
The VLDB Journal (2008) 17:5–37
DOI 10.1007/s00778-007-0073-y

SPECIAL ISSUE PAPER

Modelling retrieval models in a probabilistic relational algebra
with a new operator: the relational Bayes

Thomas Roelleke · Hengzhi Wu · Jun Wang ·
Hany Azzam

Received: 18 September 2006 / Revised: 14 April 2007 / Accepted: 11 June 2007 / Published online: 12 October 2007
© Springer-Verlag 2007

Abstract This paper presents a probabilistic relational
modelling (implementation) of the major probabilistic retrie-
val models. Such a high-level implementation is useful since
it supports the ranking of any object, it allows for the rea-
soning across structured and unstructured data, and it gives
the software (knowledge) engineer control over ranking and
thus supports customisation. The contributions of this paper
include the specification of probabilistic SQL (PSQL) and
probabilistic relational algebra (PRA), a new relational ope-
rator for probability estimation (the relational Bayes), the
probabilistic relational modelling of retrieval models, a com-
parison of modelling retrieval with traditional SQL versus
modelling retrieval with PSQL, and a comparison of the
performance of probability estimation with traditional SQL
versus PSQL. The main findings are that the PSQL/PRA
paradigm allows for the description of advanced retrieval
models, is suitable for solving large-scale retrieval tasks, and
outperforms traditional SQL in terms of abstraction and per-
formance regarding probability estimation.

Keywords Probabilistic relational modelling · Retrieval
models · Probabilistic databases · DB + IR integration

T. Roelleke (B) · H. Wu · J. Wang · H. Azzam
Queen Mary, University of London, Mile End Road,
London E1 4NS, UK
e-mail: thor@dcs.qmul.ac.uk

H. Wu
e-mail: hzwoo@dcs.qmul.ac.uk

J. Wang
e-mail: wangjun@dcs.qmul.ac.uk

H. Azzam
e-mail: hany@dcs.qmul.ac.uk

1 Introduction

The call for a VLDB special issue on integration of Databases
(DB) and Information Retrieval (IR) itself is probably the
best evidence of a new era of DB + IR technology. What is
triggering DB + IR? The call mentions the usual suspects
such as XML, the web, and huge amounts of data. Maybe
the integration of structured and unstructured data sources is
what drives integrated DB + IR? However, as the call says,
early DB + IR attempts date back to early 1970s.

Despite a similar overall aim, namely to process queries
and retrieve results, the fields of DB and IR research deve-
loped differently and in separate communities. DB focused
on expressiveness, structure (data records), and data models,
whereas IR focused on free-text query languages, unstructu-
red data, and the inverted list as the ultimate “data model” for
large document collections. Whereas in DB, software engi-
neering and productivity issues have always been important,
these are of secondary priority in IR research: an impro-
vement in retrieval quality is good, whatever the approach
and effort in person-years needed to achieve the improve-
ment. Whereas DB usually targets people who build systems
or business applications, and therefore, DB had to provide
a useful and, overall, re-usable and generic technology, IR
focused mainly on experimental evaluation of retrieval qua-
lity and end-user applications.

We could view the DB + IR efforts as a DB-Technology +
IR-Service integration. The technology is strong in flexibility,
robustness, abstraction, and the service is strong in ranking
and presenting retrieved objects, i.e., documents and facts.

To conclude why DB + IR, and why now, we believe that
the growing need for customisable (“tunable”) search ser-
vices triggers the demand for DB + IR. For building effi-
ciently effective search systems, IR approaches need to be
available in DB technology, and, the other way round, DB

123

6 T. Roelleke et al.

Interface

User

Interface

User

Business
Logic

Business
Logic

SQL

Ranking
Information

Application

all−in−one

Data

four−tier

Data

three−tier

"all−in−one"

Fig. 1 Data and information independence

technology needs to be ready to host IR methods such as
relevance-based ranking, result browsing, and vague
predicates.

Figure 1 highlights the current trend along a time-line from
all-in-one applications in the 1970s/1980s to three-tier archi-
tectures becoming the standard in the late 1980s. Certainly,
more tiers can be identified in today’s IT systems, depending
on the emphasis. Certainly, business logics have a complex
structure, as the underlying data management systems have.

In the classical three-tier architecture, information mana-
gement (search logic, relevance-based ranking) is maybe best
located at the interface between business logic and DB sys-
tem, where nowadays SQL has its dominating role. In the
four-tier architecture, we leave it intentionally open whether
SQL still plays its role as it used to, or whether it plays a new
role. It will play a role, but the evaluation of SQL might be
richer, more effective, in the sense that only the important
tuples are returned to the business logic, the tuples will be
sorted by relevance, and for this, the business logic needs to
be able to specify what it means by “relevance”.

As we will demonstrate in this paper, traditional SQL is
already suitable to fulfill such task, like an assembler lan-
guage is capable of developing an accounting program with
a web interface. Though capable, for obvious reasons, the
application programmer prefers a higher level and more tai-
lored language than assembler. This highlights the motivation
for our research: we are working on data models and SQL
variants that are tailored to information management tasks.

To position the probabilistic SQL (PSQL) and the pro-
babilistic relational algebra (PRA) presented in this paper,
consider Fig. 2. There is an external layer where information
can be accessed, sorted by relevance. Then, there is a logical
layer in which the information space and retrieval strategies
(ranking functions) are modelled. Finally, there is a physical
layer, which is here the relational model/paradigm. Although
the traditional relational paradigm has all the expressive-
ness needed (like an assembler language has all the expres-
siveness needed), to improve the productivity in developing

Probability estimation: Bayes[]()

Physical
layer

Relational model/algebra; SQL

Probabilistic relations

Information sorted by relevanceExternal
layer

Logical
layer

Fig. 2 External, logical and physical layers

database

Non−probabilistic Bayes

database

Probabilistic

Fig. 3 Creation of probabilistic databases

information management/search applications, we add the
logical and the external layers.

This paper deals with the logical layer, and more precisely,
the paradigm of probabilistic relations, probability aggrega-
tion and estimation, and the probabilistic relational modelling
of retrieval models. Probabilistic database models are well
established, and we will review prior research in the next
section. Our contribution is the formalisation and high-level
implementation of retrieval models. This supports the cus-
tomisation of search strategies. For implementing retrieval
models solely by means of a probabilistic relational model,
we required and developed a new operator, the relational
Bayes. With the Bayes operator, probability estimation is
now within the probabilistic relational paradigm.

This contribution is highlighted in Fig. 3. The relational
Bayes allows to describe the estimation/generation of pro-
babilities from a non-probabilistic database—an important
functionality for generating probabilities in a coherent and
comprehensive probabilistic relational algebra.

1.1 Outline of this paper

The outline of the paper is as follows:
2 Background
3 Running example
4 Requirements
5 Probability aggregation
6 Probability estimation: the relational

Bayes
7 Probabilistic relational modelling of

retrieval models
8 Evaluation
9 Frequently asked question
10 Summary and conclusions

The sections can be grouped and described as follows:

Part 1: This general part contains background, running
example, and requirements.

123

Modelling retrieval models in a probabilistic relational algebra 7

Part 2: This technical part introduces PSQL (probabilistic
SQL) and PRA (probabilistic relational algebra). Sec-
tion 5 deals with probability aggregation; this can
be considered as a review of state-of-the-art PRA.
Section 6 adds probability estimation (the relational
Bayes) to the probabilistic algebra.

Part 3: Section 7 shows the modelling of retrieval models in
PSQL and PRA.

Part 4: Section 8 evaluates PSQL/PRA. For this, we compare
PSQL with traditional SQL, and demonstrate the gain
in abstraction, while showing that there are efficiency
gains as well.

Part 5: Sections 9 and 10 conclude the paper.

2 Background

2.1 IR with SQL

Over the past two decades attention has grown towards the
integration of IR ranking techniques into SQL. In fact, it
has been labelled as one of the major challenges facing the
community nowadays [1]. While one of the earliest efforts
to address this integration date back to [60] and [14], more
recent work can be found in [32] where the classical relatio-
nal model is used to achieve basic integration of structured
data and text. Specifically, the Boolean retrieval model is
implemented using standard SQL. Other systems that imple-
mented the same model are DBXplorer [2] and DISCOVER
[35]. Both retrieval systems are built on two different com-
mercial databases, but rely on a similar architecture to support
keyword search.

Unlike [2] and [35], [33] is not just capable of supporting
Boolean-AND semantics, but also Boolean-OR semantics.
However, more effective retrieval models, like tf-idf (term
frequency–inverse document frequency) can be implemen-
ted. For example, [28,29] introduce the PowerDB-IR system,
which is an IR system built on top of a database cluster. It
implements the tf-idf-based model by mapping it to SQL.
Furthermore, [3] attempts to apply IR models on database
to resolve the “Empty Answer” problem by extending the
IR-based tf-idf concepts and developing an idf similarity for
database ranking.

Conversely, [11,12] attempt to solve the “Many-Answers”
problem by using probabilistic ranking of query results,
which is another approach for ranking in databases. This
approach will be further discussed in the next subsection.
Li et al. [36] introduces RankSQL, which is a RDBMS that
fully integrates ranking support as a first-class functionality.
A framework is introduced to support efficient evaluations
of top-k by extending relational algebra and query optimi-
sation. This approach is different from the typical DB and
IR approach because it does not focus on how to rank tuples

(apply IR models), but focuses on optimising the returned
ranked-list of the results.

A re-innovated look at the integration of structured data
and text can be found in [15], which provides a deeper unders-
tanding of the requirements and possible system architectures
to achieve such an integration. Moreover, the importance of
the probabilistic approach for DB + IR integration is empha-
sised in this work.

Finally, a benchmark for the evaluation of traditional
approaches for the integration of IR with SQL has been
introduced in [19]. The benchmark, called the TEXTURE
Benchmark, introduces queries with relevance ranking, like
text-only queries, single-relation mixed queries and multiple-
relation mixed queries, rather than those that just compute all
answers. Most importantly, the queries are formulated using
the “CONTAINS” operator. This operator enables the seam-
less integration of text and relational processing with top-k
ranking. In addition to presenting the benchmark, the per-
formance numbers for three commercial DBMSs and their
support for text in current relational database systems are
analysed.

2.2 Probabilistic databases

The research efforts towards the integration of DB and IR has
led to important findings in the area of probabilistic database
technology. It was quickly realised that probabilistic data
models are essential for this integration because of their capa-
bility of introducing more efficient retrieval models in DB.
Consequently, it became possible to measure imprecision in
large-scale data, return top-k results subset instead of the
whole set of results and make use of early response algo-
rithms possible. Accordingly, probabilistic databases con-
veyed a message that the overall quality of data has been
improved, and the processing time for queries has drastically
decreased by returning top-k results subset.

Early work extending relational and object oriented data
models using the fuzzy set and the possibility theory was [6].
The notion of quality of databases and its estimation using a
probabilistic approach was discussed in [44], where the rela-
tional model of data was extended and a quality specification
with each relation instance was associated.

Another crucial aspect of probabilistic databases is related
to efficient query evaluation. This aspect has been discussed
in [16], where a system is discussed that supports arbitrarily
complex SQL queries on probabilistic databases and provides
an optimisation algorithm that can efficiently compute most
queries. In addition, a tutorial, Foundations of Probabilistic
Answers to Queries given by Suciu and Dalvi at SIGMOD’05
illustrates a set of probabilistic query answering techniques
that underlie several recent database applications [17]. One
of these applications is discussed in [4] where using proba-
bilistic databases coupled with relaxed query expressions is

123

8 T. Roelleke et al.

suggested as a promising solution for efficient retrieval of
large-scale semantic data.

Finally, below is an example adapted from [58], which
demonstrates the usage of probabilities in databases. Consi-
der the following table of person data where for the persons
Miklau and Bala, we are uncertain about their affiliation and
state:

Student
Name Affiliation State Area

Miklau UW WA Data Security
Miklau Umass MA Data Security
Dalvi UW WA Prob. Data
Bala UW WA Data Streams
Bala MIT MA Data Streams
Bala Umass MA Data Streams

If {Name} is viewed to be the key, then the key condition is
violated because of the multiple occurrences (inconsistency)
of tuples with the same key.

For the query

SELECT * FROM Student WHERE State = ’WA’;

we could either retrieve the consistent tuples only, or be softer
(ready to accept false hits), and retrieve inconsistent tuples
as well.

For quantifying the inconsistency in a probabilistic way,
an intuitive approach is to assign probabilities based on the
number of inconsistent tuples:

Student
Prob Name Affiliation State Area

0.5 Miklau UW WA Data Security
0.5 Miklau Umass MA Data Security

1 Dalvi UW WA Prob. Data
0.33 Bala UW WA Data Streams
0.33 Bala MIT MA Data Streams
0.33 Bala Umass MA Data Streams

As we will point out in Sect. 6 on probabilistic SQL, the
approach mentioned above is one way of estimating probabi-
lities. We also define in this paper the notion of evidence key:
here, {Name} forms the evidence key, and the tuple probabi-
lities are conditional probabilities of the form P(τ |Name).

We have reviewed a number of approaches dealing with
probabilistic relations. One of the contributions of this paper
is to define and evaluate a probabilistic SQL technology for
large-scale probabilistic databases.

2.3 On probabilistic relational algebra and probability
estimation

The relational algebra, the processing basis of SQL, is one
of the pillars of database technology. However, from an IR
and uncertainty management point of view, the relational
algebra lacks relevance-based ranking of retrieved objects.
Therefore, many probabilistic extensions for the relational

algebra have been defined: see [14] on probabilistic data-
bases, [10,26,44,45] on vague queries (fuzzy predicates), [7]
and [8] on probabilistic relational modelling, [37] on proba-
bility aggregation, [42] on text retrieval and the relational
model, [24] on a PRA for the integration of database and
information retrieval, [46] and [23] on NF2 relations, [27]
on probabilistic Datalog, [38] on the ProbView system, [30]
on text retrieval with SQL, and [54] on probabilistic aggre-
gates.

One may wonder why did so many researchers looked at
the problem of adding probabilities to the relational data-
bases?

This is due to the fact that probabilistic relational alge-
bra (PRA) is a powerful candidate for modelling intrinsic
uncertainty of knowledge. Eventually, this can be used for
modelling an estimate of the relevance of retrieved objects.
However, most of the aforementioned models share at least
two short-comings. The initial probability estimation is
modelled “outside” of the algebra, and, the “how” of the
aggregation of uncertainty values is specified. The “outside”
nature of the probability estimation was viewed by designers
and developers, who used PRA, Datalog and other languages,
as a shortcoming. Also, if a model allows to specify the “how”
of the aggregation of uncertainty values, then we model on a
physical (assembler-like) layer rather than on a logical layer.

Previous works ([7], [24] and [37]) define variants of PRA
where the focus is on the definition of the probability aggre-
gation for the five basic relational operators (selection, pro-
jection, join, union, subtraction); with the Bayes operator,
this paper adds probability estimation. Probability estima-
tion is with Bayes “inside” PRA. Bayes provides ways to spe-
cify the “what” of frequency-based and information-theoretic
probability estimation. The “how” is controlled in the physi-
cal layer of PRA.

An important aspect of a PRA is highlighted by [54]: attri-
bute value aggregation (sum, average, maximum) is ortho-
gonal to probability aggregation! This stresses again that the
aggregation of uncertainty values should not be implemented
in a logical layer of a PRA.

Another aspect of PRA is the discussion of 1NF ver-
sus NF2 (non-first-normal-form) nature of probabilistic rela-
tions. This discussion is closely related to the discussion
whether a probability is assigned to a tuple, or whether a
probability is assigned to an attribute value (see [23], [46],
and [54]). NF2 relations are expensive in processing and the
experience with the 1NF PRA proved that NF2 modelling is
not a pre-requisite for effective usage of a PRA model.

2.4 Retrieval models

Retrieval models form a crucial part of information retrieval.
We mainly distinguish between two classes: non-probabilistic
and probabilistic models. On the non-probabilistic side,

123

Modelling retrieval models in a probabilistic relational algebra 9

tf-idf is the dominant model, and on the probabilistic side, the
binary independent retrieval model and language modelling
are the main candidates. Probabilistic models come with a
theory and some heuristics, whereas non-probabilistic
models are mainly based on heuristics.

Probabilistic models date back to [43]. Probabilistic
models try to estimate the probability of a document being
judged relevant to a particular query. This is denoted as
the probability of relevance P(r |d, q). Because there is no
direct quantitative method to estimate the relevance proba-
bility, there are various methods to estimate the relevance
probability. In the late 1970s, [55] established the binary
independent retrieval model (BIRM). From the middle to
end 1980s, [63] initiated approaches to model IR as the
probability P(d → q) of a non-classical implication bet-
ween documents and queries. Early 1990s brought the infe-
rence network model [61], middle 1990s contributed the
P(d → q) framework [64], and late 1990s to early 2000
brought language modelling ([9,41,47,66]) and divergence
from randomness ([5]).

In probabilistic information retrieval models, an important
aspect is how to estimate the term weight, possibly related
to the probability of relevance. Without relevance informa-
tion, we can estimate the term weight via idf . Croft [13],
Yu [65] and Robertson [50], etc. have investigated idf heu-
ristics against the probabilistic model. More recently, [34],
[51], and [56] highlighted relationships between the three
main classes of models: tf-idf, BIRM, and LM. In particular,
the research on the relationships of models provides input
to this paper where we model retrieval models. The work
on relationships of models isolates the common components
(probability estimations) in models that are the basic ingre-
dients for modelling retrieval models.

3 Running example

This section contains a toy database with two tables, a table
named “Person” containing data about persons, and a table
named “Coll” representing a document collection. We use
these two tables to underline that the SQL-based and PSQL-
based implementations investigated in this paper are of gene-
ric nature, and are not restricted to document retrieval.

Consider the table “Person” in Fig. 4. For this table, we
will show how to describe in PSQL probabilities such as
P(Nationality|City). The contribution of our paper is to add
appropriate concepts to SQL, and to prove that the estima-
tions are applicable in large-scale applications with millions
of tuples.

To illustrate the application of PSQL to the classical IR
task of text retrieval, we use the table/relation “Coll” shown
in Fig. 5. Our toy collection has ten tuples, four terms (sailing,
boats, east, coast), and five documents (doc1 to doc5). The

Person
Name City Nationality
Peter London German
Paul London Irish
Mary London Irish
Thomas Dortmund German
Thomas London German
Thomas Hamburg German
Hany London Egyptian
Hany London Polish
Jun London Chinese
Zhi London Chinese

Fig. 4 Relational table for modelling persons

Coll
Term DocId

sailing doc1
boats doc1
sailing doc2
sailing doc2
boats doc2
sailing doc3
east doc3
coast doc3
sailing doc4
boats doc5

Fig. 5 Relational table for document retrieval

single horizontal lines we use in the instance (tuple) part of
a table are here to help the reader to locate the tuples that
belong to one document.

The term “sailing” occurs in four documents, “boats”
occurs in three documents, and “east” and “coast” occur in
one document. The term “sailing” occurs twice in document
doc2; otherwise, all term occurrences in documents are single
occurrences.

A typical document retrieval task, for example, find all
documents about sailing boats, can be easily expressed in
SQL. Before expressing document retrieval, we give a simple
query on “Person”, to illustrate the analogy between tradi-
tional data retrieval and document retrieval:

Find all persons of Chinese or Polish nationality.

This query expressed in SQL is as follows:

SELECT Name
FROM Person
WHERE Nationality = ’Chinese’
OR Nationality = ’Polish’;

We could also view the nationalities as query terms. Assume
we have a relation “Query(Term,QueryId)”. Then:

INSERT INTO Query VALUES
(’Chinese’, ’q1’), (’Polish’, ’q1’);

Next, we join the “Query” table with the “Person” table and
retrieve the attribute Person.Name:

123

10 T. Roelleke et al.

SELECT Person.Name
FROM Query, Person
WHERE Query.Term = Person.Nationality;

Compare the above formulation with the next one showing
document retrieval for all documents about sailing boats:

INSERT INTO Query VALUES
(’sailing’, ’q2’), (’boats’, ’q2’);

SELECT DocId
FROM Query, Coll
WHERE Query.Term = Coll.Term;

The structures of those queries are very similar. If we had
a standard SQL++ (SQL++ stands here for a SQL with
relevance-based ranking) that sorts the retrieved tuples by
relevance, then we could easily obtain a ranked retrieval
result.

We will extend in Sect. 8 on how tf-idf-based retrieval
(tf-idf is probably the most known, easy and effective ranking
method) could be implemented in traditional SQL. However,
though the traditional SQL is capable of modelling relevance-
based ranking, the implementation has what can maybe best
described as an “assembler-like” feel, since we describe in
SQL the arithmetic to compute the retrieval status values.
From an abstraction point of view, and from a probabilistic
modelling point of view, this is not satisfactory. We require
a more abstract and tailored SQL++, and therefore we intro-
duce and investigate in this paper a probabilistic version of
SQL.

An intuitive probabilistic approach would work with
probabilistic relations “probQuery”, “probPerson”, and
“probColl”. Let these three relations be probabilistic rela-
tions in which tuple probabilities somehow (we extend later
in the paper in detail how) reflect importance/relevance. For
example, consider a possible instantiation of table “probColl”
in the following.

probColl
Prob Term DocId

0.5 sailing doc1
0.5 boats doc1

0.66 sailing doc2
0.33 boats doc2
0.33 sailing doc3
0.33 east doc3
0.33 coast doc3
1.0 sailing doc4
1.0 boats doc5

The tuple probabilities here are a result of viewing {Term,
DocId} as a frequency key, and {DocId} as an—what we call
later—evidence key. Take document doc2. It has 3 tuples,
thus, 1/3 = 0.33 is the base probability of each doc2 tuple.
With the frequency key (Term, DocId), two sailing tuples
coincide, and if we add their probabilities, then we obtain
the probabilistic tuple 0.66(sailing,doc2) in table “probColl”.

The double vertical line separates the probabilities from the
ordinary attribute values. The double line underlines that pro-
babilities are different from ordinary attribute values: The
column Prob cannot be referred to in probabilistic SQL.

The probabilities in “probColl” reflect a conditional pro-
bability denoted as P(t |d), i.e., the probability that the term t
occurs given the document d. This probability is related to
what is known in IR as tf (within-document term frequency).

Assume for now that there is an operator that produces
“probColl” from “Coll” (this is the role of the relational
Bayes, Sect. 6). Further, assume that we can assign query
term probabilities, where the query term probabilities reflect
the inverse document frequency (idf) of a term. Let sailing be
more frequent than boats, hence we obtain in “probQuery” a
lower probability for sailing than for boats. Join “probQuery”
and “probColl” in a probabilistic SQL environment, and we
have implemented something very close to tf-idf-based
retrieval.

INSERT INTO probQuery VALUES
0.4 (’sailing’, ’q2’), 0.6 (’boats’, ’q2’);

CREATE VIEW retrieved AS
SELECT DocId
FROM probQuery, probColl
WHERE probQuery.Term = probColl.Term;

In the view “retrieved”, we obtain:

retrieved
Prob DocId

0.4 · 0.5 doc1
0.6 · 0.5 doc1

0.4 · 0.66 doc2
0.6 · 0.33 doc2
0.4 · 0.33 doc3

0.4 · 1.0 doc4
0.6 · 1.0 doc5

Remains the question of how to aggregate the non-distinct
tuples per document. A probabilistic disjunction seems
reasonable. For this we could argue for ‘disjoint’ (add proba-
bilities), ‘independent’ (add probabilities and subtract pro-
bability of intersections), or ‘subsumed’ (choose maximal
probability). The assumption made for the aggregation will
depend on the assumptions made when assigning (genera-
ting!) the probabilities in the relations “probColl” and
“probQuery”.

The aims of this paper are to formalise PSQL, to show
the PSQL to PRA translation, and to investigate whether we
can model state-of-the-art retrieval models in PSQL/PRA.
In addition, the question is whether PSQL/PRA is scalable,
and whether we gain an efficiency advantage compared to
traditional SQL.

123

Modelling retrieval models in a probabilistic relational algebra 11

4 Requirements

Classical approaches to probabilistic databases focus on
probability aggregation. They rely on “some external appli-
cation” (this is how a peer colleague referred to it) to estimate
initial tuple probabilities. Once the initial probabilities are
available, it appears straight-forward to define for each alge-
braic operator reasonable probability aggregation functions.

The main problem with this approach is that external
applications estimate probabilities outside of the probabi-
listic relational paradigm. Inside the classical probabilistic
relational paradigm, there is no operator, no support, and no
control for estimating probabilities from a non-probabilistic
or probabilistic relation!

Consider the estimation of probabilities from the non-
probabilistic relation “Coll(Term,DocId)” in Fig. 5. The
requirement is to assign probabilities to tuples that reflect pro-
babilities such as PColl(t |d), PColl(d|t), PColl(t) and
PColl(t, d), where t is a term, and d is a document. The
subscript of the probability function indicates the relation
from which the probabilities are generated or estimated.

Such probabilities can be estimated in various ways. One
important feature of an estimation is whether the estimation
is based on

– the tuple frequency, or
– the value frequency.

We illustrate the two different frequencies with some
examples.

Tuple frequency: We estimate the probability PT,Coll (t |d),
where the subscript T, Coll indicates that the tuples of rela-
tion “Coll” form the event space. One intuitive choice to
estimate such probability is the maximum likelihood esti-
mate, namely the number of d-tuples in which t occurs.
For example, we have PT,Coll(sailing|doc1) = 1/2, and
PT,Coll(sailing|doc2) = 2/3, since doc1 occurs in two tuples
of which sailing occurs in one, and doc2 occurs in three tuples
of which sailing occurs in two.

Value frequency: We estimate the probability
PV,Coll[DocI d](t), i.e., the probability that t occurs in the
value-based event space formed by the values in Coll[DocId].
The subscript V, Coll[DocI d] indicates the value-based
event space for the value key Coll[DocId]. If we base the esti-
mation on the value space that is formed by the distinct docu-
ments, then, we have five values, and we obtain, for example,
PV,Coll[DocI d](sailing)= 4/5. Note that this value frequency-
based probability is different from the tuple frequency-based
probability, where we obtain PT,Coll(sailing) = 5/10.

As we will see in Sect. 7, both, tuple and value frequencies
are essential for modelling retrieval models. We conclude this
section with a formalisation of tuple and value frequency.

Definition 1 (Tuple frequency): Let nT (τ, R) denote the
tuple frequency, i.e., the number of tuples (hence, the T sub-
script) in relation R, that match the partial tuple τ , where
a partial tuple is a tuple with some unspecified attribute
values.

For example, for the partial tuple τ = (sailing, ·), nT

((sailing, ·), Coll) = 5 is the number of tuples in relation
“Coll” that match the partial tuple (sailing, ·).

For the unspecified tuple, we obtain the number of tuples
in the relation, i.e. NT (R) := nT ((·, ·, . . .), R) is the total
number of tuples in relation R.

Let h = h1 . . . hn and e = e1 . . . en be lists of attribute
values. For example, h = sailing and e = doc1 are lists (lists
with just one element) of attribute values. We chose h and
e borrowing from the notion of ‘hypothesis’ and ‘evidence’
used in the Bayes theorem.

Then, the tuple-based probability PT,R(h|e) estimated
based on the tuples in relation R is defined as follows:

Definition 2 (Tuple-based probability):

PT,R(h|e) := nT ((h, e), R)

nT ((·, e), R)
(1)

For example, let t be a value of the key Coll[Term], and let
d be a value of the key Coll[DocId]. Then, we obtain the
following tuple-based probability:

PT,Coll(t |d) = nT ((t, d), Coll)

nT ((·, d), Coll)
(2)

Here, τ = (t, d) is a tuple instance, and τ = (·, d) is a
partial instance, where the centered dot means to discard the
first attribute value.

For the relation “Coll”, we obtain for example:
PT,Coll(sailing|doc2) = 2/3, since nT ((sailing, doc2),

Coll) = 2, and nT ((·, doc2), Coll) = 3.
The tuple-frequency-based probability P(t |d) is crucial

to IR; it corresponds to the so-called within-document term
frequency (tf) of a term. We refer to tuple-frequency-based
probabilities for short as tuple-based probabilities.

Another crucial probability in IR is the probability P(t),
namely the probability that term t occurs. Here, both tuple
and value frequency-based probabilities are common. As
we will see in Sect. 7 on modelling retrieval models, the
value-based probability PV,Coll[DocI d](t) is fundamental to
the binary independent retrieval model, and the tuple-based
probability PT,Coll(t) is fundamental to language modelling.

For counting the number of values with which a partial
tuple is associated, we need a further notation. We refer with
nV (h, R[E]) to the number of E-values (evidence values)
with which the hypothesis key h is associated. We define the
value frequency formally, and keep the definition analogous
to the definition of the tuple frequency (see Definition 1).

123

12 T. Roelleke et al.

Definition 3 (Value frequency): Let nV (h, R[E]) denote the
value frequency, i.e., the number of values in key R[E] that
are associated with the hypothesis h, where h is a list of attri-
bute values, R is a relation name, and E is a list of attribute
names.

For example, nV ((sailing), Coll[DocId]) = 4 is the number
of documents (values of attribute DocId) in which sailing
occurs.

The use of upper-case E in the definition of the value fre-
quency, as opposed to the use of lower-case e in the definition
of the tuple frequency underlines that E refers to attribute
names, whereas e refers to attribute values.

Next, we define analogous to Definition 2 the value-based
probability of a hypothesis.

Definition 4 (Value-based probability):

PV,R[E](h) = nV (h, R[E])
NV (R[E]) (3)

For example, let t be a value of Coll[Term]. Then, we obtain

PV,Coll[DocI d](t) = nV ((t), Coll[DocI d])
NV (Coll[DocI d]) (4)

Compare the value-based probability above to the tuple-based
probability below:

PT,Coll(t) = nT ((t, ·), Coll)

NT (Coll)
(5)

The difference between tuple-based and value-based proba-
bilities is illustrated for the attribute Coll[Term] in the follo-
wing table:

Term Probabilities
tuple-based value-based

sailing 5/10 4/5
boats 3/10 3/5
east 1/10 1/5
coast 1/10 1/5

We have discussed the requirements on probability estima-
tion in general, thereby relating the discussion and examples
to the probabilities typically required by retrieval models.
Before we develop in Sect. 6 the means to describe probabi-
lity estimation in the probabilistic relational framework, we
look in the next section at probability aggregation.

5 PSQL and PRA: probability aggregation: classical
operators

In this section, we present PSQL and PRA. We include the
basic and composed operators, and show how probability
aggregation works.

Fig. 6 Basic PSQL Syntax

Fig. 7 PRA Syntax

5.1 Basic operators

For the basic operators, we present the syntax in Sect. 5.1.1,
the translation of PSQL to PRA in Sect. 5.1.2, and the seman-
tics of the basic PRA operators in Sect. 5.1.3.

5.1.1 Syntax of PSQL and basic PRA

This section presents the formal definition of the syntax of
basic PSQL and PRA. The syntax of PSQL is very similar to
the syntax of classical SQL, apart from few minimal exten-
sions. For example, in the PSQL SELECT statement, one can
specify the aggregation assumption which is one of ‘disjoint’,
‘independent’, or ‘subsumed’. Consider the specification of
the PSQL syntax in Fig. 6. Terminal symbols are indicated
by single quotes. We present the SELECT statement only,
which is sufficient for the purpose of this paper.

For processing PSQL, PSQL is translated to PRA, and this
translation constitutes the semantics of PSQL. Figure 7 shows
the PRA syntax, and the semantics of the PRA expressions
(PRAE: probabilistic relational algebra expression) will be
defined after the PSQL to PRA translation.

This syntax shows that basic PRA is—apart from the
non-terminal “assumption” structured as traditional (non-
probabilistic) relational algebra.

5.1.2 Translation of PSQL to basic PRA

Figure 8 illustrates the translation of PSQL to PRA, and
Fig. 9 shows an example. The example matches a query index
Query(Term,QueryId) against a document index Coll(Term,
DocId).

The illustration and the example underline that the trans-
lation works very much as usual. The only difference is the
probabilistic assumption: the aggregation assumption

123

Modelling retrieval models in a probabilistic relational algebra 13

-- PSQL
SELECT aggAssumption sqlTargetList
FROM ...
WHERE sqlCondition;

PRA
Project aggAssumption[praTargetList](

Select[praCondition](
Multiply(Multiply(...));

The Multiply(...) expression captures the
relations in FROM ...

Fig. 8 Illustration of the translation of PSQL to PRA

-- PSQL example
SELECT DISJOINT

QueryId, DocId
FROM Query, Coll
WHERE Query.Term = Coll.Term;

PRA of the PSQL example
Project disjoint[$2,$4](
Select[$1=$1](

Multiply(Query, Coll)));

Fig. 9 Example of the translation of PSQL to PRA

“aggAssumption” becomes the assumption of the algebraic
projection that “selects” the target attributes specified in the
SQL SELECT statement. The sqlSelect is translated into
an algebraic expression of the form Project[...](Select[...]
(Multiply(...))), where the algebraic ‘Select’ captures the sql-
Condition, and the algebraic ‘Project’ “selects” the target
attributes. In the paper, upper case “SELECT” indicates a
PSQL statement, whereas “Select” indicates the PRA
operator.

5.1.3 Semantics of basic PRA operators

A probabilistic relational algebra expression (PRAE) yields a
probabilistic relation. A probabilistic relation is a pair (T, P),
where T is a set of tuples and P is a probability function
P : T → [0; 1], i.e., P maps each element (tuple) of T to a
value (probability) of the interval [0; 1].

Some may view the specification of P and T redundant,
in the sense that we could view T as the set of tuples τ

with P(τ) > 0. However, tuples with probability equal to
zero are in a relation, i.e., τ ∈ T holds, and this is different
from tuples that are not in a relation. As a first example of
the meaning of zero probability tuples, consider a relation
that contains terms, and the tuple (term) probability reflects
the percentage of documents in which the term occurs. The
term space might contain terms that do not occur in any docu-
ment. By simply discarding zero probability tuples, we would
loose information. For example, we will point out for the
relational Bayes how to compute a notion of “being informa-
tive”. A term that occurs in all documents is not informative,
i.e., in the occurrence-based term space, such a term has a
probability of 1.0 (occurs in all documents), whereas in the

τ_1

τ_2

τ_2
τ_2

τ_1
τ_1

Fig. 10 Assumptions: independent, disjoint and subsumed

informativeness-based term space, such a term has the pro-
bability 0.0. Therefore, we distinguish between tuples with
probability zero, and tuples that are not part of a relation.

Before we define the relational operators, consider Fig. 10
illustrating the set-based meaning of the common probabilis-
tic assumptions “independent”, “disjoint” and “subsumed”.
For these three assumptions, the aggregation of probabilities
for the disjunction (union), conjunction (intersection) and
negation of events is as follows:

P(τi ∨ τ j) =

⎧
⎪⎪⎨

⎪⎪⎩

P(τi) + P(τ j) − P(τi) · P(τ j)

if independent
P(τi) + P(τ j) if disjoint
max({P(τi), P(τ j)}) if subsumed

P(τi ∧ τ j) =
⎧
⎨

⎩

P(τi) · P(τ j) if independent
0 if disjoint
min({P(τi), P(τ j)}) if subsumed

P(τi ∧ ¬τ j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P(τi) · (1 − P(τ j)) if independent
P(τi) if disjoint
P(τi) − P(τ j) if subsumed∧

P(τi) > P(τ j)

0 if subsumed∧
P(τi) ≤ P(τ j)

Next, we formalise the five basic relational operators. The
definitions are composed as follows: Each definition starts
with an assignment of the form (T, P) = syntactic PRAE,
where (T, P) is a probabilistic relation (set of tuples and
probability function), and the right side is a syntactic form of
the respective relational algebra expression. The definitions
for T and P give the semantics of the PRAEs. Relational
operators are applied to arguments (probabilistic relations),
and we use “a” and “b” to refer to the argument relations.

We start with the definition of the selection.

Definition 5 (Selection):
(T, P) = ‘Select’[condition](a)

T := {τ |τ ∈ Ta ∧ ϕ(τ)}
P(τ) := Pa(τ)

Here, ϕ represents the semantic truth value function that
corresponds to the syntactic “condition” in the selection.

The probabilistic relation (T, P) is the result of the selec-
tion, and (Ta, Pa) is the probabilistic relation of the argument
relation “a” of the selection.

123

14 T. Roelleke et al.

For example, Select[$1=sailing](Coll) is a selection on
the relation “Coll”, and the tuples with “sailing” in their first
column are selected.

This first definition does not manipulate the probabili-
ties of the selected tuples. However, there are cases where
a selection generates probabilities. For example, consider a
vague selection such as Select[$price IS LOW & $mileage
IS LOW](cars). Here, “IS LOW” is a vague predicate. Vague
predicates (also referred to as vague selections) generate
probabilities. This is the field of Fuzzy SQL. Fuzzy SQL
can be expressed in probabilistic relational modelling. The
expression Select[$price IS LOW](cars) could be viewed as a
composed operation Select[](Join[$price=$price](cars, low-
Price). The empty condition of the selection indicates that
this modelling of a vague predicate can be viewed as a com-
plex condition pushing, where the vague predicate leads to
a join expression joining cars with a probabilistic relation
“lowPrice” to model the probability that a price is low. The
modelling of vague predicates is discussed in [24].

Next, we define the projection, an operation that performs
probability aggregation. The definition highlights an impor-
tant difference to the work in [24]. The probabilistic assump-
tion for specifying the probability aggregation is associated
with the algebra operation, whereas in [24], the probabilistic
assumption is associated with each tuple, this being achie-
ved by assigning so-called event expressions to tuples. The
event expressions allow for a delayed probability computa-
tion, and, overall, they allow for an intensional semantics
of the probability computation. These are powerful features.
However, the intensional case leads to scalability problems,
since complex event expressions have to be transformed into
disjunctive normal form. Therefore, in most applications,
we apply extensional semantics. For the scope of the algebra
variant we discuss here, we work with extensional semantics,
i.e., each algebra expression directly aggregates probabili-
ties.

We give next the definition of the probabilistic projection
where the assumption is a parameter of the operator.

Definition 6 (Projection):
Let τ = τ ′[i1 . . . in] be a tuple composed of the attribute

values at columns (positions) i1 . . . in in tuple τ ′.
Let Ta(i1 . . . in) be the set of tuples of relation “a” that

share the same attribute values at columns i1 . . . in .
(T, P) = ‘Project’ assumption[praTargetList](a)

T := {τ |τ = τ ′[i1 . . . in] ∧ τ ′ ∈ Ta}

P(τ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
τ∈Ta(i1...in) Pa(τ) if assumption=‘disjoint’

1 − ∏
τ∈Ta(i1...in)(1 − Pa(τ))

if assumption=‘independent’
max({Pa(τ)|τ ∈ Ta(i1 . . . in)}

if assumption=‘subsumed’

If no praTargetList is specified, i.e., Project assumption(a),
then this is equivalent to the praTargetList that contains all
attributes of the argument relation “a”.

For example, assume the following relation to be given:

docFreqSpace
Prob Term DocId

0.2 sailing doc1
0.2 boats doc1
0.2 sailing doc2
0.2 boats doc2
0.2 sailing doc3
0.2 east doc3
0.2 coast doc3
0.2 sailing doc4
0.2 boats doc5

The relation has a constant tuple probability reflecting the
probability to draw a document from the document space (the
set of five documents). We show the relational description of
the probabilistic relation “docFreqSpace” based on the non-
probabilistic relation “Coll” in Sect. 6, when we have the
relational Bayes defined.

The PRAE “Project disjoint[$1](docFreqSpace)” projects
on the first column and forms the sum of non-distinct tuples
that coincide in the disjoint projection. We obtain the follo-
wing probabilistic relation:

dfTermSpace = Project disjoint[$1](docFreqSpace)
Prob Term

0.8 sailing
0.6 boats
0.2 east
0.2 coast

In the probabilistic relation “dfTermSpace”, the probabi-
lity of a term can be interpreted as the probability that the
term occurs in a document of the collection. This is a value-
based probability (see Definition 4), where here value-based
corresponds to document-based. This demonstrates that the
traditional IR notion of document frequency (df) translates to
the more general notion of value frequency (vf) in the relatio-
nal framework, where any set of attributes can be defined to
form the value key on which the value frequency is based. The
generalised notion of value-based versus document-based,
and the value-based versus tuple-based probabilities play an
important role when modelling retrieval models (Sect. 7).

For the binary operators product, union, and subtraction,
we only give in the following the definitions.

Definition 7 (Product):
(T, P) = ‘Multiply’ assumption(a, b)

T := {τ |τa ∈ Ta ∧ τb ∈ Tb ∧ τ = [τa, τb]}

P(τ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if assumption=‘disjoint’
Pa(τa) · Pb(τb)

if assumption=‘independent’
min({Pa(τa), Pb(τb)})

if assumption=‘subsumed’

123

Modelling retrieval models in a probabilistic relational algebra 15

Definition 8 (Union):
(T, P) = ‘Unite’ assumption(a,b)

T := {τ |τ ∈ Ta ∨ τ ∈ Tb}

P(τ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pa(τ) + Pb(τ) if assumption=‘disjoint’
Pa(τ) + Pb(τ) − Pa(τ) · Pb(τ)

if assumption=‘independent’
max({Pa(τ), Pb(τ)})

if assumption=‘subsumed’

Definition 9 (Subtraction):
(T,P)= ‘Subtract’ assumption(a, b)

T := {τ |τ ∈ Ta}

P(τ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pa(τ) if assumption=‘disjoint’
Pa(τ) · (1 − Pb(τ))

if assumption=‘independent’
max(Pa(τ) − Pb(τ), 0)

if assumption=‘subsumed’

The definitions of product and subtraction raise an interes-
ting theoretical (and philosophical) issue since tuples with
probability zero or even negative probabilities may be pro-
duced.

For example, in a subsumed subtraction, given Pa(τ) <

Pb(τ), we might obtain P(τ) < 0 in the result if we sim-
ply subtract probabilities. However, the illustration of the
assumption “subsumed” in Fig. 10 shows that the interpre-
tation of a subtraction as the Boolean combination “AND
NOT” leads to P(τ) = 0 if Pa(τ) ≤ Pb(τ). Thus, we have
so far no operation or aggregation that generates negative
probabilities.

Regarding zero probabilities, the aggregation is well-
defined for all operations. An intuitive optimisation idea is
to discard tuples with probability zero. However, from an
information point of view, the information that a tuple is in a
relation with probability zero is different from the informa-
tion that a tuple is not in a relation. This will become even
more evident when we apply the relational Bayes for genera-
ting informativeness-based probabilities, where then a zero
probability tuple tells us that an attribute value (for example,
“sailing” is an attribute value) is not informative, i.e., that it
occurs in all elements of the event space (tuples or values,
where, for example, documents are values).

To conclude this section with an example involving several
algebra expressions, we return to our running example on
document retrieval.

Query
Term QueryId

sailing q1
boats q1
sailing q2
boats q2
east q2
coast q2
... ...

Coll
Term DocId

sailing d1
boats d1
sailing d2
sailing d2
boats d2
... ...

From this, we obtain a probabilistic representation of
queries and documents (the next section explains how the
probabilities would be generated). For example:

probQuery
Prob Term QueryId

0.5 sailing q1
0.8 boats q1
0.5 sailing q2
0.8 boats q2
1.0 east q2
1.0 coast q2
...

probColl
Prob Term DocId

0.5 sailing doc1
0.5 boats doc1

0.33 sailing doc2
0.33 sailing doc2
0.33 boats doc2

...

In “probQuery”, the probabilities might reflect the discrimi-
nativeness of a term: sailing is frequent, boats is less frequent,
and east and coast are rare.

Given these probabilistic representations of queries and
documents (collection), we can now formulate a retrieval
strategy (ranking function) as follows:

-- PSQL
CREATE VIEW retrieve AS
SELECT DISJOINT QueryId, DocId
FROM probQuery, probColl
WHERE probQuery.Term = probColl.Term;

The translation of the PSQL statement to PRA yields:

PRA
retrieve =
Project disjoint[$2,$4](
Select[$1=$1](
Multiply(probQuery, probColl)))

We have defined the five basic operators, including PSQL
and PRA examples. In the next section, we define the main
composed operators, namely join and division.

5.2 Composed operators

There are a number of composed operators that are equivalent
to an expression involving the basic operators. In this paper,
we emphasise the following points:

1. The composed operators of classical relational algebra
apply in the probabilistic case as well.

2. The division operator does not divide probabilities.

Probably the most common composed operator is the join,
basically a product allowing for the specification of a
condition:

Join assumption[joinCondition] (a,b) :=
Select[selectCondition](

Multiply assumption (a,b))

The definition shows, that the conditional join is viewed to
be equivalent to a selection on the product of two relations.
The conditional join is important since it is more elegant
to use, and more efficient to compute than its decomposed

123

16 T. Roelleke et al.

equivalent. For example, consider the join of “Query” and
“Coll” over the attribute “Term”:

Join[$1=$1](Query, Coll) :=
Select[$1=$3](Multiply(Query, Coll))

The example illustrates that the column specification in the
join condition and select condition are different. In the join
condition, the column specification is such that the columns
refer to the first and second argument of the join, respecti-
vely, whereas in the select condition, the columns refer to the
concatenated tuple being the result of Multiply(Query,Coll).
When pushing a select condition to a join operation, the
column specification is adapted accordingly. We define the
PRA here with column numbers, however, we may also use
expressions such as Join[$Term=$Term](Query,Coll), given
that the schema (the attribute names) of “Query” and “Coll”
are defined.

To continue the illustration of the semantics of PRAE,
consider the following example in which we work with a
simple relation “probQuery(Term)” that contains no Que-
ryId, but just terms. Further, we model a relation “probColl”
with a more diverse distribution of probabilities than used in
previous examples. In “probColl”, we insert horizontal lines
to make it easier to associate tuples that belong to the same
document.

probQuery
Prob Term

0.5 sailing
0.5 boats

probColl
Prob Term DocId

0.8 sailing doc1
0.6 boats doc1
0.6 sailing doc2
0.4 boats doc2
1.0 sailing doc3

Joining “probQuery” with “probColl” yields:

resultBody = Join[$1=$1](probQuery, probColl)
Prob probQuery.Term probColl.Term DocId

0.4 = 0.5 · 0.8 sailing sailing doc1
0.3 = 0.5 · 0.6 boats boats doc1
0.3 = 0.5 · 0.6 sailing sailing doc2
0.2 = 0.5 · 0.4 boats boats doc2
0.5 = 0.5 · 1.0 sailing sailing doc3

A projection on the third column yields a relation with retrie-
ved documents. Applying a disjoint projection, we obtain:

result = Project disjoint[$3](resultBody)
Prob DocId

0.7 = 0.4 + 0.3 doc1
0.5 = 0.3 + 0.2 doc2

0.5 = 0.5 doc3

Here, doc1 is estimated to be the most relevant, and doc2 and
doc3 are estimated to be equally relevant documents.

Alternatively, using an independent projection, the aggre-
gation of probabilities has the effect that doc2 is viewed less
likely to be relevant than doc3, as shown below:

result = Project independent[$3](resultBody)
Prob DocId

0.58 = 0.7 − 0.4 · 0.3 doc1
0.44 = 0.5 − 0.3 · 0.2 doc2

0.50 = 0.5 doc3

This example illustrates the effect that probabilistic assump-
tions may have on the ranking.

Next, consider the division. We follow the definition to be
found in [20, p. 224], and [59, p. 102], and other comprehen-
sive database books. Let a and b be PRAEs. Let X ∪ Y be
the attributes of a and let X be the attributes of b.

Divide(a,b) :=
Subtract(
Project[Y](a),
Project[Y](
Subtract(
Multiply(b, Project[Y](a)), a)))

We show the division here to underline that the division is
a composed operator, composed of the basic operators, and
the basic operators perform probability aggregation (multi-
plication, summation, min/max) of probabilities, but do not
divide probabilities (or frequencies) as this is required for
probability estimation. We underline this point to fully cla-
rify why the division is not capable of performing the division
of probabilities (frequencies) as it is required for probability
estimation.

Next, we step to a new, sixth basic operator of a proba-
bilistic relational algebra, the relational Bayes. As the name
indicates, the operator is related to Bayes’ Theorem.

6 PSQL and PRA: probability estimation: the relational
Bayes

As highlighted throughout the paper, basic probabilistic rela-
tional algebra provides probability aggregation but lacks the
means to describe probability estimation. Therefore, we
introduce in this section the relational Bayes, the sixth ope-
rator of probabilistic relational algebra.

We present the relational Bayes in three steps, where the
three steps are motivated by the type of estimation
(probabilistic assumption). Section 6.1 introduces the
relational Bayes for the classical assumptions “disjoint”,
“independent”, and “subsumed”. Then, Sect. 6.2 adds the
logarithmic assumptions, namely “max_log” and “sum_log”.
The logarithmic assumptions support the estimation of what
we refer to as “informativeness-based” probabilities, as oppo-
sed to the “occurrence-based” probabilities obtained via the
classical assumptions. Finally, Sect. 6.3 introduces assump-
tions such as “max_idf” and “sum_idf”. These assumptions
correspond to complex relational Bayes expressions and sim-
plify PRA programs.

123

Modelling retrieval models in a probabilistic relational algebra 17

6.1 Classical assumptions: disjoint, independent and
subsumed

6.1.1 Syntax and semantics of the relational Bayes

With respect to our running example, we are looking for a
way to describe probabilities such as PColl(Term|DocId) and
PPerson(Nationality). How can we describe such probabilities
in PRA and PSQL, respectively?

We propose a basic probabilistic relational operator called
Bayes. Basically, Bayes divides each tuple probability (the
probabilities in a non-probabilistic relation are 1.0) by an
aggregated tuple probability, which we refer to as evidence
probability. For example, the sum of all doc1 tuples can be
viewed as an evidence probability. The formal definition of
the relational Bayes is:

Definition 10 (Bayes):
(T, P) = ‘Bayes’ assumption[i1 . . . in](a)

T := {τ |τ ∈ Ta}
P(τ) := Pa(τ)

Pb(τ [i1 . . . in])
The key i1 . . . in is referred to as the evidence key since

the relational Bayes generates a relation where the tuple
probabilities correspond to the conditional probability
P(τ |τ [i1 . . . in]).

The probabilistic relation “b” is the so-called evidence key
projection:

b = ‘Project’ assumption[i1 . . . in](a).
If no assumption is specified, i.e., given Bayes..., then

the assumption ‘disjoint’ is the default.

The relational Bayes performs a projection on the evi-
dence key. We refer to the resulting probabilities of the inner
projection as evidence probabilities. The inner projection is
also referred to as evidence projection.

Given the result of the evidence projection, the relatio-
nal Bayes computes the resulting probability (conditional
probability) as the division of the tuple probability and the
evidence probability. The division of probabilities reminds
of the division operator. However, as the definition of the
relational division shows, the relational division is based on
the basic operators, and no division of probabilities is per-
formed. Moreover, the relational Bayes is a basic operator,
since no other even complex operation supports the division
of probabilities.

As an example, consider the generation of a probabilistic
relation where the probabilities are of the nature P(Term,

DocId|DocId). In a column-based notation, we also write
such a probability as P($1, $2|$2), i.e., the second attribute
forms the evidence key.

We name the relation as “tfCollSpace” (which is short for
term frequency collection space). We generate “tfCollSpace”
from the non-probabilistic relation “Coll” as follows:

tfCollSpace = Bayes[$2](Coll)
Prob Term DocId

0.5 sailing doc1
0.5 boats doc1

0.33 sailing doc2
0.33 sailing doc2
0.33 boats doc2
0.33 sailing doc3
0.33 east doc3
0.33 coast doc3

1.0 sailing doc4
1.0 boats doc5

For example, consider the computation of “0.33(sailing,
doc2)”. The probability of this tuple is the result of dividing
the probability PColl((sailing,doc2)) = 1.0 by the evidence
“probability” for “(doc2)”, which is 3.0 since there are three
tuples with doc2. The probabilistic semantics is 0.33 = 1/10

3/10 ,
where 1/10 is the probability that a tuple is drawn from rela-
tion “Coll”, and 3/10 is the probability that a doc2 tuple is
drawn from relation “Coll”.

Note that the relational Bayes operation preserves the
non-distinct tuples, e.g. the tuple “0.33(sailing,doc2)” occurs
twice in the result of the Bayes operation.

To aggregate the probabilities of non-distinct tuples, we
apply a distinct projection, namely a disjoint projection in
this case. We obtain:

tf = Project disjoint(Bayes[$2](Coll))
Prob Term DocId

0.5 sailing doc1
0.5 boats doc1

0.66 sailing doc2
0.33 boats doc2
0.33 sailing doc3
0.33 east doc3
0.33 coast doc3
1.0 sailing doc4
1.0 boats doc5

The probabilities in the relation “tf” reflect the maximum-
likelihood estimate of the form n(t, d)/N (d). This linear
estimate is an important estimate with a clear interpretation.
To underline its general meaning, consider the estimation of
a probabilistic relation with P(Nationality|City) (where we
use attribute names in the PRA expressions).

PRA
person_nationality_city =
Project disjoint(
Bayes disjoint[$city](
Project[$nationality,$city](Person)));

Despite the fact that the maximum-likelihood is intuitive, it is
known for IR that the maximum-likelihood estimate actually
proves—for text retrieval—to be inferior to a Poisson-like

123

18 T. Roelleke et al.

(fractional) estimate where the probabilities in “tf” are com-
puted via the fractional estimate of the form n(t, d)/(K +
n(t, d)), where n(t, d) is the number of (t, d)-tuples, and K
is a constant to control the rise of the estimate, e.g. K = 1.
For the modelling of such a Poisson-based and—from a text
retrieval point of view—effective retrieval function, we either
need special Bayes assumptions, or other ways of aggregating
probabilities. We will look into this requirement in Sect. 7
(modelling retrieval models).

We have described a tf -based probability PT,Coll(t |d), and
this probability corresponds to what is in IR known as the
tf -component in a tf -idf -like retrieval function.

Next we describe a tuple-based and a value-based term
probability PColl(t), i.e., the probability that a term t occurs.
We refer with PT,Coll(t) to the tuple-based probability, and
we refer with PV,Coll[DocId](t) to the value-based probability.
The subscript of the value-based probability indicates the
attribute that forms the event space.

The tuple-based probability is essential for language
modelling. The value-based term probability is the input to
idf , since the idf of a term is defined as idf(t, Coll) :=
− log PColl[DocId](t).

We name the tuple-frequency-based term space
“tfTermSpace”, whereas we name the value-frequency-based
term space “dfTermSpace”.

The tuple-based relation “tfTermSpace” is defined as the
disjoint projection on the space of disjoint collection tuples.

tfTermSpace =
Project disjoint[$Term](

Bayes disjoint[](Coll));

In the relation “tfTermSpace”, we obtain:

tfTermSpace
Prob Term

5/10 sailing
3/10 boats
1/10 east
1/10 coast

The tuple-based probability is fairly straight-forward, when
compared to the value-based probability. For the value-based
probability, we need to define a value space, and then join
the distinct collection with the value space to project on the
frequency key, so that the projection aggregates for each fre-
quency key (term) the probabilities of the values (documents)
in which the frequency key (term) occurs.

Consider the following PRA program for describing a
value-based probability:

valueSpace =
Bayes[](Project distinct[$DocId](Coll));

distinctColl = Project distinct(Coll);

dfTermSpace =
Project disjoint[$Term](

Fig. 11 Extended PSQL Syntax

Join[$DocId=$DocId](distinctColl,
valueSpace));

We obtain:

dfTermSpace
Prob Term

4/5 sailing
3/5 boats
1/5 east
1/5 coast

We have introduced the syntax and semantics of the relational
Bayes. In addition, we have applied the relational Bayes to
create three probabilistic views:

1. View “tf(Term,DocId)” where the tuple probability is a
tuple-based probability of the nature PT,Coll(Term|
DocId). This relational view explains the generation of
the previously mentioned relation “probColl”. This
tf -based relation is crucial to the two main retrieval
models, namely tf -idf and language modelling.

2. View “tfTermSpace(Term)”, where the tuple probability
is a tuple-based probability PT,Coll(t). This relational
view is important for language modelling.

3. View “dfTermSpace(Term)”, where the tuple probability
is a value-based probability PV,Coll[DocId](t). This rela-
tional view corresponds to the relation “dfTermSpace”
introduced in Sect. 5.1 when defining the basic opera-
tors. The value-based (document-based) term probabili-
ties are important for idf.

In the next section, we show the embedding of the relational
Bayes into PSQL.

6.1.2 Translation of PSQL to PRA with Bayes

Consider now the definition and translation of PSQL expres-
sions that support probability estimation. In PSQL, we add
two new clauses to the SELECT statement: The evidence
key clause, and the assumption clause. Figure 11 shows the
syntax of extended PSQL (refer to Fig. 6 for the syntax of
basic PSQL). Terminal symbols of the syntax are set in single
quotes.

The following PRA expression shows the principle trans-
lation of a PSQL SELECT statement to PRA, which includes
evidence key or estimation assumption.

123

Modelling retrieval models in a probabilistic relational algebra 19

PRA
‘Bayes’ estAssumption [praEvidenceKey] (
‘Project’ aggAssumption [praTargetList] (
‘Select’ [praCondition] (

‘Multiply’ (...))))

The non-terminal symbols of the PSQL statement are transla-
ted into the respective PRA expressions. The sqlTargetList,
sqlCondition and sqlEvidenceKey contain attribute names,
whereas the corresponding PRA symbols may contain attri-
bute names (if the PRA layer knows the schema) or columns.

The PSQL Select statement is translated as usual to a rela-
tional projection. If a PSQL statement contains an evidence
key clause or an assumption clause, then the relational Bayes
is applied to the result of the projection. If only an evidence
key is specified, then the assumption “disjoint” is used. If only
an estimation assumption is specified, then a Bayes without
evidence key is applied (“Bayes(...)”), which means that the
evidence key contains all attributes of the relational argument
(the projection) of the relational Bayes.

For modelling tf -idf, we lack the functionality to estimate
the probabilities that are proportional to the idf of a term.
Therefore, we introduce in the next section two new assump-
tions, max_log and sum_log, which could be also referred to
as logSubsumed (max_log) and logIndependent (sum_log),
to highlight their relationship to the classical assumptions.

6.2 Logarithmic assumptions: max_log and sum_log

In IR, a crucial concept is the so-called inverse document
frequency idf(t, c) of a term t in a collection c, where idf
is defined as the logarithm of a frequency-based probability.
Let P(t |c) be the probability that the term t occurs in the
documents of the collection c. This probability is usually
based on the number of documents in which t occurs (denoted
as nD(t, c)) and the number of documents in the collection
(denoted as ND(c)):

P(t |c) := nD(t, c)

ND(c)
idf(t, c) := − log P(t |c) (6)

As we saw in Sect. 6.1, P(t |c) can be expressed with the rela-
tional Bayes. However, so far, we lack the means to express
a probability that is proportional to idf .

Therefore, we introduce further assumptions. Since the
idf , the logarithm, respectively, is related to information
theory, we refer to these logarithmic assumptions also as
information-theoretic assumptions.

We extend in the following the definitions of Projection
and Bayes regarding the assumptions max_log and sum_log.

Definition 11 (Logarithmic Projection): This definition
extends Definition 6 (Projection). Definition 6 covers only

the classical assumptions ‘disjoint’, ‘independent’, and
‘subsumed’.

P(τ) =

⎧
⎪⎪⎨

⎪⎪⎩

min({Pa(τ)|τ ∈ T (i1..in)})
if assumption=‘max_log’

∏
τ∈T (i1..in) Pa(τ)

if assumption=‘sum_log’

Having defined the semantics of the logarithmic (informa-
tion-theoretic) assumptions for Project, we can define the
logarithmic Bayes, which involves an evidence projection
with a logarithmic assumption.

Definition 12 (Logarithmic Bayes): This definition extends
Definition 10 (Bayes). Definition 10 covers only the classical
assumptions ‘disjoint’, ‘independent’, and ‘subsumed’.

(Pb, Tb) = ‘Project’ assumption[i1, . . . , in](a)

P(τ) = − log Pa(τ)

− log Pb(τ [i1, . . . , in])
if assumption ∈ {‘max_log’, ‘sum_log’}

For the logarithmic assumptions, the relational Bayes divides
the logarithm of the tuple probability by the logarithm of the
evidence probability, where the evidence probability is the
minimum or the product of the probabilities of the evidence
tuples.

For max_log, the maximum of logarithms is equal to the
logarithm of the minimum of probabilities:

max({− log P(τ1), . . . ,− log P(τn)})
= − log min({P(τ1), . . . , P(τn)})

Hence, the evidence projection Project max_log[]() yields
the minimum of the probabilities of the coinciding tuples.

For sum_log, the sum of logarithms is equal to the loga-
rithm of the product of probabilities:

∑

i

− log P(τi) = − log
∏

i

P(τi)

Hence, the evidence projection Project sum_log[]() yields
the product of the probabilities of the coinciding tuples.

For the Projection, max_log corresponds to a conjunction
of subsumed events, and sum_log corresponds to a conjunc-
tion of independent events. This is summarised in the follo-
wing table.

Assumption Evaluation in projection
max_log conjunction of subsumed events
sum_log conjunction of independent events

As an example, consider the computation of an idf -based
term space:

123

20 T. Roelleke et al.

max_idfTermSpace = Bayes max_log[](dfTermSpace)
Prob Term

log(0.8)/ log(0.2) ≈ 0.1386 sailing
log(0.6)/ log(0.2) ≈ 0.3174 boats

log(0.2)/ log(0.2) = 1.0 east
log(0.2)/ log(0.2) = 1.0 coast

The logarithmic assumptions add an important angle to the
relational operators Projection and Bayes, since they allow
for the description of so-called informativeness probabilities.

Before we conclude this section, we look at the irregulari-
ties of the logarithmic assumptions, namely log P(τ) is zero
for P(τ) = 1, and it is not defined for P(τ) = 0.

For max_log and sum_log, the evidence probability Pb(τ)

is equal to 1.0 if all probabilities of the evidence tuples
are 1.0, i.e., there exists no tuple probability less than 1.0.
This means that all evidence is not informative, since only
tuples (signals) which occur with a probability of less than
1.0 bear any surprise, and only surprise is considered to be
informative.

The evidence probability is zero if there is one zero pro-
bability among the coinciding tuples in the evidence key pro-
jection. For this case, we can assign zero to the result tuples,
since limP(τ)→0 − log P(τ) = ∞.

The value-based dfTermSpace (end of Sect. 6.1) is a
complex algebra expression. Thus, applying Bayes
max_log[](dfTermSpace) is clearly not the easiest expres-
sion to evaluate. Therefore, the next section introduces com-
posed Bayes assumptions named max_ivf (also referred to
as max_idf) and max_itf (also referred to as max_ilf). These
yield two advantages: on one hand, the algebraic expression
becomes more compact, which is welcome when modelling
in PRA. On the other hand, the composed expressions allow
for an index usage that leads to a more efficient processing
that the computation of the decomposed expressions.

6.3 Inverse frequency assumptions: max_ivf (max_idf)
and max_itf (max_ilf)

Reconsider the computation steps for describing the estima-
tion of an idf -based probability, where we work now with
general relations (not specific to document retrieval). We
generate an inverse-value-based (ivf -based) key space. For
this, we apply the general notions of value key and frequency
key: The value key (for text retrieval, {DocId} is the value
key), and the frequency key (for text retrieval, {Term} is the
frequency key), are used for defining the value frequency. Let
r be a relation. The steps for describing the value frequency
are:

1. Generate value space:

valueSpace =
Bayes[](Project distinct[valueKey](r));

2. Generate distinct tuple space:

tupleSpace = Project distinct(r);

3. Generate value frequency:

vf =
Project disjoint[freqKey](

Join[valueKey=valueKey](
tupleSpace, valueSpace));

4. Generate inverse-value-frequency-based probabilities:

max_ivf = Bayes max_log[](vf)

To facilitate the specification and evaluation of value-based
probabilities, we define now the max_ivf relational Bayes.
The max_ivf Bayes requires a projection on the frequency
key to be its argument. For example, in “Bayes max_ivf[]
(Project[$Term](Coll))”, the “Term” attribute of “Coll” is
the frequency key.

The distinct collection is joined with the valueSpace to
obtain the base for generating the valueFrequencies (the rela-
tion “vf” in the derivation above corresponds for the relation
“Coll” to the document frequency (df)).

Bayes max_ivf[](Project[freqKey](r)) :=
Bayes max_log [] (
Project disjoint [freqKey] (
Join [valueKey=valueKey] (
Project distinct (r),
Bayes [] (
Project distinct[valueKey] (r)))))

Since the general concept of an ivf -based probability has its
origin in the IR concept of idf -based probabilities, we let
max_idf be a synonym of max_ivf.

As an example, consider the ivf (inverse value (document)
frequency) of attribute “Term” in relation “Coll”:

Bayes max_idf[](Project[$Term](Coll)) :=
Bayes max_log[](
Project disjoint[$Term](
Join[$DocId=$DocId](

Project distinct(Coll),
Bayes[](Project distinct[$DocId](Coll))))

Here, {Term} is the frequency key, and {DocId} is the
value key.

Next, consider the generation of tuple-frequency-based
informativeness probabilities via the composed Bayes
max_itf operation:

Bayes max_itf[](Project[freqKey](r)) :=
Bayes max_log[](
Project disjoint[freqKey](Bayes[](r)))

The definition is simpler than that of max_ivf, since the tuple
space generated by Bayes[](r) is direct input to the disjoint
projection over the frequency key.

123

Modelling retrieval models in a probabilistic relational algebra 21

This section added the relational Bayes to the basic PRA.
Now, the PRA components are the five basic operators, the
composed operators, the relational Bayes primitives (dis-
joint, independent, subsumed, max_log, sum_log), and the
composed relational Bayes expressions (max_ivf, max_itf).
We have now a probabilistic relational paradigm suitable to
describe the probability aggregation and estimation required
for modelling IR models.

7 Probabilistic relational modelling of retrieval models

We start with probabilistic variants of a simple but effective
retrieval model, known as tf-idf (Sect. 7.1). Then, we show
the modelling of the two major probabilistic retrieval models:
binary independent retrieval model (Sect. 7.2) and language
modelling (Sect. 7.3). In addition to the modelling of retrie-
val models, we include the modelling of the most common
evaluation measure: precision/recall (Sect. 7.4).

7.1 TF-IDF

The standard definition of the tf -idf -based retrieval status
value (RSV) is of the form RSV(d, q) = ∑

t∈d∩q tf(t, d) ·
idf(t). When investigating the implementation of tf -idf in a
probabilistic relational framework, we came across different
variants we will report in this section. For implementing the
standard form, we need to instantiate probabilistic relations
to model tf and idf . Since we move in a probabilistic frame-
work, we need to think about a probabilistic interpretation
of tf -idf, or, at least, define probabilities that are proportio-
nal to tf and idf , respectively. This is fairly straight-forward
for the tf component, but for the idf component, we need a
log-based normalisation and the probabilistic interpretation
of the value obtained is not obvious (see [53] for a discussion
of the semantics of such a probability).

We illustrate in the following several tf -idf implementa-
tions.

Consider first the PSQL script for modelling standard
tf -idf -based retrieval.

-- PSQL: standard tf-idf retrieval
-- Extensional relations:
-- Coll(Term, DocId);
-- tf_poissona(term, context);
-- Query(Term, QueryId);

-- within-document term frequency:
CREATE VIEW tfCollSpace AS

SELECT Term, DocId
FROM Coll
ASSUMPTION DISJOINT
EVIDENCE KEY (DocId);

CREATE VIEW tf AS
SELECT DISJOINT Term, DocId
FROM tfCollSpace;

-- Optional: Bind tf to extensional relation.
CREATE VIEW tf AS

SELECT term AS Term, context AS DocId
FROM tf_poissona;

-- inverse document frequency:
CREATE VIEW idf AS

SELECT Term
FROM Coll
ASSUMPTION MAX_IDF
EVIDENCE KEY ();

-- query term weighting and normalisation:
CREATE VIEW wQuery AS

SELECT Term, QueryId
FROM Query, idf
WHERE Query.Term = idf.Term;

CREATE VIEW norm_wQuery AS
SELECT Term, QueryId
FROM wQuery
EVIDENCE KEY (QueryId);

-- retrieve documents:
CREATE VIEW std_tf_idf_retrieve AS

SELECT DISJOINT DocId, QueryId
FROM norm_wQuery, tf
WHERE norm_wQuery.Term = tf.Term;

-- Probabilistic interpretation:
-- For tf_poissona interpreted as P(d|t):
-- P(t|q) P(q) = P(q|t) P(t is informative | c)
-- RSV(d,q) = P(q) sum_t P(d|t) P(t|q)

CREATE VIEW retrieve AS
SELECT DocId, QueryId
FROM std_tf_idf_retrieve;

The PSQL script contains views for defining the probabi-
listic relations “tf” and “idf”. For “tf”, the first two views
demonstrate how to define a maximum-likelihood estimate,
which is of the form P(t |d) = n(t, d)/N (d). This linear esti-
mate is outperformed by a non-linear estimate of the form
n(t, d)/(n(t, d) + K), where n(t, d) is the number of times
term t occurs in document d, and K is a term-independent
value, which might reflect, for example, the document length
(BM25, [57]). This non-linear estimate can be viewed as a
Poisson approximation, and the term-document pairs with the
respective probabilities are stored in relation “tf_poissona”.
We report at the end of this section the effect of different “tf”
variants.

The query terms are joined with “idf” to generate the
relation “wQuery” of weighted query terms. The normali-
sed query terms are required for obtaining a probabilistic
interpretation of the sum over the tf -idf products. Finally,
we define the view “std_tf_idf_retrieve”, which contains the
document-query pairs with their probabilistic tf -idf retrieval
status values.

The translation of the PSQL script yields a PRA program
that is equivalent to the PRA program shown next.

123

22 T. Roelleke et al.

PRA: tf-idf retrieval
Extensional relations:
Coll(Term, DocId);
Query(Term, QueryId);

tfCollSpace(Term, DocId):
tfCollSpace = Bayes[$2](Coll);
tf(Term, DocId):
tf = Project disjoint[$1,$2](tfCollSpace);

Optional: Bind tf to extensional relation.
tf = tf_poissona;

idf(Term):
idf = Bayes max_idf[](Project[$1](Coll));

wQuery(Term, QueryId):
wQuery =

Project[$1,$2](Join[$1=$1](Query, idf));

Normalisation:
norm_wQuery =

Project[$1,$2](Bayes[$2](wQuery));

Retrieve documents:
std_tf_idf_retrieve(DocId, QueryId):
std_tf_idf_retrieve =

Project disjoint[$4,$2](
Join[$1=$1](norm_wQuery, tf));

retrieve = std_tf_idf_retrieve;

Each PRA equation corresponds to a view in the PSQL script.
PSQL views that involve evidence key or assumption lead to
PRA expressions in which the relational Bayes performs the
required probability estimation. This is the case for the view
“tfCollSpace” (see Sect. 6.1 for an example of the relation
“tfCollSpace”) and for the view “idf” (see Sect. 6.3 for the
definition of the assumption max_idf).

We have modelled standard tf -idf. The maximum-
likelihood estimate is a conceptual part of the minimal proba-
bilistic relational framework we presented so far. It is one of
the main contributions of the relational Bayes that such esti-
mations are now part of the probabilistic relational paradigm,
and do not need anymore to be computed outside of the rela-
tional algebra. However, for Poisson-like estimates, we still
bind “tf” to the extensional relation “tf_poissona” in which
probabilities were generated offline. There are numerous
ways in the PSQL/PRA framework to specify Poisson-like
probabilities, however, our aim is to integrate probability
estimations neatly into the conceptual framework of probabi-
listic relational modelling, rather than inventing new
assumptions and SQL syntax extensions for each way the
probabilities can be estimated. The specification and seman-
tics of Poisson-based and other probabilities actually requires
to extend the framework we present here in this paper. The
extension is based on providing more assumptions for the
relational Bayes, and also on providing special assumption
for the Join. Since these extensions significantly enhance and

enlarge the framework, we focus in this paper on the minimal
PRA and its relational Bayes, and we address the extensions
in future work.

When implementing tf -idf, we encountered less complex
PSQL programs that provide a tf -idf -like RSV. Consider in
the following an alternative and fairly compact PSQL pro-
gram, where we join idf -weighted query terms with the rela-
tion “Coll” rather than “tf”. In “Coll”, we have non-distinct
Term-DocId tuples, whereas in “tf”, tuples are distinct since
the non-distinct Term-DocId tuples have been aggregated
into the probabilities of the tuples in “tf”.

-- PSQL: alternative tf-idf-like retrieval
-- This tf-idf variant does not rely on the
-- generation of an explicit tf relation.

CREATE VIEW alt1_tf_idf_retrieve AS
SELECT INDEPENDENT DocId, QueryId
FROM wQuery, Coll
WHERE wQuery.Term = Coll.Term;

The translation to PRA yields:

PRA
alt1_tf_idf_retrieve =

Project independent[$4,$2](
Join[$1=$1](wQuery, Coll));

The independence assumption leads to an aggregation of the
query term probabilities such that we obtain for the probabi-
lities in “alt1_tf_idf_retrieve”: RSV(d, q) = 1−∏

(t,d)∈Coll
(1− P(q|t)). Note that the aggregation of non-distinct (t, d)

tuples in the relation “Coll” reflects the within-document
term frequency. The light-weight nature of this implemen-
tation motivated us to investigate the retrieval quality of this
script against tf -idf -implementations that contain an explicit
relation “tf”.

For another candidate with explicit “tf”, consider the fol-
lowing script in which we join the non-normalised rather than
the normalised query term weights, and view the query terms
as independent rather than disjoint.

-- PSQL: alternative tf-idf-like retrieval
-- Aggregation of independent, non-normalised
-- query term weights.

CREATE VIEW alt2_tf_idf_retrieve AS
SELECT INDEPENDENT DocId, QueryId
FROM wQuery, tf
WHERE wQuery.Term = tf.Term;

Note the difference between “alt2_tf_idf_retrieve” and
“std_tf_idf_retrieve”: In “alt2_tf_idf_retrieve”, we (have to)
apply an independence assumption. Thus, a document that
contains one very rare term with a high term frequency will
be ranked very high, regardless of the other query terms.
In “std_tf_idf_retrieve”, we (had to) normalise the weighted
query terms for the safe application of a disjoint projection.

To investigate the performance of different tf -idf notions
that emerged when modelling tf -idf in PSQL/PRA, we ran

123

Modelling retrieval models in a probabilistic relational algebra 23

tf -idf tf wQuery avg-prec prec@10
std1 Poisson tf normalised 0.2713 0.4138
std2 Likelihood tf normalised 0.2077 0.4103
alt1 implicit tf non-normalised 0.2038 0.4091
alt2 Likelihood tf non-normalised 0.1224 0.2586

Fig. 12 Retrieval quality for tf -idf alternatives

the tf -idf variants on a 500 MB structured collection (INEX
collection, http://inex.is.informatik.uni-duisburg.de/) with
12,000 articles and 15 million retrievable contexts (sections,
paragraphs, etc). This leads to 32.5 million tuples in a repre-
sentation similar to the relation “Coll” in our running example.

For the tf -idf variants, we obtain the retrieval quality
presented in Fig. 12, where the variants are sorted by
performance.

The experiment confirms tf -idf with Poisson-like tf to
perform best. The standard variants (std1 and std2) work with
normalised idf -based probabilities for query term weighting,
whereas the alternative variants (alt1 and alt2) work with non-
normalised query term weights. The variant with implicit
tf , where the join of query terms with the relation “Coll”
followed by an independent projection implicitly captures
the tf part, performs quite well, taking into account that this
implementation actually frees the system from providing a
view “tf” or even a materialised relation.

Actually, it is in this paper not our aim to discuss retrieval
quality. We know that depending on the application and data,
we need to adjust retrieval strategies. What we do not know
yet, but what we can investigate now given the expressiveness
of PSQL, is for example which retrieval function is best to
retrieve the ‘Chinese or English people that we should recruit
to open a business branch in China’. The point of PSQL is that
we can define and refine ranking for any query, in particular
for queries that involve complex relational schemas, and not
just a relation of terms and document ids, as it is mostly the
case in document retrieval applications.

What the tf -idf -variation demonstrates is that PSQL is
flexible regarding probability estimation and aggregation, is
applicable to large-scale data, and allows to formulate and
investigate retrieval models in an abstract, relatively compact
but still efficient representation.

7.2 Binary independent retrieval model (BIRM)

The binary independent retrieval model (BIRM, [55]) is a
theoretical pillar of probabilistic retrieval. We investigate
in this section the probabilistic relational modelling of the
BIRM.

The BIRM defines the RSVas follows:

RSVBIRM(d, q) =
∑

t∈d∩q

[

log
PD(t |q, r)

PD(t̄ |q, r)
− log

PD(t |q, r̄)

PD(t̄ |q, r̄)

]

Here, the variations of the PD(t |q, r) probabilities are the
document-frequency-based probabilities that term t occurs
in the respective set of relevant and non-relevant documents.
Assuming the collection to approximate the set of
non-relevant (i.e., c = r̄), and applying the idf -definition,
the BIRM can be rewritten as a linear combination of idf -
values ([18]):

RSVBIRM(d, q) =
=

∑

t∈d∩q

[
idf(t, c) − idf(t, r) + idf(t̄, r) − idf(t̄, c)

]

The probabilistic relational implementation is based on the
linear combination of idf -values. Based on whether or not
the negative term events are taken into account, and based
on the choice of the set of non-relevant documents, there
are four variants of the BIRM. We present the implementa-
tion of the variant idf(t, c) − idf(t, r) where we combine the
positive term events in the collection and the set of relevant
documents, and we disregard the negative term events.

In the PSQL implementation, we define accordingly the
views “idf_c” and “idf_r”. The PSQL script is as follows:

-- PSQL: birm retrieval
-- Extensional relations:
-- Coll(Term, DocId);
-- Query(Term, QueryId);
-- relevant(query, context);

-- collection of relevant documents:
CREATE VIEW relColl AS

SELECT Coll.Term, DocId
FROM Query, relevant, Coll
WHERE Query.QueryId = relevant.query
AND relevant.context = Coll.DocId;

-- idf in collection:
CREATE VIEW idf_c AS

SELECT Term
FROM Coll
ASSUMPTION MAX_IDF
EVIDENCE KEY ();

-- idf in relevant:
CREATE VIEW idf_r AS

SELECT Term
FROM relColl
ASSUMPTION MAX_IDF
EVIDENCE KEY ();

-- query term weighting:
CREATE VIEW wQuery_c AS

SELECT Term, QueryId
FROM Query, idf_c
WHERE Query.Term = idf_c.Term;

CREATE VIEW norm_wQuery_c AS
SELECT Term, QueryId
FROM wQuery_c
ASSUMPTION DISJOINT
EVIDENCE KEY (QueryId);

CREATE VIEW wQuery_r AS
SELECT Term, QueryId

123

24 T. Roelleke et al.

FROM Query, idf_r
WHERE Query.Term = idf_r.Term;

CREATE VIEW norm_wQuery_r AS
SELECT Term, QueryId
FROM wQuery_r
ASSUMPTION DISJOINT
EVIDENCE KEY (QueryId);

-- combination of normalised weights:
CREATE VIEW wQuery AS

norm_wQuery_c MINUS SUBSUMED norm_wQuery_r;
CREATE VIEW norm_wQuery AS

SELECT Term, QueryId
FROM wQuery
ASSUMPTION DISJOINT
EVIDENCE KEY (QueryId);

CREATE VIEW distinctColl AS
SELECT DISTINCT Term, DocId
FROM Coll;

-- retrieve documents:
CREATE VIEW birm_retrieve AS

SELECT DISJOINT DocId, QueryId
FROM norm_wQuery, distinctColl
WHERE norm_wQuery.Term = distinctColl.Term;

CREATE VIEW retrieve AS
SELECT DocId, QueryId
FROM birm_retrieve;

The view “relColl” contains the Term-DocId tuples of the
relevant documents. Then, the views “idf_c” and “idf_r” are
defined over “Coll” and “relColl”, respectively. This is follo-
wed by query term weighting and the subsumed subtraction
of query term weights. Finally, the join of query term weights
and the distinct collection representation yields the retrieval
result. Note that we join with a distinct view of the collection
to reflect the nature of the BIRM.

The translation to PRA yields a PRA program equivalent
to the PRA program shown next:

PRA: birm retrieval
Extensional relations:
Coll(Term, DocId);
Query(Term, QueryId);
relevant(query, context);

Collection of relevant documents:
relColl(Term, DocId):
relColl=

Project[$5,$6](
Join[$4=$2](
Join[$2=$1](Query, relevant), Coll));

idf in collection:
idf_c = Bayes max_idf[](Project[$1](Coll));

idf in relevant documents:
idf_r = Bayes max_idf[](Project[$1](relColl));

Query term weighting:

wQuery_c =
Project[$1,$2](Join[$1=$1](Query, idf_c));

wQuery_r =
Project[$1,$2](Join[$1=$1](Query, idf_r));

Normalisation:
norm_wQuery_c = Bayes[](wQuery_c);
norm_wQuery_r = Bayes[](wQuery_r);

Combination of query term weights:
wQuery =

Subtract subsumed(norm_wQuery_c,
norm_wQuery_r);

norm_wQuery = Bayes[](wQuery);

distinctColl = Project distinct[$1,$2](Coll);

Retrieve documents:
birm_retrieve =

Project disjoint[$4,$2](
Join[$1=$1](norm_wQuery, distinctColl));

retrieve = birm_retrieve;

There are two equations for the idf -based probabilities of
terms: “idf_c” for the collection, and “idf_r” for the set of
relevant documents. The subsumed subtraction performs the
linear combination idf(t, c)−idf(t, r) for the respective query
terms. The disjoint projection sums per document-query pair
over the query term probabilities.

There are a number of issues regarding the implementa-
tion of BIRM. One issue is that the implementation shows the
parallel between tf -idf and BIRM. The tf -idf script contains
only the view “idf”, whereas the BIRM script contains the
views “idf_c” and “idf_r”, and this clearly shows how the
BIRM proposes to consider relevance information for query
term weighting. Another issue is the semantics of the imple-
mentation. If a term is frequent in the collection, then it has
a small probability in idf_c. If the same term is rare in the
relevant documents, then it has a relatively large probability
in idf_r. This is certainly a poor term for selecting relevant
documents. According to the discussion for a subtraction over
subsumed events in Sect. 5.1, such a term will have a proba-
bility of zero, and thus it will not affect the ranking. In the
genuine formulation of the BIRM, poor terms have a negative
impact on the RSV. To achieve a “correct” implementation of
the BIRM, we would need negative probabilities, which we
have excluded for now. Also, the max_idf-based normalisa-
tions consider the cardinality of the collection and the set of
relevant documents, whereas the genuine formulation does
not consider the cardinality. The relationship of the genuine
BIRM and its probabilistic relational implementation is a
topic of future research.

We have achieved a PSQL/PRA implementation of the
BIRM, and we continue in the next section with the other
main probabilistic approach to IR, namely language
modelling.

123

Modelling retrieval models in a probabilistic relational algebra 25

7.3 Language modelling (LM)

Language modelling linearly combines the probability that
a term occurs in the collection PT (t |c) and the probability
that a term occurs in a document PT (t |d). These probabilities
are estimated in the tuple space, which is indicated by the T
subscript. The RSV is defined as follows:

RSVLM(d, q) =
∑

t∈q

log (λ · PT (t |d) + (1 − λ) · PT (t |c))

The mixture parameterλ is to be set: It can be term-dependent,
query-dependent, or background-dependent.

The following PSQL script is an implementation of LM:

-- PSQL: lm retrieval
-- Extensional relations:
-- Coll(Term, DocId);
-- Query(Term, QueryId);
-- tf_sum(term, context);
-- mixture(name);

-- mixture:
DELETE FROM mixture;
INSERT INTO mixture VALUES
0.8 (’p_t_d’), 0.2 (’p_t_c’);

CREATE VIEW lambda1 AS
SELECT FROM mixture
WHERE mixture.name = ’p_t_d’;

CREATE VIEW lambda2 AS
SELECT FROM mixture
WHERE mixture.name = ’p_t_c’;

-- P(t|d):
-- Principle description via views:
CREATE VIEW tfCollSpace AS

SELECT Term, DocId
FROM Coll
EVIDENCE KEY (DocId);

CREATE VIEW p_t_d AS
SELECT DISJOINT Term, DocId
FROM tfCollSpace;

-- For efficiency,
-- bind p_t_d to extensional instance.
CREATE VIEW p_t_d AS

SELECT term AS Term, context AS DocId
FROM tf_sum;

-- P(t|c):
CREATE VIEW p_t_c_evidence AS

SELECT Term
FROM Coll
EVIDENCE KEY ();

CREATE VIEW p_t_c AS
SELECT DISJOINT Term
FROM p_t_c_evidence;

-- retrieved(DocId, QueryId):
-- Needed for generating schema-compatible
-- views docModel and collModel.
CREATE VIEW retrieved AS

SELECT DISTINCT DocId, QueryId

FROM Query, Coll
WHERE Query.Term = Coll.Term;

CREATE VIEW docModel AS
SELECT Term, DocId
FROM lambda1, p_t_d;

CREATE VIEW collModel AS
SELECT Term, DocId
FROM lambda2, p_t_c, retrieved;

-- combine document and collection models
CREATE VIEW lm1_p_t__c_d AS

docModel UNION DISJOINT collModel;

-- retrieve documents
CREATE VIEW lm1_retrieve AS

SELECT SUM_LOG DocId, QueryId
FROM Query, lm1_p_t__c_d
WHERE Query.Term = lm1_p_t__c_d.Term;

-- Probabilistic interpretation:
-- P(t|c,d) = lambda1 P(t|d) + lambda2 P(t|c)
-- RSV(d,q) = prod_t P(q|t) P(t|c,d)

CREATE VIEW retrieve AS
SELECT DocId, QueryId
FROM lm1_retrieve;

The PSQL script shows the probabilistic views “p_t_d” and
“p_d_d”, where the probabilities correspond to PT (t |d) and
PT (t |c), respectively. Similar to the tf -idf script, we show
the principle generation of PT (t |d), which we then over-
write by a view that takes advantage of a materialised rela-
tion “tf_sum” that contains the pre-computed probabilities.
This is purely for reasons of efficiency, since the view “tf”
requires an aggregation of probabilities, and this aggregation
can be pre-computed in a materialised relation. Then, the join
with “tf” is more efficient.

Consider next a PRA program equivalent to the outcome
of the PSQL to PRA translation:

PRA: lm retrieval
Extensional relations:
Coll(Term, DocId);
Query(Term, QueryId);
tf_sum(term, context);
mixture(name);

Mixture:
_delete(mixture);
0.8 mixture(p_t_d);
0.2 mixture(p_t_c);
lambda1 = Project[](Select[$1=p_t_d](mixture));
lambda2 = Project[](Select[$1=p_t_c](mixture));

P(t|d): p_t_d(Term, DocId):
tfCollSpace = Bayes[$2](Coll);
p_t_d = Project disjoint[$1,$2](tfCollSpace);

Optional usage of pre-computed tf:
p_t_d = tf_sum;

123

26 T. Roelleke et al.

P(t|c): p_t_c(Term):
collSpace = Bayes[](Project[$1](Coll));
p_t_c = Project disjoint[$1](collSpace);

Retrieved documents for the generation of
the collection model that can be united with
the document model.
retrieved(DocId):
retrieved =

Project distinct[$4](
Join[$1=$1](Query, Coll));

Document model:
docModel(Term, DocId):
docModel = Join[](lambda1, p_t_d);

Collection model:
collModel(Term, DocId):
collModel =

Join[](lambda2, Join[](p_t_c, retrieved));

Combination of docModel and collModel:
lm_term_weight =

Unite disjoint(docModel, collModel);

Retrieve documents:
lm_retrieve =

Project sum_log[$4,$2](
Join[$1=$1](Query, lm_term_weight));

retrieve = lm_retrieve;

The PSQL views correspond to their respective PRA equa-
tions. The view “collModel” involves an expensive join of
query term weights based on P(t |c) with the retrieved docu-
ments. This join is required since the relational union requires
schema-compatible relations “docModel” and “collModel”.

The implementation shown above is semantically correct
but because of the required schema compatibility not effi-
cient. We have started to look into alternative PRA formu-
lation, and we have defined an extended PRA with special
mixture joins that support a correct and efficient implementa-
tion of LM. This is related to the description of Poisson-like
estimates mentioned in the Sect. 7.1 on tf -idf. We will report
on the PRA extensions regarding Poisson and probability
mixtures in future work.

We have presented the PSQL/PRA implementation of lan-
guage modelling. With this, we have completed the imple-
mentation of three main models, namely tf -idf, BIRM, and
LM. For tf -idf and LM, we showed semantically correct
implementations, whereas the BIRM implementation does
not implement the genuine BIRM formulation. Proving the
correctness of PSQL/PRA implementations is an important
task; for the implementations shown here, the correctness
has been investigated but the formal proofs have been exclu-
ded from this paper. Also, the PSQL/PRA scripts for tf -idf ,
BIRM and LM have been verified in a prototypical imple-
mentation. In the next section, we add the probabilistic rela-
tional modelling of precision/recall.

7.4 Precision/recall

Precision and recall are frequently used measures to com-
pare retrieval quality. Precision and recall can be interpre-
ted as the conditional probabilities P(relevant|retrieved) and
P(retrieved|relevant), respectively. This interpretation
implies that we can model precision and recall in a proba-
bilistic relational framework that supports the description of
conditional probabilities. This has two benefits: Firstly, the
measures become part of a conceptual framework in which
we model IR. Secondly, by replacing black-box tools that
produce precision/recall values, we enable the application-
specific modification of measures.

For an illustration, consider the following data in relations
“Retrieved” and “Relevant”:

Retrieved
QueryId DocId

q1 doc2
q1 doc4
q1 doc6
q1 doc8
q1 doc1
q1 doc3
q1 doc5
q1 doc7
q1 doc9
q2 doc5
q2 doc4

Relevant
QueryId DocId

q1 doc1
q1 doc4
q1 doc9
q1 doc11
q1 doc14
q1 doc19
q2 doc4

Based on these extensional relations, we define three views
that are later used for defining precision and recall.

-- PSQL
-- Extensional relations:
-- Retrieved(QueryId, DocId);
-- Relevant(QueryId, DocId);

CREATE VIEW retrievedSpace AS
SELECT QueryId, DocId
FROM Retrieved
ASSUMPTION DISJOINT
EVIDENCE KEY (QueryId);

CREATE VIEW relevantSpace AS
SELECT QueryId, DocId
FROM Relevant
ASSUMPTION DISJOINT
EVIDENCE KEY (QueryId);

CREATE VIEW retrieved_and_relevant AS
SELECT QueryId, DocId
FROM Relevant, Retrieved
WHERE Relevant.QueryId = Retrieved.QueryId
AND Relevant.DocId = Retrieved.DocId;

The view “retrievedSpace” contains for each query the pro-
babilistic tuples that reflect the probability that a document
is among the retrieved documents of the query. The view
“relevantSpace” has the analogous role for the relevant

123

Modelling retrieval models in a probabilistic relational algebra 27

documents. Given these spaces and the view “retrieved_and_
relevant”, we describe precision and recall:

-- PSQL: precision and recall

CREATE VIEW precision AS
SELECT DISJOINT query
FROM retrieved_and_relevant, retrievedSpace
WHERE retrieved_and_relevant.QueryId =

retrievedSpace.QueryId
AND retrieved_and_relevant.DocId =

retrievedSpace.DocId;

CREATE VIEW recall AS
SELECT DISJOINT query
FROM retrieved_and_relevant, relevantSpace
WHERE retrieved_and_relevant.QueryId =

relevantSpace.QueryId
AND retrieved_and_relevant.DocId =

relevantSpace.DocId;

The translation of the first PSQL script with views
“retrievedSpace” and “relevantSpace” yields the following
PRA program:

PRA
retrievedSpace = Bayes[$1](Retrieved);
relevantSpace = Bayes[$1](Relevant);

retrieved_and_relevant =
Project[$1,$2](
Join[$1=$1,$2=$2](
Relevant, Retrieved));

The first two equations yield the two spaces “retrievedSpace”
and “relevantSpace”, where in each space a document occurs
with the probability Pspace(d|q) = 1/N (q), where N (q) is
the number of documents for query q.

The third equation yields the relation of retrieved and rele-
vant documents.

We obtain the following probabilistic relations:

retrievedSpace
Prob QueryId DocId

1/9 q1 doc2
1/9 q1 doc4
1/9 q1 doc6
1/9 q1 doc8
1/9 q1 doc1
1/9 q1 doc3
1/9 q1 doc5
1/9 q1 doc7
1/9 q1 doc9
1/2 q2 doc5
1/2 q2 doc4

relevantSpace
Prob QueryId DocId

1/6 q1 doc1
1/6 q1 doc4
1/6 q1 doc9
1/6 q1 doc11
1/6 q1 doc14
1/6 q1 doc19

1 q2 doc4

retrieved_and_relevant
Prob QueryId DocId

1 q1 doc1
1 q1 doc4
1 q1 doc9
1 q2 doc4

Next, consider the PRA equations for precision and recall:

PRA: precision and recall

precision =
Project disjoint[$1](
Join[$1=$1,$2=$2](
retrieved_and_relevant, retrievedSpace));

recall =
Project disjoint[$1](
Join[$1=$1,$2=$2](
retrieved_and_relevant, relevantSpace));

The joins of “retrieved_and_relevant” with the respective
spaces, followed by disjoint projections, yield the precision
and recall values:

precision
Prob QueryId

3/9 q1
1/2 q2

recall
Prob QueryId

3/6 q1
1 q2

We have demonstrated how PSQL/PRA enables to express
precision and recall. This result embeds both, retrieval models
and quality measures, into the conceptual framework of
probabilistic relational modelling. The expressiveness of
relational modelling allows to customise the measures. For
example, to capture the dependency of tuples (documents)
in relation “Retrieved”, we would join “Retrieved” with a
relation “Dependency(DocId1, DocId2)” to perform a post-
processing of the retrieval result, and to base a measure on
the obtained alternative of retrieved documents.

The modelling of precision and recall completes the pro-
babilistic relational modelling of main IR concepts. In the
next section, we evaluate PSQL/PRA against the modelling
of IR models and probability estimation in standard SQL.

8 Evaluation

In this section we compare the following:

– The modelling of tf -idf retrieval using traditional SQL
versus PSQL. The comparison highlights the abstraction
and expressiveness of each approach.

– The efficiency and scalability of modelling tf -idf retrie-
val using traditional SQL versus PSQL. The compari-
son focuses on investigating the performance of each
approach for handling large-scale data.

– The scalability of estimating probabilities using SQL ver-
sus PSQL. The investigation focuses on the performance
of generating probabilities in large-scale databases.

We first investigate in Sect. 8.1 the implementation of
tf -idf in both traditional SQL and PSQL. Then, we discuss
probability estimation in Sect. 8.2.

123

28 T. Roelleke et al.

Coll
Attribute Type Index
Term varchar non-clustered
DocId varchar none

CollStats
Attribute Type Index
NumOfDocs int none

DocSpace (DocumentSpace)
Attribute Type Index
DocId varchar clustered
Length int none

TermFreq
Attribute Type Index
Term varchar non-clustered
DocId varchar none
P t d float none

TermSpace
Attribute Type Index
Term varchar clustered
DocFreq (DF) int none

TermSpaceDF
Attribute Type Index
Term varchar non-clustered
P t c float

QTerms
Attribute Type Index
Term varchar non-clustered

Fig. 13 SQL database schema for SQL-based modelling of text retrieval

According to their different natures, we refer to the imple-
mentation of modelling IR by traditional SQL as “IR on
DB”, and we refer to the PSQL approach as “DB + IR”. We
demonstrate our implementations and discuss our analysis in
the following sections.

8.1 TF-IDF-based retrieval: SQL versus PSQL

As we presented in Sect. 4, tf -idf -based retrieval can be deno-
ted using the probability P(t |d) that term t occurs in docu-
ment d, and the probability P(t |c) that term t occurs in a
document of collection c.

RSV(d, q) =
∑

t

P(t |d) · − log P(t |c)

We take the “Coll” relation from the running example in
Sect. 3 to demonstrate our implementations.

8.1.1 TF-IDF using traditional SQL

Figure 13 shows the database schema applied for the tf-idf
implementation with SQL.

We start with the SQL view named “CollStats” contai-
ning collection-wide statistics, for example, the number of
documents.

CREATE VIEW CollStats AS
SELECT count(DISTINCT DocId) AS NumOfDocs
FROM Coll;

We obtain:

CollStats
NumOfDocs

5

We define “CollStats”, and also the relations to follow, as
views, since the idea is that all these relations are based
on the persistent relation “Coll(Term, DocId)”, in which we
model the representation of the collection. In an ideal sce-
nario, updates on the possibly huge relation “Coll” update
automatically the views in which the statistics are maintained
(Fig. 13).

Next, we create a table of documents (relation “DocSpace”)
where we store for each document the document length.

CREATE VIEW DocSpace AS
SELECT DocId, count(Term) AS Length
FROM Coll
GROUP BY DocId;

We obtain:

DocSpace
DocId Length

doc1 2
doc2 3
doc3 3
doc4 1
doc5 1

Now, we are ready to compute the probabilities P(t |d) and
P(t |c). However, we treat their modelling differently. In the
case of P(t |d) we compute the final probability because we
assume that there will be no partial update of the document.
On the other hand, we delay the computation of P(t |c) in
order to be prepared for updating the collection incrementally.

Consider next the creation of view “TermFreq”(Term,
Document, P_t_d):

CREATE VIEW TermFreq AS
SELECT Term, Coll.DocId,
count(Term)/DocSpace.Length AS P_t_d

FROM DocSpace, Coll
WHERE Coll.DocId = DocSpace.DocId
GROUP BY Coll.DocId, Term;

We obtain:

TermFreq
Term DocId P_t_d

sailing doc1 1/2
boats doc1 1/2
sailing doc2 2/3
boats doc2 1/3
sailing doc3 1/3
east doc3 1/3
coast doc3 1/3
sailing doc4 1.0
boats doc5 1.0

123

Modelling retrieval models in a probabilistic relational algebra 29

Coll
Attribute Type
Term varchar
DocId varchar

TermFreq
Attribute Type
Term varchar
DocId varchar

TermSpaceDF
Attribute Type
Term varchar

TermSpaceIDF
Attribute Type
Term varchar

Fig. 14 PSQL database schema for modelling text retrieval

We have modelled the so-called normalised within-document
term frequency. Next, we create the table “TermSpace” where
we maintain for each term the number of documents (the so-
called document frequency) in which the term occurs.

CREATE VIEW TermSpace AS
SELECT Term, count(DISTINCT DocId) AS DF
FROM Coll
GROUP BY Term;

We obtain:

TermSpace
Term DF (DocFreq)

sailing 4
boats 3
east 1
coast 1

The explicit “TermSpace” is not a common practice. In [31],
a static model is proposed where idf is directly computed.
This is shown in the following SQL statement:

CREATE VIEW idf AS
SELECT Term,
-log(count(DISTINCT DocId)/
CollStats.NumOfDocs)

FROM CollStats, Coll
GROUP BY Term;

The above view “idf” is problematic for update operations.
If we add a document to the collection, then the tuples in the
view need to be updated because CollStats.NumOfDocs has
changed. Therefore, we model in “TermSpace” the
“DocFreq” as the total count and apply the logarithm and
perform normalisation (with respect to the total number of
documents) at retrieval time. Consequently, this incremental
nature is different from the static approach described in [31].

Now, we are ready to describe tf -idf -based retrieval. The
probabilities based on document frequency can be computed
from “TermSpace” as follows:

CREATE VIEW TermSpaceDF AS
SELECT Term,
TermSpace.DF/CollStats.NumOfDocs AS P_t_c

FROM TermSpace, CollStats;

We obtain:

TermSpaceDF
Term P_t_c

sailing 4/5
boats 3/5
east 1/5
coast 1/5

The delayed application of the logarithm keeps our
model tidy, since now we have in “TermFreq” and in
“TermSpaceDF” probabilistic weights with a clear seman-
tics, namely P(t |d) and P(t |c).

Finally, we describe tf -idf -based retrieval as the aggrega-
tions of query terms with document frequencies and within-
document term frequencies.

SELECT sum(P_t_d * -log(P_t_c)), DocId
FROM QTerms, TermSpaceDF, TermFreq
WHERE QTerms.Term = TermSpaceDF.Term
AND TermSpaceDF.Term = TermFreq.Term
GROUP BY DocId;

8.1.2 TF-IDF using PSQL

Figure 14 shows the probabilistic database schema we use
for modelling document retrieval. First, we describe the pro-
bability P(t |d), i.e., the probability that term t occurs in
document d.

CREATE VIEW TermFreq AS
SELECT DISJOINT Term, DocId
FROM Coll
EVIDENCE KEY (DocId);

We obtain:

TermFreq
P(τ) Term DocId

1/2 sailing doc1
1/2 boats doc1
2/3 sailing doc2
1/3 boats doc2
1/3 sailing doc3
1/3 east doc3
1/3 coast doc3
1.0 sailing doc4
1.0 boats doc5

Next, consider the creation of a term space in which the term
probabilities reflect P(t |c), i.e., the probability that t occurs
in (a document of) c.

CREATE VIEW distinctTerms AS
SELECT DISTINCT Term, DocId
FROM Coll;

CREATE VIEW TermSpaceDF AS
SELECT Term
FROM distinctTerms
EVIDENCE KEY ();

123

30 T. Roelleke et al.

We obtain:

TermSpaceDF
P(τ) Term

4/5 sailing
3/5 boats
1/5 east
1/5 coast

Next, we apply an advanced feature of PSQL, namely
so-called informativeness-based probability estimations.
Through this operation, we obtain a term space in which
the probabilities reflect the informativeness of terms.

CREATE VIEW TermSpaceIDF AS
SELECT Term
FROM TermSpaceDF
ASSUMPTION MAX_LOG
EVIDENCE KEY ();

The assumption max_log inverts the occurrence probabili-
ties in “TermSpaceDF”, assigning high probabilities to rare
terms, and low probabilities to frequent terms.

Finally, retrieval is described as a join of weighted query
terms and the relation “TermFreq”.

SELECT DISTINCT DocId
FROM QTerms, TermSpaceIDF, TermFreq
WHERE QTerms.Term = TermSpaceIDF.Term
AND QTerms.Term = TermFreq.Term;

We have modelled tf -idf -based retrieval in PSQL. While
in traditional SQL aggregation operators were necessary, in
PSQL we worked on a conceptual probabilistic layer and
defined evidence keys and probabilistic assumptions. Thus,
it becomes feasible to apply IR concepts to any relational
database.

8.1.3 Comparison of efficiency and scalability

To evaluate efficiency and scalability, we used two systems
since there no existing system can process both SQL and
PSQL.

The first system, referred to anonymously as A, is a well-
known open source multi-thread database and the second
one, referred to as B, is our generic DB + IR prototype HyS-
pirit ([49]). On both systems, we implemented a tf -idf text
retrieval application. In other words, using candidate A we
implemented the ranking function by mapping the IR models
onto standard SQL (IR-on-DB), while using candidate B we
implemented the ranking model in PSQL (DB + IR). The
implementation details of both systems were described in
Sects. 8.1.1 and 8.1.2, respectively.

It is important to emphasise that the aim of the comparison
is to show the flexibility and scalability of the two different
approaches (IR-on-DB and DB + IR). We are not comparing
the actual systems. Although the experimental environments

are not entirely the same, for the purpose of demonstrating
the flexibility and scalability this setup is sufficient.

The experiments were run on a Linux server (Fedora core
2) that is equipped with one Intel Pentium4 2.60 GHz CPU
and 2 GB memory. The testing data was produced from the
enterprise track of TREC 2005 data [http://trec.nist.gov/],
and the original text size is 1.9 GB. After transformation there
are about 40 million tuples in the table “Coll”, which in sys-
tem A uses 1.3 GB with a 416 MB B-tree index. In system B, it
uses 1.0 GB for the table and 1.3 GB for a Hash-based index.
Thus, the initial data size of system A is 1.7 GB, and system B
is 2.3 GB. After pre-processing, intermediate tables (which
can be considered as materialised views) and corresponding
indexes were built. In total, the database size of system A is
3.0 GB, and system B is 4.4 GB. The database sizes are dif-
ferent because they use different storage data structures and
different indexing mechanisms.

For evaluating the pre-processing cost, we measured the
processing time for 10, 20, 30, and 40 (scaling points 1×, 2×,
3× and 4×) million tuples. For evaluating the retrieval time,
we measured the performance of various queries, where the
queries vary with respect to the number of tuples they retrieve
(so-called selectivity of the query). A query with higher selec-
tivity returns less tuples. We measured processing time for
10, 25, . . . , and 100 (scaling points 1×, 2.5×, . . . , 10×)
thousand tuples returned.

In Sect. 8.1.1, we discussed using views for the interme-
diate relations. In real-world IR applications, the update ope-
ration is not as frequent as in transaction-oriented databases.
Therefore, we can store the intermediate outputs to extensio-
nal tables, while an alternative is to use materialised views
providing that the database back-end supports them. As a
result, the pre-processing time includes the construction time
of the intermediate relations (materialised view) and corres-
ponding indexes.

Figure 15 shows the performance of pre-processing. The
indexing processes were executed in batch mode, and 10–
40 million tuples were loaded.

Figure 15a shows the database construction time, where
the processing steps follow the sequence described in
Sect. 8.1.1. First, the source data was loaded to the “Coll”
table, and the B-tree index was built. When the data was loa-
ded, the loading and indexing time for 10 million tuples is
about 4,600 s, and for 40 million tuples is about 6,800 s. As
soon as the data was loaded, we computed the statistic of
“Coll” and stored it in “CollStats”. Because the index was
available, the statistic was calculated instantly. In the third
step, we generated the “DocSpace” table, which contains
the document Ids against their document lengths. The curve
shows that the time increases in proportion with the num-
ber of tuples. Forth, we generated the term frequency in
“TermFreq”. The curve of processing time seems propor-
tional while less than 3 million tuples were loaded, but the

123

Modelling retrieval models in a probabilistic relational algebra 31

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

4x3x2x1x

pr
ep

ro
ce

ss
in

g
tim

e
(s

ec
)

scale factor (data size, 10m to 40m tuples)

Coll
CollStat

DocSpace
TermFreq

TermSpace

(a)

IR-on-DB pre-processing

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

4x3x2x1x

pr
ep

ro
ce

ss
in

g
tim

e
(s

ec
)

scale factor (data size, 10m to 40m tuples)

Coll
TermFreq

(b)

DB+IR pre-processing

Fig. 15 Analysis of pre-processing costs: IR-on-DB and DB+IR

 0

 5000

 10000

 15000

 20000

4x3x2x1x

pr
ep

ro
ce

ss
in

g
tim

e
(s

ec
)

scale factor (data size, 10m to 40m tuples)

IR-on-DB
DB+IR

(a)

P re-processing

 0

 10

 20

 30

 40

 50

 60

10x7.5x5x2.5x1x

re
sp

on
se

 ti
m

e
(s

ec
)

scale factor (result size, 10k to 100k tuples)

IR-on-DB
DB+IR

(b)

Retrieval

Fig. 16 Comparison of IR-on-DB and DB+IR: pre-processing time and retrieval time

time dramatically increased when we loaded 4 million tuples.
The last step computed the document frequency that was in
“TermSpace”. The processing time increased sharply after 2
million tuples, this is because to aggregate df needs to per-
form a distinct projection over the entire “Coll” table, and
the aggregation time increased polynomially.

Figure 15b shows the DB+IR pre-processing time, where
we needed to load and index the data and compute the term
frequency. The other intermediate relations were generated
on-the-fly. The curve shows the loading time plus indexing
time, where it is about proportional to the data size. Based
on the relation “Coll”, term frequency were calculated and
stored in “TermFreq”, the step includes both computation and
indexing. Because the document frequency can be obtained
from the probabilistic index (i.e., index on “Coll(Term)”), its
computation is saved, and no other pre-processing is needed.

Figure 16 gives the overall performance. To compare the
total pre-processing time of the two approaches, we sum
up the times of the pre-processing steps, and the result is
shown in Fig. 16a. We find that the DB+IR needs less pre-
processing time than IR-on-DB, and DB+IR pre-processing
is linear to the data size, whereas IR-on-DB is of polyno-

mial complexity. Figure 16b shows the retrieval time of both
systems. The database system outperforms HySpirit, but we
compare here a mature database product with established
algebra optimisation and cache usage against our prototypi-
cal implementation of a probabilistic database.

To conclude, we emphasise that the IR-on-DB approach
needs a long preparation phase to become ready to perform
large-scale retrieval. For the DB + IR approach, the pre-
paration cost are less than those of IR-on-DB. Therefore,
the DB+IR approach is more scalable than the IR-on-DB
approach regarding the estimation of probabilities over
millions of tuples.

8.2 Probability estimation: SQL versus PSQL

In this section, we investigate the performance of probabi-
lity estimations using SQL versus PSQL. The assumption is
that with tailored indexes for probability estimation, we can
be faster than traditional SQL in which we use aggregation
functions to implement probability estimation.

We load millions of tuples to both systems, and then we
retrieve tuple-based and value-based probabilities. For this

123

32 T. Roelleke et al.

Person
Attribute Type Index
Name varchar none
Nationality varchar non-cluster
City varchar none
Prob float none

Fig. 17 SQL database schema of “Person” relation

investigation, we use for SQL the traditional table “Person”.
The schema is shown in Fig. 17. The schema of the pro-
babilistic table is similar, but without the explicit attribute
“Prob”.

8.2.1 Probability estimation based on tuple frequency

For the attribute “Nationality”, there is an index. We want to
estimate the tuple-based probability of “Nationality” given
“City”, i.e., we want to estimate the probability PT,Person(n|c),
where n is a value of “Nationality”, and c is a value of “City”.

In SQL, we create a view called “nationalitySpace” for
counting the total number of values in “Nationality” grou-
ped by the values in “City”. Then, we obtain the tuple-based
probability by dividing the count of “Nationality” per “City”
by the number of nationalities (“NumOfNa”) per “City”.

-- SQL
CREATE VIEW nationalitySpace AS
SELECT City, count(Nationality) AS NumOfNa
FROM Person
GROUP BY City;

SELECT Nationality, Person.City,
count(Nationality)/nationalitySpace.NumOfNa
AS P_n_c

FROM nationalitySpace, Person
WHERE Person.City = nationalitySpace.City
GROUP BY Person.City, Nationality;

In PSQL, we specify the probability aggregation and estima-
tion instead of aggregation and mathematical functions (log).
We create the view “nationalitySpace” by specifying the evi-
dence key “City”. Then, we aggregate the probabilities in a
disjoint selection.

-- PSQL
CREATE VIEW nationalitySpace AS
SELECT Nationality, City
FROM Person
EVIDENCE KEY (City);

SELECT DISJOINT Nationality, City
FROM nationalitySpace;

We have described the SQL-based and the PSQL-based
implementation of a tuple-based probability. Next, we des-
cribe the implementation of probability estimations based on
value frequencies.

8.2.2 Probability estimation based on value frequency

In this section, we present the implementations of value-
based probability estimations. We use a similar configuration
as for tuple-based probabilities. We calculate the probability
of “Nationality” based on the number of values in “City” a
nationality is associated with, i.e., we compute the probability
PV,Person[City](n), where n is a value from “Nationality”.

First, we create a view “personStats” to compute the total
number of distinct values in “City”. Then, we group by
“Nationality”, count for each nationality the number of dis-
tinct values in “City” the nationality is associated with, and
divide the count by the number of cities. The negative loga-
rithm yields an idf -value for the values in “Nationality”. The
corresponding SQL statements are as follows:

-- SQL
CREATE VIEW personStats AS
SELECT count(DISTINCT City) AS NumOfCity
FROM Person;

SELECT Nationality,
-log(count(DISTINCT City)/personStats.NumOfCity)

FROM Person, personStats
GROUP BY Nationality;

In PSQL, the expression is more compact. We define an idf -
based space over “Nationality” by specifying the assumption
max_idf.

-- PSQL
SELECT Nationality
FROM Person
ASSUMPTION MAX_IDF
EVIDENCE KEY ();

Next, we report the performance results for tuple-based and
value-based probability estimations.

8.2.3 Performance of probability estimation

For measuring the performance, we generate a relation
“Person”. We insert 3 million tuples (628 MB) to conduct
the experiment. Both HySpirit and the other database system
built indexes. The index size in HySpirit is 105 MB, and the
index size in the database system is 37 MB. We use the same
system configuration reported for the previous experiment in
Sect. 8.1.3.

Both experiments were also performed in batch mode. We
estimated the probabilities based on the whole data set, and
we recorded the processing elapse time on the measurement
points.

Figures 18 and 19 show the performance for tuple and
value frequencies, respectively. Both experiments show that
the PSQL processing outperforms the SQL processing. In
particular, when estimating the tuple frequency, the
pre-processing of the database system did not finish even

123

Modelling retrieval models in a probabilistic relational algebra 33

Fig. 18 Probability estimation
based on tuple frequency:
pre-processing time and
estimation run time (IR-on-DB
not shown due to scalability
problem)

 0

 20

 40

 60

 80

 100

3x2.5x2x1.5x1x0.5x
pr

oc
ss

in
g

tim
e

(s
ec

)
scale factor (data size, 0.5m to 3m tuples)

DB+IR

(a)

P re-Processing

 0

 200

 400

 600

 800

 1000

3x2.5x2x1.5x1x0.5x

es
tim

at
io

n
tim

e
(s

ec
)

scale factor (data size, 0.5m to 3m tuples)

DB+IR

(b)

P robability Estimation

Fig. 19 Probability estimation
based on value frequency:
pre-processing time and
estimation run time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

3x2.5x2x1.5x1x0.5x

pr
oc

ss
in

g
tim

e
(s

ec
)

scale factor (data size, 0.5m to 3m tuples)

IR-on-DB
DB+IR

(a)

Pre-Processing

 0

 200

 400

 600

 800

 1000

3x2.5x2x1.5x1x0.5x

es
tim

at
io

n
tim

e
(s

ec
)

scale factor (data size, 0.5m to 3m tuples)

IR-on-DB
DB+IR

(b)

Probability Estimation

after 14 h, even though proper indexes had been used. When
tracing the reason for this, we found that the selectivity of
“Nationality” is very high, i.e., the number of distinct values
in “Nationality” is relatively low. In contrast, the selectivity
of the attribute “City” is very low, i.e., the number of values in
“City” is higher than in “Nationality”. Therefore, the
traditional approach seemed to struggle grouping by “City”,
and then counting the number of values in “Nationality” per
“City”.

Because in HySpirit, frequencies are maintained in
indexes, the probabilities can be derived directly. The stan-
dard indexing mechanism in the database system does not
provide a similar functionality, and the probability estimation
involves expensive aggregations. Therefore, the probability
estimations were included in the pre-processing stage in the
experiment discussed in Sect. 8.1.

9 Discussion and outlook

In this section, we present discussion points and outlook in
the form of frequently asked questions, which occurred in
various contexts like talks, reviews, discussions, and when
applying the technology.

You view the aggregation of probabilities in traditional
SQL as physical. What does this mean? If we model proba-
bilistic tuples in traditional SQL, then probabilities are trea-
ted equal to normal attribute values such as Name, Price,
Nationality, etc. The SQL programmer implements the ran-
king strategy using SQL aggregation functions such as sum,
max, and arithmetic functions such as log. In PSQL, however,
we view probabilities and attribute values to be orthogonal,
i.e., the PSQL programmer has no direct access to probabi-
lities. Instead, the algebra operation defines the aggregation.
Therefore, PSQL is a logical layer, whereas traditional SQL
is physical in this sense, since the probability arithmetics are
described in SQL.

What does “probabilities and attribute values are ortho-
gonal” mean? This aspect is excellently covered in [54].
When aggregating attribute values in a probabilistic relatio-
nal framework, the aggregation is related to computing the
expectation value. For example, consider a probability distri-
bution over prices. When we ask for the expected price, then
the expected price is defined as E[price] = ∑

P(price) ·
price. This illustrates that there is an implicit usage of proba-
bilities in a PRA, whereas the “normal” attribute values are
explicitly mentioned in the PSQL query.

123

34 T. Roelleke et al.

Tuple weights greater than one or less than zero might
occur when using a disjointness assumption. Is such a rela-
tional model probabilistic? The pure algebra has no safety net
for expressions where assumptions are—from a probabilistic
semantics point of view—wrongly specified (see [17] for the
notion of safe expressions, and [24] for intensional seman-
tics). One topic of future research is to map a probabilistic
model automatically to PSQL/PRA, and, vice versa, how
to re-engineer the probabilistic model from a PSQL/PRA
script.

Why is the division not used for modelling probability esti-
mation? The division is equivalent to an algebra expression
composed of projection, join, and subtraction (see Sect. 5.2).

Is the CONTAINS predicate in SQL not sufficient for IR
tasks? Yes and no. Yes, if we are happy with modelling docu-
ments as atomic attribute values, which means that there
are no or only very restricted means of looking inside the
document. No, if we want to apply the expressive power of
the relational model for representing the knowledge contai-
ned in a document. We propose to model the content of
documents in a relational schema. The simplest schema is
“Coll(Term,DocId)”, but it is the particular strength of the
relational model to represent any information, e.g. links,
types of links, structure of documents, objects that occur in
document, and the relationships between objects.

You load large relations to database systems, and then you
complain that there are problems with scalability. You should
use the inverted list! We load document representations to
database systems, so that we can reason/search across the
structured and unstructured data. By representing document
content in the structured data model world, we gain a high
level of integration. For example, join “Person.Nationality”
with a document representation and thus retrieve documents
or document parts that mention the nationality of a particular
group of persons. The opposite direction, namely to export
structured data into the unstructured world for doing retrieval
is a principle alternative. However, we favour to preserve the
semantics and structure of data.

What are the next challenges? Our work programme
includes: (1) relevance-based processing of traditional SQL,
(2) design and correctness of probabilistic logical programs,
(3) expressiveness, (4) scalability and optimisation, (5) spe-
cial predicates, and (6) interfaces and languages.

1. Relevance-based processing of SQL: The idea is to
convert traditional SQL statements automatically into
PSQL statements in which a ranking strategy is reflected.
Then, all existing (traditional) SQL queries may yield a
relevance-sorted result. Relevance-based SQL could be
viewed as the external layer in Fig. 2.

2. Design and correctness of PSQL/PRA programs: For a
PSQL/PRA program, we encountered in many contexts
the need to derive the probabilistic semantics, so that the

knowledge engineer (the person who works in PSQL/
PRA) can verify his/her scripting. For this, we have deve-
loped a proof methodology which has been part of an
earlier version of this paper, but will be reported
separately.

3. Expressiveness: The expressiveness of PSQL/PRA
allows for the modelling of not only retrieval models,
but also evaluation measures such as precision/recall.
Next steps include to incorporate average precision, pre-
cision@10, reciprocal rank, etc. In general, this is the
field of increasing the expressiveness where we take,
like for the relational Bayes, a careful and conceptual
approach, trying to improve expressiveness but not over-
loading an otherwise tidy paradigm with special opera-
tors and functions.

4. Scalability and optimisation: Stream-based processing
(see [48] and top-k processing ([22,62]) are key to sca-
lable and efficient retrieval in large-scale applications.
We covered the DB approaches (known as top-k or
RankSQL) in the background, but we have said little
about how this applies to PSQL. We are working on
soft-sorting algebra operators, that would guarantee real-
time response times while risking that the ranking is sub-
optimal.

5. Special predicates: The previous aspect is not to be
confused with stream-based predicates. Stream-based
predicates allow to compare tuple values of subsequent
tuples. For example, in the stream of term-document
pairs, we would like to be able to find the documents
where the terms sailing and boats appear near to each
other. Another family of special predicates are the
relevance-based predicates. We denote a new relevance-
based implication predicate as “→”, borrowing the nota-
tion from [63] where the concept of relevance-based
implication was proposed. We generalised the document-
implies-query approach, and the new relevance-based
predicate can be applied to any two attributes in a rela-
tional condition.

6. Interfaces and languages: PSQL/PRA might appeal to
some, but others will prefer interfaces they feel com-
fortable with. Whether it is Datalog, description logic
dialects, XML-based languages, or SQL dialects for
assisting RDF retrieval, the likes are many. Our approach
is basically to investigate the evaluation of such lan-
guages by translating them to PSQL/PRA. In a recent
study, we mapped SPARQL queries ([4]), in the past we
have mapped POOL (probabilistic object-oriented logic,
[52,40,39]), where POOL triggered recently POLAR
(probabilistic object-oriented logic for annotation-based
retrieval, [21]), and POLIS (probabilistic object-oriented
logic for information summarisation, [25]), which are
highly abstract and tailored languages to assist the com-
fortable modelling of specific retrieval tasks.

123

Modelling retrieval models in a probabilistic relational algebra 35

10 Summary and Conclusions

This paper presented a probabilistic variant of SQL in which
we describe probability aggregation (Sect. 5) and estima-
tion (Sect. 6). It is one of the main contributions to describe
both, aggregation and estimation, within the coherent
framework of a probabilistic relational algebra. Since neither
the standard five basic operators, nor division, nor attribute
value aggregation are suitable for probability estimation, we
required and developed a new probabilistic operator: The
relational Bayes.

The other main contribution of this paper is the probabi-
listic relational modelling, i.e., a relatively abstract model-
ling, of retrieval models (Sect. 7). We have demonstrated
the modelling of different tf -idf variants, and the modelling
of the two main probabilistic retrieval models, binary inde-
pendent retrieval model and language modelling. Also, we
modelled precision/recall. This allows for describing task-
specific measures, as required for example, for structured
document retrieval.

The modelling of retrieval models in a probabilistic rela-
tional framework is desirable and useful, since it supports the
development of ranking strategies beyond classical document
retrieval. Also, since we represent classical document retrie-
val in a relational model, we gain the expressive power of the
relational model to reason across structured and unstructu-
red data. For example, we can join attributes such as “Person
(Nationality)” with a text representation, to retrieve docu-
ments that are related to selected nationalities. And so forth.
For all queries, we can define probabilistic interpretations of
relations that meet the requirements of customised ranking
strategies.

We presented in this paper PRA and PSQL as syntactical
layers; we have developed further interfaces such as proba-
bilistic Datalog variants and terminological logic variants,
not reported in this paper. An early version of this paper
included a theoretical evaluation (correctness proofs) of the
implementations of retrieval models. These proofs will be
reported in a separate publication.

The conceptual and experimental evaluation of PSQL/
PRA is threefold. First, we demonstrated how we can express
different retrieval models and their variants. Second, we com-
pared the modelling of tf-idf in traditional SQL versus PSQL,
on the one hand with respect to abstraction, and on the other
hand with respect to performance (scalability/efficiency).
Third, we investigated the performance and suitability of
SQL versus PSQL for estimating probabilities. The main fin-
ding of the evaluation is that PSQL scales better than SQL
for probability estimation.

With this paper, we contribute a coherent probabilistic
logical layer to DB technology. The technology has been
applied in domains such as financial news mining and expert
finding, and is planned to be applied for crime prevention

and detection. The probabilistic relational layer is capable
of modelling advanced retrieval strategies, and, is in general
suitable for the management of uncertainty and the uncertain
reasoning in large-scale applications.

Acknowledgements We would like to acknowledge the excellent and
deep reviews that helped improving the earlier version of this paper. We
thank Mounia Lalmas for her thorough editorial pass, and Ingo Fromm-
holz for his technical improvements and tests. The relational Bayes
has been promoted and funded through the contributions of CLCUC
(Combined London College University Challenge seed fund) and the
technology transfer department of Queen Mary University of London.

References

1. Abiteboul, S., Agrawal, R., Bernstein, P., Carey, M., Ceri, S.,
Croft, B., DeWitt, D., Franklin, M., Garcia-Molina, H.,
Gawlick, D., Gray, J., Haas, L., Halevy, A., Hellerstein, J.,
Ioannidis, Y., Kersten, M., Pazzani, M., Lesk, M., Maier, D.,
Naughton, J., Schek, H., Sellis, T., Silberschatz, A., Stonebraker,
M., Snodgrass, R., Ullman, J., Weikum, G., Widom, J., Zdonik, S.:
The lowell database research self assessment (2003)

2. Agrawal, S., Chaudhuri, S., Das, G.: Dbxplorer: a system
for keyword-based search over relational databases. In: ICDE,
pp. 5–16 (2002)

3. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated ranking
of database query results. In: CIDR (2003)

4. Azzam, H., Roelleke, T.: Efficient processing of ontological que-
ries. In: 2nd VLDB Workshop on Ontologies-based Techniques for
Databases and Information Systems, Seoul (2006)

5. Amati, G., van Rijsbergen, C.J.: Probabilistic models of informa-
tion retrieval based on measuring the divergence from random-
ness. ACM Trans. Inf. Syst. 20(4), 357–389 (2002)

6. Bosc, P., Galibourg, M., Hamon, G.: Fuzzy querying with sql:
extensions and implementation aspects. Fuzzy Sets Syst. 28(3),
333–349 (1988)

7. Barbara, D., Garcia-Molina, H., Porter, D. : A probabilistic rela-
tional data model. In: Bancilhon, F., Thanos, C., Tsichrizis, D.
(eds.) Advances in Database Technology – EDBT ’90., pp. 60–74.
Springer, Berlin (1990)

8. Barbara, D., Garcia-Molina, H., Porter, D.: The management of
probabilistic data. IEEE Trans. Knowl. Data Eng. 4(5), 487–502
(1992)

9. Berger, A., Lafferty, J.: Information retrieval as statistical transla-
tion. In: SIGIR (ed.) SIGIR ’99 Proceedings of the 22nd Interna-
tional Conference on Research and Development in Information
Retrieval, pp. 222–229, ACM, New York (1999)

10. Bosc, P., Pivert, O.: Fuzzy queries and relational databases. In:
Proceedings of the 1994 ACM Symposium on Applied Computing,
pp. 170–174 ACM Press, New York (1994)

11. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic
ranking of database query results. In: VLDB pp. 888–899 (2004)

12. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilis-
tic information retrieval approach for ranking of database query
results. ACM Trans. Database Syst. 31(3), 1134–1168 (2006)

13. Croft, W.B., Harper, D.J.: Using probabilistic models of docu-
ment retrieval without relevance information. J. Doc. 35, 285–295
(1979)

14. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In:
Proceedings of the 13th International Conference on Very Large
Databases, pp. 71–81 Morgan Kaufman, Los Altos (1987)

123

36 T. Roelleke et al.

15. Chaudhuri, S., Ramakrishnan, R., Weikum, G.: Integrating db and
ir technologies: What is the sound of one hand clapping? In: CIDR,
pp. 1–12 (2005)

16. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic
databases. In: VLDB, pp. 864–875 (2004)

17. Dalvi, N.N., Suciu, D.: Answering queries from statistics and pro-
babilistic views. In: VLDB, pp. 805–816 (2005)

18. de Vries, A., Roelleke, T.: Relevance information: a loss of entropy
but a gain for idf? In: ACM SIGIR, Salvador, Brazil (2005)

19. Ercegovac, V., DeWitt, D.J., Ramakrishnan, R.: The texture bench-
mark: Measuring performance of text queries on a relational dbms.
In: VLDB, pp. 313–324 (2005)

20. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems.
Addison-Wesley, Reading (2000)

21. Frommholz, I., Fuhr, N.: Probabilistic, object-oriented logics for
annotation-based retrieval in digital libraries. In: Marchionini, G.,
Nelson, M.L., Marshall, C.C. (eds.) JCDL., pp. 55–64. ACM,
New York (2006)

22. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)

23. Fuhr, N., Roelleke, T.: A probabilistic NF2 relational algebra for
integrated information retrieval and database systems. In: Tanik,
M.M., Bastani, F.B., Gibson, D., Fielding, P.J. (eds.) Proceedings of
the 2nd World Conference on Integrated Design and Process Tech-
nology (IDPT), Society for Design and Process Science (SDPS),
Austin, pp. 17–30 (1996)

24. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the
integration of information retrieval and database systems. ACM
Trans. Info. Syst. 14(1), 32–66 (1997)

25. Forst, J.F., Tombros, A., Roelleke, T.: solving the enterprise trec
task with probabilistic data models. In: Proceedings of TREC 2006,
pp. xx–yy (2006)

26. Fuhr, N. : A probabilistic framework for vague queries and impre-
cise information in databases. In: McLeod, D., Sacks-Davis, R.,
Schek, H. (eds.) Proceedings of the 16th International Confe-
rence on Very Large Databases., pp. 696–707. Morgan Kaufman,
Los Altos (1990)

27. Fuhr, N. : Probabilistic datalog—a logic for powerful retrieval
methods. In: Fox, E.A., Ingwersen, P., Fidel, R. (eds.) Procee-
dings of the 18th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval., pp. 282–
290. ACM, New York (1995)

28. Grabs, T., Böhm, K., Schek, H.-J.: Powerdb-ir - information retrie-
val on top of a database cluster. In: CIKM, pp. 411–418 (2001)

29. Grabs, T., Böhm, K., Schek, H.-J.: Powerdb-ir - scalable informa-
tion retrieval and storage with a cluster of databases. Knowl. Inf.
Syst. 6(4), 465–505 (2004)

30. Grossman, D.A., Frieder, O.: Information Retrieval: Algorithms
and Heuristics. Kluwer, Massachusetts (1998)

31. Grossman, D.A., Frieder, O.: Information Retrieval. Algorithms
and Heuristics, 2nd edn. vol. 15 of The Information Retrieval
Series. Springer, Berlin Heidelberg (2004)

32. Grossman, D.A., Frieder, O., Holmes, D.O., Roberts, D.C.: Inte-
grating structured data and text: a relational approach.
JASIS 48(2), 122–132 (1997)

33. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient ir-style
keyword search over relational databases. In: VLDB, pp. 850–861
(2003)

34. Hiemstra, D.: A probabilistic justification for using tf.idf term
weighting in information retrieval. Int. J. Digit. Libr. 3(2), 131–
139 (2000)

35. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in
relational databases. In: VLDB, pp. 670–681 (2002)

36. Li, C., Chang, K.C.-C., Ilyas, I.F., Song, S.: Ranksql: Query alge-
bra and optimization for relational top-k queries. In: SIGMOD
Conference, pp. 131–142 (2005)

37. Lee, S.K.: An extended relational database model for uncertain and
imprecise information. In: Proceedings of the 18th VLDB Confe-
rence, pp. 211–220 Morgan Kaufman, Los Altos (1992)

38. Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.:
Probview: a flexible probabilistic database system. ACM Trans.
Database Syst. 22(3), 419–469 (1997)

39. Lalmas, M., Roelleke, T.: Modelling vague content and structure
querying in XML retrieval with a probabilistic object-relational
framework. In: Proceedings of the 6th International Conference on
Flexible Query Answering Systems (FQAS), LNCS, Lyon, Sprin-
ger, Berlin (2004)

40. Lalmas, M., Roelleke, T., Fuhr, N.: Intelligent hypermedia retrie-
val. In: Szczepaniak, P.S., Segovia, F., Zadeh, L.A. (eds.) Intelli-
gent Exploration of the Web, Springer, Heidelberg (2002)

41. Lafferty, J., Zhai, C.: Probabilistic Relevance Models Based on
Document and Query Generation, chap. 1. Kluwer (2002)

42. Macleod, I.A.: Text retrieval and the relational model. J. Am. Soc.
Inf. Sci. 42(3), 155–165 (1991)

43. Maron, M.E., Kuhns, J.L.: On relevance, probabilistic indexing,
and information retrieval. J. ACM 7, 216–244 (1960)

44. Motro, A.: Vague: a user interface to relational databases that per-
mits vague queries. ACM Trans. Off. Inf. Syst. 6(3), 187–214
(1988)

45. Motro, A.: Accommodating imprecision in database systems:
Issues and solutions. Sigmod Rec. 19(4), 69 (1990)

46. Niemi, T., Järvelin, K.: A straightforward NF2 relational inter-
face with applications in information retrieval. Inf. Process.
Manage. 31(2), 215–231 (1995)

47. Ponte, J.M., Croft, W.B.: A language modeling approach to infor-
mation retrieval. In: Bruce Croft, W., Moffat, A., van Rijsbergen,
C.J., Wilkinson, R., Zobel, J. (eds.) Proceedings of the 21st
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 275–281. ACM,
New York (1998)

48. Pfeifer, U., Fuhr, N.: Efficient processing of vague queries using
a data stream approach. In: Proceedings of the 18th International
ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 189–198, New York (1995)

49. Roelleke, T., Lübeck, R., Kazai, G.: The HySpirit retrieval plat-
form, demonstration. In: Croft, B., Harper, D.J., Kraft, D.H.,
Zobel, J. (eds.) Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, ACM, New Orleans (2001)

50. Robertson, S.E.: Term frequency and term value. In: SIGIR,
pp. 22–29 (1981)

51. Robertson, S.E.: Understanding inverse document frequency: On
theoretical arguments for idf. J. Doc. 60, 503–520 (2004)

52. Roelleke, T.: POOL: Probabilistic Object-Oriented Logical Repre-
sentation and Retrieval of Complex Objects. Shaker Verlag,
Aachen Dissertation (1999)

53. Roelleke, T.: A frequency-based and a Poisson-based probability
of being informative. In: Callan, J., Cormarck, G., Clarke, C., Haw-
king, D., Smeaton, A. (eds.) Proceedings of the 26th Annual Inter-
national ACM SIGIR Conference on Research and Development
in Information Retrieval, Toronto, Canada, pp. 227–234 (2003)

54. Ross, J.G.R., Subrahmanian, V.S.: Probabilistic aggregates. In:
13th International Symposium on Methodologies for Intelligent
Systems (ISMIS), Lyon, Foundations of Intelligent Systems. Sprin-
ger, Heidelberg (2002)

55. Robertson, S.E., Sparck Jones, K.: Relevance weighting of search
terms. J. Am. Soc. Inf. Sci. 27, 129–146 (1976)

56. Roelleke, T., Wang, J.: A parallel derivation of probabilistic infor-
mation retrieval models. In: ACM SIGIR (2006)

57. Robertson, S.E., Walker, S., Hancock-Beaulieu, M.M.: Large test
collection experiments on an operational interactive system: Okapi
at TREC. Inf. Process. Manage. 31, 345–360 (1995)

123

Modelling retrieval models in a probabilistic relational algebra 37

58. Suciu, D., Dalvi, N.N.: Foundations of probabilistic answers to
queries. In: SIGMOD Conference, p. 963 (2005)

59. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database Systems
Concepts, 4th Edn. McGraw-Hill Higher Education (2002)

60. Schek, H.-J., Pistor, P.: Data structures for an integrated database
management and information retrieval system. In: Proceedings
of the 8th International Conference on Very Large Data Bases,
pp. 197–207, Morgan Kaufman, Los Altos (1982)

61. Turtle, H., Croft, W.B.: Inference networks for document retrie-
val. In: Vidick, J.-L. (ed.) Proceedings of the 13th International
Conference on Research and Development in Information Retrie-
val., pp. 1–24. ACM, New York (1990)

62. Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation
withprobabilistic guarantees. In: VLDB, pp. 648–659 (2004)

63. van Rijsbergen, C.J.: A non-classical logic for information retrie-
val. Comput. J. 29(6), 481–485 (1986)

64. Wong, S.K.M., Yao, Y.Y.: On modeling information retrieval with
probabilistic inference. ACM Trans. Inf. Sys. 13(1), 38–68 (1995)

65. Yu, C.T., Lam, K., Salton, G.: Term weighting in information
retrieval using the term precision model. J. ACM 29(1), 152–170
(1982)

66. Zhai, C.X., Lafferty, J.D.: Two-stage language models for infor-
mation retrieval. In: SIGIR, pp. 49–56 (2002)

123

	Modelling retrieval models in a probabilistic relational algebrawith a new operator: the relational Bayes
	Abstract
	Introduction
	Outline of this paper
	Background
	IR with SQL
	Probabilistic databases
	On probabilistic relational algebra and probability estimation
	Retrieval models
	Running example
	Requirements
	PSQL and PRA: probability aggregation: classical operators
	Basic operators
	Syntax of PSQL and basic PRA
	Translation of PSQL to basic PRA
	Semantics of basic PRA operators
	Composed operators
	PSQL and PRA: probability estimation: the relational Bayes
	Classical assumptions: disjoint, independent and subsumed
	Syntax and semantics of the relational Bayes
	Translation of PSQL to PRA with Bayes
	Logarithmic assumptions: max_log and sum_log
	Inverse frequency assumptions: max_ivf (max_idf)and max_itf (max_ilf)
	Probabilistic relational modelling of retrieval models
	TF-IDF
	Binary independent retrieval model (BIRM)
	Language modelling (LM)
	Precision/recall
	Evaluation
	TF-IDF-based retrieval: SQL versus PSQL
	TF-IDF using traditional SQL
	TF-IDF using PSQL
	Comparison of efficiency and scalability
	Probability estimation: SQL versus PSQL
	Probability estimation based on tuple frequency
	Probability estimation based on value frequency
	Performance of probability estimation
	Discussion and outlook
	Summary and Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

