
The VLDB Journal (2008) 17:173–201
DOI 10.1007/s00778-007-0065-y

SPECIAL ISSUE PAPER

Maintaining bounded-size sample synopses of evolving datasets

Rainer Gemulla · Wolfgang Lehner · Peter J. Haas

Received: 9 February 2007 / Revised: 23 May 2007 / Accepted: 2 July 2007 / Published online: 7 September 2007
© Springer-Verlag 2007

Abstract Perhaps the most flexible synopsis of a database
is a uniform random sample of the data; such samples are
widely used to speed up processing of analytic queries and
data-mining tasks, enhance query optimization, and facilitate
information integration. The ability to bound the maximum
size of a sample can be very convenient from a system-design
point of view, because the task of memory management is
simplified, especially when many samples are maintained
simultaneously. In this paper, we study methods for incre-
mentally maintaining a bounded-size uniform random sam-
ple of the items in a dataset in the presence of an arbitrary
sequence of insertions and deletions. For “stable” datasets
whose size remains roughly constant over time, we provide a
novel sampling scheme, called “random pairing” (RP), that
maintains a bounded-size uniform sample by using newly
inserted data items to compensate for previous deletions. The
RP algorithm is the first extension of the 45-year-old reser-
voir sampling algorithm to handle deletions; RP reduces to
the “passive” algorithm of Babcock et al. when the inser-
tions and deletions correspond to a moving window over a
data stream. Experiments show that, when dataset-size fluc-
tuations over time are not too extreme, RP is the algorithm
of choice with respect to speed and sample-size stability. For
“growing” datasets, we consider algorithms for periodically
resizing a bounded-size random sample upwards. We prove
that any such algorithm cannot avoid accessing the base data,

R. Gemulla (B) ·W. Lehner
Technische Universität Dresden, 01062 Dresden, Germany
e-mail: gemulla@inf.tu-dresden.de

W. Lehner
e-mail: lehner@inf.tu-dresden.de

P. J. Haas
IBM Almaden Research Center, San Jose, CA, USA
e-mail: phaas@us.ibm.com

and provide a novel resizing algorithm that minimizes the
time needed to increase the sample size. We also show how to
merge uniform samples from disjoint datasets to obtain a uni-
form sample of the union of the datasets; the merged sample
can be incrementally maintained. Our new RPMerge algo-
rithm extends the HRMerge algorithm of Brown and Haas to
effectively deal with deletions, thereby facilitating efficient
parallel sampling.

Keywords Database sampling · Reservoir sampling ·
Sample maintenance · Synopsis

1 Introduction

Because of its flexibility, sampling is widely used for quick
approximate query answering [1,5,13,14,17,20,35], statis-
tics estimation [15,37], data stream processing [18,23,43],
data mining [3,22,24,27], and data integration [2,19,21,31].
Uniform random sampling, in which all samples of the same
size are equally likely, is the most basic of the available
database sampling schemes. Uniform sampling is ubiquitous
in applications: most statistical estimators—as well as the
confidence-bound formulas for these estimators—assume an
underlying uniform sample. Thus uniformity is a must if it is
not known in advance how the sample will be used. Uniform
sampling is also a building block for more complex sampling
schemes, such as stratified sampling. Methods for produc-
ing uniform samples are therefore key to modern database
systems.

In the simplest setting, the basic task is to compute a uni-
form sample from a dataset that is stored on disk, such as a
table in a relational database management system (RDBMS)
or a repository of XML documents. In general, there are two

123

174 R. Gemulla et al.

alternative approaches to computing such a sample. First,
the sample may be materialized on the fly as it is needed.
In the setting of commercial RDBMS, Haas and König [17]
have shown that there is a trade-off between the uniformity
of a sampling scheme and the cost of computing it. Even
if some degree of non-uniformity is acceptable, online sam-
ple materialization can still be too expensive. Moreover, it
is often quite acceptable to use the same sample several
times, in order to answer a set of queries or perform mul-
tiple analysis tasks. Taking advantage of this fact, an alterna-
tive approach [4,10,14,15,23] amortizes the cost of sampling
over multiple uses by initially materializing a sample from
a dataset and then incrementally maintaining the “sample
synopsis” over time.

Incremental sample maintenance is a powerful technique,
because the abstract notion of the underlying “dataset” can
be interpreted very broadly in applications. Indeed, the data-
set can actually be an arbitrary view, e.g., over the result
of an arbitrary SQL query. Samples over views are particu-
larly good candidates for incremental maintenance, because
producing such samples on the fly can require very expen-
sive base-data accesses. For example, most relational oper-
ators are not interchangeable with sampling [5,35], so that
in most cases the sampling operator cannot be pushed down
to the leaves of the query tree. Olken [35] and Olken and
Rotem [36] pioneered methods for incremental maintenance
of sample views in relational databases; these methods syn-
thesize traditional view-maintenance techniques with data-
base sampling algorithms. The idea is to, in effect, compute
the “delta” (set of insertions, updates, and deletions) to the
view as the underlying tables are updated and then apply gen-
eral sample-maintenance methods to the resulting sequence
of view modifications. Although computation of the deltas
requires access to the base data, this expense is smoothly
spread out over time, providing for fast query response. Also
observe that the full view need never be materialized if only
the sample is of interest, thereby saving space as well as time.
The main deficiency of existing techniques for maintaining
sample views is that they require expensive base-data acces-
ses over and above those needed to compute the deltas.

In the context of incremental maintenance, ensuring that
the sample size remains bounded at all times can be useful
from a system-design point of view. Specifically, bounding
the sample sizes a priori simplifies the task of memory man-
agement by avoiding unexpected overflows and expensive
memory reallocation tasks; such simplification is particu-
larly desirable when many such samples are being main-
tained simultaneously, as in the sample-warehouse setting
of [4] or in a data-stream management system. Moreover,
bounded-size sampling schemes are the method of choice
for applications that need to guarantee a hard upper bound
on the response time of queries over the sample. Finally, it is
of theoretical interest to study such bounded-size schemes,

since they are the subject of a large portion of the sampling
literature. In this paper, we therefore restrict our attention
to bounded-size sampling schemes; a short discussion of
unbounded sampling schemes is given in Sect. 2. A key goal
for a bounded-size scheme is to keep the sample size as close
to the upper bound as possible, thereby minimizing wasted
space and maximizing the stability and accuracy over time
of estimates based on the sample.

This paper, an expanded version of [11], provides new
methods for incrementally maintaining a bounded-size uni-
form random sample of an evolving dataset. We assume that
the sample-maintenance component scans a stream of update,
deletion, and insertion (UDI) transactions1 on the dataset,
and maintains the sample locally. In this setting, the main
challenges in sample maintenance are (i) to enforce statis-
tical uniformity in the presence of arbitrary insertions and
deletions, (ii) to avoid accesses to the base data to the extent
possible, because such accesses are typically expensive, and
(iii) to maximize sampling efficiency, i.e., to keep the sam-
ple size as close to the upper bound as possible. We assume
throughout that the sample fits in main memory. This assump-
tion limits the applicability of our techniques in warehousing
scenarios where the dataset size is so large, and the sampling
rate so high, that the samples must be stored on disk. Extend-
ing our results to large disk-based samples is a topic for future
research; see Sect. 7 for some tentative ideas in this direction.
We also assume that an index is maintained on the sample,
in order to rapidly determine whether a given item is present
in the sample or not—such an index is mandatory for any
implementation of sampling schemes subject to deletions.

We distinguish between “stable” datasets whose size (but
not necessarily composition) remains roughly constant over
time and “growing” datasets in which insertions occur more
frequently than deletions over the long run. The former set-
ting is typical of transactional database systems and databases
of moving objects; the latter setting is typical of data ware-
houses in which historical data accumulates. As discussed
above, our focus is on bounded-size sampling schemes. For
stable datasets, the upper bound is usually constant, but for
growing datasets, keeping the sample size below a bound that
is fixed for all time is of limited practical interest. Over time,
such a sample represents an increasingly small fraction of
the dataset. Although a diminishing sampling fraction may
not be a problem for tasks such as estimating a population
sum, many other tasks—such as estimating the number of
distinct values of a specified population attribute—require
the sampling fraction to be bounded from below. The goal
for a growing dataset is therefore to grow the sample in a
stable and efficient manner, guaranteeing an upper bound

1 We do not actually consider updates explicitly, since an update to the
dataset can be trivially handled by updating the value of the correspond-
ing sample element, if present.

123

Maintaining bounded-size sample synopses of evolving datasets 175

on the sample size at all times and using the allotted space
efficiently.

The best known method for incrementally maintaining a
bounded-size uniform sample in the presence of a stream
of insertions to the dataset is the classical “reservoir sam-
pling” algorithm [8,28,33], which maintains a simple ran-
dom sample of a specified size. One deficiency of this method
is that it cannot handle deletions, and the most obvious mod-
ifications for handling deletions either yield procedures for
which the sample size systematically shrinks to 0 over time
or which require expensive base-data accesses.2 The other
main deficiency is that the class of pure insertion streams—
for which reservoir sampling is designed—results in grow-
ing datasets as discussed above; thus the usefulness of the
bounded reservoir sample tends to diminish over time. Sur-
prisingly, although reservoir sampling has been around for
45 years, the algorithm apparently has never been extended
to deal with either deletions or growing datasets. In this paper
we provide the first such extensions of reservoir sampling.

In more detail, we address the challenges of incremental
sample maintenance as follows:

1. For stable datasets, we provide a new sampling scheme,
called “random pairing” (RP), that maintains a bounded-
size uniform sample in the presence of arbitrary
insertions and deletions, without requiring expensive
base-data accesses; indeed, RP is the first bounded-size
uniform sampling scheme having both of these charac-
teristics. RP can be viewed as a generalization of both
classical reservoir sampling and the “passive” stream-
sampling algorithm of Babcock et al. [1]. RP is faster
than all other known bounded-size schemes, because it
is the only algorithm that never accesses the base data.
Provided that fluctuations in the dataset size are not too
extreme, the sample sizes produced by RP are as stable
as those produced by expensive algorithms that require
base-data accesses. Thus, if the dataset size is reason-
ably stable over time, RP is the algorithm of choice for
incrementally maintaining a bounded uniform sample.

2. For growing datasets, we initiate the study of algorithms
for periodically “resizing” a bounded-size random sam-
ple upwards, proving that any such algorithm cannot
avoid accessing the base data. Prior to the current work,
the only proposed approach to the resizing problem was
to naively recompute the sample from scratch. We pro-
vide a novel resizing algorithm that partially enlarges the
sample using the base data, and subsequently completes
the resizing using only the stream of UDI transactions.
Especially when access to the base data is expensive
and transactions are frequent, the resizing cost can be

2 A common approach is to periodically recompute the sample from
scratch [15].

significantly reduced relative to the naive approach by
judiciously tuning the key algorithm parameter q; this
parameter controls the trade-off between the time
required to access the base data and the time needed
to subsequently enlarge the sample using newly inserted
data. We provide both a Monte Carlo-based numerical
method and a quick approximate technique for choosing
an optimal value of q. The numerical method serves to
validate our quick approximate technique, as well as to
provide a means of extending our methodology to handle
more complex sampling scenarios where approximate
tuning techniques may not be available.

3. For a dataset that is partitioned over several nodes, we
show how to obtain a sample of the complete dataset from
local samples maintained at each node, thereby facilitat-
ing efficient parallel sampling. Our new RPMerge algo-
rithm extends the HRMerge algorithm in [4]—which was
developed for an insertion-only environment—to effec-
tively deal with deletions.

The remainder of this paper is organized as follows. In
Sect. 2, we review existing algorithms that are pertinent to
incremental sample maintenance and relate them to our new
techniques. Section 3 contains a description and correctness
proof of the RP algorithm. Section 4 describes our resizing
algorithm and develops methods for tuning the key algo-
rithm parameter. We then show in Sect. 5 how samples can
be merged to obtain a uniform sample of the union of their
datasets. In Sect. 6, we report results from an empirical per-
formance study of the new and existing sample-maintenance
algorithms; we also assess the accuracy of our approximate
cost model for the resizing algorithm and compare our new
merging algorithm to previous techniques. Section 7 contains
our conclusions.

2 Uniform sampling schemes

In this section, we describe the sampling problem more pre-
cisely and give an overview of various new and existing
sampling schemes. Following [4], call a sampling scheme
uniform if the probability pR(S) that the scheme produces
sample S when applied to dataset R satisfies pR(S) = pR(S′)
whenever |S| = |S′|. That is, all samples of the same size are
equally likely to be produced. We say that S “is a uniform
sample from R” if S is produced from R using a uniform
sampling scheme. We restrict attention to sampling without
replacement; in general, a without-replacement sample con-
tains more statistical information about the dataset than a
with-replacement sample of the same size [41].

We focus throughout on set-based sampling; that is, at
each time point, the dataset R of interest is a finite sub-
set of a (possibly infinite) set T = { t1, t2, . . . } of unique,

123

176 R. Gemulla et al.

distinguishable items, and the sample S is, in turn, a subset
of R. For example, T might correspond to a finite set of
IP addresses, an infinite sequence of unique text or XML
documents, or perhaps a set of relational tuples, each hav-
ing its own unique identifier.3 Without loss of generality,
we assume throughout that the dataset R is initially empty,
and evolves over time as items are inserted and deleted.
In general, items that are deleted may be subsequently
re-inserted. Thus we consider an infinite sequence of trans-
actions γ = (γ1, γ2, . . .), where each transaction γi is either
of the form +tk , which corresponds to the insertion of item
tk into R, or of the form−tk , which corresponds to the dele-
tion of item tk from R. We restrict attention to “feasible”
sequences such that (i) at any time point, an item appears
at most once in the dataset (so that the dataset is a true set
and not a multiset) and (ii) γn = −tk only if item tk is in the
dataset just prior to the processing of the nth transaction. Our
goal is to ensure that, after each transaction is processed, S
is a uniform sample from R. We assume throughout that, as
is usual in practice, the sequence γ of insertions and dele-
tions to the data is oblivious to the behavior of the sampling
algorithm.

We first discuss two classical sampling schemes, Bernoulli
sampling and reservoir sampling, which underlie all of the
other sampling methods. We then discuss sampling methods
that are appropriate for stable datasets and growing datasets,
respectively. Finally, we discuss some recent related work on
“distinct-value” (DV) sampling.

2.1 Two classical schemes

The classical Bernoulli and reservoir schemes were origi-
nally developed to deal with a sequence of insertion trans-
actions, and are described below. The extension of Bernoulli
sampling to handle deletions results in the MBERN scheme
(Sect. 2.2), and the extension of reservoir sampling results in
our new random-pairing algorithm (Sect. 3).

Bernoulli sampling: In the Bernoulli sampling scheme with
sampling rate q, denoted BERN(q), each inserted item is
included in the sample with probability q and excluded with
probability 1 − q, independent of the other items. For a
dataset R, the sample size follows the binomial distribution
BINOM(|R|, q), so that P { |S| = k } = (|R|

k

)
qk(1− q)|R|−k

for k = 0, 1, . . . , |R| and E[|S|] = q|R|. Although the
sample size is random, samples having the same size are
equally likely, and the scheme is indeed uniform, as defined

3 In contrast, multiset-based sampling is concerned with scenarios in
which multiple copies of each item may occur in both the dataset R and
the sample S, so that both R and S are multisets (i.e., bags). When sam-
pling from multisets, relatively sophisticated techniques are required to
handle deletion of items; see [12] for an extension of Bernoulli sampling
to multisets.

previously. The main advantages of Bernoulli sampling are
simplicity and ease of parallelization. The sample size is
unbounded, though sharply concentrated around the expected
value of q|R|, and the method does not directly handle
deletions.

Reservoir sampling (RS) : This uniform scheme maintains
a random sample of fixed size M , given a sequence of inser-
tions. The procedure, as described in [33], is as follows.
Include the first M items into the sample. For each succes-
sive insertion into the dataset, include the inserted item into
the sample with probability M/|R|, where |R| is the size of
the dataset just after the insertion; an included item replaces
a randomly selected item in the sample. Vitter [45] signifi-
cantly reduced the computational costs of RS by devising a
method to directly generate the (random) number of arriving
items to skip between consecutive sample inclusions, thereby
avoiding the need to “flip a coin” for each item (see Sect. 3.4).
Reservoir sampling has also been extended to handle very
large disk-based samples [10,23].

2.2 Schemes for stable datasets

Modified Bernoulli sampling: This uniform sampling
method, denoted MBERN(q), is the simplest scheme for
dealing with a stable dataset. The MBERN(q) scheme treats
each insertion identically to the ordinary BERN(q) scheme.
Whenever an item is removed from the dataset, it is also
removed from the sample, if present. As with BERN(q), the
sample size is binomially distributed and is 100q% of the
dataset size |R| on average. The variance of the sample size
is q(1 − q)|R| for a fixed value of |R|; any fluctuations of
|R| over time further augment the variability of the sample
size. If |R| is known (at least approximately) beforehand—so
that a suitable value of q can be chosen—and remains rela-
tively stable over time, then the variability of the sample size
might be acceptable in practice. In this paper, however, we
focus on sampling schemes that produce bounded samples
and which do not require any a priori knowledge about the
dataset. One might attempt to obtain a bounded-size sampling
method from MBERN(q) by purging the sample whenever
it exceeds a specified upper bound M using Bernoulli sub-
sampling, and then continuing the sampling process with a
reduced value of q. In the earlier version of this paper [11],
this method was called “Bernoulli sampling with purging”
(BSP), and was asserted to be a uniform sampling scheme.
In Appendix A, we show that, rather surprisingly, the BSP
scheme is not, in fact, uniform, and so we do not consider
BSP further.

Stream-sampling methods: Babcock et al. [1] have pro-
posed several sampling schemes for obtaining a fixed-size
uniform random sample from a moving window over a data

123

Maintaining bounded-size sample synopses of evolving datasets 177

stream. This setting corresponds to the special case in which
each deletion from the dataset is immediately followed by
an insertion, and these algorithms do not directly generalize
to arbitrary sequences of insertions and deletions. The most
pertinent of the algorithms in [1] is the “passive” algorithm.
This algorithm first obtains a uniform sample from the ini-
tial window. Whenever an item in the sample is deleted from
the window, the corresponding newly inserted item takes the
place of the deleted item in the sample. The techniques in [4]
can be viewed as “approximate” stream-sampling algorithms
for use in a warehouse in which “data partitions” are rolled
in and out. The idea is to create samples of the data parti-
tions that “shadow” the full partitions as they move through
the warehouse. Again, these algorithms do not generalize to
arbitrary, item-wise insertions and deletions, but we borrow
ideas from the “merging” algorithms in [4] to parallelize the
new algorithms in the current paper.

Correlated acceptance-rejection (CAR): The CAR algo-
rithm of Olken and Rotem [36] maintains a uniform random
sample in the presence of arbitrary insertions and deletions;
this method requires access to the base data, however. CAR
has been designed for the specific setting where the base data
is stored in a table of a relational database. Adapted to our set-
ting, the algorithm is as follows: Whenever an item is inserted
into the dataset, CAR generates a random number N from
the binomial distribution BINOM(M, 1/|R|) and replaces N
random items of the current sample by N copies of the new
item. Therefore, CAR actually maintains a uniform sample
with replacement, i.e., each item in the dataset may appear
more than once in the sample. Whenever an item is deleted
from the dataset, CAR replaces each occurrence of this item
by a random item drawn from the population. We obtain
the final uniform sample without replacement by removing
duplicates; thus the gross sample size must be larger than M
to compensate for duplicate removal, and there is no effective
lower bound on the sample size.

CAR without replacement (CARWOR): This simple variant
of the CAR algorithm executes standard RS at each insertion.
Whenever an item is deleted from the sample S, CARWOR
replaces it by a random item from R \ S. Although CAR-
WOR maintains the sample size at its largest possible value,
the algorithm relies on frequent, expensive accesses to base
data.

Reservoir sampling with recomputation (RSR): As men-
tioned previously, RS is designed to deal only with inser-
tions. The simplest modification is to execute RS as usual at
each insertion. At each deletion from the dataset, we check
whether the item is in the sample; if so, we remove it and
continue RS with a smaller sample size. The obvious prob-
lem with this approach is that the sample size decreases

monotonically to zero. We therefore modify this approach
using a device as in Gibbons et al. [15]: as soon as the sam-
ple size falls below a prespecified lower bound, recompute
it from scratch using, for example, sequential sampling [44].
This approach is also called the “backing sample” method.
Clearly, RSR does not yield a stable sample size, and it
requires repeated access to the base data. In spite of these
deficiencies, RSR has been the sampling scheme of choice
for bounded-size uniform sampling.

Random pairing (RP): Our new RP algorithm, described in
Sect. 3, maintains a bounded-size uniform sample in the pres-
ence of arbitrary insertions and deletions without requiring
access to the base data. In contrast to the sampling schemes
above, RP compensates sample deletions using subsequent
insertions; if, at any time point, all previous sample deletions
have been compensated, then the sample size is as large as it
can possibly be. As shown in our experiments, the RP algo-
rithm produces samples almost as large as the algorithms
above, but at a much lower cost.

2.3 Schemes for growing datasets

Modified Bernoulli sampling: The MBERN(q) sampling
scheme as presented above can naturally be applied to a grow-
ing dataset. As discussed previously, the user cannot bound
the sample size and, as discussed in Appendix A, subsam-
pling cannot be applied to deal with oversized samples.

Resizing: Our novel resizing method can be used with any
bounded-size sampling scheme. In this way we can grow the
sample as the dataset grows, while guaranteeing an upper
bound on the sample size at each time point. Resizing can
even be used in conjunction with MBERN(q) sampling to
increase the sampling rate q; see Sect. 4.2. Note that in con-
trast to MBERN(q), the combination of RP and our resiz-
ing algorithm enables a user or application to decide exactly
when to allocate more storage for the sample, and also pre-
cisely how much more memory to allocate.

2.4 Distinct-value sampling

To our knowledge, the only other bounded-size uniform sam-
pling methods that handle arbitrary sequences of insertions
and deletions are the two DV-sampling algorithms recently
proposed in [7,9]. These algorithms were designed for sam-
pling from multisets; the algorithms sample uniformly from
the set of distinct items of a dataset, and also provide the
number of occurrences for each sampled value (or a high-
accuracy approximation thereof). In our setting, where each
item can occur only once in the dataset, random sampling
and DV-sampling coincide, so we could attempt to adapt the
DV-sampling algorithms to our purpose.

123

178 R. Gemulla et al.

Both DV-sampling algorithms make use of a data structure
which—with some success probability p—maintains a sin-
gle item chosen randomly from the set of distinct items. To
maintain multi-item samples, multiple instances of the data
structure are stored, so that sampling is with replacement.
Each data structure consists of log|T | buckets, where T is
the domain of the items in the dataset. The idea is that each
inserted or deleted item affects exactly one of the buckets in
a data structure; a (randomly chosen) hash function ensures
that each item maps to the same bucket whenever it occurs
in the transaction sequence. In more detail, an item is hashed
to bucket i with probability (1 − r)r i−1, where 0 < r < 1
is a parameter of the algorithm. Each bucket then consists
of the sum of the item values inserted into it and a counter
of the number of inserted items. Adding an item to (resp.,
deleting an item from) a bucket simply involves increment-
ing (resp., decrementing) the counter by 1 and incrementing
(resp., decrementing) the sum by the item value. If there is a
bucket in the data structure which contains exactly one item,
then the data structure “succeeds,” and this item is returned
as a random sample of size 1; otherwise, the data structure
fails. The point is that the stored item values do not need to
be maintained individually; in the important case where a
bucket contains only a single item (as indicated by a counter
value of 1), the value of the sum is equal to the value of the
item. Note that the lower-numbered buckets are more likely to
succeed when the dataset size is small; the higher-numbered
buckets handle large datasets. It has been shown [7] that for
an appropriate choice of r , the success probability p is at
least 14.2%.

The DV-sampling schemes are the only known bounded-
size sampling methods that are “delete-proof,” in that the
sample-size distribution depends only on the size of the
dataset, regardless of how the sample was produced. Indeed,
each deletion of an item precisely cancels the effect of the
prior insertion of the item. In contrast, our RP scheme works
the other way around: each insertion compensates a prior
deletion, and the sample size distribution depends on both
the dataset size and the number of uncompensated dele-
tions. The main disadvantage of the DV schemes is their
very low space efficiency. For example, with 32-bit items
and a choice of r = √2/3 as suggested in [7], we need
more than 100 buckets per data structure, and thus
exploit at most 1% of the memory allocated to the
sample.

For stable datasets, the original DV-sampling scheme can
be modified to significantly improve its space efficiency.
The modified scheme maintains only a single bucket per
data structure and makes use of a hash function with range
{ 0, . . . , D − 1 }, where D is the average size of the data-
set. An item t affects a bucket only if the corresponding
hash function satisfies h(t) = 0. Assuming that the data-
set contains exactly D items t1, . . . , tD , the probability p of

a success is given by

D∑

l=1

P
{

h(tl)=0, h(tl ′) �=0 for all l ′ �= l
}=

(
1− 1

D

)D−1

,

which is approximately equal to e−1 when D is large. Thus
the modified scheme would still exploit only about 1/3 of
the available memory, at best. Not only is the space effi-
ciency low, but the computational costs are also extremely
high. For example, with 1 million copies of the data struc-
ture, the DV scheme requires 10 trillion hash operations to
insert 10 million items into the sample, which takes hours
even with the fastest available hash functions. Schemes such
as RP, which are tailored for set-based sampling, can perform
such an insertion in a matter of minutes. For these reasons,
we focus on the uniform sampling schemes outlined in the
previous sections.

3 Random pairing

To motivate the idea behind the random-pairing scheme, we
first consider an “obvious” passive algorithm for maintaining
a bounded uniform sample S of a dataset R. The algorithm is
based on reservoir sampling and avoids accessing base data
by making use of new insertions to “compensate” for previ-
ous deletions. Whenever an item is deleted from the dataset,
it is also deleted from the sample, if present. Whenever the
sample size lies at its upper bound M , the algorithm han-
dles insertions identically to RS; whenever the sample size
lies below the upper bound and an item is inserted into the
dataset, the item is also inserted into the sample. Although
simple, this algorithm is unfortunately incorrect, because it
fails to guarantee uniformity. To see this, suppose that, at
some stage, |S| = M < |R| = N . Also suppose that an
item t− is then deleted from the dataset R, directly followed
by an insertion of t+. Denote by S′ the sample after these
two operations. If the sample is to be truly uniform, then the
probability that t+ ∈ S′ should equal M/N , conditional on
|S| = M . Since t− ∈ S with probability M/N , it follows
that

P
{

t+ ∈ S′
}

= P
{

t− ∈ S, t+ included
} + P

{
t− �∈ S, t+ included

}

= M

N
· 1+

(
1− M

N

)
· M

N
>

M

N
, (1)

conditional on |S| = M . Thus an item inserted just after a
deletion has an overly high probability of being included in
the sample. The basic idea behind RP is to carefully select an
inclusion probability for each inserted item so as to ensure
uniformity.

123

Maintaining bounded-size sample synopses of evolving datasets 179

3.1 Algorithm description

In the RP scheme, every deletion from the dataset is even-
tually compensated by a subsequent insertion. At any given
time, there are 0 or more “uncompensated” deletions. The
RP algorithm maintains a counter cb that records the number
of “bad” uncompensated deletions in which the deleted item
was in the sample (so that the deletion also decremented the
sample size by 1). The RP algorithm also maintains a counter
cg that records the number of “good” uncompensated dele-
tions in which the deleted item was not in the sample (so that
the deletion did not affect the sample). Clearly, d = cb + cg

is the total number of uncompensated deletions.
The algorithm works as follows. Deletion of an item is

handled by removing the item from the sample, if present,
and by incrementing the value of cb or cg, as appropriate. If
d = 0, i.e., there are no uncompensated deletions, then inser-
tions are processed as in standard RS. If d > 0, then we flip a
coin at each insertion step, and include the incoming insertion
into the sample with probability cb/(cb+ cg); otherwise, we
exclude the item from the sample. We then decrease either cb

or cg, depending on whether the insertion has been included
into the sample or not. The complete algorithm is given as
Algorithm 1.

Conceptually, whenever an item is inserted and d > 0,
the item is paired with a randomly selected uncompensated

Algorithm 1 Random pairing
1: cb: # of uncompensated deletions that have been in the sample
2: cg: # of uncompensated deletions that have not been in the sample
3: M : upper bound on sample size
4: R, S: dataset and sample, respectively
5: Random(): returns a uniform random number between 0 and 1
6:
7: Insert(t):
8: if cb + cg = 0 then // execute reservoir-sampling step
9: if |S| < M then
10: insert t into S
11: else if Random() < M/(|R| + 1) then
12: overwrite a randomly selected element of S with t
13: end if
14: else // execute random-pairing step
15: if Random() < cb/(cb + cg) then
16: cb ← cb − 1
17: insert t into S
18: else
19: cg ← cg − 1
20: end if
21: end if
22:
23: Delete(t):
24: if t ∈ S then
25: cb ← cb + 1
26: remove t from S
27: else
28: cg ← cg + 1
29: end if

deletion, called the “partner” deletion. The inserted item is
included into the sample if its partner was in the sample at the
time of its deletion, and excluded otherwise. The probability
that the partner was in the sample is cb/(cb+cg). For purposes
of sample maintenance, it is not necessary to keep track of the
precise identity of the random partner; it suffices to maintain
the counters cb and cg. Note that if we repeat the calculation
in (1) using RP, we now have P

{
t− �∈ S, t+ included

} = 0,
and we obtain the desired result P

{
t+ ∈ S′

} = M/N .
Typically, a sampling subsystem tracks the size of both

the sample and the dataset. If so, then instead of maintaining
the two additional counters cb and cg, it suffices to maintain
a single counter d that records the number of uncompensated
deletions. Specifically, set d ← 0 initially. After processing
a transaction γi , update d as follows:

d ←
{

d + 1 if γi is a deletion

max(d − 1, 0) if γi is an insertion.

Then, at any time point, cb = min(M, |R| + d) − |S| and
cg = d − cb.

3.2 An example

The RP algorithm with M = 2 is illustrated in Fig. 1. The
figure shows all possible states of the sample, along with
the probabilities of the various state transitions. The exam-
ple starts after i = 2 items have been inserted into an empty
dataset, i.e., the sample coincides with R. The insertion of
item t3 leads to the execution of a standard RS step since there
are no uncompensated deletions. This step has three possible
outcomes, each equally likely. Next, we remove items t2 and
t3 from both the dataset and the sample. Thus, at i = 5, there
are two uncompensated deletions. The insertion of t4 trig-
gers the execution of a pairing step. Item t4 is conceptually
paired with either t3 or t2—these scenarios are denoted by

a)

b)

Fig. 1 Random pairing (possible outcomes and probability)

123

180 R. Gemulla et al.

a) and b) respectively—and each of these pairings is equally
likely. Thus t4 compensates its partner, and is included in the
sample if and only if the partner was in the sample prior to
its deletion. This pairing step amounts to including t4 with
probability cb/(cb + cg) and excluding t4 with probability
cg/(cb+ cg), where the values of cb and cg depend on which
path is taken through the tree of possibilities. A pairing step
is also executed at the insertion of t5, but this time there is
only one uncompensated deletion left: t2 in scenario a) or t3
in scenario b). The probability of seeing a given sample at a
given time point is computed by multiplying the probabilities
along the path from the “root” at the far left to the node that
represents the sample. Observe that the sampling scheme is
indeed uniform: at each time point, all samples of the same
size are equally likely to have been materialized.

3.3 Correctness and sample-size properties

In this section, we formally establish the uniformity property
of the RP scheme with upper bound M (≥ 1) and then derive
the probability distribution, the mean, and the variance of
the sample size. To establish uniformity, we actually prove a
slightly stronger result that implies uniformity. Denote by Rn

the dataset and by Sn sample after the nth processing step,
i.e., after processing transaction γn . Also denote by cb,n and
cg,n the value of the counters cb and cg after the nth step, and
set dn = cb,n + cg,n . Finally, set un = min(M, |Rn|),

vn = min

(
M, max

1≤ j≤n
|R j |

)
= min(M, |Rn| + dn), (2)

and ln = max(0, vn − dn). In light of (5) below, it can be
seen that un and ln are the largest and smallest possible sam-
ple sizes after the nth step, and vn is the largest sample size
attained so far. Without loss of generality, we restrict atten-
tion to sequences that start with an insertion into an empty
dataset.

Theorem 1 For any feasible sequence γ of insertions and
deletions, there exist numbers { pn(k) : n ≥ 1 and k ≥ 0 },
depending on γ , such that

P { Sn = A } = pn(|A|) (3)

for A ⊆ Rn and n ≥ 1. Moreover,

pn(k)

pn(k − 1)
= vn − k + 1

dn − vn + k
. (4)

for n ≥ 1 and k ∈ { ln + 1, ln + 2, . . . , un }.
It follows from (3) that, at each step, any two samples of

the same size are equally likely to be produced, so that the
RP algorithm is indeed a uniform sampling scheme.

Proof Clearly, we can take pn(k) = 0 for n ≥ 1 and k �∈
{ ln, ln + 1, . . . , un }. Fix a sequence of insertions and dele-
tions, and observe that the sample size decreases whenever
cb increases, and increases whenever cb decreases (subject
to the constraint |S| ≤ M .) It follows directly that

cb,n = vn − |Sn| (5)

for n ≥ 1. The proof now proceeds by induction on n.
The assertions of the theorem clearly hold for n = 1, so
suppose for induction that the assertions hold for values
1, 2, . . . , n− 1. There are two cases to consider. First, sup-
pose that step n corresponds to the insertion of an item t , and
consider a subset A ⊆ Rn with |A| = k, where ln ≤ k ≤ un .
If dn−1 = 0, then dn = 0 and ln = un , so that (4) holds
vacuously, and the correctness proof for standard reservoir
sampling—see, e.g., [18]—establishes the assertion in (3).
So assume in the following that dn−1 > 0. If t ∈ A, then,
using (5), we have

P{ Sn = A } = P{ Sn−1 = A − {t}, t included }
= pn−1(k − 1)

cb,n−1

dn−1

= pn−1(k − 1)
vn−1 − k + 1

dn−1
.

If t �∈ A, then

P{ Sn = A } = P{ Sn−1 = A, t ignored }
= pn−1(k)

dn−1 − vn−1 + k

dn−1
, (6)

so that, if A �= ∅, then

P{ Sn = A } = pn−1(k − 1)
vn−1 − k + 1

dn−1
. (7)

Here (7) follows from (6) and an inductive application of (4).
This establishes the first assertion of the theorem with

pn(k) =

⎧
⎪⎨

⎪⎩

pn−1(k − 1)
vn−1−k+1

dn−1
if max(ln, 1)≤k≤un;

pn−1(0)
dn−1−vn−1

dn−1
if k = ln = 0;

0 otherwise.

(8)

To establish the second assertion of the theorem, apply (8)
and then inductively apply (4), making use of the fact that—
since dn−1 > 0 and an item is inserted at step n—we have
dn = dn−1 − 1 and vn = vn−1. Now suppose that step n
corresponds to the deletion of an item t , and again consider
a subset A ⊆ Rn with |A| = k ∈ { ln, ln + 1, . . . , un }.
Observe that

P{ Sn = A } = P{ Sn−1 = A } + P{ Sn−1 = A ∪ {t} }
= pn−1(k)+ pn−1(k + 1),

123

Maintaining bounded-size sample synopses of evolving datasets 181

which establishes the first assertion of the theorem with

pn(k) = pn−1(k)+ pn−1(k + 1) (9)

for ln ≤ k ≤ un . Since dn = dn−1 + 1 and vn = vn−1, we
then have

pn(k)

pn(k − 1)
= pn−1(k)+ pn−1(k + 1)

pn−1(k − 1)+ pn−1(k)

= (pn−1(k)/pn−1(k − 1))+ (pn−1(k + 1)/pn−1(k − 1))

1+ (pn−1(k)/pn−1(k − 1))

= vn−1 − k + 1

dn−1 − vn−1 + k + 1
= vn − k + 1

dn − vn + k

for ln < k ≤ un , where we have again inductively used (4).
Thus the second assertion of the theorem holds and the proof
is complete. ��

Observe that the RP scheme reduces to the “passive” algo-
rithm of [1] if applied to a fixed-width moving window over a
data stream. If there are no deletions, the RP scheme reduces
to standard RS.

Building on Theorem 1, we can easily derive the statisti-
cal properties of the sample size at any given time point. As
before, we define un and ln as before to be the largest and
smallest possible sample size after processing the nth trans-
action, and vn = min(M, |Rn|+dn) to be the largest sample
size encountered so far.

Theorem 2 For any feasible sequence γ of insertions and
deletions and n ≥ 1, the sample size follows the hypergeo-
metric distribution given by

P { |Sn| = k } =
(|Rn|

k

)(
dn

vn − k

) / (|Rn| + dn

vn

)
(10)

for ln ≤ k ≤ un, and P { |Sn| = k } = 0 otherwise. More-
over, the expected value and variance of |Sn| are given by

E[|Sn|] = |Rn|
|Rn| + dn

vn

and

Var[|Sn|] = dnvn(|Rn| + dn − vn)|Rn|
(|Rn| + dn)2(|Rn| + dn − 1)

.

Proof Defining pn(k) as in Theorem 1 and appealing to (3),
we have

P { |Sn| = k } =
∑

A⊆Rn|A|=k

P { Sn = A } =
(|Rn|

k

)
pn(k),

and it suffices to show that

pn(k) =
(

dn

vn − k

) / (|Rn| + dn

vn

)
, ln ≤ k ≤ un (11)

for n ≥ 1. Clearly, (11) holds for n = 1, and can be estab-
lished for general n > 1 by a straightforward inductive argu-
ment that uses (8) and (9). The remaining assertions of the
theorem follow from well known properties of the hypergeo-
metric distribution [25, p. 238]. ��

The intuition behind the result of the theorem is as fol-
lows. Suppose that whenever an item is deleted, we mark it
as “deleted,” but we retain such a “ghost item” in the dataset
(and in the sample, if present) until the deleted item is com-
pensated. After processing the nth transaction, the dataset
contains |Rn| + dn total items, comprising |Rn| real items
and dn ghost items. We can view the current sample as a
uniformly selected subset of size vn from the collection of
|Rn| + dn total items. The actual sample size |Sn| is simply
the number of these vn items that are real. The probability
that a uniform sample of vn items from a population of |Rn|
real items and dn ghost items contains exactly k real items
is well known to be given by the hypergeometric probability
asserted in the theorem statement.

It can be seen from Theorem 2 that the sample size typi-
cally stays relatively close to its expected value. For example,
suppose we sample 100, 000 items from a dataset consisting
of 10, 000, 000 items (1%). If we delete 100, 000 items, the
sample size is 99, 000 in expectation and has a standard devi-
ation of 31.31 items; we have 98,900 ≤ |S| ≤ 99,100 with
a probability of approximately 99.8%. Moreover, when the
number of uncompensated deletions is small, the expected
sample size is close to its maximum possible value.

Observe that if dn = 0, so that there are no uncompen-
sated deletions, or if |Rn| + dn ≤ M , so that the sample
coincides with the population, then E[|S|] = min(M, |Rn|),
Var[|S|] = 0, and P { |S| = min(M, |Rn|) } = 1, i.e., the
sample size is deterministic.

3.4 Reducing the number of calls to Random

The RP algorithm, as displayed in Algorithm 1, calls the
Random function at essentially every insertion transaction.
In practice, random numbers are generated using a pseudo-
random number generator (PRNG); see [30] for an overview
of PRNG’s. In general, the uniformity property of the sample
relies on the statistical quality of the PRNG, and increased
quality has its price in terms of processing cost. Because
of the frequency with which the basic algorithm calls the
Random function, it is worthwhile investigating the possi-
bility of reducing the number of PRNG calls.

Revisiting Algorithm 1, one finds that there are two locat-
ions where random numbers are generated. In line 11, random

123

182 R. Gemulla et al.

numbers are used to execute plain reservoir sampling and in
line 15, random numbers drive the pairing process. In both
cases, results of Vitter [44,45] can be leveraged to produce a
more efficient algorithm.

Reservoir-sampling step: Assume for a moment that γ con-
sists only of insertion transactions. After the reservoir has
been filled initially, RP accepts transaction γi with probabil-
ity M/ i = M/(|Ri−1|+1) and rejects it otherwise. Suppose
that RP is about to process transaction γi and denote by Ki

the random number of rejected transactions before the next
sample inclusion. We have

P(Ki = k) = M

|Ri−1| + k + 1

k−1∏

j=0

(
1− M

|Ri−1| + j + 1

)

for k ≥ 0, where we take an empty product as 1. As mentioned
in Sect. 2.1, Vitter [45] introduced a modified reservoir
sampling scheme that exploits efficient acceptance-rejection
(AR) methods for directly generating realizations of Ki ;
see [29, Sect. 8.2.4] for a general discussion of such algo-
rithms. The basic idea is to find another random variable K ∗i
that is easy and fast to generate. The AR algorithm starts by
generating a realization k∗ of K ∗i . With probability p(k∗), this
value is “accepted” and the algorithm returns with Ki = k∗;
with probability 1 − p(k∗), the value is “rejected” and the
process repeats. The random variable K ∗i and the probability
function p(·) are carefully chosen so that (i) conditional on
being accepted, the returned value has the same probability
distribution as Ki , and (ii) the expected number of rejections
before the final acceptance is small. Given such a generation
method, the idea is to maintain a counter K for the number
of skipped items before the next sample inclusion, initialized
to an invalid value (<0). If an insertion transaction γi = +tl
arrives and K is invalid, then a realization of Ki is generated
and assigned to K . Next, if K > 0, then tl is ignored and K
is decremented. Otherwise, if K = 0, then tl is included into
the sample and K is invalidated. Observe that prior to the
sample-inclusion/sample-exclusion decision for any inser-
tion transaction γi , we have P {K = k} = P {Ki = k}, so
that the algorithm is indeed correct.

The above idea can be transferred to the RP algorithm.
In contrast to ordinary reservoir sampling, the insertion pro-
cess may be interrupted by deletion transactions. However,
we may simply continue to use the current value of the
skip counter when the next reservoir step is executed. To
see this, suppose that there are no uncompensated deletions
after processing transaction γi and that the (i + 1)st trans-
action is a deletion, so that di = 0 and di+1 > 0. Denote
by i∗ > i the index of the next transaction after γi such
that di∗ = 0. Since RP does not execute a reservoir step for
transactions γi+1, . . . , γi∗ , and since |Ri | = |Ri∗ |, we have
P(Ki+1 = k) = P(Ki∗+1 = k), and the reservoir sampling

Algorithm 2 Random pairing (optimized)
1: cb: # of uncompensated deletions that have been in the sample
2: cg: # of uncompensated deletions that have not been in the sample
3: M : upper bound on sample size
4: R, S: dataset and sample, respectively
5: K : skip counter for reservoir sampling (initialized to −1)
6: K ′: skip counter for random pairing (initialized to −1)
7: SkipRS: reservoir-sampling skip function as in [45]
8: SkipSeq: sequential-sampling skip function as in [44]
9:
10: Insert(t):
11: if cb + cg = 0 then // execute optimized reservoir-sampling step
12: if |S| < M then
13: insert t into S
14: else
15: if K < 0 then
16: K ← SkipRS(M, |R| + 1)

17: end if
18: if K = 0 then
19: overwrite a randomly selected element of S with t
20: end if
21: K ← K − 1
22: end if
23: else // execute optimized random-pairing step
24: if K ′ < 0 then
25: K ′ = SkipSeq(cb, cb + cg)

26: end if
27: if K ′ = 0 then
28: cb ← cb − 1
29: insert t into S
30: else
31: cg ← cg − 1
32: end if
33: K ′ ← K ′ − 1
34: end if
35:
36: Delete(t):
37: K ′ ← −1 // invalidate
38: if t ∈ S then
39: cb ← cb + 1
40: remove t from S
41: else
42: cg ← cg + 1
43: end if

process can be continued at the point where it was interrupted.
Algorithm 2 incorporates these optimizations into the basic
RP algorithm. Here, SkipRS denotes the reservoir-sampling
skip function as described in [45].

Random-pairing step: We can exploit an idea similar to
the one above. Assume that after processing transaction γi ,
there is at least one uncompensated deletion and that trans-
actions γi+1, γi+2, . . . correspond to insertions. Denote by
cb,i and cg,i the values of the sample counters after pro-
cessing transaction γi . The item corresponding to insertion
transaction γi+1 is included in the sample with probability
cb,i/(cb,i + cg,i) and excluded otherwise. In the latter case,
the next item, corresponding to γi+2, is included with proba-
bility cb,i+1/(cb,i+1+cg,i+1) = cb,i/(cb,i +cg,i −1), and so

123

Maintaining bounded-size sample synopses of evolving datasets 183

on. When RP is about to process transaction γi+1, let K ′i+1 be
the number of excluded items before the next sample inclu-
sion. We have

P(K ′i+1 = k′) = cb,i

cb,i + cg,i − k′
k′−1∏

j=0

(
1− cb,i

cb,i + cg,i − j

)

for k′ ≥ 0. In the context of sequential sampling, Vitter [44]
proposed an efficient acceptance-rejection algorithm (dif-
ferent from the one in [45]) to directly generate a reali-
zation of K ′i . We make use of these improved methods in
the RP algorithm by maintaining a skip counter K ′. Unlike
with the counter K discussed above, we have to recompute
K ′ whenever a deletion transaction interrupts the insertion
process. The complete procedure is given in Algorithm 2.
Here, SkipSeq denotes the skip function as defined in [44].
Because a call to SkipSeq is usually more expensive than
a (single) call to Random, we expect this optimization to
be worthwhile when the transaction stream comprises long
blocks of insertions alternating with long blocks of deletions;
see Sect. 6.4 for an empirical evaluation of our proposed
optimizations.

4 Resizing samples

The discussion so far has focused on stable datasets, and
therefore on sampling algorithms that guarantee a fixed upper
bound on the sample size. We now shift attention to growing
datasets. As mentioned previously, modified Bernoulli sam-
pling can be used to maintain a sample whose size grows
with the dataset, but such a sampling scheme does not con-
trol the maximum sample size. We therefore consider the
problem of maintaining a sample with an upper bound
that is periodically increased according to the user’s
needs.

4.1 A negative result

The RP algorithm can maintain a bounded sample without
needing to access the base data. One might hope that there
exist algorithms for resizing a sample that similarly do not
need to access the base data. Theorem 3 below shows that
such algorithms cannot exist.

In general, we consider algorithms that start with a uni-
form sample S of size at most M from a dataset R and—after
some finite (possibly zero) number of arbitrary transactions
on R—produce a uniform sample S′ of size M ′ from the
resulting modified dataset R′, where M < M ′ < |R|. We
allow the algorithms to access the base dataset R. For exam-
ple, a trivial resizing scheme ignores the transactions alto-
gether, immediately discards S, and creates a fresh sample
S′ by resampling R.

Algorithm 3 Sample resizing
1: M : initial sample size
2: M ′: target sample size (M ′ > M)
3: q: Bernoulli sampling parameter
4: R: initial dataset
5: S: initial sample with |S| = M
6:
7: Phase 1:
8: generate U from BINOM(|R|, q) distribution
9: if U ≤ M then
10: S← uniform subsample of size U from S
11: go to Phase 2
12: else if M < U < M ′ then
13: V ← uniform sample of size U − M from R \ S
14: S← S ∪ V
15: go to Phase 2
16: else if U ≥ M ′ then
17: V ← uniform sample of size M ′ − M from R \ S
18: S← S ∪ V
19: return S
20: end if
21:
22: Phase 2:
23: while |S| < M ′ do
24: wait for transaction
25: if transaction = “insert item” then
26: insert item into S with probability q
27: else // transaction = “delete item”
28: remove item from S if present
29: end if
30: end while
31: return S

Theorem 3 There exists no resizing algorithm that can
avoid accessing the base dataset R.

Proof Suppose to the contrary that such an algorithm exists,
and consider the case in which the transactions on R con-
sist entirely of insertions. Fix a set A ⊆ R′ such that |A| =
M ′ and A contains M + 1 elements of R; such a set can
always be constructed under our assumptions. Because the
hypothesized algorithm produces uniform samples of size
M ′ from R′, we must have P

{
S′ = A

}
> 0. But clearly

P
{

S′ = A
} = 0, since |S| ≤ M and, by assumption, no

further elements of R have been added to the sample. Thus
we have a contradiction, and the result follows. ��

4.2 A resizing algorithm

Note that Theorem 3 does not apply when the initial sample is
created by the BERN(q) scheme, since this scheme does not
produce bounded-size samples. Indeed, we can increase the
size of a BERN(q) sample using subsequent insertions only,
by simply applying BERN(q) sampling to these insertions.
We now exploit this fact to develop a method for resizing a
bounded-size sample; this method is given as Algorithm 3.

Suppose that the initial sample size is |S| = M and the
target sample size is M ′ > M , where M, M ′ < |R|. The
basic idea is as follows. In phase 1, the algorithm converts

123

184 R. Gemulla et al.

the sample to a BERN(q) sample, possibly accessing base
data in the process; we discuss the choice of q in the follow-
ing section. In phase 2, the algorithm uses Bernoulli sampling
(with deletions allowed) to increase the sample size to the tar-
get value M ′. At this point, bounded-size sampling resumes,
using the new upper bound M ′. When base data accesses
are expensive—e.g., when items are large or when the data-
set is remote—and insertions occur frequently, this approach
can be much faster than the traditional approach of recom-
puting the sample from scratch. In more detail, the algorithm
generates a random variable U having a BINOM(|R|, q) dis-
tribution, which represents the initial Bernoulli sample size.
The algorithm uses as many items from S as possible to make
up the Bernoulli sample, accessing base data only if U > |S|.
If the initial sample size U exceeds the target size M ′, then
the algorithm simply materializes a sample of size M ′ from
R and terminates, in effect taking an immediate subsample
of size M ′ from a Bernoulli sample of size U . In phase 2, the
algorithm increases the sample to the desired size by using
MBERN(q) sampling.

More formally, denote by S∗ the effective sample at the
end of phase 1. Also denote by Sk and Rk (k ≥ 0) the ele-
ments in the sample and the dataset after k transactions have
occurred in phase 2. Note that S0 = S∗ if U < M ′ and S0 is
a size-M ′ uniform subsample from S∗ if U ≥ M ′. Finally,
denote by L (≥ 0) the random number of transactions that
occur during phase 2. The following theorem asserts the cor-
rectness of the resizing algorithm.

Theorem 4 Given that k ≤ L, where k ≥ 0, the set Sk is a
uniform sample from Rk.

Proof (Sketch) As mentioned previously, the distribution of
U in phase 1 is identical to the distribution of the sample
size of a BERN(q) sample of R. The subsampling step (U ≤
M) and the union step (otherwise) both maintain the unifor-
mity of S, so that S∗ is a BERN(q) sample from R. Using
this fact, it can then be shown that every probability of the
form P { Sk = A | k ≤ L } with A ⊆ Rk depends on A only
through |A|, and the desired result follows. For example,
when k ≥ 1 and all phase 2 transactions are insertions, fix
a set A ⊆ Rk comprising exactly i elements of R0 and j
elements of Rk \ R0, where i + j < M ′ and j ≤ k. Then

P { Sk = A, k ≤ L }
= P { Sk = A }
= qi (1− q)|R|−i q j (1− q)k− j = q |A|(1− q)|R|+k−|A|,

and P { Sk = A | k ≤ L } = P { Sk = A, k ≤ L } /P { k ≤ L }
depends on A only through |A|. ��

We assume that the dataset is “locked” during phase 1,
so that the process of incoming transactions is temporarily

suspended. For ease of exposition, we assume that the sam-
ple of R \ S is obtained using item-by-item sampling tech-
niques as in [35]. Such techniques are applicable in a wide
range of settings, and are typically much faster than a scan
of the entire dataset. These techniques sample from R \ S by
first extracting a random item from the dataset. The item is
accepted if it is not already in the sample (which is the usual
case and is checked via the assumed index on the sample);
otherwise, the item is rejected and the process starts over. As
discussed in Appendix C, more sophisticated and efficient
data-access methods may be available, depending upon the
specific system architecture and data layout. Our goal, given
cost models for a specified base-data access mechanism and
the UDI stream, is to optimally balance the amount of time
required to access the base data in phase 1, and the amount
of time required to finish growing the sample (using new
insertions) in phase 2.

The value of the parameter q determines the relative time
required for phases 1 and 2. Intuitively, when base data acces-
ses are expensive but new insertions occur frequently, we
might want to choose a low value of q so as to resam-
ple as few items as possible and shift most of the work to
phase 2. In contrast, when base data accesses are fast with
respect to the arrival rate of new insertions, a large value
of q might be preferable to minimize the complete resizing
time.

As a final observation, if we are using an MBERN(q)

sampling scheme to deal with a growing dataset, then we
can execute phase 1 with parameter q ′ > q to transition
from MBERN(q) sampling to MBERN(q ′) sampling. In the
following sections, however, we focus on the use of the
resizing algorithm with algorithms that produce bounded-
size samples.

4.3 Choosing the resizing parameter

This section addresses the key problem of choosing the
parameter q in Algorithm 3. For a given choice of q, the
resizing cost—i.e., the time required for resizing—is random.
Indeed, the time required for phase 1 depends on the value
of the binomial random variable U , and the time required
for phase 2 depends on both U and on the random decisions
made during the course of MBERN(q) sampling. Our goal
is therefore to develop a probabilistic model of the resiz-
ing process, and choose q to minimize the expected resizing
cost.4 In Sect. 4.3.1, we develop perhaps the simplest possible
model of the resizing process, assuming the base-data access

4 Of course, any practical implementation of the resizing algorithm
would estimate the cost of recomputing the sample from scratch, and
choose this option if it is less expensive than the cost of the new resizing
algorithm under the optimal value of q. In many scenarios, however,
complete recomputation will not be the best option.

123

Maintaining bounded-size sample synopses of evolving datasets 185

paradigm described previously and a very simple model of
the UDI stream. Even for this simple model, determining
q∗, the optimal value of q, is decidedly nontrivial, because
the expected cost is extremely difficult, if not impossible,
to evaluate analytically. One possibility, which we explore
in Sect. 4.3.2, is to determine q∗ using a numerical optimi-
zation algorithm. Typically, the expected resizing cost for a
given value of q is extremely hard or impossible to com-
pute exactly, and must be estimated via MonteCarlo meth-
ods. The optimization algorithm must then take the resulting
uncertainty of the expected-cost observations into account,
which can lead to costly computations; see Appendix B. We
therefore develop (Sect. 4.3.3) an approximate model of the
cost function that can be minimized analytically. The exper-
iments in Sect. 6 indicate that both the approximate model
of expected cost and the resulting choice of q closely agree
with the results obtained via numerical methods, thereby jus-
tifying the use of the quick approximate analytical method.
In Appendix C, we show through several examples how our
techniques can be adapted to handle more complicated cost
models.

4.3.1 Modeling the resizing process

There are many possible cost models for the resizing process,
corresponding to different models of both the transaction
stream and the base-data access mechanism. As discussed
above, we focus on a relatively simple model and indicate
some variations and extensions in Appendix C. Our goal in
the current paper is to illustrate a general approach, illu-
minate the issues involved, and provide some preliminary
guidance.

We first consider the cost of phase 1. During this phase,
the algorithm obtains N (U) items from R\S, where N (u) =
(min(u, M ′)−M)+ for u ≥ 0, with x+ = max(x, 0). As dis-
cussed above, we assume that these items are obtained using
repeated simple random sampling from R with replacement,
with an acceptance-rejection step to ensure that each newly
sampled item is not an element of S and is distinct from all of
the items sampled so far. Because of the acceptance-rejection
step, the (random) number Bi of base-data accesses required
to obtain the i th item has a geometric distribution with failure
probability pi = (M + i − 1)/|R|:
P {Bi = n} = pn−1

i (1− pi), n ≥ 1.

The random variables Bi are mutually independent. Suppos-
ing that each base-data access takes ta time units, the expected
phase 1 cost is ta Eq [B], where B = B1+ B2+· · ·+ BN (U).
We use the subscript q to emphasize the fact that the proba-
bility distribution of B depends on the distribution of U , and
hence on the parameter q. We can re-express this expected
cost in a more convenient form. Using standard properties
of the geometric distribution [25, p. 201] and a change of

summation index, we have

Eq [B | U] =
N (U)∑

i=1

E[Bi] =
N (U)∑

i=1

|R|
|R| − M − i + 1

= |R| H (|R|− M− N (U)+ 1, |R|−M), (12)

where H(n, m) =∑m
i=n 1/ i . In (12), the arguments to the H

function are always large. Appealing to a well known approx-
imation to the harmonic numbers, we find that H(n, m) ≈
ln(m/n) ≈ ln (m/(n − 1)) with negligible error whenever
m, n � 1. Thus we can write Eq [B | U] = g(U), where

g(u) = |R| ln
(|R| − M

|R| − M − N (u)

)
.

By the law of total expectation, we have

Eq [B] = Eq
[
Eq [B | U]

] = Eq [g(U)],
and we can therefore write the expected phase 1 cost as

T1(q) = ta Eq [g(U)].
There are two advantages to this representation of the
expected cost. First, it leads naturally to methods for numer-
ical computation as well as for analytical approximation (see
the following two sections). Second, it is easier to estimate
the expected cost using Monte Carlo methods, because the
random variable Eq [B | U] = g(U) has lower variance than
the random variable B. This variance reduction is a conse-
quence of the well known variance decomposition

Var[X] = E [Var[X | Y]]+ Var [E[X | Y]] ,

which implies that Var [E[X | Y]] ≤ Var[X]; the decompo-
sition holds for any two random variables X and Y .

We now consider the cost of phase 2. In this phase, the
resizing algorithm executes a random number L of Bernoulli
trials until the sample size reaches the target value M ′.
Clearly, the cost of phase 2 is 0 if U ≥ M ′, since then
phase 2 is not executed. To make further progress, we need a
model of the insertion and deletion process to handle the usual
case in which U < M ′. The simplest model, which we will
use here, is to assume that, during phase 2, a Bernoulli trial
occurs every tb time units; the quantity tb primarily reflects
the time between successive transactions. With probability p,
the transaction is an insertion, and with probability (1 − p)

the transaction is a deletion. We assume that p > 1/2, since
the dataset is growing. The parameters tb and p can eas-
ily be estimated from observations of the arrival process.
We assume as a boundary condition that when the dataset
R is empty, the next transaction is, with probability 1, an
insertion.

Under the foregoing assumptions, the evolution of the
dataset and sample during phase 2 can be specified as a
Markov chain. Specifically, denote by Xn and Yn the size
of the sample and dataset, respectively, after processing the

123

186 R. Gemulla et al.

nth transaction during phase 2 (assuming that U < M ′, so
that phase 2 occurs). Then the stochastic process
{ (Xn, Yn) : n ≥ 0 } is a discrete-time Markov chain with dis-
crete state space S = { (x, y) ∈ N× N : x ≤ y }, where N

denotes the nonnegative integers. The transition probabili-
ties are given by

p ((x, y), (x + 1, y + 1)) = pq,

p ((x, y), (x, y + 1)) = p(1− q),

p ((x, y), (x − 1, y − 1)) = (1− p)x/y,

and

p ((x, y), (x, y − 1)) = (1− p) (1− (x/y))

for y ≥ 1 and 0 ≤ x ≤ y, and (at the boundary of the state
space) by

p ((0, 0), (1, 1)) = q,

and

p ((0, 0), (0, 1)) = (1− q).

The initial state of the chain (again under the assumption
that U < M ′) is given by (X0, Y0) = (U, |R|). Set � ={
(x, y) ∈ S : x = M ′

}
and denote by V the first passage

time to �:

V = inf { n ≥ 1 : (Xn, Yn) ∈ � } .
Then set

L =
{

0 if U ≥ M ′;
V if U < M ′.

Of course, the distribution of both U and V , and hence of
L , depends on q. The expected cost of phase 2 can now
be written as T2(q) = tb Eq [L], and the total resizing cost
can be written as T (q) = T1(q) + T2(q) = Eq [C], where
C = tag(U) + tb L . Several variations on this model are
briefly outlined in Appendix C.

Although the above model of resizing is relatively simple,
it is far from simple to find q∗, the optimal value of q. There
is no apparent closed-form expression in q for the expected
cost T (q). Moreover, as discussed in the sequel, it appears
difficult or impossible to compute T (q) numerically with-
out resorting to simulation, so that computational efficiency
becomes very important.

4.3.2 Numerical methods

As mentioned above, the main obstacle to determining q∗ is
the difficulty of computing T (q) = Eq [C] = Eq [tag(U)+
tb L], the expected resizing cost corresponding to a given
choice of q. There does not appear to exist a closed-form
expression for T (q). The expected cost of phase 1 can be

computed numerically without too much difficulty, based on
the formula

Eq [g(U)] =
|R|∑

u=0

Eq [B | U = u]P {U = u }

=
|R|∑

u=0

g(u)

(|R|
u

)
qu(1− q)|R|−u, (13)

because only a small number of terms contribute significantly
to the sum. Unfortunately, the quantity Eq [L] is not nearly as
tractable, because the distribution of L—being a first-passage
time for a two-dimensional Markov chain on an infinite state
space—is extremely complex. If we truncate the state space,
then, in principle, Eq [L] can be obtained as a solution to
a system of linear equations; see, e.g., [34, p. 17]. In prac-
tice, this system is so large, and has such complex struc-
ture (because the chain is two-dimensional), that solving the
system is infeasible. As discussed in Sect. 4.3.3 below, an
exception occurs for the special case where p = 1 (no dele-
tions). For this scenario, we can show that Eq [L | U] =
(M ′ −U)+/q, so that

Eq [L] =
|R|∑

u=0

(M ′ − u)+

q

(|R|
u

)
qu(1− q)|R|−u . (14)

Thus we can use standard deterministic numerical optimi-
zation algorithms (see, e.g., [38, Chap. 10]) to compute q∗.
Our focus, however, is on general sequences of insertions and
deletions, where the standard approach fails. In Appendix B,
we outline a stochastic-optimization approach that is applica-
ble for general transaction sequences. Specifically, we
describe an iterative, simulation-based “finite-difference sto-
chastic approximation” (FDSA) algorithm that converges to
q∗ with probability 1.

The techniques described in Appendix B can readily be
adapted to handle very complex cost models—all that is
required is that the transaction process and base-data sam-
pling mechanism can be simulated. Because these methods
can be relatively expensive and complex to program, is desir-
able to estimate q∗ with quick approximate methods.

4.3.3 An approximate optimization approach

In this section, we explore a closed-form approximation to
the function T (q) that is highly accurate in the insertion-
only case, and agrees closely with our numerical results in
the general case. This approximation immediately leads to
an effective approximation of q∗.

The first step in the approximation is to assume that U =
E[U] = |R|q with probability 1. Our motivation is that
the coefficient of variation (Var[U]/E2[U])1/2 is of order

123

Maintaining bounded-size sample synopses of evolving datasets 187

O(|R|−1/2), and |R| is typically very large. Thus U will be
close to uq with very high probability.

Under the above assumption, the approximate expected
phase 1 cost is

T̂1(q) = g(|R|q) = ta |R| ln [(|R| − M)/ (|R| − M − N (|R|q))]

=

⎧
⎪⎨

⎪⎩

0 if |R|q ≤ M;
ta |R| ln [(|R| − M)/ ((1− q)|R|)] if |R|q ∈ (M, M ′);
ta |R| ln

[
(|R| − M)/(|R| − M ′)

]
if |R|q ≥ M ′.

To approximate the expected phase 2 cost T2(q), first sup-
pose that p = 1, so that there are no deletion transactions.
Then the Markov chain simplifies dramatically, and we can
compute Eq [L | U] analytically. Specifically, given that U =
u, we have L ≡ 0 if u ≥ M ′ as before; if u < M ′, then
L − (M ′ − u), the number of Bernoulli rejections before the
sample size reaches M ′, has a negative binomial distribution:

P
{

L − (M ′ − u) = k
}

=
(

M ′ − u + k − 1

M ′ − u − 1

)
(1− q)kq M ′−u

for k ≥ 0. Appealing to [25, p. 199], we have E[L | U] =
(M ′ − U)+/q as asserted in Sect. 4.3.2, so that E[L] ≈
(M ′ − |R|q)+/q under the assumption, as above, that
P {U = |R|q } = 1. To handle the general case in which
p ∈ (1/2, 1], observe that the expected change in the dataset
size after each transaction is p ·1+(1− p)·(−1) = 2p−1, so
that the expected number of steps to increase the dataset size
by 1 is roughly equal to 1/(2p−1). In the insertion-only case,
the number of Bernoulli trials in phase 2 equals the number
of items added to the dataset. Thus, roughly 1/(2p−1) times
as many steps are required, on average, to finish phase 2 in
the presence of deletions, so we multiply our insertion-only
approximation of Eq [L] by a factor of 1/(2p−1). This leads
to an approximate expected phase 2 cost of

T̂2(q) = tb(M ′ − |R|q)+

q(2p − 1)
,

and the expected total time required to resize a sample is
approximately equal to T̂ (q) = T̂1(q) + T̂2(q). It is easy
to show that T̂ is convex and differentiable on the interval
(M/|R|, M ′/|R|).

We now choose q = q̂∗, where q̂∗ minimizes the function
T̂ . Note that the our search for q∗ can be restricted to the
interval [M/|R|, M ′/|R|], because T̂ (q) is strictly decreas-
ing on [0, M/|R|] and T̂ (q) ≡ T̂ (M ′/|R|) on [M ′/|R|, 1].
Thus, to compute q̂∗, first set

q0 = (1+ 4θ)1/2 − 1

2θ
, (15)

where θ = (ta/tb)(|R|/M ′)(2p − 1). If q0 ∈ (M/|R|,
M ′/|R|), then q0 satisfies T̂ ′(q0) = 0, and we take q̂∗ =
q0. Otherwise, we take q̂∗ to be either M/|R| or M ′/|R|,

depending upon which of the quantities T̂ (M/|R|) or
T̂ (M ′/|R|) is smaller.

The combined error introduced by assuming that
P {U = |R|q } = 1 and by replacing the harmonic sum
H(n, m) by ln (m/(n − 1)) appears to be negligible. Indeed,
when p = 1, we can compare our approximation to the true
expected cost, where the phase 1 cost is computed as in (13)—
with g(u) calculated using the true harmonic sum rather than
the logarithm—and the phase 2 cost is computed as in (14).
In preliminary experiments, the errors that we encountered
were typically on the order of 0.0001%. The more interesting
question concerns the magnitude of the error introduced by
our somewhat ad hoc adjustment for deletions. The exper-
iments in Sect. 6.5 strongly indicate that this latter type of
error is also negligible.

It is possible to modify the above methodology to deal with
systems and applications not covered by the foregoing anal-
ysis. We give several illustrative examples in Appendix C.

5 Merging

The foregoing sections have implicitly assumed that the data-
set R and sample S are each maintained at a single location
and processed purely sequentially. In practice, it is often the
case that R is partitioned across several nodes; see [4] for
an example. In this case, it may be desirable to indepen-
dently maintain a local sample of each partition and com-
pute a global sample of the complete dataset (or, in general,
of any desired union of the partitions) by merging these local
samples. This approach is often superior, in terms of paral-
lelism and communication cost, to first reconstructing R and
sampling afterwards.

We therefore consider the pairwise merging problem,
which is defined as follows. Given partitions R1 and R2 of R
with R1∪R2 = R and R1∩R2 = ∅, along with two mutually
independent uniform samples S1 ⊆ R1 and S2 ⊆ R2, derive
a uniform sample S from R by accessing S1 and S2 only.
In some scenarios, it suffices to maintain the node samples
separately and merge them on demand, e.g., in response to
a user query. In other scenarios, it may be the case that R1

and R2 are merged into R at the same time that S1 and S2

are merged into S; it may then be desirable to incrementally
maintain S in the presence of future transactions on R.

Brown and Haas [4] provide an algorithm, called
HRMerge, that is designed to solve the merging problem
in an insertion-only environment; the algorithm makes no
assumptions about the method used to create the uniform
samples S1 and S2. As described in Sect. 5.1, the algorithm
subsamples each of S1 and S2, and returns the union of the
subsamples as the merged sample S. The size of the merged
sample is |S| = min(|S1|, |S2|). It follows that, in the pres-
ence of deletions, a naive application of HRMerge can result

123

188 R. Gemulla et al.

in very small merged samples even when the target sample
sizes Mi are all equal, due to skew in the sample sizes caused
by uncompensated deletions. Specifically, if a given sam-
ple has many uncompensated deletions, then this very small
sample will limit the size of any merged sample in which it
participates.

We provide a solution to this problem for scenarios in
which each sample is incrementally maintained using the RP
algorithm, perhaps with occasional resizing as described in
Sect. 4. Our new extension of HRMerge, called RPMerge,
yields larger merged samples and is resistant to skew; more-
over, the sample produced by RPMerge is accompanied by
appropriate values for the counters cb and cg, so that incre-
mental maintenance can be continued. The key idea under-
lying RPMerge is that, conceptually, we do not immediately
purge a deleted item from the dataset (or the sample, if pres-
ent), but rather put it into a “transient” state, and wait until
after the merge to purge transient items. Thus, at merge time,
the dataset and sample contain both “real” items and transient
items that have not yet been purged; we refer to the dataset and
sample as being “augmented” with transient items. We run
the HRMerge algorithm on the augmented samples to obtain
a merged augmented sample, and then purge the transient
items to produce the final merged sample. This hypothetical
algorithm is illustrated in Fig. 2; real and transient items are
shown as white and gray numbered circles, respectively.

The advantage of the hypothetical algorithm is that the
sample size produced by the execution of HRMerge is min
(|S+1 |, |S+2 |), where S+1 and S+2 are the augmented samples.
Since |S+i | ≥ |Si | for i = 1, 2, we can see intuitively that
the hypothetical algorithm can produce larger merged sam-
ples than naive HRMerge. As shown in Sect. 5.4, the merged

1

1

7

7

2

3
4

4

5

5

6

R1
+

S1
+

S+

S

R1

RP(= 4)M1

RP()1
-

2
-

d1 = 2

Z1 = 3

8

12

12

9
11

11

5

5 11

11

10

10

13

13

14

14

1

5 11

1

1

14

14

R2
+

S2
+

R2 d2 = 3

Z2 = 2

X1 = 2

Y1 = 2 Y2 = 1

X2 = 2

RP(= 5)M2

Fig. 2 A hypothetical merging algorithm

sample size depends only on the size of the individual
partitions and the global number of uncompensated dele-
tions. If all local samples have been generated using the same
size parameter M , RPMerge is insensitive to skew in local
sample sizes due to uncompensated deletions.

To obtain the actual RPMerge algorithm, we determine
the probability distribution of Y1 and Y2—the number of real
items that S1 and S2 ultimately contribute to S in the hypothet-
ical algorithm. We then generate realizations y1 and y2 of Y1

and Y2 directly, and randomly sample y1 items from S1 and y2

items from S2 to form the merged sample S. The only remain-
ing task is to determine the appropriate values for the counters
cb and cg in the merged sample. To this end, we show that the
result of running the hypothetical algorithm described above
is statistically identical to the result of executing RP on the
merged dataset R using a distinguished transaction sequence
that is derived from the original sequences γ1 and γ2 that
were used to create S1 and S2. The resulting counter values
for the latter scenario are easy to determine, and are assigned
to the counters for the sample produced by RPMerge. The
foregoing statistical equivalence also permits easy calcula-
tion of the probability distribution for the size of the merged
sample; in Sect. 5.4, we use this distribution to show that
RPMerge typically produces larger sample sizes than naive
HRMerge in expectation.

Sections 5.1–5.4 contain the details of the derivation and
analysis of RPMerge. In Sect. 5.5, we briefly discuss other
merging scenarios in which one or both of S1 and S2 are in
the process of being resized when the merge occurs.

5.1 Naive HRMerge

The HRMerge algorithm accesses S1 and S2 to create a uni-
form sample S of size m = min(|S1|, |S2|). The basic idea is
to select X1 random items from S1 and X2 = m − X1 items
from S2 to include in S, with X1 being hypergeometrically
distributed:

P { X1 = k } = H(k; |R1| + |R2|, |R1|, m),

where

H(k; N , N ′, M) =
(

N ′

k

)(
N − N ′

M − k

) / (
N

M

)

denotes a hypergeometric probability.
We can apply HRMerge, unchanged, in our setting and,

after merging, use the RP algorithm to incrementally main-
tain S; to initialize RP, set cb = cg = 0 after the merging
process has been completed. Observe, however, that the size
of the merged sample is limited by the smaller of the two
input samples. In an insertion-only environment such as the
one considered in [4], we have |S1| = M1 and |S2| = M2

after a sufficiently large number of transactions, where M1

and M2 are the respective sample-size bounds used by the

123

Maintaining bounded-size sample synopses of evolving datasets 189

RP algorithm. The size of the sample produced by HRMerge
is then M = min(M1, M2). In the presence of deletions,
however, we often have |S1| < M1 and |S2| < M2, and the
merged sample size is |S| = min(|S1|, |S2|) < M . As pre-
viously discussed in Section 4.1, there is no way to increase
the sample size without accessing base data. We show in the
sequel that the RPMerge scheme can achieve a sample size
of M even when |S1| < M1 and/or |S2| < M2; if |S| < M ,
then future insertions can be exploited to grow the sample to
size M without accessing base data, since RPMerge provides
RP counter values for the merged sample.

5.2 Deferring deletion transactions

Our derivation and analysis of RPMerge rest on Theorem 5
below. This result implies that, when analyzing the statis-
tical properties of the output of the RP algorithm, we can
always assume without loss of generality that all deletions
are uncompensated deletions and are located at the end of
the transaction sequence. Fix a sample-size bound M and,
for a feasible finite sequence of transactions γ , denote by
R(γ), S(γ), Cb(γ), Cg(γ), and d(γ), the dataset, sample,
counter values, and number of uncompensated deletions that
result from processing the transaction sequence γ using the
RP algorithm with parameter M .

Theorem 5 For any finite feasible sequence γ , there exists
a finite feasible sequence γ ′, comprising a subsequence of
insertion transactions followed by a (possibly empty) subse-
quence of deletion transactions, such that

R(γ) = R(γ ′) and d(γ) = d(γ ′) (16)

and

P
{

S(γ) = A, Cb(γ) = cb, Cg(γ) = cg
}

= P
{

S(γ ′) = A, Cb(γ
′) = cb, Cg(γ

′) = cg
}

for all A ⊆ R(γ) and cb, cg ≥ 0 with cb + cg = d(γ).

Proof Let γ ′ comprise |R(γ)| insertions, one for each item
in R(γ), followed by the insertion of d(γ) arbitrary distinct
items from T \ R(γ), followed by the deletion of each of
the latter d(γ) items. Within each of these subsequences,
the particular order in which individual items are inserted or
deleted can be arbitrary. The equalities in (16) follow imme-
diately from the construction of γ ′. Let v(γ) be the largest
sample size seen so far under sequence γ and similarly for
v(γ ′). By (16) and (2), we have v(γ) = v(γ ′), so that, by
(11), P { S(γ) = A } = P { S(γ) = A } for all A ⊆ R(γ),
and hence P { |S(γ)| = k } = P { |S(γ)| = k } for all k ≥ 0.
The final assertion of the theorem now follows from (5). ��

5.3 RPMerge

Recall that the HRMerge algorithm creates a random sam-
ple S by selecting X1 items from S1 and X2 items from S2,
where the distributions of the random variables X1 and X2

are carefully designed to preserve uniformity. The size of S is
random with P { |S| ≤ m } = 1, where m = min(|S1|, |S2|)
as before. Our new RPMerge algorithm operates by selecting
Y1 items from S1 and Y2 items from S2. The distributions of
Y1 and Y2 are different from X1 and X2, and are such that S
is still uniform, but the probability distribution of the sam-
ple size |S| has superior properties to the distribution under
HRMerge. As discussed previously, the RPMerge algorithm
“simulates” a hypothetical algorithm that we now describe
in detail.

Suppose that, for j = 1, 2, we have run the RP algorithm
with parameter M j to obtain sample S j ⊆ R j , and that there
are d j uncompensated deletions. As a technical matter, we
assume henceforth that v j = min(M j , |R j | + d j), the maxi-
mum sample size seen so far, satisfies v j = M j .5 Denote by
γ j the transaction sequence that produced R j and S j . Using
Theorem 5, we can assume without loss of generality that
γ j = γ+j γ−j , where γ+j consists solely of insertions and γ−j
consists solely of deletions. The sequence γ+j corresponds
to the insertion of the |R j | “real” items that comprise R j ,
followed by the insertion of d j “transient” items in T \ R j

that will ultimately be deleted from the dataset by processing
the transactions in γ−j .

Our hypothetical algorithm combines the RP algorithm
with the HRMerge algorithm, deferring the purging of tran-
sient items from the merged sample until the final step. Spe-
cifically, for j = 1, 2, the algorithm creates an intermediate
augmented dataset R+j = R(γ+j) and augmented sample

S+j = S(γ+j) by running RP independently on the two parti-
tions, using sample-size bound M j and transaction sequence
γ+j on partition j . Dataset R+j comprises |R j | real items and

d j transient items, and sample S+j comprises Z j real items
and M j − Z j transient items, where

P
{

Z j = k
} = H(k; |R j | + d j , |R j |, M j). (17)

The hypothetical algorithm now applies the HRMerge algo-
rithm to merge the augmented samples S+1 and S+2 . HRMerge
selects X1 items from S+1 and X2 items from S+2 , where

P { X1 = k, X2 = M − k }
= H(k; |R1| + d1 + |R2| + d2, |R1| + d1, M). (18)

5 Otherwise, we have S j = R j and the merging problem can be trivi-
ally solved. For example, if S1 = R1, we continue the RP algorithm on
S2 using the items of S1, in any order, as input.

123

190 R. Gemulla et al.

Observe that, of the X j items from S+j added to S+, precisely
Y j items are real, where

P
{

Y j = k | X j , Z j
} = H(k;M j , Z j , X j). (19)

The hypothetical algorithm concludes by running the RP
algorithm on the sequence γ−1 γ−2 , starting with augmented
sample S+ and counter values cb = cg = 0, and using
sample-size bound M . This final processing step has the
effect of removing all transient items from S+, thereby trans-
forming S+ into the final sample S. Figure 2 depicts the
hypothetical algorithm in action.

We now determine appropriate counter values for the
merged sample, as well as the probability distribution for the
size of the merged sample. First observe that, by Theorem 1
and results in [4], the sample S+ that results from the execu-
tion of HRMerge by the hypothetical algorithm is statistically
identical to the sample S(γ+1 γ+2) ⊆ R(γ+1 γ+2) obtained by
running RP on the dataset R, using the sequence γ+1 γ+2 . Thus
the final merged sample produced by the hypothetical algo-
rithm is statistically identical to the sample S(γ+1 γ+2 γ−1 γ−2)

produced by running RP on R using the sequence
γ+1 γ+2 γ−1 γ−2 , starting with counter values cb = cg = 0.
Observe that, after running RP on R in this manner, the final
counter values are cb = M − |S| and cg = d1 + d2 − cb.
Indeed, after the transactions in γ+1 γ+2 have been processed,
the sample size is M and the counter values for RP are
given by cb = cg = 0 since no deletions have occurred
so far; after processing the remaining sequence transactions
in the sequence γ−1 γ−2 , the deficit M − |S| = cb corre-
sponds precisely to the bad deletions, and the remaining
d1 + d2 − cb deletions are good. Since the hypothetical
algorithm produces output just as if RP had been run on
R, we can start with these counter values when maintain-
ing the merged sample S. Finally, by Theorem 2, the prob-
ability distribution for the size of the sample produced by
running RP on R, and hence the probability distribution
for sample size produced by the hypothetical algorithm, is
given by

P { |S| = k } = H(k; |R1|+ |R2|+d1+d2, |R1|+ |R2|, M)

(20)

for 0 ≤ k ≤ M , where M = min(M1, M2). We show below
that, by construction, the output of the actual RPMerge algo-
rithm is statistically identical to the output of the hypothetical
algorithm, and the above results on counter values and sam-
ple-size distributions apply to RPMerge as well.

We now specify the RPMerge procedure. Ignoring tran-
sient items, we see that the net effect of the hypothetical
algorithm is to select, for j = 1, 2, precisely Y j items from a
uniform sample S∗j ⊆ R j , where the sample size Z j = |S∗j |

Algorithm 4 Sample merging
1: N j : cardinality of partition R j (j = 1, 2)
2: S j : sample of R j
3: M j : sample-size bound used by RP for generating S j
4: d j : number of uncompensated deletions for R j
5:
6: M ← min(M1, M2)

7: X1 ← Hypergeometric(N1 + N2 + d1 + d2, N1 + d1, M)

8: Y1 ← Hypergeometric(M1, |S1|, X1)

9: X2 ← M − X1
10: Y2 ← Hypergeometric(M2, |S2|, X2)

11:
12: S← { Y1 random items from S1 } ∪ { Y2 random items from S2 }
13: cb = M − |S|
14: cg = d1 + d2 − cb
15:
16: return (S, cb, cg)

is distributed according to (17) and Y j —conditionally on
|S∗j | and an auxiliary random variable X j as in (18)—is
distributed according to (19). Observe that, by Theorem 2,
the distribution of |S∗j | is identical to that of |S j |, so we
can take S j for S∗j in the procedure. Thus we generate
X j according to (18) and then Y j according to
H(· ;M j , |S j |, X j).

In Algorithm 4, we give the complete pseudocode
for the merging procedure. We make use of a function
Hypergeometric that generates samples from the hyper-
geometric distribution; see [46, p. 101] or [26] for efficient
rejection algorithms, or refer to a statistical library that
includes this function, such as [6] or [16].

5.4 Comparison of expected sample sizes

The sample size |S| produced by RPMerge is hypergeomet-
rically distributed as in (20) and, by Theorem 2,

E[|S|] = |R1| + |R2|
|R1| + |R2| + d1 + d2

M.

As indicated previously, the sample size produced by
RPMerge can be strictly larger than that produced by a naive
application of HRMerge. For example, ignoring the tran-
sient items in the scenario of Fig. 2, we see that RP pro-
duces samples S1 ⊆ R1 and S2 ⊆ R2 with |S1| = 3 and
|S2| = 2, so that HRMerge can produce a sample of at most
min(|S1|, |S2|) = 2 items. In contrast, RPMerge has pro-
duced a sample S that contains three items.

We now show that RPMerge often performs better in terms
of average sample size, also. In the common case where both
samples have been generated using the same sample size
parameter, the following theorem asserts that RPMerge pro-
duces samples that are at least as large, on average, as those
produced by HRMerge. Indeed, the expected sample size for
RPMerge is often strictly larger.

123

Maintaining bounded-size sample synopses of evolving datasets 191

Theorem 6 Suppose that |R j | > 0 and |R j | + d j > M j for
j = 1, 2. If M1 = M2 = M, then

E[min(|S1|, |S2|)] ≤ E[|S|], (21)

with equality holding if and only if d1 = d2 = 0.

The assumptions that |R j | > 0 and |R j | + d j > M j for
j = 1, 2 virtually always hold in practical cases of interest.
Indeed, the latter assumption is just slightly stronger than our
running assumption that v j = M j . To prove Theorem 6, we
need the following lemma.

Lemma 1 For any random variables X and Y , we have

E[min(X, Y)] ≤ min(E[X], E[Y]),
and the above inequality is strict if P { X < Y } > 0 and
P { X > Y } > 0.

Proof Observe that

E[min(X, Y)] = E[X I (X ≤ Y)+ Y I (X > Y)]
= E[X]− E[X I (X > Y)]+ E[Y I (X > Y)]
= E[X] − E[(X − Y)I (X > Y)],

where I (A) = 1 if event A occurs and I (A) = 0 otherwise.
Thus E[min(X, Y)] ≤ E[X], and the inequality is strict if
P { X > Y } > 0. Similarly, E[min(X, Y)] ≤ E[Y], and the
inequality is strict if P { X < Y } > 0. The desired result
follows immediately. ��
Proof (Theorem 6) First suppose that d1 = d2 = 0. Since
|R j | + d j > M , we have |S1| = M , |S2| = M , and |S| =
M , each with probability 1, so that (21) holds with equal-
ity. Otherwise, suppose that d1 + d2 > 0 and, without loss
of generality, that E[S1] ≤ E[S2]. By Theorem 2, the latter
assumption is equivalent to

|R1|
|R1| + d1

M ≤ |R2|
|R2| + d2

M.

Multiply by (|R1|+d1)(|R2|+d2) and add (|R1|2+|R1|d1)M
to both sides of the inequality to obtain

|R1|(|R1| + |R2| + d1+ d2)M ≤ (|R1| + |R2|)(|R1| + d1)M.

Divide both sides by (|R1| + |R2| + d1 + d2)(|R1| + d1) to
show that E[|S1|] ≤ E[|S|], where equality holds if and only
if E[|S1|] = E[|S2|]. Using Lemma 1, we have

E[min(|S1|, |S2|)] ≤ min (E[|S1|], E[|S2|]) (22)

= E[|S1|] ≤ E[|S|]. (23)

If E[|S1|] < E[|S2|], then the inequality in (23), and hence in
(21), is strict. Otherwise, we claim that P { |S1| > |S2| } > 0
and P { |S1| < |S2| } > 0, so that, by Lemma 1, the inequality

in (22)—and hence in (21)—is strict, and the desired result
follows.

To see that the above claim holds, suppose that E[|S1|] =
E[|S2|]. This equality and the fact that d1 + d2 > 0 together
imply that both d1 and d2 are positive. For j = 1, 2, denote
by l j = max(0, M − d j) and u j = min(M, |R j |) the min-
imum and maximum possible values for |S j |. It is straight-
forward to show that l j < u j , given that d j > 0 and, under
our assumptions, |R j | > 0 and |R j | + d j > M . Moreover,
by Theorem 2, P

{ |S j | = k
}

> 0 for l j ≤ k ≤ u j , and
therefore

max(l1, l2) < E[|S1|] = E[|S2|] < min(u1, u2).

It follows that the intervals [l1, u1] and [l2, u2] strictly over-
lap, i.e., their intersection contains at least two integer values,
say, i and i + 1. Since RP is executed independently on the
two partitions, we have

P { |S1| > |S2| } ≥ P { |S1| = i + 1, |S2| = i }
= P { |S1| = i + 1 } P { |S2| = i } > 0.

A symmetric argument shows that P { |S1| < |S2| } > 0. ��

5.5 Other merging scenarios

The foregoing discussion has assumed that the two samples
to be merged are each being maintained using the RP algo-
rithm. In practice, other merging scenarios can arise if one
or both of the samples is in the process of being resized, as
described in Sect. 4. We briefly describe how to handle these
situations.

If both S1 and S2 are being resized, then they can be viewed
as BERN(q1) and BERN(q2) samples, respectively. For any
sampling rate q with 0 < q ≤ min(q1, q2), the samples S1

and S2 can be merged to form a BERN(q) sample S using the
following technique [4]: For j = 1, 2, take a BERN(q/q j)

subsample of S j to create a BERN(q) sample S′j . Then set
S = S′1 ∪ S′2. If |S| is too small, then the merged sample S
can be allowed to drift up to a new sample size as in phase 2
of the resizing algorithm; if |S| is too large, then S can be
subsampled using, for example, the methods given in [44].

Now suppose that S1 is being resized and S2 is not. We can
view S1 as having been produced by the RP algorithm with
sample-size bound M = |S1|, and we can take the counter
values as cb = cg = 0. To obtain a merged sample S, we
now run the RPMerge algorithm as described in Sect. 5.3.

6 Experiments

We conducted an experimental study to (i) evaluate the sta-
bility and performance of the RP scheme with respect to the
various algorithms mentioned in Sect. 2, (ii) to compare the
numerical and approximate methods for tuning the resizing

123

192 R. Gemulla et al.

parameter q, and (iii) to compare the HRMerge and RPMerge
algorithms for merging samples.

In summary, we found that RP has the following desirable
properties:

– When the fluctuations of the dataset size over time are not
too extreme, RP produces sample sizes that are as stable
as those produced by slower algorithms that access the
base data.

– The speed of RP is clearly faster than any sampling scheme
that requires access to the base data.

For the optimizations in Sect. 3.4, we found that

– The first optimization never slows down RP, and can
speed up RP when the dataset is growing or when the
dataset is stable and the transaction stream contains long
sequences of insertions.

– The second optimization can slow down RP when the
dataset is stable and the number of insertions that occur
between a pair of successive deletions tends to be small;
the optimization is beneficial when the dataset is
growing—e.g., in between resizing operations—or when
the dataset is stable and the transaction stream contains
long sequences of insertions.

For the resizing algorithm, we found that

– The Monte Carlo-based numerical approach of
Appendix B and the quick approximation approach of
Sect. 4.3.3 agree very closely with respect to both the
cost function T (q) and the optimal parameter value q∗.
These results validate the accuracy of the quick approxi-
mate tuning method.

– The time needed for resizing has low variance, so that the
algorithm has stable performance.

– A good choice of q can have a significant impact on the
resizing cost.

For the merging algorithm, we found that

– In most cases, RPMerge produces significantly larger
samples than HRMerge.

– As predicted by theory—see (20)—the sample size pro-
duced by RPMerge is dependent on the total number of
uncompensated deletions but independent of their distri-
bution among the individual partitions.

– The relative sample-size advantage of RPMerge over
HRMerge grows as the total number of uncompensated
deletions increases.

6.1 Experimental setup

We implemented the new RP algorithm, as well as the CAR,
CARWOR, and RSR schemes, using Java 1.6. We employed
an indexed in-memory array to efficiently support the dele-
tion of items.

All of the experiments used synthetic data; since our focus
is on uniform sampling of unique data items, the actual data
values are irrelevant. We ran our experiments on a variety of
systems and, for most of the experiments, measured the num-
ber of operations instead of actual processing times in order
to facilitate meaningful comparisons. Because the sampling
algorithms in this paper can potentially be used in a wide
range of application scenarios, our approach has the advan-
tage that the results reported here can be customized to any
specific scenario by appropriately costing the various oper-
ations. For example, if the base data corresponds to a single
relational table, then access to this data can be costed more
cheaply than if the base data is, say, a view over a join query.
Unless otherwise stated, a reported result represents an aver-
age over at least 100 runs.

We assumed that the deletions and insertions are clustered
into batches of b operations, and simulated the sequence of
dataset operations by randomly deciding whether the next b
operations are insertions or deletions. Our default value was
b = 1, but we also ran experiments in which we systemati-
cally varied the value of b to investigate the effect of different
insertion/deletion patterns.

6.2 Sample size

We evaluated the sample-size stability for the various algo-
rithms by executing a randomly generated sequence of
5,000,000 insertion/deletion operations while incrementally
maintaining a sample with a target size (and upper bound) of
100,000 items. To create a scenario in which the dataset of
interest is reasonably large, we restricted the first 1,000,000
operations to be insertions only. We used a lower bound of
80,000 items for the RSR algorithm. The goal of this experi-
ment is to illustrate the qualitative behavior of the algorithms,
and so we did not average over multiple runs. For each algo-
rithm, we plotted the sample size as it evolved over time.6

The upper part of Fig. 3 displays results for the sampling
schemes that access the base data, and the lower part dis-
plays results for the RP algorithm, which avoids base-data
accesses.

As can be seen, CAR and CARWOR are optimal, since
they are able to maintain the sample at its upper bound. These
algorithms, however, need to access the base data. RSR also
needs to access the base data, but the sample size is less sta-
ble than that of CAR or CARWOR; it fluctuates in the range

6 We use “time” and “number of operations” synonymously.

123

Maintaining bounded-size sample synopses of evolving datasets 193

RSR
CARWOR

CAR

Sa
m

pl
e

Si
ze

(%
)

No. of Operations (millions)

543210

100

90

80

70

RPSa
m

pl
e

Si
ze

(%
)

No. of

543210

100

90

80

70

Operations (millions)

Fig. 3 Evolution of sample size over time

RSR
CARWOR

CAR
RP

A
vg

.S
am

pl
e

Si
ze

(t
ho

us
an

ds
)

Dataset Size (millions)

1086420

100

95

90

85

80

75

Fig. 4 Dataset size and avg. sample size

[0.8M, M]. We see that the sample sizes produced by RP are
almost indistinguishable from those of CAR and CARWOR.

We next measured the time-average sample size for a range
of dataset sizes, providing further insight into the impact of
deletions. For each dataset size, we used a sequence of inser-
tions to create both the dataset and the initial sample, and
then measured changes in the sample size over time as we
inserted and deleted 10,000,000 items at random. The results
are shown in Fig. 4. Again, RP performs comparably to CAR
and CARWOR, in that it maintains a sample size close to the
upper bound M . In contrast, the time-average sample sizes
for RSR are smaller than those of the other algorithms. The
reason for this behavior is that the RSR algorithm actively
adjusts the sample size only periodically.

The foregoing experiments use a cluster size of b = 1,
which means that the fluctuations in the dataset size are rela-
tively small. We expect that, when the dataset size fluctuates
strongly, so does the sample size when base-data access is

RPR
RSR

CARWOR
CAR

RP

A
vg

.S
am

pl
e

Si
ze

(t
ho

us
an

ds
)

Cluster Size
2202182162142122102826242220

100

95

90

85

80

Fig. 5 Cluster size and avg. sample size

disallowed. Specifically, the sample size produced by RP
depends on the number of uncompensated deletions, which
in turn is determined as the difference between the current
dataset size and the maximum dataset size seen so far. To
study this effect experimentally, we varied the magnitude of
the fluctuations by varying the cluster size b. We started with
a dataset consisting of 10,000,000 items and a sample size of
100,000. We then performed 223 operations and averaged the
sample size after every b operations. The results for different
values of b are shown in Fig. 5.

As can be seen, the sample sizes produced by algorithms
that access base data are independent of the cluster size,
whereas those produced by RP depend on the cluster size;
the higher the variance of dataset size, the lower the average
sample size. Due to high peaks in dataset size, RP may fail
to maintain a sufficiently large sample if the cluster size is
large with respect to the dataset size. In this extreme case,
base-data access is required in order to enlarge the sample.
A combination of RP and resizing (RPR) can handle even
this situation while minimizing accesses to the base data.
Note that RPR guarantees a lower bound on the sample size,
whereas RP does not.

In a final experiment, we measured the overall cost of
the various sampling schemes relative to the average sam-
ple size produced by them, for various cluster sizes. (Our
cost model is described in the next section.) The results are
shown in Fig. 6. RSR performs worst since it is expen-
sive and produces a non-optimal sample size; both CAR
and CARWOR are more stable and less expensive. Over-
all, the RP-based schemes are clearly superior. As indicated
above, RPR performs comparably to RP when the cluster
sizes are reasonably large. The extra cost of RPR comes into
play when the fluctuations in the database size are extreme.
Indeed, when the cluster size exceeds 220, the sample is
refilled after almost every deletion block, and RPR reduces to
CARWOR.

123

194 R. Gemulla et al.

RPR
RSR

CARWOR
CAR

RP

R
el

at
iv

e
C

os
t

Cluster Size

2202182162142122102826242220

100

10

1

0.1

Fig. 6 Cluster size and relative cost

6.3 Performance (base-data and sample accesses)

To evaluate the relative cost of the sampling algorithms, we
ran them using different dataset sizes while counting the
number of dataset reads and sample writes. These two fac-
tors strongly influence the performance of the algorithms.
Again, we created a sequence of 10,000,000 insertions and
deletions and averaged the results over various independent
runs.

Figure 7 depicts the number of accesses to base data for
the different algorithms. Because it must periodically recom-
pute the entire sample, RSR requires more base-data accesses
than any other sampling scheme. Both CAR and CARWOR
perform better than RSR, with CARWOR incurring more
base-data accesses than CAR due to duplicate removal. All
of these algorithms require fewer accesses to a larger dataset
than to a smaller one because, for a bounded-size sample,
the effective sampling fraction drops with increasing dataset
size, so that frequency of deletions from the sample drops
as well. Note, however, that if large datasets are subject to
modifications more often than small ones, then this effect
may vanish. Finally, observe that, because RP never requires

RSR
CARWOR

CAR
RP

D
at

as
et

R
ea

ds
(m

ill
io

ns
)

Dataset Size (millions)

1086420

10

1

0.1

0.01

Fig. 7 Number of dataset reads

RSR
CARWOR

CAR
RP

Sa
m

pl
e

W
ri

te
s

(m
ill

io
ns

)

Dataset Size (millions)

1086420

10

1

0.1

Fig. 8 Number of sample writes

RSR
CARWOR

CAR
RP

To
ta

lC
os

t(
m

ill
io

ns
)

Dataset Size (millions)

1086420

100

10

1

0.1

Fig. 9 Combined cost

access to the base data, its cost curve is indistinguishable
from the x-axis.

Figure 8 shows the number of write accesses to the sample
for the different sampling schemes. Again, RSR is the least
efficient algorithm, because every recomputation completely
flushes the current sample and refills it using base data. The
other algorithms perform comparably; indeed, the curves for
CAR, CARWOR, and RP coincide.

Figure 9 shows the combined cost of sample and popula-
tion accesses, assuming that the latter type of access is ten
times as expensive as the former. (In many applications, the
relative cost of population accesses might be significantly
higher.) Again, RP clearly outperforms sampling schemes
that require base data access.

6.4 Performance (CPU)

We next evaluated the performance of RP in terms of CPU
cost. Sampling schemes that require base-data accesses were
not considered, because these accesses typically outweigh
the computational cost. We implemented RP with none of
the optimizations from Sect. 3.4, with the optimization of the

123

Maintaining bounded-size sample synopses of evolving datasets 195

RP++
RP+

RPIn
se

rt
io

ns
/S

ec
on

d
(m

ill
io

ns
)

Cluster Size

2202182162142122102826242220

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

Fig. 10 Throughput, stable dataset

reservoir step (RP+), and with both optimizations (RP++).
We used an indexed in-memory data structure to store the
individual items. Under our experimental parameter settings,
the addition of an item to the data structure takes 1.1µs, the
replacement of an item by another one 2.2µs, the look-up
cost is 0.9µs and the removal of an item takes 3.3µs. To gen-
erate random numbers, we used the “Mersenne Twister” of
Matsumoto and Nishimura [32]; each random number takes
approximately 0.6µs to produce.7 Each of the above times
includes the measurement time.

For each of our experiments, we generated a dataset con-
sisting of 10 million items and computed initial samples of
size 100,000. We then generated a sequence of 223 insertion
and deletion transactions and measured the average through-
put (transactions per second) separately for both types of
transactions. We found that the time to process a deletion
transaction is almost identical for all versions of RP, and we
therefore focus our discussion on insertion transactions.

Figure 10 displays the throughput performance on a sta-
ble dataset for various cluster sizes b. First, observe that RP
and RP+ perform similarly. The reason is that RP+ optimizes
the reservoir step, which is executed very infrequently if the
dataset is stable and does not fluctuate strongly. In contrast,
when b is small, RP++ slows down the sampling process due
to frequent invalidations of the skip counter K ′. For b ≥ 16,
RP++ performs better than both RP and RP+.8

Figure 11 plots the throughput of the insertion transac-
tions on a growing dataset. In this experiment, we fixed
b = 16 and varied the fraction of insertion transactions
from p = 0.5 (stable) to p = 1 (insertion-only). As p
increases, more reservoir steps and less pairing steps are exe-
cuted while running RP. Since the former are more expen-
sive (replacement of an item) than the latter (addition of an

7 Surprisingly, the weaker PRNG shipped with Sun’s JDK requires
0.7µs and is therefore slower.
8 An implementation of random pairing may switch from RP+ to RP++
and vice versa, depending on the incoming transaction stream.

RP++
RP+

RPIn
se

rt
io

ns
/S

ec
on

d
(m

ill
io

ns
)

Percentage of Insertions

100%90%80%70%60%50%

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

Fig. 11 Throughput, growing dataset

item), the performance of RP degrades as p grows. However,
the optimized schemes RP+ and RP++ partly compensate
for this effect by generating (far) fewer random numbers as
the fraction of insertions increases, so that these optimized
algorithms outperform plain RP. Note that RP+ and RP++
coincide when p = 1, since, in this case, no pairing step is
executed.

6.5 Resizing

We next compared the quick approximate method of
Sect. 4.3.3 for computing the optimal parameter q∗ to the
numerical methods of Sect. 4.3.2 and Appendix B. Through-
out, unless specified otherwise, we used initial and final sam-
ple sizes of M = 100,000, M ′ = 200,000, respectively, and
also set |R| = 1,000,000. In addition, we set p = 0.6 and
tb = 1 − ms; recall that p represents the probability that a
transaction is an insertion, and tb is the expected time between
Bernoulli trials during phase 2. The experimental results
for various other choices of parameters were qualitatively
similar.

Figure 12 displays the expected resizing cost T (q) for
various values of q, when the base-data access cost ta equals

Simulated
Approximate

ta = 90

ta = 50

ta = 20

T
(q

)×
10

00
se

co
nd

s

q
0.20.180.160.140.120.1

12

10

8

6

4

2

Fig. 12 Expected resizing cost T (q)

123

196 R. Gemulla et al.

FDSA
Approximate

q∗

Base-data access cost ta

9080706050403020

0.2

0.18

0.16

0.14

0.12

0.1

Fig. 13 Optimal value of q

20, 50, and 90 ms.9 These choices of ta illustrate the three
possible behaviors (increasing, decreasing, and internal min-
imum point) for the T function discussed in Appendix B.
For each scenario, the approximate cost T̂ as computed in
Sect. 4.3.3 is represented as a solid curve. Superimposed
on this curve are points that represent estimates of T for
various values of q; each point represents an average over
10 simulation replications. As expected, when the base-data
access cost ta is relatively small, the cost function achieves
its minimum value at q = 0.2, and the optimal strategy is to
increase the sample size to M ′ during phase 1, and not execute
phase 2. When ta is relatively large, the cost function achieves
its minimum value at q = 0.1, and the optimal strategy is
to not sample the base data at all, and increase the sample
size to M ′ exclusively during phase 2. For an intermediate
value of ta , the optimal value of q falls in between 0.1 and
0.2—for this example, q∗ ≈ 0.132—so that the resizing
work is allocated between the two phases. Note that, in this
example, the expected costs corresponding to the best and
worst choices of q can vary by a factor of two. Also note
that the approximate and simulated costs are extremely close
to each other. This high degree of consistency, which was
observed for all parameter values that we investigated, incre-
ases our confidence in the quick approximate cost model. Our
final observation is that the simulated resizing times showed
very little variability from one simulation run to the next;
the standard deviation of the resizing time was always less
than 1% of the average resizing time. This indicates that the
performance of the resizing algorithm is stable.

The high accuracy of the cost approximation leads us to
expect that our numerical and approximate methods will also
yield similar estimates for q∗. This expectation is fulfilled, as
shown in Figs. 13 and 14. Figure 13 shows the optimal value
q∗ for various values of ta . As before, the solid line repre-
sents values computed via the quick approximation method

9 A complete recomputation of the sample from scratch therefore takes
4,000s, 10,000s and 18,000s, respectively.

Simulated
Approximate

T
(q

∗)×
10

00
se

co
nd

s

Base-data access cost ta

9080706050403020

5.5

5

4.5

4

3.5

3

2.5

2

Fig. 14 Optimal resizing cost T (q∗)

of Sect. 4.3.3, and the circular points represent numerical
solutions, each obtained from 100 iterations of the FDSA
algorithm of Appendix B. As can be seen, the results for the
two different methods agree very closely, providing further
justification for the quick approximate method. The slightly
anomalous result at ta = 38 appears to be due to a random
fluctuation; Figure 14 shows, however, that even when the
value of q∗ produced by FDSA differs slightly from the result
of the approximate closed-form model, the resulting approx-
imated and simulated optimal resizing costs do not differ
perceptibly.

6.6 Merging

We compared the RPMerge algorithm given in Sect. 5 to the
naive application of the HRMerge algorithm in [4]. Since
RPMerge leverages the fact that the samples are generated
by the RP algorithm, we expect RPMerge to exhibit superior
performance. In our experiments, we generated two datasets
R1 and R2 consisting of 2 million and 1 million items, respec-
tively. We then inserted and subsequently deleted d1 items
from R1 and d2 items from R2. As we generated the datasets
and performed the subsequent insertions and deletions, we
maintained samples S1 and S2 using bounds M1 = M2 =
10, 000. Finally, we merged both samples using RPMerge
and HRMerge. Our reported results are averages over 100
independent runs. Note that there are d1 and d2 uncompen-
sated deletions corresponding to S1 and S2, respectively, and
that the sizes of both R1 and R2 remain constant as d1 and
d2 vary.

In a first experiment, we fixed the total number of uncom-
pensated deletions to 500, 000 = d1+d2. Figure 15 displays
the average sample size after merging for various values of d1

and d2. The sample size produced by RPMerge depends only
on the sum of d1 and d2, and hence is insensitive to the indi-
vidual values of these experimental parameters. In contrast,
HRMerge produces samples whose size equals the smaller of

123

Maintaining bounded-size sample synopses of evolving datasets 197

HRMerge
RPMergeA

ve
ra

ge
Sa

m
pl

e
Si

ze
A

ft
er

M
er

ge

d1 × 1000

5004003002001000

10000

9500

9000

8500

8000

7500

7000

6500

Fig. 15 Merging, d1 + d2 fixed

HRMerge
RPMerge

A
ve

ra
ge

Sa
m

pl
e

Si
ze

A
ft

er
M

er
ge

(d1 + d2) × 1000

5004003002001000

10000

9500

9000

8500

8000

7500

7000

Fig. 16 Merging, d1/(d1 + d2) fixed

the two input sample sizes. The best performance is achieved
when E[min(|S1|, |S2|)] ≈ min (E[|S1|], E[|S2|]) is maxi-
mized. Since E[|S j |] = M |R j |/(|R j | + d j), this optimal
performance is achieved when d1 ≈ 333, 333. In this case,
RPMerge and HRMerge produce samples of approximately
the same size. In all other cases, RPMerge is clearly superior.

We next evaluated the impact of the total number of
uncompensated deletions on sample-size performance. We
experimented with different values of d1 + d2 and set d1

to 0.3(d1 + d2), so that 30% of the uncompensated dele-
tions occur in the first partition. As can be seen in Fig. 16,
both merging algorithms produce samples of size M when
d1 = d2 = 0. The larger the number of uncompensated dele-
tions, the greater the advantage of RPMerge over HRMerge.
Together with the fact that samples produced by RPMerge
can be (re)grown up to size M using subsequent insertions
only, RPMerge seems to be the merging algorithm of choice.

7 Summary and conclusions

Techniques for incrementally maintaining bounded uniform
samples over “datasets”—whether relational tables, views,

XML repositories, or other data collections—are crucial for
unlocking the full power of database sampling techniques.
We have systematically studied methods for maintaining such
samples under arbitrary insertions and deletions to the data-
set. For stable datasets in which the dataset size does not
undergo extreme fluctuations, our new RP algorithm, which
generalizes both reservoir sampling and “passive” stream
sampling, is the algorithm of choice with respect to speed
and sample-size stability. In the presence of extreme fluctu-
ations in the dataset size, RP can be combined with resizing
or resampling algorithms to achieve acceptable sample sizes
while minimizing expensive base-data accesses. For grow-
ing datasets, our new resizing algorithm permits the sam-
ple size to grow in a controlled manner. We have developed
both numerical methods and approximate analytical meth-
ods for optimally tuning the algorithm to minimize the time
required for resizing. When both tuning methods are applica-
ble, they appear to yield almost identical results; the numeri-
cal methods, based on stochastic-approximation techniques,
can potentially be applied even in complex scenarios where
approximations are not available. For distributed environ-
ments, where the dataset is partitioned over multiple nodes
and local samples are maintained at each node, we have pro-
vided a novel extension of the HRMerge algorithm that pro-
duces a sample of the complete dataset (or of any desired
union of the partitions) from the local samples. Typically,
our algorithm achieves larger sample sizes than are obtained
via a naive application of HRMerge.

The RP algorithm as given in this paper has been designed
for in-memory samples. In the future, we plan to look at meth-
ods for handling large disk-based samples, as might occur
in very large data-warehouse scenarios. The key challenge
here is to minimize the number of random disk accesses.
One approach would be to log all of the transactions (or a
well-chosen subset thereof) and to refresh the sample in a
deferred manner. Future work includes finding algorithms—
similar to those in [10]—that minimize both the amount of
logged information and the refresh cost. Another approach
would be to keep an in-memory index of the items, but store
the actual values of the items on disk. The index can then be
used to efficiently support the look-up operation for deleted
items, while the on-disk sample might be organized to effi-
ciently support update operations, perhaps by adapting the
techniques in [23].

Appendix A: Non-uniformity of Bernoulli sampling with
purging

The Bernoulli sampling with purging (BSP) scheme com-
bines Bernoulli sampling with a technique proposed by
Gibbons and Matias [14]. The idea is to use MBERN(q)

sampling and to purge the sample whenever the sample size

123

198 R. Gemulla et al.

exceeds an upper bound M . In more detail, the BSP scheme
starts with q = 1. Each purge operation consists of one or
more subsampling steps, and q is decreased at each such step.
Specifically, the sample is subsampled using a BERN(q ′/q)

scheme, where q ′ < q, and then q is set equal to q ′. This
procedure is repeated until the sample size falls below M , at
which point the purge operation terminates and MBERN(q)

sampling recommences, using the new, reduced value of q.
In this appendix, we show that BSP is not a uniform sampling
scheme. To simplify the discussion, we assume that q ′ = pq
for a fixed constant p ∈ (0, 1); similar arguments apply when
q ′/q can vary over the subsampling steps.

The purge operation is executed whenever the sample
size increases to M + 1. Each purge involves L Bernoulli
subsampling steps with sampling rate p, where L is a geo-
metrically distributed random variable with P { L = k } =
p′(1− p′)k−1. Here p′ = 1− pM+1 denotes the probability
that at least one of the M sample items is rejected so that
the purge operation terminates. Denoting by S′ the subsam-
ple that results from executing the purge operation on S, we
have

P
{

S′ = A
}

= P { all t ∈ A retained, all t ∈ S \ A purged | ≥ 1 item purged }
= p|A|(1− p)M+1−|A|/p′ (24)

for all A ⊂ S. After the purge operation terminates, the sam-
pling process proceeds with new sampling rate qpL .

We now give a simple example where BSP does not pro-
duce a uniform sample. Consider the sequence γ = (+t1,
+t2,−t1,+t3) and set M = 1. Denote by Ri the dataset, by
Si the sample and by Qi the (random) sampling rate after
processing the i th transaction. After t1 has been inserted, we
have R1 = S1 = { t1 } and Q1 = 1 with probability 1. The
insertion of t2 triggers a purge operation and, using (24), we
find that

P { S2 = ∅ } = 1− 2r,

P { S2 = { t1 } } = P { S2 = { t2 } } = r, Q2 = pL

with r = p(1−p)/(1−p2). Transaction−t1 simply removes
t1 if present in the sample, so that

P { S3 = ∅ } = 1− r, P { S3 = { t2 } } = r,

Q3 = Q2 = pL .

Transaction +t3 triggers another purge operation if S3 =
{ t2 } and t3 is accepted, which occurs with probability Q3r .
It follows that

P { S4 = { t2 } | L } = pL(r2 − r)+ r, P { S4 = { t3 } | L }
= pL(r2 − r + 1).

By unconditioning on L and simplifying the resulting infinite
sum, we find that

P { S4 = { t2 } }

= p(p2 + 1)

(p + 1)(p2 + p + 1)
, P { S4 = { t3 } } = p

p + 1
.

If follows that P { S4 = { t2 } } < P { S4 = { t3 } } for 0 <

p ≤ 1, so that BSP biases the sample towards recent items.
For example, a common choice is p = 0.8; the two proba-
bilities are then given by ≈0.30 and ≈0.44, respectively.

The purge operation thus introduces some subtle depen-
dencies among the sample items, and these dependencies
lead to non-uniform samples when the transaction sequence
contains deletions. BSP appears to work in the insertion-
only setting, but this assertion has not yet been proven. We
conjecture that BSP can be fixed by applying the random-
pairing idea given in this paper. In this case, however, the
main advantage of BSP, which is its simplicity, vanishes.

Appendix B: Stochastic optimization techniques for
resizing

As discussed in Sect. 4.3.2, deterministic numerical optimi-
zation algorithms cannot be used to tune the resizing algo-
rithm in the presence of deletions. In this appendix we develop
a Monte Carlo algorithm, called FDSA, for finding the opti-
mal value q∗ of the resizing parameter. We first discuss some
pertinent structural properties of the optimization problem,
and then present our FDSA algorithm.

B.1 Search-space characteristics

The optimization problem has some special structure. Certain
aspects of this structure facilitate numerical computation of
q∗, whereas other aspects give rise to numerical challenges.
We outline these considerations below.

Our first observation is that, for practical purposes, we can
restrict our search for q∗ to the interval I =[M/|R|, M ′/|R|].
For q > M ′/|R|, the cost of phase 2 is 0 with high proba-
bility, because it is unlikely that U < M ′. Similarly, the cost
of phase 1 equals its maximum possible value g(M ′/|R|)
with high probability. The main reason that q∗ might strictly
exceed M ′/|R| would be to drive the (already extremely
small) probability of the unlikely event

{
U < M ′

}
to 0;

the occurrence of this unlikely event would typically incur a
positive cost, because usually tb � ta whenever q∗ is large,
so that any reduction in phase 1 cost is more than offset
by an increase in phase 2 cost. In this case, however, we
can achieve the same effect in practice by simply growing
the sample using only the base data (eliminating phase 2)
whenever q∗ ≥ M ′/|R|. A similar argument holds for the
lower boundary M/|R|.

Our next observation is derived from simulation-based
estimates of the expected resizing time T (q), as well as the

123

Maintaining bounded-size sample synopses of evolving datasets 199

closed-form approximations to T (q)developed in Sect. 4.3.3.
These results strongly indicate that the function T is non-
constant and convex on the interval I . Such a cost structure
implies that T is either increasing on I with q∗ = M/|R|,
decreasing on I with q∗ = M ′/|R|, or has a unique minimum
q∗ ∈ (M/|R|, M ′/|R|). This cost structure implies that local
optimization algorithms—i.e., algorithms that search for a
local, rather than a global, minimum—will suffice, so that
expensive global optimization algorithms are not needed.

A final observation, again based on our simulation exper-
iments and approximations, is that a numerical difficulty can
arise when the parameters ta , tb, M , M ′ and |R| are such
that q∗ is equal to or slightly greater than ql = M/|R|. The
problem is that, in such scenarios, the cost function T is often
almost flat just to the right of the point ql ; see, for example,
the curve corresponding to ta = 90 in Fig. 12. To the left
of the point ql , however, the T function—which essentially
equals the phase 2 cost function T2 in this region—behaves
roughly as O(1/q) (see Sect. 4.3.3), and hence T (q) rises
steeply as q decreases. The net effect is that the derivative
of the function T can be almost discontinuous at ql , rapidly
increasing from a large negative value to a relatively small
positive value as q crosses this critical point from below. This
quasi-discontinuity can cause problems for numerical opti-
mization algorithms that try to estimate the derivative of the
T function at candidate q values. In the sequel, we discuss
techniques for dealing with this issue.

B.2 The FDSA algorithm

Since we cannot, in general, compute T (q) exactly, an alter-
native, Monte Carlo-based approach is to generate realiza-
tions of the random resizing cost C via stochastic simulation,
and use these observations to estimate q∗. A naive approach
uses a standard deterministic numerical optimization algo-
rithm; whenever a value of T (q) is called for, we simulate
the resizing algorithm multiple times, and average the result-
ing observations to obtain the requested function value. This
naive approach is typically inefficient, requiring many expen-
sive simulation runs. Moreover, the presence of noise can
cause the optimization algorithm to behave erratically or even
fail, since the algorithm was designed under the assump-
tion that observations of the objective function are exact. For
example, the standard Golden Section search routine [38,
Sect. 10.1] assumes that, at all times, there are three points
that “bracket” the true minimum point; in the presence of
noise, this property may no longer hold, throwing the algo-
rithm into confusion. It is possible to modify certain simple
deterministic algorithms to handle noisy observations, but
the performance of the modified algorithms tends to be poor,
and there is little supporting theory available to provide the
user with confidence that such an algorithm will converge to
a solution.

A much better approach is to employ a stochastic opti-
mization algorithm that is specifically designed to deal with
noisy observations; see [42] for an excellent introduction to
such algorithms. As mentioned in Sect. 7, a local optimiza-
tion algorithm suffices for our problem. The most widely-
used class of local stochastic optimization algorithms are the
stochastic approximation (SA) algorithms. An SA algorithm
is a steepest-descent method that rests on a recursion of the
form

qk+1 = qk − ak Ĝ(qk) (25)

for k ≥ 1, where ak is called the gain parameter and Ĝ(qk)

is an estimate of G(qk), the gradient (i.e., derivative) of the
objective function T , evaluated at qk . Each ak is positive and
ak → 0 as k → ∞. Particular SA algorithms are specified
by the manner in which the gain sequence a1, a2, . . . is deter-
mined and by the form of the estimator Ĝ used to estimate
the gradient function G.

For our problem, the most suitable method is to estimate
G using central finite differences.10 Specifically, at the kth
iteration, we set

Ĝ(qk) = C̄l(qk + bk)− C̄l(qk − bk)

2bk
,

where C̄l(q) denotes the average of l observations of the ran-
dom resizing cost C , obtained from l independent simulations
under parameter setting q; see [42, Chap. 6] for a detailed
discussion of such “finite-difference stochastic approxima-
tion” (FDSA) algorithms, also known as Kiefer-Wolfowitz
algorithms. Each bk is positive and bk → 0 as k →∞. Per-
haps surprisingly, it usually suffices to take l = 1 in the above
formula, i.e., we use only two simulation runs at each itera-
tion. The key insight underlying the SA approach, originally
expressed in the seminal paper of Robbins and Monro [39],
is that averaging across successive iterations—even though
the evaluation point q changes from iteration to iteration—is
a more effective use of computing resources than expending
a lot of simulation effort at each iteration to get an accurate
estimate of G. Under technical regularity conditions on T (q)

(which appear to hold in our current setting), the sequence
of qks converges to q∗ with probability 1 as k → ∞, pro-
vided that the ak and bk sequences satisfy

∑∞
k=1 ak = ∞,∑∞

k=1 akbk < ∞, and
∑∞

k=1 a2
k /b2

k < ∞. Following
[42, Chap. 6], we use sequences of the form

ak = a

(k + A)α
and bk = b

kβ
,

10 An alternative approach would be to estimate G using “likelihood
ratio” techniques, but such methods appear to be unusable in our setting
due to highly unstable behavior. “Retrospective optimization” methods,
which also use likelihood ratios, are also unsuitable.

123

200 R. Gemulla et al.

where the parameters a, A, α, b, and β are chosen according
to the “semiautomatic” method of [42, Sect. 6.6], starting
with a value of A = 5. We also use the standard stabilization
technique of returning as the final result not the value of the
final iterate, but rather the average of the last few iterates
computed.

Our only significant modification of the standard FDSA
algorithm handles the difficult case where q∗ is close to
M/|R|. As discussed in the previous subsection, the gradient
function G is almost discontinuous at this point, which can
lead to numerical difficulties. We therefore ensure that the
lower of the two endpoints used to compute the FD gradi-
ent estimate Ĝ is never less than M/|R|. This modification
has the effect of replacing the usual central finite-difference
estimate by essentially a one-sided finite-difference estimate
whenever q∗ is close to M/|R|. Because the effective value
of bk can become small in this boundary case, we actually
average the results of four simulations at each endpoint, in
order to further stabilize the gradient estimator.

Appendix C: Alternative cost models for resizing

Our first example concerns a more complicated model of
base-data accesses. Suppose that the dataset is stored and
retrieved in blocks of b > 1 items, as is typical for relational
tables in commercial RDBMSs, and that ta now represents
the cost of accessing a block. (For simplicity, we assume that
each block is completely filled, so that it contains exactly
b items.) Also suppose that |R| � |S|, so that the proba-
bility that an item accessed during phase 1 was already in
the sample prior to the start of resizing is negligible. Finally,
suppose that, given the number N (U) of base-data items that
will be accessed during phase 1, the sampling mechanism is
smart enough to precompute the IDs of the sampled items
and determine in advance the set of blocks that will need to
be retrieved, so that each block is only accessed once. Again,
RDBMSs typically employ such a strategy in order to mini-
mize I/Os. Letting I j = 1 if at least one randomly sampled
item belongs to the j th block and I j = 0 otherwise (1 ≤ j ≤
|R|/b), the expected cost of phase 1, given that U = u, is

T1(q; u) = ta E

⎡

⎣
|R|/b∑

j=1

I j

⎤

⎦ = ta

|R|/b∑

j=1

E[I j]

= ta

|R|/b∑

j=1

P
{

I j > 0
} = ta |R|

b
P { I1 > 0 }

= ta |R|
b

(1−P { I1=0 })= ta |R|
b

(

1−
(|R| − b

N (u)

)

(|R|
N (u)

)

)

,

where we have used the fact that the I j ’s are identically
distributed. Then T1(q) can be computed numerically as

T1(q) =∑|R|
u=0 T1(q; u)

(|R|
u

)
qu(1− q)|R|−u , or, proceeding

as in the previous section, approximated as

T̂1(q) = ta |R|
b

(

1−
(|R|−b

N (|R|q)

)

(|R|
N (|R|q)

)

)

.

A even simpler cost model is obtained if we assume that the
data items were initially assigned to blocks in a random man-
ner, so that we can randomly sample the dataset simply by
sequentially reading pages. In this case, the conditional data
access cost is computed simply as T1(q; u) = ta N (u)/b.

Our remaining examples concern more sophisticated mod-
els for the stream of arriving transactions during phase 2. For
the first example, observe that our exact numerical results and
approximations remain formally the same if arriving transac-
tions are not necessarily equally spaced, but arrive according
to a stationary stochastic process on the real line. Our only
requirement is that the arrival times of transactions be statis-
tically independent of whether each transaction is an inser-
tion or a deletion. In this case, we simply define tb as the
expected time between successive Bernoulli trials. To gener-
alize the model further, suppose that the transaction stream
comprises random blocks of consecutive deletions and con-
secutive insertions. Specifically, at the beginning of a block,
with probability p, the next K1 transactions will be inser-
tions, while with probability 1− p, the next K2 transactions
will be insertions, where K1 and K2 are positive-integer-
valued random variables with finite mean. Because the data-
set is growing, we assume that pE[K1] − (1 − p)E[K2],
the expected change in the dataset size due to a block of
transactions, is positive. In this case, appealing to results for
“renewal reward processes” [40], we find that the long-run,
per-transaction rate at which the database is growing is

ρ = pE[K1] − (1− p)E[K2]
pE[K1] + (1− p)E[K2] .

Provided that, with high probability, K1 and K2 are rela-
tively small with respect to the time scale of the problem—
for example, as represented by (M ′−M)/(M ′/|R|)—we can
approximate the expected phase 2 cost as T̂2(q) = tb(M ′ −
|R|)+/(ρq). The approximation in Sect. 4.3.3 corresponds
to the special case where P { K1 = 1 } = P { K2 = 1 } = 1.

References

1. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving
window over streaming data. In: Proc. SODA, pp. 633–634 (2002)

2. Brown, P., Haas, P., Myllymaki, J., Pirahesh, H., Reinwald, B.,
Sismanis, Y. : Toward automated large-scale information inte-
gration and discovery. In: Härder, T., Lehner, W. (eds.) Data
Management in a Connected World, pp. 161–180. Springer,
Heidelberg (2005)

3. Brown, P., Haas, P.J.: BHUNT: automatic discovery of fuzzy alge-
braic constraints in relational data. In: Proc. VLDB, pp. 668–679
(2003)

123

Maintaining bounded-size sample synopses of evolving datasets 201

4. Brown, P.G., Haas, P.J.: Techniques for warehousing of sample
data. In: Proc. ICDE (2006)

5. Chaudhuri, S., Motwani, R., Narasayya, V.R.: On random sampling
over joins. In: Proc. ACM SIGMOD, pp. 263–274 (1999)

6. Colt Library: Open source libraries for high performance scientific
and technical computing in Java. http://dsd.lbl.gov/ hoschek/colt/

7. Cormode, G., Muthukrishnan, S., Rozenbaum, I.: Summarizing
and mining inverse distributions on data streams via dynamic
inverse sampling. In: Proc. VLDB, pp. 25–36 (2005)

8. Fan, C., Muller, M., Rezucha, I.: Development of sampling plans
by using sequential (item by item) techniques and digital comput-
ers. J. Am. Statist. Assoc. 57, 387–402 (1962)

9. Frahling, G., Indyk, P., Sohler, C.: Sampling in dynamic data
streams and applications. In: Proc. 21st Symp. Computat. Geom.,
pp. 142–149 (2005)

10. Gemulla, R., Lehner, W.: Deferred maintenance of disk-based ran-
dom samples. In: Proc. EDBT, pp. 423–441 (2006)

11. Gemulla, R., Lehner, W., Haas, P.J.: A dip in the reservoir: Main-
taining sample synopses of evolving datasets. In: Proc. VLDB,
pp. 595–606 (2006)

12. Gemulla, R., Lehner, W., Haas, P.J.: Maintaining Bernoulli sam-
ples over evolving multisets. In: Proc. ACM PODS, pp. 93–102
(2007)

13. Gibbons, P., Matias, Y., Poosala, V.: AQUA project white
paper. Tech. rep., Bell Laboratories, Murray Hill (1997)

14. Gibbons, P.B., Matias, Y.: New sampling-based summary statistics
for improving approximate query answers. In: Proc. ACM SIG-
MOD, pp. 331–342 (1998)

15. Gibbons, P.B., Matias, Y., Poosala, V.: Fast incremental main-
tenance of approximate histograms. ACM Trans. Database
Syst. 27, 182–184 (2002)

16. GSL: GNU Scientific Library. http://www.gnu.org/software/gsl/
17. Haas, P., König, C.: A bi-level Bernoulli scheme for database sam-

pling. In: Proc. ACM SIGMOD, pp. 275–286 (2004)
18. Haas, P.J.: Data stream sampling: Basic techniques and results.

In: Garofalakis, M., Gehrke, J., Rastogi, R. (eds.) Data Stream
Management: Processing High Speed Data Streams, Springer,
Heidelberg (2007)

19. Halevy, A.Y., Etzioni, O., Doan, A., Ives, Z.G., Madhavan, J.,
McDowell, L., Tatarinov, I.: Join synopses for approximate query
answering. In: Proc. CIDR (2003)

20. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In:
Proc. ACM SIGMOD, pp. 171–182 (1997)

21. IBM Corporation: WebSphere Profile Stage User’s Manual (2005)
22. Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: CORDS:

automatic discovery of correlations and soft functional dependen-
cies. In: Proc. ACM SIGMOD, pp. 647–658 (2004)

23. Jermaine, C., Pol, A., Arumugam, S.: Online maintenance of very
large random samples. In: Proc. ACM SIGMOD, pp. 299–310
(2004)

24. John, G.H., Langley, P.: Static versus dynamic sampling for data
mining. In: Proc. KDD, pp. 367–370 (2005)

25. Johnson, N.L., Kotz, S., Kemp, A.W.: Discrete Univariate Distri-
butions, 2nd edn. Wiley, New York (1992)

26. Kachitvichyanukul, V., Schmeiser, B.: Computer generation of
hypergeometric random variables. J. Stat. Comput. Simul 22,
127–145 (1985)

27. Kivinen, J., Mannila, H.: The power of sampling in knowledge
discovery. In: Proc. ACM PODS, pp. 77–85 (1994)

28. Knuth, D.E.: The Art of Computer Programming, vol. 2: Seminu-
merical Algorithms, 1st edn. Addison-Wesley, Reading (1969)

29. Law, A.M.: Simulation Modeling and Analysis, 4th edn. McGraw-
Hill, New York (2007)

30. L’Ecuyer, P.: Uniform random number generation. In: Henderson,
S.G., Nelson, B.L. (eds.) Simulation, pp. 55–81. Elsevier,
Amsterdam (2006)

31. Leser, U., Naumann, F.: (Almost) hands-off information integra-
tion for the life sciences. In: Proc. CIDR, pp. 131–143 (2005)

32. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number
generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

33. McLeod, A.I., Bellhouse, D.R.: A convenient algorithm for draw-
ing a simple random sample. Appl. Statist. 32, 182–184 (1983)

34. Norris, J.R.: Markov Chains. Cambridge University Press,
Cambridge (1997)

35. Olken, F.: Random sampling from databases. Thesis LBL-
32883, Information and Computing Sciences Division, Lawrence
Berkeley National Laboratory (1993)

36. Olken, F., Rotem, D.: Maintenance of materialized views of sam-
pling queries. In: Proc. ICDE (1992)

37. Poosala, V., Haas, P.J., Ioannidis, Y.E., Shekita, E.J.: Improved
histograms for selectivity estimation of range predicates. In: Proc.
ACM SIGMOD, pp. 294–305 (1996)

38. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery,
B.P.: Numerical Recipes in C, 2nd edn. Cambridge University
Press, Cambridge (1992)

39. Robbins, H., Monro, S.: A stochastic approximation method. Ann.
Math. Statist. 22, 400–407 (1951)

40. Ross, S.M.: Stochastic Processes. Wiley, New York (1983)
41. Särndal, C.E., Swensson, B., Wretman, J.: Model Assisted Survey

Sampling. Springer, Heidelberg (1992)
42. Spall, J.C.: Introduction to Stochastic Search and Optimiza-

tion. Wiley, New York (2003)
43. Tatbul, N., Çetintemel, U., Zdonik, S.B., Cherniack, M., Stonebra-

ker, M.: Load shedding in a data stream manager. In: Proc. VLDB,
pp. 309–320 (2003)

44. Vitter, J.S.: Faster methods for random sampling. Commun.
ACM 27(7), 703–718 (1984)

45. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math.
Softw. 11(1), 37–57 (1985)

46. Zechner, H.: Efficient sampling from continuous and discrete dis-
tributions. Ph.D. thesis, Technical University Graz (1997)

123

	Maintaining bounded-size sample synopses of evolving datasets
	Abstract
	Introduction
	Uniform sampling schemes
	Two classical schemes
	Schemes for stable datasets
	Schemes for growing datasets
	Distinct-value sampling
	Random pairing
	Algorithm description
	An example
	Correctness and sample-size properties
	Reducing the number of calls to Random
	Resizing samples
	A negative result
	A resizing algorithm
	Choosing the resizing parameter
	Modeling the resizing process
	Numerical methods
	An approximate optimization approach
	Merging
	Naive HRMerge
	Deferring deletion transactions
	RPMerge
	Comparison of expected sample sizes
	Other merging scenarios
	Experiments
	Experimental setup
	Sample size
	Performance (base-data and sample accesses)
	Performance (CPU)
	Resizing
	Merging
	Summary and conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

