com/

Approximate voronoi cell computation on spatial data streams 59

fixed memory size or minimize memory requirement for a
given error threshold. Our focus is on both of these optimi-
zation problems.

1.2 Contribution

In this paper, we study the general problem of computing
the Voronoi cell of a fixed 2-d point p with respect to a data
stream of site points. The point p could be the fixed location
of an immobile sensor node in our motivating application.3

To describe the preliminaries of our approach, we start with
the simpler unrealistic case where no arrived point expires.
That is, any single point arrived on the data stream so far may
cause a change in the current Voronoi cell of p (this is called
the time series model in [18]). Hence, at any point in time a
node maintains its Voronoi cell with respect to the set of all
the locations received so far. Next, we extend our approach
to the more realistic scenario, the sliding window case, where
the old points’ effects on the cell terminate when they expire
(and new points arrive). Here, the sensor node ignores the
locations received earlier than a specific time when build-
ing its cell. Although a few research studies have focused
recently to revisit classic computational geometry problems
in a data stream framework (see [13] for a complete list),
to the best of our knowledge no study has reconsidered the
problem of building Voronoi cells in this framework.

Throughout the paper, our goal is to maintain an approxi-
mation to the exact Voronoi cell of a point p while the loca-
tions of the site points are arriving as a data stream. The core
idea behind our approach is to maintain a minimum subset of
site points including the closest ones to p in each direction
and compute the Voronoi cell of p with respect to this subset
instead of that of all the points. To reduce the O(w) space
complexity of the classic algorithm in the sliding window
model where w is the window size, we first propose AVC,
an approximation algorithm for the time series model which
maintains only a sample of the streamed points using a similar
sampling technique proposed for building radial histograms
in [5] and for maintaining convex hull of data streams in
[11]. AVC employs the classic algorithm to build the Voro-
noi cell of the sample as an approximation to the exact cell.
The AVC’s time complexity of an update per-point is O(κ)

where κ is the sample size. The value of κ is bounded by a
single user-provided parameter k that is independent of the
distribution of the points (i.e., κ ≤ k).

3 Notice that mobile nodes also need to compute their Voronoi cells.
However, the focus of this paper is on computing Voronoi cells for fixed
points (e.g., the immobile nodes). Addressing the problem for moving
points (e.g., mobile nodes) has its own challenges and is beyond the
scope of this study. Notice, however, that in real-world applications
immobile nodes are the only cheap and unattended nodes. Therefore, it
is more likely that they suffer from memory limitation. Mobile nodes
such as PDAs or laptops are mainly handled by human operators and
have more memory spaces.

Next, for the sliding window model, we propose an exten-
sion to AVC, AVC-SW, with the time complexity of O(log
(w

k + 1) + k log(k)). AVC-SW stores only the points which
might become close to p in a future window. Now, our first
optimization problem to minimize memory for a given
approximation error is addressed as follows. First, we the-
oretically prove that one can determine the single parameter
k of AVC (and AVC-SW) based on user’s tolerable error ε

(Sect. 6). Then, we show that both AVCs use this parame-
ter to compute (1 + ε)-approximations to the actual exact
Voronoi cell. More precisely, we prove that if a point q is
inside the approximate Voronoi cell of a point p, its distance
to its closest site point is less than its distance to p by at most
a factor of 1 + ε. Finally, for a uniform random arrival of
points, we theoretically compute the expected sample size of
AVC-SW (i.e., its required memory) in terms of the window
size w and its single parameter k (Sect. 7). We show that the
sample size is O(k log(w

k +1)) regardless of the distribution
of points in the 2-d space. It grows very slowly as the ratio
of w over k increases. For instance, it is less than 20k for
w/k ≤ 2.5 × 108. We similarly address the second optimi-
zation problem to minimize approximation error for a fixed
memory size. In other words, given the window size w, we
use Eq. 21 to compute the value of parameter k in terms of
available memory κ . Then, we utilize Theorems 2 and 3 to
determine the approximation error ε of AVC-SW’s output.

In [22], we studied four different approaches to calcu-
late weighted average of sensor measurements using each
sensor’s covered area as its weight. One of the approaches
required the calculation of the Voronoi cell of each sensor,
for which we employed our AVC-SW algorithm discussed
in this paper. In this paper, however, we focus on the gen-
eral problem of approximating Voronoi cells for different
streaming scenarios. Here we propose two different stream-
ing algorithms AVC and AVC-SW, investigate their solution
spaces and set up the theoretical foundation to prove their
optimality and guaranteed approximation errors. Hence, this
paper exclusively contains the theoretical foundation of our
streaming algorithms for approximating Voronoi cells in dif-
ferent data stream models.

2 Definitions

The Voronoi cell of a point p with respect to a given set of
points N ⊂ �2 is a unique convex polygon which includes all
the points in the space �2 that are closer to p than to the other
points in the set N . Each edge of the polygon is a part of the
perpendicular bisector line of the line segment connecting p
to one of the points in the set. We call each of these edges
a Voronoi edge and each of its end-points (vertices of the
polygon) a Voronoi vertex of p. For each Voronoi edge of the
point p, we refer to the corresponding point in N as a Voronoi

123

60 M. Sharifzadeh, C. Shahabi

n
1

n
2

x

n
4

p

n
3

V(p)

v
1

v
2

B(p,x)

H+(p,x)

H-(p,x)

Fig. 1 The Voronoi cell of the point p with respect to N =
{n1, . . . , n4}. The bisector line corresponding to the new point x
excludes all the points in H−(p, x) from V (p)

neighbor of p. Furthermore, the set N is usually called the
set of site points. As an example, Fig. 1 shows the Voronoi
cell of a point p as a quadrilateral generated given the set
N = {n1, . . . , n4}. The points n1 and v1, and the edge v1v2

are the corresponding Voronoi neighbor, vertex and edge of
p, respectively. The definition of the Voronoi cell of a point
in the 2-dimensional space �2 follows:

Definition 1 If p is a 2-dimensional point, N is a set of n
points in the 2-dimensional space �2, and D(., .) is Euclidean
distance metric defined in the space, then V (p), the Voronoi
cell of the point p given set N , is defined as the unique convex
polygon which contains all the points in the set VN (p):4

VN (p) = {q ∈ �2 | ∀ n ∈ N , D(q, p) ≤ D(q, n)}
We use |pq|, pq , and B(p, q) to denote the Euclidean

distance between the points p and q, the line segment con-
necting them, and the perpendicular bisector line of this seg-
ment, respectively. We use υ(p) to refer to the set of Voronoi
neighbors of p. It is clear that the Voronoi cell V (p) can be
computed using υ(p) in |υ(p)| steps and vice versa. Hence,
we use V (p) and υ(p) interchangeably throughout the paper.

3 The problem

Assume that we need to compute V (p), the Voronoi cell of
a given fixed point p with respect to a set of n site points
N . For each point q ∈ N , the line B(p, q) divides the space
into two half-planes: H+(p, q) including p and H−(p, q)

including q. For any point in H−(p, q), we say that B(p, q)

excludes the point from V (p) (see Fig. 1). The trivial way to
find V (p) is to find the common intersection of all n half-
planes H+(p, x) for all points x ∈ N . The edges of V (p)

4 We assume that such a bounded polygon exists. Furthemore, we
assume that p �∈ N . While this convention is different from the lit-
erature on Voronoi diagrams, the result is the same.

form the boundary of the intersection. If we use linear pro-
gramming, the intersection is computed in O(n log n) time
and linear storage [4].

In this paper, we study two variations of the problem. First,
consider the case when the points in N become incremen-
tally available as a spatial data stream. That is, at each time
instance t , we receive only one data tuple 〈x, y〉 represent-
ing the coordinates of a point nt �= p. Consequently, we
update N to N ∪{nt }. The point p could be the fixed location
of an immobile sensor node in the motivating example of
Sect. 1. The node incrementally receives the locations of the
other nodes (i.e., points in N) through a data stream. Here,
the update scheme of N is broadly referred to as time series
model in the data stream literature [18]. Now the problem
is to update V (p) (or υ(p)) according to the updates to N
(i.e., when a new point x arrives). The classic solution is to
find the intersection of B(p, x) with Voronoi edges of p (i.e.,
edges of V (p)) and update V (p) to the intersection of V (p)

and H+(p, x) (see Fig. 1).
The time complexity of each update is O(|υ(p)|) where

|υ(p)| is the number of current Voronoi neighbors of p. This
complexity is O(|N |) for the worst case where any point in
N is a Voronoi neighbor of p. Meanwhile, it is O(1) on aver-
age as considering any point distribution the average number
of vertices of a Voronoi cell is less than six [4]. Therefore,
the approach meets the common requirement in data stream
algorithms which dictates that the complexity of an update
per-point must be sub-linear in time. Moreover, the space
complexity of the solution is also O(|υ(p)|). The reason is
that if B(p, x) does not intersect with the current V (p), we
do not need to store the point x . Hence, we only store the
Voronoi neighbors of p at each update time and drop the
other points.

Even though the optimal algorithm to compute the exact
Voronoi cell is cost effective, its complexity mainly depends
on the distribution of the site points. The number of Voro-
noi neighbors of the point p depends on the position of the
points in the stream. Therefore, the amount of space required
to store the cell is not deterministic. This is critical in appli-
cations such as sensor networks with memory and power
limitations.

Now consider the sliding window case when we are only
interested in w most recent points. We discussed in Sect. 1
that this case represents real-world scenarios. Here, the goal
is to maintain the Voronoi cell of a fixed point p with respect
to the set of points arrived so far in a window W of fixed size.5

With an example, we show that to compute the exact cell and

5 While our motivating examples utilize time-based windows, we use
fixed-sized windows throughout the paper. It is easy to specify a reason-
able window size considering both the temporal size of a given time-
based window and the application under study. Notice that the size of
this window can be highly affected by the rate of updates on the data
stream (e.g., bursty intervals require larger windows).

123

Approximate voronoi cell computation on spatial data streams 61

Fig. 2 The Voronoi cell of
point p over a sliding window
W of size 6 for seven
subsequent time instances. The
label of the each point shows its
arrival order p p p p

(d)(c)(b)(a)

(g)(f)(e)

p p p

keep it up-to-date at any point in time, we must store all unex-
pired points (i.e., those in the window). To illustrate, Fig. 2
shows the Voronoi cell of a point p over a window of size
6 for seven subsequent time instances. Each point is labeled
by its arrival order (or time). The points shown as filled dots
are within the current window (i.e., the set W) while empty
dots show the others. Each figure snapshot shows only the
bisector lines of the points in W . In Fig. 2a, when the point 6
arrives, its corresponding bisector does not intersect with the
cell and hence it is not a Voronoi neighbor of p. However,
later in Fig. 2c and f, the point 6 does become a Voronoi
neighbor of p. On the other hand, the point 7 never becomes
a Voronoi neighbor of p during any of the time instances
when the point 7 is in the current window (Fig. 2b–g). This
example shows that the classic algorithm cannot drop a new
point (e.g., point 6) even though its corresponding bisector
does not intersect currently with the cell. That is, the space
complexity of the algorithm is O(w) where w is the size of
the window.6 Therefore, the classic algorithm is too expen-
sive in terms of memory requirements for realistic scenarios.
Motivated by this observation, as a prerequisite we first pro-
pose an algorithm to maintain an approximate Voronoi cell in
the general time series model (Sect. 4). In Sect. 7, we extend
our algorithm to be applicable over a sliding window. Our
main objective is to reduce the number of site points which
are required to be stored for the average case.

6 In fact, some of the old points could be dropped based on the loca-
tion of the new point. However, the process of choosing these candidate
points is significantly expensive for the classic algorithm (i.e., O(w2)).
Details are removed due to the lack of space.

4 The approximate voronoi cell algorithm (AVC)

In this section, we propose an approximation algorithm for
the unrealistic time series case in order to extend it to the
realistic sliding window case in Sect. 7. We want to maintain
an approximation to the Voronoi cell of the point p while the
site points in N are arriving as a data stream. The core idea
behind our AVC algorithm is to maintain a minimum subset
of N including the closest site points to p and compute the
Voronoi cell of p with respect to this subset instead of N .
This cell is an approximation to the exact Voronoi cell with
respect to the entire N .

Figure 3 shows the pseudo-code of AVC. We divide the
2-d space using k vectors in k different directions. Each vec-
tor originates from the point p. Moreover, the angle between
each pair of neighboring vectors is θ = 2π/k. We will show
in Sect. 6 that the value of k can be determined as a function
of the user’s tolerance for error. As Fig. 4a shows, the vectors
partition the space into k identical sectors. For each sector
Si , we store a point m(Si), the closest site point to the point
p which is inside Si . We refer to this point as the minimum
point of the sector Si . The procedure Init() in Fig. 3 performs
this initialization step. When a new point x arrives through
the stream, first we find the sector Sx containing x . Then, we
replace the minimum point of the sector (m(Sx)) with x if
the point p is closer to the point x than to the point m(Sx)

(procedure Update()).
Now the Voronoi cell of p with respect to the set of k mini-

mum points corresponding to k sectors (MN = ⋃k
i=1{m(Si)})

is an approximation of the actual Voronoi cell of p using
all site points arrived so far (i.e., set N). It is clear that the
approximate Voronoi cell of p, contains its actual Voronoi

123

62 M. Sharifzadeh, C. Shahabi

p : generator of V (p)

k : parameter of AVC

Procedure Init(point p, integer k)

1. θ = 2π/k;

2. divide the 2-d space around p in to k sectors

using k vectors originating from p

3. for each sector Si do

4. point m(Si) = null;

x : newly arrived site point

Procedure Update(point x)

1. Sx = sector containing x;

2. m = m(Sx);

3. if |px| < | pm| then

4. m(Sx) = x;

Function ApproximateVC(point p)

1. set MN = k
i=1{m(Si)};

2. V (p) = Voronoi cell of p with respect to MN ;

3. return V (p);

Fig. 3 Pseudo-code of AVC

cell. We can compute the approximation in O(k log k) time
and space at any time using the classic algorithm from the
scratch. By incrementally updating this approximation on
new point arrivals, the per-point computation can be reduced
to O(k). Furthermore, the time complexity of the per-point
sample update is O(1). Hence, the per-point update time of
AVC including the time for updating both the sample and the
approximation is O(k). Therefore, AVC maintains a sam-
ple of size κ = k to improve in terms of both time and
space complexity over the classic algorithm specially when
k < |υ(p)|.

Throughout this paper, we use AVC(θ) to denote our algo-
rithm with parameter θ in k = 2π/θ specifying the num-
ber of sectors. Furthermore, we use V ′(p) to refer to AVC’s
approximation to the Voronoi cell of the point p. Figure 4b
shows the exact Voronoi cell of p with respect to the set
N = {a, b, c, d, e, f, g, h}. Figure 4c shows V ′(p) created
by AVC(θ = π/4). The filled dots in the figure are minimum
points of the sectors while the empty dots are dropped by
AVC.

5 Properties of AVC

In this section, we study different properties of the approxi-
mate Voronoi cell computed by the AVC algorithm. We use
these properties to compute the approximation error of the
algorithm in terms of the parameter θ .

(a) (b)

(c)

Fig. 4 a k = 8 vectors originating from p divide the space into k iden-
tical sectors, b the Voronoi cell of the point p, and c the approximate
Voronoi cell of p

A primary property of the Voronoi cell of a point p is that it
contains none of the site points.7 We intend to maintain this
property for the approximate Voronoi cell. It is trivial that
the output of AVC(θ) depends on both the value of θ and
the distribution of the site points in N . However, we show
that specific values of θ can be used in AVC to make some
properties of its output independent from the distribution of
the input points.

Lemma 1 For any point p, V ′(p) computed by AVC(θ) does
not contain any of the site points in N for any arbitrary set
N if and only if θ is less than π/3.

Proof See Appendix. �
Another property of the Voronoi cell of p is that the dis-

tance of any point inside (on) the cell to p is less than (equal
to) its distance to any site point in N . We show that for any
point inside (on) the approximate Voronoi cell of a point p,
its distance to its closest site point in N is less than its dis-
tance to p by at most a small factor. We define the function
f (q) over the set of points q in the 2-d space as

f (q) = |qp|
|qr | , (1)

where r is the closest site point to q in N . The property indi-
cates that f (q) is always less than or equal to 1 for the set of

7 Note that p �∈ N .

123

Approximate voronoi cell computation on spatial data streams 63

points inside or on the actual exact Voronoi cell V (p) (note
that p /∈ N). Over this set, the function f reaches its upper
bound (one) on the points on the boundary of V (p). To study
the approximation error of the AVC algorithm, we need to
find the upper bound of the function over the set of points
inside or on V ′(p). In particular, if a point is inside or on
V ′(p) we find how far its distance to p from its distance to
its actual closest point could be. Towards this end, we first
locate the points where the maximum of f (q) occurs.

Lemma 2 Let q be a point inside or on the boundary of
V ′(p), computed by AVC(θ) for a point p, and r be its clos-
est site point in N. If θ < π/3, the maximum of f (q) = |qp|

|qr |
over all points q occurs for a point on the boundary of V ′(p).

Proof The proof is by contradiction. Assume that q with the
maximum f (q) = |qp|

|qr | is inside V ′(p) (not on its boundary).
According to Lemma 1, as θ is less than π/3, the site point r
is not inside V ′(p). Therefore, the line segment qr intersects
with one of the edges of V ′(p) at a point a. First, we show
that

|ap|
|ar | >

|qp|
|qr | . (2)

The points p, q, and r are either collinear or form a trian-
gle. Figure 5a illustrates the first case. As q is between a and
p, and a is between q and r , and all four points are on the
same line, we have |qp| < |ap| and |qr | > |ar |. Therefore,
Eq. 2 holds. Figure 5b shows the second case illustrating the
triangle �qpr . In the figure, we have � qpa = α, � apr = β,
and � qr p = γ . In the triangle �qpr , the law of sines yields

f (q) = |qp|
|qr | = sin γ

sin(α + β)
. (3)

Meanwhile, using the same law in the triangle �apr , we get

|ap|
|ar | = sin γ

sin β
. (4)

As r excludes q from V (p), r is inside the circle C(q) cen-
tered at q with a radius of |qp|. Therefore, in the triangle
�qpr we have α + β < π/2. Comparing α + β with β

results in

β < α + β <
π

2
⇒ sin β < sin(α + β). (5)

Comparing Eqs. 3 and 4, and considering the inequality in
Eq. 5 shows that Eq. 2 holds in the second case too. Let s be
the closest point to a in N . So we have |as| ≤ |ar |, therefore

f (a) = |ap|
|as| ≥ |ap|

|ar | >
|qp|
|qr | = f (q). (6)

Equation 6 contradicts our assumption and shows that the
point q with the maximum value for f (q) must be on the
boundary of V ′(p). �

(a) (b)

Fig. 5 The point q inside V ′(p) and its closest site point r where p,
q, and r a are collinear, and b form the triangle �qpr

6 Approximation error

We prove that the Voronoi cell computed by the AVC algo-
rithm is a (1 + ε)-approximation to the actual Voronoi cell.
More precisely, if a point q is inside the approximate Voro-
noi cell of a point p, its distance to its closest point in N is
less than its distance to p by at most a factor of 1 + ε (i.e.,
f (q) ≤ 1 + ε). We show that this difference is bounded and
find the upper bound of ε for a given θ . Moreover, we prove
that for a given ε, one can compute the largest θ for which
AVC(θ) results in an approximation of tolerable error ε. To
provide a proof, we first showed in Lemma 2 that the maxi-
mum of the function f occurs on the edges of the approximate
Voronoi cell. In this section, for an arbitrary point q on the
boundary of approximate Voronoi cell of p but outside its
actual Voronoi cell, we consider the set of q’s possible clos-
est points in N which might have been dropped by the AVC
algorithm. We find the maximum of f (q) over the set of all
points such as q.

Theorem 1 If q is a point on the boundary of V ′(p) com-
puted by the algorithm AVC(θ) and r is its closest site point
in N, a certain positive ε can be found in terms of θ for which
we have

f (q) = |qp|
|qr | ≤ 1 + ε. (7)

Proof Let q be a point on one of the edges of the approx-
imate Voronoi cell of p and outside the actual Voronoi cell
of p (i.e., inside H−(p, r)). That is, the closest point to q
in N ∪ {p} is a point r other than p. The goal is to find the
maximum of |qp|/|qr |. Towards this objective, we need to
find the minimum of |qr | as |qp| is fixed for q. Hence, we
locate the closest such a point r to q. It is clear that this point
is not among k minimum points corresponding to the sec-
tors (i.e., r �∈ MN). The reason is that if it was one of these
points, the bisector line corresponding to pr , B(p, r), would
have excluded q from the approximate Voronoi cell of p in
the AVC algorithm. However, an exact Voronoi cell com-
putation algorithm causes q to be outside V (p). The locus
of the points such as r whose corresponding bisector line,

123

64 M. Sharifzadeh, C. Shahabi

q

p
x

y

C(q)

Fig. 6 The effect of x and y on the inclusion of q in the Voronoi cell
of p

B(p, r), excludes the point q from V (p) is inside a circle
centered at q with a radius of |pq|. We call this circle C(q).
To illustrate, consider the Voronoi cell of point p showed in
Fig. 6. The figure shows a point q inside the Voronoi cell of
p and the points x and y inside and outside the circle C(q),
respectively. The bisector line B(p, x) intersects with the
Voronoi cell causing q to be excluded from the cell. This is
while, y which is outside the circle C(q) has no effect on the
inclusion of q in the cell.

Now consider all the sectors which intersect with the cir-
cle C(q), namely S1, . . . , S9 in Fig. 7. As q is on V ′(p) we
can infer that for each of these sectors either it includes none
of the points in N or its corresponding minimum point is
outside the circle C(q). However, because q is outside V (p)

the former case cannot be true for all of such sectors. That is,
there must be at least one sector containing r with a minimum
point outside the circle C(q). This minimum point has caused
the point r to be removed from our set of minimum points.
Therefore, its corresponding bisector line has not excluded
q from V ′(p) in the AVC algorithm. To find the minimum
value of |qr |, we show how this happens and find the closest
point r which has been removed because of this minimum
point.

Consider one of the sectors that intersect with C(q) (S3 in
Fig. 7). Let us locate the intersection point of the boundaries
of the sector and the circumference of C(q) which is closer
to p (m in Fig. 7). The point m is the closest point to p inside
S3 and outside C(q). Each of the points inside the sector S3

and the circle C(q) whose distance to p is more than |mp| are
removed by the AVC algorithm if m is the minimum point of
S3. The locus of these points is the intersection of (1) inside
the sector S3, (2) inside the circle C(q), and (3) outside the
circle centered at p with a radius of |mp| (C). Figure 7 marks

p

q

s

m
S

2

S
3

S4

S1

S
5

S9

S6

S
7

S8

V
1

Fig. 7 The point q on one of the edges of V ′(p), the hidden point of
the sector S3, the angle β based on the location of q in S5, and the angle
α based on the location of S3 and S5

this intersection as O . The closest point to q in O is the point
s. We refer to s as the hidden point of the sector S3 with
respect to q and V ′(p).

Now consider the hidden point of S3. Let v1 be the closest
vector to q between pq and ps. We use α and β to refer to
the angles which ps and pq make with v1, respectively (see
Fig. 7). Notice that the location of q determines the value of
β while α depends on the location of S3 with reference to the
sector containing q (i.e., S5). Using the law of cosines in the
triangle �pqs we have

|qs|2 = |qp|2 + |ps|2 − 2|qp||ps| cos(α + β). (8)

We have |ps| = |pm| as both s and m reside on the circle C .
Moreover, the triangle �pqm is an isosceles triangle as both
points p and m are on the circle C(q) (|qm| = |qp|). The
angle between pm and ps is equal to θ as they are bound-
aries of the same sector. Now in the triangle �pqm we have
|pm| = 2|qp| cos(α + β + θ). If we replace |ps| with the
value of |pm| in Eq. 8, we get

|qs|2 = |qp|2 + 4|qp|2 cos2(α + β + θ)

−4|qp|2 cos(α + β) cos(α + β + θ).
(9)

We define F(α, β, θ) as

F(α, β, θ) =√
1 + 4 cos2(α + β + θ) − 4 cos(α + β) cos(α + β + θ)

(10)

and replace it in Eq. 9 to get

|qs| = |qp|F(α + β + θ). (11)

For a given point q (with a fixed angle β) the value of |qs|
in the sector containing r is minimum over all other sectors

123

Approximate voronoi cell computation on spatial data streams 65

(with different values of α) that intersect with the circle C(q).
That is, as r is the closest point to q, the point q is closer to
the hidden point of the sector containing r (i.e., s inside S3

in Fig. 7) than to the hidden points of all of the sectors that
intersect with the circle C(q). To exploit the domain of the
angle α, observe that as both points m and p are on the circle
C(q), the angle � qpm = α + β + θ is not greater than π/2.
Therefore we have

|qs| = min
0≤α≤ π

2 −β−θ

α=iθ

(|qp|F(α + β + θ)) . (12)

Notice that α is a multiple of θ as it is the angle between
two vectors. So, we obtain

|qp|
|qs| = 1

min
α = iθ F(α + β + θ)

. (13)

Now as |qr | ≥ |qs| for the sector containing r , we have

f (q) = |qp|
|qr | ≤ |qp|

|qs| . (14)

Therefore, the upper bound of f (q) is not greater than the
upper bound of |qp|/|qs|. The latter is the maximum of
Eq. 13 over different points q (with different β angles).
Hence, for any point such as q

f (q) ≤ max
0 ≤ β ≤ θ

⎛

⎝ 1

min
α = iθ F(α + β + θ)

⎞

⎠. (15)

Equation 15 shows an upper bound for f (q) as a func-
tion of α, β, and θ . In the remainder of the proof, we show
that this function is bounded by another function in terms of
θ . Let α0 = argmin(|qs|) be the angle α = iθ for which
|qs| is minimum. Figure 8a plots α0/θ for different values of
k = 2π/θ and β, and Fig. 8b shows a slice of this diagram
for k = 36. As shown in both figures, the value of α0 that
determines the location of the point s depends on both θ and
β. It means that if q (and β) changes in Fig. 7, the sector
containing r might change to be S4 (not S3). In general, for
a given θ the polar angle between the sector containing a
point inside V ′(p) and its closest possible point which can
be removed by AVC is not fixed.

Figure 8c plots the maximum of f (q) for different val-
ues of θ . As the figure shows, f (q) is less than 2 if k is
greater than 8 (i.e., θ < π/4). For any value of θ , one can
extract a certain ε = max(f (q)) − 1 from Fig. 8c so that
Eq. 7 holds. We observed that the maximum occurs when
α + β + θ ≈ π/4. To find a maximum function in terms of
θ we plotted the following function in this diagram:

g(θ) = 1
√

3 − 2
√

2 cos(π/4 − θ)

. (16)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

1

2

3

4

5

6

7

0

50 100 150 200
1

1.5

2

2.5

3

3.5

4

4.5

5

/2k

))(max(qf
)(g

(a)

(b)

(c)

Fig. 8 a α0/θ shows the location of the sector containing the closest
hidden point to q for different values of β (in radians) and k , b α0/θ

for different values of β where k = 36 (i.e., θ = π/18), c the upper
bound of f (q) for different values of k

123

66 M. Sharifzadeh, C. Shahabi

Note that we reach g(θ) if we use α + β = π/4 − θ

in Eq. 13. The figure shows that for the values of k > 8,
g(θ = 2π/k) is always greater than but very close to f (q).
Consequently, the upper bound of f (q) is g(θ) if k > 8. It
implies that Eq. 7 holds for ε = g(θ) − 1. �

The immediate implication of the proof of Theorem 1 is
that for a given ε, we can use g(θ) to compute the smallest k
(i.e., the largest θ) to use with the AVC algorithm and result
in an approximation of tolerable error ε.

Theorem 2 For a given positive error bound ε, the largest
θ , using which AVC(θ) can compute an approximate Voronoi
cell with a maximum error of ε is computed from the equation
g(θ) = 1 + ε.

We can also use Theorem 2 to compute the approximation
error ε resulted from AVC(θ) given the value of parameter
k. Moreover, our numerical exploration of the maximum of
f (q) for different values of k illustrated in Fig. 8c verifies
the following theorem:

Theorem 3 Given a reasonably large k (e.g., k > 8), AVC(θ)

achieves an approximation of small error ε computed from
the equation ε = g(2π/k) − 1.

7 AVC over sliding windows

In this section, we extend the AVC algorithm to be applicable
to the sliding window model. With this model, the goal is to
maintain the Voronoi cell of a point p with respect to the set
of w recent points. With a window of fixed size w, when the
new point nt is arrived through the data stream, we update
the set of site points N to exclude its oldest point and include
nt . We say the oldest point has expired.

In Sect. 3, we showed that a classic Voronoi cell compu-
tation algorithm cannot be used over a sliding window. The
algorithm is not scalable to data stream rate and window size
as it costs O(w) memory. Likewise, the AVC algorithm is
prone to the same problems. As an example, assume that AVC
stores the minimum point m corresponding to the sector S at
time t . Assume that according to the window size, m expires
at time t ′ > t (i.e., when we receive w points after t). Con-
sider the set of site points that arrive during the time range
(t, t ′] and reside in the sector S. If p is closer to m than to any
of these points, AVC drops all of them and maintains m as
the minimum point of S. However, as soon as m expires, the
minimum point of S needs to be updated to the point m′, the
closest point to p in S. Hence, AVC must store m′. Apply-
ing the reasoning recursively renders that AVC must store all
the points in the window. In the remainder of this section,
we extend the AVC algorithm to overcome this shortcoming
by storing only the points which might become a minimum
point in a future window.

p : generator of V (p)

k : parameter of AVC-SW

Procedure Init(point p, integer k)

1. θ = 2π/k;

2. divide the 2-d space around p in to k sectors

using k vectors originating from p

3. for each sector Si do

4. point m(Si) = null;

5. set M(Si) = ∅;
x : newly arrived site point

Procedure Update(point x)

1. Se = sector containing expired point e;

2. M(Se) = M(Se) − {e };

3. m(Se) = closest point to p in M(Se);

4. Sx = sector containing x;

5. M(Sx) = M(Sx) ∪ {x};

6. for each point y in Sx do

7. if |py| > |px| then

8. M(Sx) = M(Sx) − {y };

9. m(Sx) = closest point to p in M(Sx);

Fig. 9 Pseudo-code of AVC-SW

With the AVC algorithm, we require to maintain the mini-
mum points of each sector for the current window. The main
idea behind our extension (AVC-SW) is that for each sec-
tor, we store any point which might be the minimum point
in a future window before it expires. Therefore, we store all
points upon their arrival. However, if p is closer to the newly
arrived point than to any point x , previously stored for the
corresponding sector, we drop x .

7.1 The AVC-SW algorithm

Let w be the window size, and at each time instance t , only
one point arrives. We employ the same vectors of AVC to
divide the space into sectors (see Sect. 4). For each sector
Si , we store the minimum point m(Si) and a set of points
M(Si). This set includes all the points which can possibly be
minimum points in the future windows. We initialize m(Si)

and M(Si) to null for all sectors Si before we start process-
ing the data stream. Figure 9 shows the pseudo-code of the
initialization and update steps of AVC-SW.

For each new point x , first we find the expired point among
members of all M(Si) sets and delete it. Second, we find the
sector Sx containing x and add x to M(Sx). Third, we delete
any point y in M(Sx) if |py| > |px |. These points will never
become minimum point of their sector in a future window.

123

Approximate voronoi cell computation on spatial data streams 67

Fig. 10 AVC-SW updates the
set M(S) and the minimum
point m(S) for each of the 5
arriving points in the sector S.
Assume that none of these points
expire during this illustration

1

p

S

(a)

M(S) = {1}
m(S) = 1

1

p

S

(b)

M(S) = {1,2}
m(S) = 1

2 1

p

S

(c)

M(S) = {1,2,3}
m(S) = 1

2

3

1

p

S

(d)

M(S) = {1,4}
m(S) = 1

2

3

4

1

p

S

(e)

M(S) = {5}
m(S) = 5

2

3

4

5

Finally, we set m(Sx) to the closest point to p in M(Sx) (see
procedure Update() in Fig. 9). Similar to AVC, the Voronoi
cell of p with respect to the set of k minimum points (m(Si))
corresponding to k sectors is the approximation of the actual
Voronoi cell of p. That is, AVC-SW employs the function
ApproximateVC() shown in Fig. 3. The properties of V ′(p)

and the approximation error analysis discussed in Sects. 5
and 6 also hold for the output of AVC-SW. The sample size of
AVC-SW is computed as κ = ∑k

i=1 |M(Si)|, where |M(Si)|
is the cardinality of the set M(Si).

Figure 10 illustrates how AVC-SW maintains the mini-
mum points of the sector S. The figure shows only the times
when the new point is inside the sector S. Assume that none
of these points expires during these time instances. As shown
in Fig. 10a, the point 1 is the current minimum point of S.
When the points 2 and 3 arrive in Fig. 10b and c, respec-
tively, AVC-SW adds them to M(S) as they might become
the minimum point of S when 1 expires. However, 1 is still
the current minimum point of S in the window. In Fig. 10d,
the point 4 arrives. As 4 is in all future windows in which 2 or
3 exist and p is closer to 4 than to 2 and 3, we delete 2 and 3.
Finally, the point 5 arrives in Fig. 10e and causes the update
to the minimum point and deletion of all the points in M(S).

In general case, the space requirements of AVC-SW is
less than O(w) as we drop the portion of the points that
are unlikely to be a minimum point. However, in the worst
case, when the points of each sector arrive in the increasing
order of their distance to p, AVC-SW stores all of them (see

Fig10a–c). In Sect. 7.2, we study the average sample size of
AVC-SW.

7.2 Space complexity analysis

In this section, we theoretically find an upper bound for the
expected number of points stored by AVC-SW where the
points are arriving in a uniform random order. Notice that we
make no assumption on the distribution of the points in the
2-d space. To study the variance of the sample size of AVC-
SW, we also find the probability that the algorithm stores x
points out of n unexpired points of each sector.

Given the window size w and the number of sectors k,
assume that each sector Si includes ni points of the win-
dow (i.e., unexpired points). Hence, we have

∑k
i=1 ni = w.

Assume that AVC-SW stores A(Si) points of ni points con-
tained in sector Si . That is, A(Si) is the cardinality of the set
M(Si) for sector Si . Hence, the total number of points stored
by AVC-SW will be κ = ∑k

i=1 A(Si). We first show that the
expected value of A(Si) is 	(log ni) if ni > 1.

Lemma 3 Out of n > 1 unexpired points which arrive in
sector S in a uniform random order, the expected number of
points stored by AVC-SW is 	(log n).

Proof AVC-SW uses the order of the points received in each
sector and their distances to the center point p to decide
whether they must be stored or dropped. For a sector S,

123

68 M. Sharifzadeh, C. Shahabi

b

p

S

a

e

d
c

P = {a, b, c, d, e}
H = { (a,4,1), (b,2,2),
(c,1,3), (d,3,4), (e,5,5)}
M(S) = {c, d, e}
A(S) = 3

Fig. 11 Space analysis of AVC-SW

(e,5,5)

(d,3,4)

(c,1,3) (a,4,1)

(b,2,2)

Fig. 12 The treap built on set H shown in Fig. 11

assume that P = {p1, p2, . . . , pn} is the set of n points of the
current window which are inside S. Now consider the set H
which contains one 3-tuple item (pi , ri , ti) for each pi ∈ P .
Integer 1 ≤ ri ≤ n is the rank of the point pi if we sort
points in P based on their increasing distance to the point p
and rank them accordingly.8 Similarly, integer 1 ≤ ti ≤ n is
the rank of the point pi if we sort points in P based on their
arrival time and then rank them. To illustrate, Fig. 11 shows
the sector S including five points a, b, c, d, and e, all in the
current window. They have arrived in alphabetical order with
a and e as the oldest and the most recent points, respectively.
AVC-SW stores points c, d, and e so A(S) is equal to three.

Now consider the set H . There is a unique treap [17] on
members of set H considering ri and ti as the key and pri-
ority values of (pi , ri , ti), respectively. Treap is a binary tree
in which each node contains two values: a key and a priority.
The keys satisfy the BST property while the priority values
satisfy the heap property. To illustrate, Fig. 12 shows the
unique treap built on the set H corresponding to the points
shown in the example of Fig. 11. It is not hard to realize that
M(S) includes only the points on the left spine of this treap.
As shown in the figure, the left spine of the treap corresponds
to all the points of P that AVC-SW stores (i.e., points c, d,
and e). Therefore, A(S) is the length of the left spine of the
treap.

Here, we intend to compute the expected value of A(S).
Both n-tuples R = (r1, . . . , rn) and T = (t1, . . . , tn) are
clearly random permutations of positive integers less than

8 To break the ties, for two points with the same distance to p, we insert
the point with greater polar angle with the x-axis after the one with the
smaller angle.

or equal n. Depending on the distances of points in set P
to the center point p, R could be any of n! permutations of
these numbers. Similarly, T is one of these n! permutations
depending on the arrival time of points in P . Therefore, the
expected value of A(S) is the expected length of the left
spine of the treap built on the set H with random distinct
key-priority pair values ri and ti .

It is known that the expected length of the left/right spine
of a random treap of n nodes is the nth harmonic number Hn

[17]. Therefore, assuming a random arrival of points inside
sector S, the expected value of A(S) is equal to Hn . That is,
AVC-SW on average stores only Hn points out of n unexpired
points inside sector S.

The harmonic number Hn has proven to be increasing
slowly as n increases. For n ≤ 2.5 × 108, it is still less than
20. Furthermore, to get Hn greater than 100, n must be greater
than 1.509×1043 [7]. Seidel and Aragon [20] prove that Hn ,
the expected length of left/right spine of a treap of n distinct
values, is 	(log n). Therefore, AVC-SW’s expected sample
size for n > 1 points in sector S is 	(log n). �

It is clear that if the sector Si includes no unexpired point
then AVC-SW stores no point corresponding to Si (i.e., ni =
0 ⇒ A(Si) = 0). Moreover, if Si includes only one unex-
pired point then AVC-SW stores this point (i.e., ni = 1 ⇒
A(Si) = 1). Now, as we have log(n + 1) � log n for large
values of n, we provide the following to generalize the result
of Lemma 3 for all values of n:

Lemma 4 Out of n unexpired points which arrive in sector
S in a random order, the expected number of points stored
by AVC-SW is 	(log(n + 1)).

Now we find an upper bound for the expected number
of points stored by AVC-SW for an arbitrary distribution of
points in the space. We show that the sample size κ reaches
this bound when all sectors Si include the same number of
points (i.e., ni = w/k).

Theorem 4 Given the window size w and the number of
sectors k, the expected sample size of AVC-SW is O(k log
(w

k + 1)).

Proof With k sectors Si , AVC-SW’s sample size κ is
∑k

i=1
A(Si). According to Lemma 4, the expected value of A(Si)

is 	(log(ni + 1)). Therefore, we have

E(κ) = c
k∑

i=1

log(ni + 1), (17)

where c is a constant considering the definition of 	 notation.
Pushing the log function outside the sum, we get

E(κ) = c log
k∏

i=1

(ni + 1). (18)

123

Approximate voronoi cell computation on spatial data streams 69

0

100

200

300

400

500

600

700

800

1 101 201 301 401 501 601 701
Window Size (w)

Window Size

AVC-SW's Analytical Sample Size

Fig. 13 Analytical expected number of points stored by AVC-SW (i.e.,
AVC-SW’s sample size κ) for different values of w when k = 36

It is well known that the arithmetic mean of a set of numbers
is an upper bound for their geometric mean. That is, for the
set of (ni + 1)’s we have

k∏

i=1

(ni + 1)
1
k ≤ 1

k

k∑

i=1

(ni + 1). (19)

Now, we know that the sum of all ni ’s is fixed as they are all
the points inside the current window of size w (i.e.,

∑k
i=1

ni = w). Therefore, we have
∑k

i=1(ni + 1) = w + k and
hence the following holds:

k∏

i=1

(ni + 1) ≤ (w + k)k

kk
. (20)

Replacing the product of (ni + 1)’s in the left side of Eq. 18
with the right side of Eq. 20, we get

E(κ) ≤ ck log
(w

k
+ 1

)
. (21)

Hence, we conclude that the expected sample size of AVC-
SW is O(k log(w

k + 1)). �
The result proved in Theorem 4 is independent from the

distribution of points in the 2-d space. The expected value
E(κ) is less than 20k when w ≤ 2.5×108k. Figure 13 shows
the function k log(w

k + 1) for k = 36 varying the window
size.

So far, we theoretically showed that the expected sample
size of AVC-SW is significantly less than the window size.
To show that even for the general case AVC-SW’s sample
size is small with a high probability, we find the variance of
the number of unexpired points inside each sector S which
are stored by AVC-SW.

Theorem 5 Let Pn(x) be the probability that AVC-SW stores
x points out of n unexpired points which arrive in sector S
in a uniform random order. We have the following:

Pn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1/n if x = 1
(Pn−1(x − 1)+
(n − 1)Pn−1(x))/n if 1 < x < n
1/n! if x = n

(22)

Proof We assume that the sector S includes n unexpired
points P = {p1, . . . , pn}. We also assume that the point
pi is the i-th arrived point which is inside S. The n-tuple
R = (r1, . . . , rn) includes the rank ri of pi if we sort the
points in P based on their increasing distance to the point
p (the generator of V (p)) and rank them accordingly. For
example in Fig. 11, we have R = (4, 2, 1, 3, 5). It is clear
that AVC-SW only uses the ranks in R to select the points
which must be stored. If the points arrive in S in a uniform
random order, then with an equal probability R is one of n!
permutations of positive integers less than n + 1. Assume
that Tn is the set of all of these permutations. Let N (n, x)

be the number of permutations in Tn for which AVC-SW
stores x ≤ n points. Therefore, Pn(x), the probability that
AVC-SW stores x points out of n unexpired points of sector
S is

Pn(x) = N (n, x)

n! . (23)

To compute the probability Pn(x), we first try to find
N (n, x). It is clear that N (1, 1) = 1. For n > 1, assume
that out of n points in the set P corresponding to the per-
mutation R ∈ Tn , AVC-SW stores only N(R) = x points.
Consider the following three cases:

Case 1) x = 1: This case happens only when we have
R = R1 = (r1, . . . , rn−1, 1). That is, the newest point pn

arrived in sector S is the closest point to the generator p in
the set P . Hence, upon arrival of pn AVC-SW drops all other
points and stores only pn . The number of permutations sim-
ilar to R1 is (n − 1)! as the last item of R1 is fixed (rn = 1)
and the other n −1 items can be selected from integers in the
range [2, n]. Therefore, we have N (n, 1) = (n − 1)!.

Case 2) x = n: This case happens only when we have
R = R2 = (1, 2, . . . , n). That is, AVC-SW receives the
points in P in the increasing order of their distance to the
generator p. As we mentioned in Sect. 7.1, this is the worst
case where AVC-SW stores all the n points of the sector. R2

is unique among all permutations in Tn and hence we have
N (n, n) = 1.

Case 3) 1 < x < n: This case includes all other permu-
tations R ∈ Tn which does not match with those described
as the previous two cases. Here, we find N (n, x) recursively
in terms of N (n − 1, x − 1) and N (n − 1, x). Let R′ be the
permutation of n −1 integers resulted after removing n from
R. Depending on the order of items in R, one of the two
following subcases can happen:

123

70 M. Sharifzadeh, C. Shahabi

Case 3.1) R = (r1, . . . , rn−1, n): The last item in R is
equal to n and hence we have R′ = (r1, . . . , rn−1). For
instance, in Fig. 11 where n = 5, we have R = (4, 2, 1, 3, 5)

and R′ = (4, 2, 1, 3). Obviously, AVC-SW stores the newest
point pn ranked as n as it is the farthest point from p in sector
S. By assumption we have N(R) = x and hence AVC-SW
must have stored x − 1 points from the other n − 1 points
ranked as R′. According to our definition, there are N (n −1,

x − 1) permutations such as R′ = (r1, . . . , rn−1) in Tn−1 for
each there is a single permutation R = (r1, . . . , rn−1, n) in
Tn .

Case 3.2) R = (r1, . . . , n, . . . , rn): An intermediate item
in R is equal to n (i.e., ri = n for some i �= n). For example
for n = 5 and R = (2, 3, 5, 1, 4) we get R′ = (2, 3, 1, 4). In
this case, the point pi with the rank ri = n is not stored by
AVC-SW as there is at least one newer point pi+1 which is
closer to the generator p (i.e., ri+1 < ri = n). As we have
N(R) = x , AVC-SW must have stored x points from the
other n − 1 points ranked as R′. Again, by definition there
are N (n − 1, x) permutations such as R′ in Tn−1. However,
as n could be any of the n − 1 intermediate items in R, for
each R′ in Tn−1 there are n − 1 corresponding permutations
R in Tn . For example, R′ = (2, 3, 1, 4) can be resulted by
removing 5 from (5, 2, 3, 1, 4), (2, 5, 3, 1, 4), (2, 3, 5, 1, 4)

and (2, 3, 1, 5, 4).
Considering both subcases of case 3, we get N (n, x) =

N (n − 1, x − 1) + (n − 1)N (n − 1, x) when 1 < x < n.
Equation 24 summarizes the final result for all values of x
described through the above three cases:

N (n, x) =

⎧
⎪⎪⎨

⎪⎪⎩

(n − 1)! if x = 1
N (n − 1, x − 1)+ (n − 1)N (n − 1, x)

if 1 < x < n
1 if x = n.

(24)

Now we use Eq. 23 and divide both sides of Eq. 24 to n! to
get Pn(x):

Pn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1/n if x = 1
N (n − 1, x − 1)/n!+ (n − 1)N (n − 1, x)/n!

if 1 < x < n
1/n! if x = n.

(25)

Finally, we replace N (n − 1, x − 1) = (n − 1)! Pn−1(x − 1)

and N (n − 1, x) = (n − 1)! Pn−1(x) in Eq. 25 to get Eq. 22.
�

Figure 14 illustrates P36(x) for different values of x . It
shows the probability that AVC-SW store x points out of
36 unexpired points which are inside a sector. As the figure
shows, the distribution is skewed significantly towards the
left (smaller values of x). The figure depicts that the proba-
bility that AVC-SW store even 12 points out of 36 unexpired
points is 0.00005. Also, the figure shows that most likely the

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30 35

x: number of points of a sector stored by AVC-SW

Pr
ob

ab
ili

ty
 P

n(
x)

Fig. 14 Pn(x): Probability distribution of the number of points stored
by AVC-SW out of n = 36 points in a sector

number of points stored by AVC-SW is �log 36� = 5 points
(0.25 as the highest probability P36(5)).

7.3 Time complexity

Theorem 4 also shows that the expected number of points
stored for each sector is O(log(w

k + 1)). Per each update,
AVC-SW requires to remove the expired point from and
add the new point to their corresponding sectors and also
update the minimum point of these sectors. This step takes
O(log(w

k + 1)) time. The algorithm also builds V (p) using
the k minimum points from scratch which takes O(k log(k))

time. Hence, the per-point update time of AVC-SW is O(log
(w

k + 1) + k log(k)).

8 Performance evaluation

We conducted extensive experiments with both synthetic and
real-world datasets to evaluate the average space used by
AVC-SW and its approximation error for different values
of parameter k and window size w. The experiments were
all performed on a DELL Precision 470 with Xeon 3.2 GHz
processor and 3 GB of RAM.

In the first set of experiments, we synthetically generated
data streams of 1,000 points uniformly distributed inside a
circle. These points are randomly chosen to arrive as a spatial
data stream. We used the center of the circle as the fixed point
p, applied AVC-SW’s sampling algorithm on the stream and
computed the average number of stored points during 100
different runs. Figure 15a illustrates the average sample size
(κ) of AVC-SW for three different window sizes when we
vary the parameter k. It shows that when k is less than the
window size (e.g., k = 67 and w = 400), the sample size is
far less than w. Figure 15b shows the same measurement for
k = 36 and different window sizes. It shows up to 80% reduc-
tion in memory requirement for k = 36 and large windows.

123

Approximate voronoi cell computation on spatial data streams 71

0

80

160

240

320

400

480

(a)

(b)

7 17 27 37 47 57 67 77 87 97

AVC-SW's Parameter (k)

A
V

C
-S

W
's

 S
am

pl
e

Si
ze

w = 80 w = 240 w = 400

0

100

200

300

400

500

600

700

800

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751

Window Size (w)

Window Size AVC-SW's Sample Size

Fig. 15 Synthetic dataset: average number of points stored by AVC-
SW (i.e., AVC-SW’s sample size) for a w = 80, 240, and 400 and
different values of k, and b different values of w when k = 36

Notice that the number of sectors k in Fig. 15b is the same as
that of results shown in Fig. 13. Comparing the two figures
shows that the analytical expected sample size computed in
Eq. 21 completely supports the sample size computed by our
experiments.

In the second set of experiments, we used three real-world
datasets to generate our spatial data streams:

1. USGS dataset was obtained from the U.S. Geological
Survey (USGS).9 The dataset consists of 950, 000 loca-
tions of different businesses (e.g., churches) in the entire
US.

9 http://geonames.usgs.gov/.

2. NE dataset contains 123, 593 locations in New York,
Philadelphia and Boston. Hence, the locations are clus-
tered into three clusters and represent almost uniformly
distributed rural areas and smaller population centers.10

3. GRC dataset includes the locations of 5,922 cities and
villages in Greece.10

During each of 100 runs for each dataset, we chose the
locations randomly to arrive as a spatial data stream. Then,
we used AVC-SW to approximate the Voronoi cell of a point
randomly chosen inside the minimum bounding box of the
dataset.11 Subsequently, we measured the average number of
points stored by AVC-SW. We also measured the maximum
error ε̄ of the approximate Voronoi cell for each of window
snapshots. This error ε̄ is the maximum value of f (q) − 1
that occurs for a point q on the boundary of the Voronoi cell
(Lemma 2).

Figure 16a shows the average sample size of AVC-SW
using the USGS dataset for window sizes 80, 240, and 800
when parameter k increases from 7 to 100. Comparing this
result with the corresponding result illustrated in Fig. 15a
shows that AVC-SW requires noticeably less space for the
real-world dataset. That is, it achieves better performance
with the point distribution of the real USGS dataset. For
example, when k is 70, AVC-SW stores only 38 points out
of 80 unexpired USGS points while it stores 63 points of the
uniformly distributed synthetic dataset.

Figure 16b illustrates the average sample size of AVC-SW
for sliding windows of different sizes over all three real data-
sets when k = 36. The figure shows that AVC-SW stores only
10% of a window of 700 USGS points. This is almost half
of the size of the sample which is stored by AVC-SW for a
window of the same size over the synthetic dataset. We stated
in Sect. 7.2 that with a random arrival of points, the expected
sample size of AVC-SW reaches its maximum value when
the points are equally distributed among the sectors. Now,
the intuition here is that the non-uniform distribution of the
points of the USGS dataset causes that the sectors containing
centers of skewed areas get much more points than others.
As a result, the sample size of AVC-SW is much less than
its upper bound computed in Theorem 4. The figure shows
that AVC-SW stores more points for the sliding windows
of the same size over GRC and NE datasets. The reason is
that these locations in these two datasets are scattered more
uniformly in the corresponding areas.

Finally, Fig. 17 depicts the average of AVC-SW’s approx-
imation errors for all three datasets and a sliding window of
size 100. For each dataset, this is the average of the error ε̄

measured for the Voronoi cell corresponding to each window

10 http://www.rtreeportal.org/.
11 We also performed the experiments by selecting this point out of the
points in the dataset and the results were similar.

123

http://geonames.usgs.gov/
http://www.rtreeportal.org/

72 M. Sharifzadeh, C. Shahabi

0

80

160

240

320

400

480(a)

(b)

7 17 27 37 47 57 67 77 87 97

AVC-SW's Parameter (k)

A
V

C
-S

W
's

 S
am

pl
e

Si
ze

 (
U

SG
S)

w = 80 w = 240 w = 400

0

100

200

300

400

500

600

700

800

1 100 200 300 400 500 600 700 800

Window Size (w)

A
V

C
-S

W
's

 S
am

pl
e

Si
ze

Window Size (w)
USGS

GRC

NE

Fig. 16 Average number of points stored by AVC-SW (i.e., AVC-SW’s
sample size) for a USGS dataset and w = 80, 240, and 400 and different
values of k, and b USGS, GRC, and NE datasets and different values
of w when k = 36

over the dataset. The Figure also shows AVC-SW’s analyt-
ically computed error ε = g(θ) − 1 for different values of
k (Theorem 3). As shown in the figure, the average error
of all three datasets is considerably less than the analytical
error ε. While this is true for the average case, we observed
that the maximum error of all Voronoi cells computed is very
close to ε. That is, AVC-SW’s approximation error computed
according to Theorem 3 is a tight upper bound for AVC-SW’s
actual error in real-world scenarios.

9 Related work

Query processing on spatial data streams has received recent
attention by the database community [5,11,10] to solve prob-

0

0.05

0.1

0.15

0.2

10 20 30 40 50 60 70 80 90 100

AVC-SW's Parameter (k)

A
ve

ra
ge

 E
rr

or
 (

e)

g(theta) - 1

USGS

GRC

NE

Fig. 17 Average approximation error of AVC-SW for USGS, GRC,
and NE datasets when w = 100

lems in the spatial domains, which shows the potential chal-
lenges involved. Moreover, different variations of Voronoi
diagrams have also been used as index structures for the near-
est neighbor search [8,14,24]. However, to the best of our
knowledge no other study has considered building Voronoi
cells on spatial data streams. In this section, we study research
studies in three different areas related to the focus of this
paper.

9.1 General and spatial data stream processing

Generally, the field of computational geometry (CG) is a
rich area of investigation for the data stream algorithms [18].
Recently, many studies have focused on CG problems on data
streams. Indyk enumerates a current list in [13] and studies
four fundamental problems in [12]. In [6], Feigenbaum et al.
find the diameter and convex hull of a spatial data stream
over a sliding window. Their sample uses O(r) space with
O(r) and O(log r) processing time per point to maintain a
(1+ O(1/r2))-approximation and (1+ O(1/r))-approxima-
tion, respectively. In [5], Cormode and Muthukrishnan use
the same sampling method as AVCs to build radial histo-
grams and approximate a number of geometric aggregates
such as diameter and furthest neighbor search on 2-d point
data streams. In [11], Hershberger and Suri introduce adap-
tive sampling to maintain an approximate convex hull of spa-
tial data streams with a distance of O(D/r2) from their exact
convex hull, where D is the diameter of their sample set.

In parallel and independent from our work, Lin et al. [16]
propose solutions for skyline queries on sliding windows over
data streams. Upon the arrival of a new data point p, they drop
all the old points dominated by p. While this policy reduces
the memory requirements of their algorithm, they do not pro-

123

Approximate voronoi cell computation on spatial data streams 73

vide any theoretical bound on this reduction. Our AVC-SW
algorithm utilizes a similar policy for which we provide the-
oretical bounds based on the parameter of the algorithm as
well as the user’s tolerable error.

9.2 Query processing based on Voronoi diagrams

In [8], Hagedoorn introduces a directed acyclic graph based
on Voronoi diagrams. He uses the data structure to answer
exact nearest-neighbor queries with respect to general dis-
tance functions in O(log2 n) time using only O(n) space.
Stanoi et al. in [24] combine the properties of Voronoi cells
(influence sets in their terminology) with the efficiency of
R-trees to retrieve reverse nearest neighbors of a query point
from the database. As a more practical example, Kolahdou-
zan and Shahabi [14] propose a Voronoi-based data struc-
ture to improve the performance of exact k-nearest neighbor
search in spatial network databases. As another related study
by the database community, Stanoi et al. in [23] partition the
space around a given query point q into six equal sectors
to retrieve q’s reverse nearest neighbors from a database of
points. While both the partitioning and the reverse nearest
neighbor problem are related to our work, the contexts are
different. We use arbitrary number of sectors to define our
sampling buckets in a completely different sliding window
streaming context. We utilize the general version of the par-
titioning in our sampling algorithms and provide theoretical
approximation errors for k sectors.

9.3 Approximating Voronoi diagrams

Arya et al. [1] focus on approximating the Voronoi dia-
grams globally to answer ε-nearest neighbor queries. They
build cells with the shape of hypercubes or the difference of
two hypercubes. Har-Peled [9] partitions the space with an
approximation of Voronoi diagrams. His space decomposi-
tion generates a compressed quadtree of size O(n log n

εd log n
ε
)

that answers ε-nearest neighbor queries in O(log(n/ε)) time.
Arya and Vigneron [2] have performed the only work on
approximating Voronoi cells in d-dimensional space. Their
approach combines the shape approximation and adaptive
sampling techniques to build an approximate cell of size
O(1/

√
ε) for d=2. They assume that the exact cell to be

approximated is given. Then, they examine the Voronoi
neighbors of the given point and the corresponding Voro-
noi vertices to keep the minimum number of Voronoi neigh-
bors using which an ε-approximate cell for addressing near-
est neighbor problem can be computed. This is the same
as what we call a (1 + ε)-approximate cell in this paper.
This approach is not applicable to sliding windows over data
streams as insertion/deletion of each single point might cause
the sampling criteria to include or exclude a neighbor from

the cell. This non-deterministic change results into storing
all the points in the window.

10 Conclusion

We studied the problem of computing the Voronoi cell of a
fixed point with respect to a sliding window over the spatial
data stream of site points. To tackle the problem, we first
developed AVC, a Voronoi cell approximation algorithm for
the time series model. We theoretically computed the approx-
imation error of AVC in terms of its single parameter. To
focus on our main interest, we extended AVC which resulted
into AVC-SW for approximating the Voronoi cell with the
sliding window model. Our main findings are as follows:

– Both AVCs construct (1+ε)-approximations to the Voro-
noi cell. That is, for each point q inside the approximate
Voronoi cell of a point p, q’s distance to r , its closest site
point on the stream, is less than its distance to p by at
most a factor of 1 + ε (i.e., |qp|

|qr | ≤ 1 + ε).
– Using Theorem 2, the parameter k (or θ) of both AVCs can

be computed from the user’s tolerable error ε. This means
that the memory requirements of our algorithms can also
be minimized according to the user’s error threshold. On
the other hand, Eq. 21 can be used to compute the value
of k using which reduces the required memory to κ < w

in the sliding model for a given window size w.
– We theoretically computed the expected sample size of

AVC-SW in terms of its parameter k, the window size w,
and a harmonic number dependent on both k and w (see
Theorem 4). With the sliding window model and a random
arrival of the site points, AVC-SW significantly reduces
the space complexity of the classic algorithm from O(w)

to O(k log(w
k + 1)) regardless of the distribution of the

points in the 2-d space.

Acknowledgment This research has been funded in part by NSF
grants EEC-9529152 (IMSC ERC), IIS-0238560 (PECASE), IIS-
0324955 (ITR), and unrestricted cash gifts from Google and Microsoft.
Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

Appendix: The Proof of Lemma 1

Proof The proof of this lemma sets a lower bound on the
number of sectors used in AVC (i.e., k > 6). First, assume
that θ < π/3 and the point q ∈ N is inside V ′(p). The proof
is by contradiction. Let S be the sector containing q. It is
clear that q cannot be the minimum point of S as V ′(p) is
the Voronoi cell of p with respect to the minimum points in
N . Hence, suppose m is the minimum point corresponding to

123

74 M. Sharifzadeh, C. Shahabi

m

p

q

S
(a) (b)

m

p

S

B(p,m)
n

l
2

l
1

C

H+ (p,m)

H- (p,m)

O

Fig. 18 The sector S and its minimum point m where a θ < π/3, and
b θ > π/3

S (i.e., m = m(S)) as shown in Fig. 18a. Therefore, we have
|pq| > |pm|. As q and m are both inside the same sector
S, the angle between pm and pq , α = � qpm, is less than
θ . Therefore, α < π/3. In the triangle �pqm, |pq| > |pm|
concludes that γ > β. Clearly, as α, β, and γ are the angles
of the same triangle, thus α + β + γ = π . At least one of
the angles β or γ must be greater than π/3 as α < π/3.
The fact that γ > β yields that α < π/3 < γ . That is, in
the triangle �pqm, we have |pq| > |mq| and whence q is
closer to m than p. Therefore, the bisector of pm, B(p, m),
would exclude q from V ′(p). This means that V ′(p) does
not contain the point q which contradicts our assumption.

Now assume that the angle θ is greater than π/3. We show
that there exist a set of potential points in N which are not
excluded from V ′(p) by any of bisector lines corresponding
to the minimum points. Figure 18b shows a sector S and its
boundaries l1 and l2. Assume that the corresponding mini-
mum point of S, m, is on l1. The locus of all the points in the
sector S which are removed from N because of the minimum
point m is outside the circle C centered at p with a radius
of |pm|. The bisector line B(p, m) intersects with the circle
C at point n. We show that this point is inside S. As n is
on B(p, m) we have |mn| = |pn|. Besides, as n is on the
circle C , thus |pn| = |pm|. Therefore, the triangle �pmn is
an equilateral triangle. Hence, the angle α = � mpn = π/3.
This yields thatα < θ . Therefore, the point n is inside the sec-
tor S. Now consider the intersection of the sector S, outside
of the circle C , and H+(p, m) (marked as O in Fig. 18b).
As n is inside S, this intersection is not empty. The AVC
algorithm removes any point in this intersection because of
the minimum point m. However, the bisector line B(m, p)

does not exclude these points from the approximate Voronoi
cell of p. For any point q in this area, if none of bisector
lines corresponding to the minimum points of other sectors
excludes q from V ′(p), q will be inside V ′(p).12 �

12 When θ = π/3, n is the only point in O and on the edge of V ′(p) if
no other bisector line excludes it from V ′(p).

References

1. Arya, S., Malamatos, T., Mount, D.M.: Space-efficient approxi-
mate voronoi diagrams. In: Proceedings of the 34th ACM Symp.
on Theory of Computing (STOC), pp. 721–730 (2002)

2. Arya, S., Vigneron, A.: Approximating a voronoi cell. Tech. rep.
(2003). HKUST-TCSC-2003-10

3. Banaei-Kashani, F., Shahabi, C.: SWAM: A family of access
methods for similarity-search in peer-to-peer data networks. In:
Proceedings of the Thirteenth Conference on Information and
Knowledge Management (CIKM’04), pp. 304–313 (2004)

4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.:
Computational Geometry: Algorithms and Applications, 2nd edn.
Springer, Heidelberg (2000)

5. Cormode, G., Muthukrishnan, S.: Radial histograms for spatial
streams. DIMACS TR 2003-11 (2003) (in press)

6. Feigenbaum, J., Kannan, S., Zhang, J.: Computing diame-
ter in the streaming and sliding-window models. Algorithmica
(2004) (in press)

7. Gardner, M.: The Sixth Book of Mathematical Games from Sci-
entific American. University of Chicago Press (1984)

8. Hagedoorn, M.: Nearest neighbors can be found efficiently if
the dimension is small relative to the input size. In: Proceedings
of the 9th International Conference on Database Theory—ICDT
2003, Lecture Notes in Computer Science, vol. 2572, pp. 440–454.
Springer, Heidelberg (2003)

9. Har-Peled, S.: A replacement for voronoi diagrams of near linear
size. In: Proc. 42nd Annu. IEEE Sympos. Found. Comput. Sci.,
pp. 94–103 (2001)

10. Hershberger, J., Shrivastava, N., Suri, S.: Cluster hull: A tech-
nique for summarizing spatial data streams. In: Proceedings of
22nd IEEE Conf. Data Engineering, ICDE’06. IEEE Computer
Society (2006)

11. Hershberger, J., Suri, S.: Adaptive sampling for geometric prob-
lems over data streams. In: Proceedings of the Twenty-third ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Data-
base Systems. ACM (2004)

12. Indyk, P.: Algorithms for dynamic geometric problems over data
streams. In: Proceedings of the Thirty-Sixth annual ACM Sympo-
sium on Theory of Computing, pp. 373–380. ACM Press (2004).
doi:10.1145/1007352.1007413

13. Indyk, P.: Streaming algorithms for geometric problems. In: Pro-
ceedings of the 16th Canadian Conference on Computational
Geometry (CCCG’04) (2004). Invited Talk

14. Kolahdouzan, M.R., Shahabi, C.: Voronoi-based k nearest neigh-
bor search for spatial network databases. In: Proceedings of
the 30th International Conference on Very Large Data Bases
(VLDB’04) (2004)

15. Korn, F., Muthukrishnan, S.: Influence sets based on reverse near-
est neighbor queries. In: Proceedings of the 2000 ACM SIGMOD
International Conference on Management of data, pp. 201–212.
ACM Press (2000). doi:10.1145/342009.335415

16. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: efficient
skyline computation over sliding windows. In: Proceedings of the
21st International Conference on Data Engineering (ICDE’05),
pp. 502–513. IEEE Computer Society (2005)

17. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge
University Press (1995)

18. Muthukrishnan, S.: Data streams: algorithms and applications.
Tech. rep., Computer Science Department, Rutgers University
(2003)

19. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessella-
tions, Concepts and Applications of Voronoi Diagrams, 2nd edn.
Wiley, New York (2000)

20. Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmi-
ca 16(4/5), 464–497 (1996)

123

http://dx.doi.org/10.1145/1007352.1007413
http://dx.doi.org/10.1145/342009.335415

Approximate voronoi cell computation on spatial data streams 75

21. Sharifzadeh, M., Shahabi, C.: Supporting spatial aggregation in
sensor network databases. In: Proceedings of the 12th ACM Inter-
national Symposium on Advances in Geographic Information
Systems, pp. 166–175 (2004)

22. Sharifzadeh, M., Shahabi, C.: Utilizing Voronoi cells of location
data streams for accurate computation of aggregate functions in
sensor networks. GeoInformatica 10(1), 9–36 (2005)

23. Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse nearest neighbor
queries for dynamic databases. In: ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery,
pp. 44–53 (2000)

24. Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, A.E.: Discovery
of influence sets in frequently updated databases. In: Proceedings
of the 27th International Conference on Very Large Data Bases
(VLDB’01), pp. 99–108. Morgan Kaufmann Publishers Inc.
(2001)

25. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-
based spatial queries. In: Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pp. 443–454.
ACM Press (2003). doi:10.1145/872757.872812

123

http://dx.doi.org/10.1145/872757.872812

	Approximate voronoi cell computation on spatial data streams
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Definitions
	3 The problem
	4 The approximate voronoi cell algorithm (AVC)
	5 Properties of AVC
	6 Approximation error
	7 AVC over sliding windows
	7.1 The AVC-SW algorithm
	7.2 Space complexity analysis
	7.3 Time complexity

	8 Performance evaluation
	9 Related work
	9.1 General and spatial data stream processing
	9.2 Query processing based on Voronoi diagrams
	9.3 Approximating Voronoi diagrams

	10 Conclusion
	Acknowledgment

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

