
The VLDB Journal (2007) 16:5–28
DOI 10.1007/s00778-006-0029-7

SPECIAL ISSUE PAPER

Algorithms and analyses for maximal vector computation

Parke Godfrey · Ryan Shipley · Jarek Gryz

Received: 30 January 2006 / Accepted: 3 August 2006 / Published online: 13 September 2006
© Springer-Verlag 2006

Abstract The maximal vector problem is to identify
the maximals over a collection of vectors. This arises in
many contexts and, as such, has been well studied.The
problem recently gained renewed attention with sky-
line queries for relational databases and with work to
develop skyline algorithms that are external and rela-
tionally well behaved. While many algorithms have been
proposed, how they perform has been unclear. We study
the performance of, and design choices behind, these
algorithms. We prove runtime bounds based on the
number of vectors n and the dimensionality k. Early
algorithms based on divide and conquer established
seemingly good average and worst-case asymptotic run-
times. In fact, the problem can be solved in O(n) aver-
age-case (holding k as fixed). We prove, however, that
the performance is quite bad with respect to k. We
demonstrate that the more recent skyline algorithms
are better behaved, and can also achieve O(kn) aver-
age-case. While k matters for these, in practice, its ef-
fect vanishes in the asymptotic. We introduce a new
external algorithm, LESS, that is more efficient and
better behaved. We evaluate LESS’s effectiveness and

Part of this work was conducted at William & Mary where Ryan
Shipley was a student and Parke Godfrey was on faculty while on
leave of absence from York.

P. Godfrey (B) · J. Gryz
York University, Toronto, ON M3J 1P3, Canada
e-mail: godfrey@cs.yorku.ca

J. Gryz
e-mail: jarek@cs.yorku.ca

R. Shipley
The College of William and Mary, Williamsburg,
VA 23187-8795, USA

improvement over the field, and prove that its average-
case running time is O(kn).

1 Introduction

The maximal vector problem is to find the subset of the
vectors such that each is not dominated by any of the
vectors from the set. One vector dominates another if
each of its components has an equal or higher value
than the other vector’s corresponding component, and
it has a higher value on at least one of the correspond-
ing components. One may equivalently consider points
in a k-dimensional space instead of vectors. In this con-
text, the maximals have also been called the admissible
points, and the set of maximals called the Pareto set. The
parameters of the problem are

• n, the number of points in the input set;
• k, the dimensionality of the space (that is, how many

coordinates are used for comparison); and
• m, the number of maximal points in the output set.

This problem has been considered for many years, as
identifying the maximal vectors – or admissible points –
is useful in many applications. A number of algorithms
have been proposed for efficiently finding the maximals.

The maximal vector problem has been rediscovered
recently in the database context with the introduction
of skyline queries. Instead of vectors or points, this time
it is to find the maximals over a set of tuples. Certain
columns with ordered domains of the input relation are
designated as the skyline criteria. Dominance is then
defined with respect to these criteria. The non-domi-
nated tuples constitute the skyline set.

6 P. Godfrey et al.

The idea of skyline queries has attracted much atten-
tion since its introduction in [8]. It is thought that skyline
offers a good mechanism for incorporating preferences
into relational queries. Of course, its implementation
would also enable maximal vector applications to be
built on relational database systems efficiently. While
the idea of maximal vectors itself is older, much of the
recent skyline work has focused on designing good algo-
rithms that are well-behaved in the context of a rela-
tional query engine and are external (that is, that work
efficiently over data sets that are too large to fit in main
memory). Other skyline-algorithm work has explored
how to use indexes and other preprocessing for more
efficient runtime evaluation. This renewed interest in
maximal vectors via skyline has offered tangible results
in new application areas and in providing relationally
well-behaved, external algorithms.

On the one hand, intuition says it should be trivial to
design a reasonably good algorithm for finding the max-
imal vectors. We prove that many obvious approaches
have, in fact, O(n) average-case running time.1On the
other hand, performance varies widely for the algo-
rithms when applied to input sets of large, but realistic,
sizes (n) and reasonable dimensionality (k). The per-
formance profile can be quite different than as simply
suggested by the asymptotic limits.

In truth, designing a good algorithm for the maxi-
mal vector problem is far from simple. There are many
subtle, but important, issues to address. For some algo-
rithms – namely, the divide-and-conquer approaches
– the impact of the dimensionality is profound. For
others – namely the skyline algorithms – we prove that
they have O(kn) average-case running time. Even this
is deceptive, however, as the “multiplicative constant”
becomes reasonable only in the extreme limit of n.
Design choices that appear innocent can lead to quite
different performance profiles.

This paper is a direct extension of the work in [20]. In
this paper, as in [20], we focus on generic maximal-vector
algorithms; that is, on algorithms for which expensive
preprocessing steps or data-structures such as indexes
are not required.

In Sect. 2, we discuss the maximal vector problem.
We illustrate with an example (Sect. 2.1), discuss a gen-
eral approach to finding the maximal vectors (Sect. 2.2),
and outline criteria for a good maximal-vector algorithm
(Sect. 2.3). We then introduce a base set of assump-
tions on which we can base average-case analyses (Sect.
2.4). This employs an estimate of the number of maxi-
mals expected (m̂), on average, assuming statistical

1 Meanwhile, that their average-case runtimes are O(n) is
anything but obvious.

independence of the dimensions and sparseness (distinct
values) of the vectors along each dimension. In some
cases for analysis, a third assumption of uniformity –
that the values along a dimension are uniformly distrib-
uted – is needed.

In Sect. 3, we simultaneously review the work in
the area and analyze the proposed algorithms’ runtime
performances. We summarize the generic algorithmic
approaches – both older algorithms and newer, exter-
nal skyline algorithms – for computing maximal vector
sets (Sect. 3.1). We formally analyze the runtime per-
formances of the existing generic algorithms, especially
with consideration of the dimensionality k’s impact, to
identify the bottlenecks and compare advantages and
disadvantages between the approaches. We address the
divide-and-conquer approaches in Sect. 3.2, and then
the external, skyline approaches in Sect. 3.3. This reca-
pitulates the results from [20] and addresses previously
unresolved issues, such as the average runtime perfor-
mance of the algorithm BNL from [8].2 We extend our
coverage of related algorithms. (We additionally address
the skyline algorithm Best [17,33].) We discuss the
design choices behind the skyline algorithms, and the
ramifications of these on performance.

In Sect. 3.4, we present a new algorithm for maxi-
mal vector computation, LESS (linear elimination sort
for skyline), that essentially combines aspects of a num-
ber of the established algorithms, and offers a substan-
tial improvement over the field. The design of LESS
is motivated by our earlier analyses and observations
(Sect. 3.4.1). We present an experimental evaluation of
LESS that demonstrates its improvement over the exist-
ing field (Sect. 3.4.2). We formally analyze its runtime
characteristics, prove it has O(kn) average runtime per-
formance, and demonstrate its advantages with respect
to the other algorithms (Sect. 3.4.3).

In Sect. 3.5, we identify the key bottlenecks for any
maximal-vector algorithm, and discuss ways thatLESS –
and other skyline algorithms – could be further improved
In Sect. 3.6, discuss how the the assumptions behind the
average-case analyses (Sect. 2.4) can be relaxed, and
how these affect the algorithms. This strengthens the
results from [20] by showing the extent to which the
assumptions can be lifted. (We prove that FLET, SFS,
and LESS have O(kn) average-case runtime without the
uniformity assumption.)

In Sect. 4, we discuss other work related to maxi-
mal vectors and skyline that were not discussed earlier.
We briefly discuss some of the index-based approaches

2 Some of the new results in this paper (not in [20]) were pre-
sented in our talk for [20] in Trondheim at VLDB 2005.

Maximal vector computation 7

to maximal vector computation, and why index-based
approaches are necessarily of limited utility.

In Sect. 5, we discuss future issues and conclude.

2 The maximal vector problem

2.1 An example

Consider a table for hotels with columns name,
address, dist (distance to the beach), stars (qual-
ity rating), and price, as data in Fig. 1. This table has
three metric columns dist, stars, and price. Based
on these three metric dimensions, we could visualize the
data as points in three-dimensional space.

In [8], they introduced a hypothetical extension to the
SQL query language called skyline to allow one to query
for maximals. The skyline query in Fig. 2 over the hotel
table asks for hotels with the most stars, that are closest
to the beach, and are the least expensive.

The semantics of a skyline query is to find the max-
imals, throwing away any tuples that are dominated by
others. The rows in black in the table (Fig. 1) are the
answers to the query; the rows that are grayed out are
those that were dominated. Aga can be eliminated, for
example, by comparison with Uma. Fol is eliminated by
comparison with Aga, Kaz, or Uma. Tor is eliminated
by comparison with Neo. None of Kaz, Neo, or Uma
is dominated by any other, however, so these are the
answers.

There may be many maximals. A maximal need not
be best on any one criterion. For example, Uma does not
have the most stars, is not the closest to the beach, and
is not the least expensive. Rather, it represents a good
balance of the criteria.

name stars dist price
Aga 0 7 1,175
Fol 1 2 1,237

Kaz 0:

:
:
2 750

Neo 0:2 2,250
Tor 0:5 2,550

Uma 0:5 980

Fig. 1 The hotel table

select name, address
from Hotel
skyline of stars max,

dist min,
price min

Fig. 2 The hotel query

2.2 An algorithm

To find the maximum value from an unordered list of
values can be, of course, accomplished in a single pass
over the list with n−1 comparisons. If it is a list of records
(“vectors”) instead and one is to find each record that
has the maximum value with respect to a given field
(say, val), then the problem is complicated only slightly.
Records may share the same value on val, so there may
be ties for the maximum. In this case, it would suffice to
sweep the list twice: the first time to find the maximum
val; and the second time to collect the records with that
val. This is, of course, just the maximum-vector problem
with one dimension (k = 1).

For the multi-dimensional maximum-vector problem
(k > 1), should it be much harder? Let Ln (t0, . . . , tn−1)
be the list of vectors. Let ti � tj denote that ti ties or
is higher than tj on each of the k components, and it is
strictly higher on at least one; that is, that ti dominates tj.

Essentially, the same basic strategy can be made to
work. A paraphrase of the Best algorithm from [17,33]
(and discussed in [32]) is shown in Fig. 3. In a pass over
the list, one can find a maximal. In subsequent passes
over the list, additional maximals are found. On each
pass, any vector found to be dominated by the current
maximal-so-far (b) is eliminated from the list. The sec-
ond foreach loop is necessary after the final maximal
for the pass was found (b) to clean up by removing any
vector dominated by the final maximal. (One need only
check through the list up to the point when the final
maximal was stored in b.)

Given m maximals in the list, we know the while loop
will iterate exactly m times, finding a new maximal each
time. After m iterations, the list L will be empty.

One way to define best, average, and worst-case is
based on how many maximals (m) there are. Thus, in
best-case, there is just a single maximal (so one maxi-
mum). Best will make at most two full passes of L and
make O(n) number of vector comparisons. Each vector

Fig. 3 The Best algorithm

8 P. Godfrey et al.

comparison involves k unit comparisons to compare the
components, so we say this is O(kn) amount of work.

In worst-case, every vector is a maximal (m = n).
No vectors are eliminated from L; one is removed as a
maximal in each pass. Therefore, the worst-case running
time for Best is O(kn2).

We know then a ceiling on the average-case running
time for Best is O(kmn), using “m” in the bound. We
could be more specific if we knew what the value m
is – that is, how many maximals are to be expected –
on average. (We do know this, and this is discussed in
Sect. 2.4.) Furthermore, this is quite likely a loose ceiling
since many vectors may be eliminated from L on each
pass. A floor on Best’s running time is O(km2), since, in
the least, each maximal is compared against every other
maximal.

To determine how good then Best is – and how
good the other maximal-vector algorithms are, as well –
in average-case, we need to define a reasonable model
under which to measure best, average, and worst-case.
We do this in Sect. 2.4. In the next section, we consider
other desired criteria, besides just runtime performance,
by which the algorithms might be judged.

2.3 Criteria for a good algorithm

Of course, runtime performance is of primary impor-
tance. A runtime of O(n2) is untenable for large data
sets. In database systems, O(nlg n) is considered an
expensive operation, such as external sort. Some max-
imal-vector algorithms have been shown to have O(n),
linear, average-case performance. This should be our
target.3

We also want an external algorithm that can handle
input sets that are too large for main memory. An exter-
nal algorithm must be I/O conscious. That is, the algo-
rithm should be well behaved in how many I/O’s are
spent, in addition to the CPU (computational) load. The
latter is measured, in part, by asymptotic runtime anal-
yses. In this work, we focus on the computational load.
We do not model formally I/O expenditure. However,
we do pay careful attention to which strategies are ame-
nable to good I/O performance.

There are additional criteria by which we might judge
maximal-vector algorithms. In [28], a useful categoriza-
tion of existing skyline algorithms is presented (which
follows on the work in [21,24]). They use the criteria enu-
merated below to characterize the behavior and appli-

3 Sub-linear performance would be even better. However, this
is not possible for a generic algorithm that requires no extensive
pre-processing or data-structures. Therefore, in the least, every
vector will need to be scanned.

cability of the algorithms. These are properties that they
and we would like a maximal-vector algorithm to have.

1. progressiveness. The first results should be returned
almost instantly, and the output size should gradu-
ally increase.

2. absence of false hits. The output should contain only
the skyline points (maximals).

3. absence of temporary false hits. The algorithm
should not discover temporary “skyline” points
(“maximals”) that will be later discarded.

4. fairness. The algorithm should not favor points that
are particularly good on one dimension (but not
necessarily others).

5. incorporation of preference. It should be possible to
specify an order by which the skyline points (maxi-
mals) are reported.

6. universality. The algorithm should be applicable to
any data-set distribution and dimensionality.

Likewise, we can employ these as design criteria.

2.4 Assumptions for Analysis

Performance of maximal-vector algorithms depends on
the number of maximals (m). We shall consider aver-
age-case performance based on the expected value of
the number of maximals (m̂). To establish an expected
value of m, we shall need to make certain assumptions
about the input set. First, let us consider when a set of
points is normalized.

Definition 1 A set of points is normal if the values of the
points along any given dimension fall uniformly along
the open interval (0, 1). (This is visualized in Fig. 4 for
k = 3.)

If a set of points is not normal, it can be normalized
into a normal set that is rank-equivalent (and so has the
same maximals). A procedure for this would be as fol-
lows. For each dimension di, find the ordinal rank – as
by sorting – of each point, 0, . . . , Vi − 1. Vi represents the

Fig. 4 A normalized 3-d set

Maximal vector computation 9

number of distinct values on dimension i (di) over the
points. Rank 0 is assigned for the lowest value on di, and
so forth. For each point in the normalized set, given its
rank on di is j, assign it the value (j + 1)/(Vi + 1).

We shall refer to the normalized set of points as the set
of points transformed in this way.

Definition 2 Consider the following properties of a set
of points.

1. independence. The values of the normalized set of
points over a single dimension are statistically inde-
pendent of the values along any other dimension.

2. sparseness (distinct values). Points (mostly) have
distinct values along any dimension (that is, there
are not many repeated values).

3. uniformity. The values of the points along any one
dimension are uniformly distributed.

Collectively, the properties of independence and sparse-
ness are called component independence (CI) [6]. Let
us call collectively the three properties uniform indepen-
dence (UI).

Note that for a set of points that has CI, the normalized
set of points has UI. Additionally, assume under unifor-
mity that any value is on the interval (0, 1).4 Thus, UI
implies a normal set.

It is important to note that independence is defined
with respect to the normalized set. Rank correlation
is the measure of linear correlation between two lists
(“dimensions”) of values that have been replaced by
their ordinal ranks (as in the normalized set). Thus,
independence states that each pair of dimensions has
a rank correlation of zero. It is interesting to note that
an un-normalized set may have apparent non-zero linear
correlations even when all its pair-wise rank correlations
are zero (and thus be independent by our definition).

In many cases, we only need to assume CI, as the prop-
erty of uniformity will not be necessary for the result.
In other cases, we need further to assume that the set is
normalized (thus additionally assume uniformity). We
must note that if the data must be actually transformed
into a normalized set, this transformation is not compu-
tationally insignificant.

Under CI, the expected value of the number of max-
imals – denote this by m̂ – is known [9,19]: m̂ =
Hk−1,n, where Hk,n is the kth order harmonic of n. Let
H0,n = 1, for n > 0, and Hk,n be inductively defined

4 Uniformity itself does not assure the values on a given dimen-
sion are on (0, 1). However, mapping the values onto (0, 1) is
inexpensive. Knowing the maximum and minimum values of the
points for each dimension is sufficient to make this mapping.

as Hk,n =
∑n

i=1

Hk−1,i

i
, for k > 1. Hk,n ≈ Hk

1,n/k ! ≈
((ln n) + γ)k/k !.

For best-case, assume that there is a total ordering
of the points, t0, . . . , tn−1, such that any ti dominates all
tj, for i < j. Thus, in best-case, m = 1 (the one point
being t0).5

We are now equipped to review the proposed algo-
rithms for finding the maximal vectors, and to analyze
their asymptotic runtime complexities (O’s). Not all of
the O(n) average cases can be considered equivalent
without factoring in the impact of the dimensionality k.

3 Algorithms and analyses

In Sect. 3.1, we make our first pass over the algorithms,
describe the algorithms, show their best and worst-case
runtimes, and discuss known average cases. In Sect. 3.2,
we return to the divide-and-conquer algorithms to prove
their average-case runtimes with k considered. In
Sect. 3.3, we do likewise for the skyline algorithms. In
Sect. 3.4, we introduce a new algorithm, LESS, that im-
proves on the previous. In Sect. 3.5, we consider issues
and optimization opportunities forLESS and the skyline
algorithms. In Sect. 3.6, we discuss the extent to which
the assumptions from Sect. 2.4 can be relaxed.

3.1 The algorithms

The main (generic) algorithms that have been proposed
for maximal vectors are listed in Fig. 5. We have given
our own names to the algorithms (not necessarily the
same names as used in the original papers) for the sake
of discussion. For each, whether the algorithm was de-
signed to be external is indicated, and the known best,
average, and worst-case runtime analyses – with re-
spect to CI or UI and our model for average case from
Sect. 2.4– are shown. For each runtime analysis, it is indi-
cated where the analysis appears. For each marked with
§, it follows readily from the discussion of the algorithm
in that section. The rest are proved in the indicated the-
orems.6

The first group consists of divide-and-conquer-based
algorithms. DD&C (double divide and conquer) [25],
LD&C (linear divide and conquer) [6], and FLET (fast
linear expected time) [5] are “theoretical” algorithms
that were proposed to establish the best bounds possible

5 We consider a total order so that, for any subset of the points,
there is just one maximal with respect to that subset. This is nec-
essary for discussing the divide-and-conquer-based algorithms.
6 Some of the theorems are relatively straightforward, but we
put them in for clarity.

10 P. Godfrey et al.

Fig. 5 The generic maximal vector algorithms

on the maximal-vector problem. No attention was paid
in this work to making the algorithms external. Their
initial asymptotic analyses make them look attractive,
however.
DD&C does divide and conquer over both the data (n)

and the dimensions (k). First, the input set is sorted in
k ways, once for each dimension. Then, the sorted set
is then split in half along one of the dimensions, say
dk−1, with respect to the sorted order over dk−1. This
is recursively repeated until the resulting set is below
threshold in size (say, a single point). At the bottom of
this recursive divide, each set (one point) consists of just
maximals with respect to that set. Next, these (locally)
maximal sets are merged. On each merge, we need to
eliminate any point that is not maximal with respect to
the unioned set. Consider merging sets A and B. Let all
the maximals in A have a higher value on dimension
dk−1 than those in B (given the original set was divided
over the sorted list of points with respect to dimension
dk−1). The maximals of A ∪ B are determined by apply-
ing DD&C, but now over dimensions d0, . . . , dk−2, so with
reduced dimensionality.7

Once the dimensionality is three, an efficient spe-
cial-case algorithm can be applied. Thus, in worst-case,
O(nlg k−2n) steps are taken. Thus, DD&C establishes that
the maximal-vector problem is, in fact, o(n2). In the
best-case, the double-divide-and-conquer is inexpensive
since each maximal set only has a single point. (It re-
solves to O(n).) However, DD&C needs to sort the data
by each dimension initially, and this costs O(knlg n). We
establish DD&C’s average-case performance in
Sect. 3.2.
LD&C [6] improves on the average-case over DD&C.

Their analysis exploits the fact that they showed m to
be O(ln k−1n) average-case. LD&C does a basic divide-
and-conquer recursion first, randomly splitting the set
into two equal sets each time. (The points have not been

7 All points in A are marked so none will be thrown away. Note
that only points in B can be dominated by points in A, since those
in A are better along dimension dk−1.

sorted.) Once a set is below threshold size, the maximals
are found. To merge sets, the DD&C algorithm is applied.
This can be modeled by the recurrence

T(1) = 1
T(n) = 2T(n/2) + (ln k−1n)lg k−2(ln k−1n)

Note that (ln k−1n)lg k−2(ln k−1n) is o(n). Therefore,
LD&C is average-case linear, O(n) [6].

In best case, each time LD&C calls DD&C to merge to
maximal sets, each maximal set contains a single point.
Only one of the two points survives in the resulting max-
imal set. This requires that DD&C recurse to the bottom
of its dimensional divide, which is k deep, to determine
the winning point. O(n) merges are then done at a cost
of O(k) steps each. Thus, LD&C’s average-case running
time is, at least, �(kn). (In Sect. 3.2, we establish that,
in fact, it is far worse.) In worst case, the set has been
recursively divided an extra time, so LD&C is lg n times
worse than DD&C.
FLET [5] takes a rather different approach to improv-

ing on DD&C’s average-case. Under UI,8 a virtual point
x – not necessarily an actual point in the set – is deter-
mined so that the probability that no point from the set
dominates it is less than 1/n. The set of points is then
scanned, and any point that is dominated by x is elimi-
nated. It is shown that the number of points x will dom-
inate, on average, converges on n in the limit, and the
number it does not is o(n). It is also tracked while scan-
ning the set whether any point is found that dominates
x. If some point did dominate x, it does not matter that
the points that x dominates were thrown away. Those
eliminated points are dominated by a real point from
the set anyway. DD&C is then applied to the o(n) remain-
ing points, for a O(kn) average-case running time. This
happens at least (n − 1)/n fraction of trials. In the case
no point was seen to dominate x, which should occur less
than 1/n fraction of trials, DD&C is applied to the whole

8 For the analysis of FLET, we need to make the additional
assumption of uniformity from Definition 2.

Maximal vector computation 11

set. However, DD&C’s O(nlg k−2n) running time in this
case is amortized by 1/n, and so contributes O(lg k−2n),
which is o(n). Thus, the amortized, average-case running
time of FLET is O(kn). FLET is no worse asymptotically
than DD&C in worst case.
FLET’s average-case runtime is O(kn) because FLET

compares O(n) number of points against point x. Each
comparison involves comparing all k components of the
two points, and so is k steps. DD&C and LD&C never com-
pare two points directly on all k dimensions since they
do divide and conquer also over the dimensions. In [6]
and [25], DD&C and LD&C were analyzed with respect
to a fixed k. We are interested in how k affects their
performance, though.

The second group – the skyline group – consists of
external algorithms designed for skyline queries. Skyline
queries were introduced in [8], along with two general
algorithms proposed for computing the skyline in the
context of a relational query engine.

The first general algorithm in [8] isSD&C, single divide-
and-conquer. It is a divide-and-conquer algorithm simi-
lar to DD&C and LD&C. It recursively divides the data set.
Unlike LD&C, DD&C is not called to merge the resulting
maximal sets. A divide-and-conquer is not performed
over the dimensions. Consider two maximal sets A and
B. SD&C merges them by comparing each point in A
against each point in B, and vice versa, to eliminate any
point in A dominated by a point in B, and vice versa, to
result in just the maximals with respect to A ∪ B.

Theorem 1 Under CI (Definition 2) and the model in
Sect. 2.4, SD&C has a best-case runtime of O(kn). [20]

Proof 1 Let mA denote the number of points in A (which
are maximal with respect to A). Let mA\B denote the
number of points in A that are maximal with respect to
A ∪ B. Likewise, define mB and mB\A in the same way
with respect to B. An upper bound on the cost of merging
A and B is kmAmB and a lower bound is kmA\BmB\A.
In best case, SD&C is O(kn).

For a fixed k, average case is O(n). (We shall con-
sider more closely the impact of k on the average case
in Sect. 3.2.)

Theorem 2 Under CI (Definition 2), SD&C has a worst-
case runtime of O(kn2). [20]

Proof 2 The recurrence for SD&C under worst case is

T(1) = 1
T(n) = 2T(n/2) + (n/2)2

This is O(n2) number of comparisons. Each compari-
son under SD&C costs k steps, so the runtime is O(kn2).

��

No provisions were made to make SD&C particularly
well-behaved relationally, although it is clearly more
amenable to use as an external algorithm than DD&C
(and hence, LD&C and, to an extent, FLET too, as they
rely on DD&C). The divide stage of SD&C is accomplished
trivially by bookkeeping. In the merge stage, two files,
say A and B, are read into main memory, and their points
pairwise compared. The result is written out. As long
as the two input files fit in main memory, this works
well. At the point at which the two files are too large, it
is much less efficient. A block-nested loops strategy is
employed to compare all A’s points against all of B’s,
and vice versa.

The second algorithm proposed in [8] is BNL, block
nested loops. This is essentially a generalization of the
intuitive approach, Best, discussed in Sect. 2.2, and
works remarkably well.9 A window is allocated in main
memory for collecting points (tuples). The input file is
scanned. Each point from the input stream is compared
against the window’s points. If it is dominated by any
of them, it is eliminated. Otherwise, any window points
dominated by the new point are removed, and the new
point itself is added to the window. Best is essentially
BNL then with a window size of one tuple.

At some stage, the window may become full. Once
this happens, the rest of the input file is processed differ-
ently. As before, if a new point is dominated by a window
point, it is eliminated. Otherwise, dominated window
points are still eliminated as before. If the new point is
not dominated and no space was freed in the window, it
is written to an overflow file. The creation of an overflow
file means that another pass will be needed to process
the overflow points. Thus, BNL is a multi-pass algorithm.
On a subsequent pass, the previous overflow file is read
as the input. Appropriate bookkeeping tracks when a
window point has gone “full cycle”; that is, it has been
compared against all currently surviving points. 10 Such
window points can be removed from the window and
written out, or pipelined along, as maximals.
BNL differs substantially from the divide-and-

conquer algorithms. As points are continuously replaced
in the window, those in the window are a subset of the
maximals with respect to the points seen so far (modulo
those written to overflow). These “maximals” – maxi-
mal with respect to the list seen so far – are much more
effective at eliminating other points than are the local
maximals computed at each recursive stage in divide-
and-conquer.

9 However, BNL [8] precedes Best [17,33] in the literature.
10 This can be done as we did in the Best algorithm in Fig. 3 by
assigning initially each point (tuple) a rank, its initial position in
the list.

12 P. Godfrey et al.

Theorem 3 Under CI (Definition 2) and the model in
Sect. 2.4, BNL has a best-case runtime of O(kn). [20]

Proof 3 BNL’s window will only ever contain one point.
Each new point off the stream will either replace it or
be eliminated by it. Thus BNL will only require one pass.

��
Let w be the size limit of the window in number of

points.

Theorem 4 Under CI (Definition 2), BNL has a worst-
case runtime of O(kn2). [20]

Proof 4 In worst case, every point will need to be com-
pared against every other point for O(kn2). This requires
�n/w� passes. Each subsequent overflow file is smaller
by w points. So this requires writing n2/2w points and
reading n2/2w points. The size of w is fixed. In addition
to requiring O(n2) I/O’s, every record will need to be
compared against every other record. Every record is
added to the window; none is ever removed. Each com-
parison costs k steps. So the work of the comparisons is
O(kn2). ��

In [15], SFS, sort filter skyline, is presented. It differs
from BNL in that the data set is topologically sorted ini-
tially. A common nested sort over the dimensions d0, . . . ,
dk−1, for instance, would suffice. In [16], the utility of
sorting for finding maximals and SFS are considered in
greater depth. Processing the sorted data stream has the
advantage that no point in the stream can be dominated
by any point that comes after it. In [15,16], sorting the
records by volume descending,

∏k
i=1 t [i];11 (or, equiv-

alently, by entropy descending,
∑k

i=1 ln t [i],12 with the
guarantee that the values t [i] > 0 for all records t and
dimensions i) is advocated. This has the advantage of
tending to push records that dominate many records
towards the beginning of the stream.

Under UI, the number of records a given record dom-
inates is proportional to its volume. Thus, by placing
records with higher volumes earlier in the stream, non-
maximal records are eliminated in fewer comparisons,
on average. The importance of this effect is emphasized
in the discussion of LESS in Sect. 3.4 and in the proof
that LESS is O(kn) (Theorem 14).
SFS maintains a main-memory window as does BNL.

However, in SFS, it is impossible for a point off the
stream to dominate any of the points already in the win-
dow. Any point is known to be maximal at the time it

11 In this case, as in the discussion about FLET, we are assuming a
normalized set (Definition 1), and so, additionally, the uniformity
assumption (Definition 2).
12 Keeping entropy instead of volume helps to avoid register
overflow or underflow.

is placed in the window. The window’s points are used
to eliminate stream points. Any stream point not elim-
inated is itself added to the window. As in BNL, once
the window becomes full, surviving stream points must
be written to an overflow file. At the end of the input
stream, if an overflow file was opened, another pass is
required. Unlike BNL, the window can be emptied at
the beginning of each pass, since all points have been
compared against those maximals. The overflow file is
then used as the input stream. Therefore, SFS has less
bookkeeping overhead than BNL since, when a point is
added to the window, it is already known that the point
is maximal. This also means that SFS is progressive: at
the time a point is added to the window, it can also be
shipped as a maximal to the next operation.

Theorem 5 Under CI (Definition 2) and the model in
Sect. 2.4, SFS has a best-case runtime of O(kn + nlg n).
[20]

Proof 5 Under our best-case scenario, there is one max-
imal point. This point must have the largest volume.
Thus it will be the first point in SFS’s sorted stream, and
the only point to be ever added to the window. This point
will eliminate all others in one pass. So SFS is sorting
plus O(kn) in best-case, and works in one filtering pass.

��
Theorem 6 Under CI (Definition 2), SFS has a worst-
case runtime of O(kn2). [20]

Proof 6 In the worst-case, all records are maximal. Each
record is placed in the skyline window after being com-
pared against the records currently there. This results in
n(n − 1)/2 comparisons, each taking k steps. The sorting
phase is O(nlg n) again. ��

In the experiments in [15],SFS – includingSFS’s nec-
essary sorting step – performed better I/O-wise, and ran
in better time, than BNL. The experiments in [15] were
run over million-tuple data sets and with dimensions of
5 – 7. In truth, however, we and others have found that
it is quite difficult to compare SFS, BNL, and other max-
imal vector algorithms reliably, either experimentally or
analytically. Their performance depends greatly on the
implementation details of the algorithms, on the size of
the input (the number of records, n, and the dimension-
ality, k), on the nature of the data set (data distributions,
stream order, and so forth), and on runtime parameters
(for instance, buffer pool allocation).

In this paper, BNL fares much better experimentally
(shown in Sect. 3.4.2), as the data sets used were larger
and, we believe, we have a more efficient implemen-
tation. In this case, the sort step dominates SFS’s cost.
In Sect. 3.3, however, we demonstrate analytically that

Maximal vector computation 13

SFS algorithm has significant advantages over BNL in
reducing the number of comparisons needed. So, on
the one hand, SFS may make much fewer comparisons
than BNL, since SFS compares only against maximals
but BNL often compares against non-maximals. On the
other hand, SFS does require sorting, and this cost can
dominate its performance.

3.2 The case against divide and conquer

Divide-and-conquer algorithms for maximal vectors
face two problems:

1. it is not evident how to make an efficient external
version; and,

2. although the asymptotic complexity with respect to
n is good, the multiplicative “constant”— and the
effect of the dimensionality k— may be bad.

Since there are algorithms with better average-case
runtimes, we would not consider DD&C. Furthermore,
devising an effective external version for it seems impos-
sible. In DD&C, the data set is sorted first in k ways, once
for each dimension. The sorted orders could be imple-
mented in main memory with one node per point and a
linked list through the nodes for each dimension. During
the merge phase, DD&C does not re-sort the data points;
rather, the sorted orders are maintained. In a linked-
list implementation, it is easy to see how this could be
done. It does not look possible to do this efficiently as
an external algorithm, however.
LD&C calls DD&C repeatedly. Thus, for the same rea-

sons, it does not seem possible to make an effective
external version of LD&C. FLET calls DD&C just once.
Still, since the number of points that remain afterFLET’s
initial scan and elimination could be significant, FLET
would also be hard to externalize.
SD&Cwas introduced in [8] as a viable external divide-

and-conquer for computing maximal vectors. As we
argued above, and as is argued in [27], SD&C is still
far from ideal as an external algorithm. Furthermore, its
runtime performance is far from what one might expect.

Each merge that SD&C performs of sets, say, A and
B, every maximal with respect to A ∪ B that survives
from A must have been compared against every maxi-
mal that survives from B, and vice-versa. This is a floor
on the number of comparisons done by the merge. We
know the number of maximals in average case under
CI. Thus we can model SD&C’s cost via a recurrence.
The expected number of maximals out of n points of k
dimensions under CI is Hk−1,n; (ln k−1n)/(k − 1)! con-
verges on this from below, so we can use this in a floor
analysis.

Theorem 7 Under CI (Definition 2), SD&C has average-
case runtime of �(

√
k 22kn). [20]

Proof 7 Let n = 2q for some positive integer q, without
loss of generality. Consider the function T as follows.

T(1) = 1
T(n) = 2T(n/2) + (1

2 (ln k−1n)/(k − 1)!)2

c1 = 1/(4(k − 1)!2) D = 2k − 2
= 2T(n/2) + c1ln Dn

= c1

q
∑

i=1

2i(ln n − ln 2i)D

c2 = c1/(lg 2e)D

= c2

q
∑

i=1

2i(lg 2n − lg 22i)D

= c2

q
∑

i=1

2i(q − i)D = c2

q−1
∑

i=0

2q−iiD

j
∑

i=0

2j−iiD ≈ (lg 2e)D−1D! 2j+1

≈ c2(lg 2e)D−1D! 2q = 1
4 (ln 2)

(2k−2
k−1

)

n
(2j

j

) ≈ 22j/
√

π j (by Stirling’s approximation)
≈ ln 2√

π(k−1)
22k−4n

This counts the number of comparisons. Each com-
parison costs k steps.

For each merge step, we assume that the expected
value of maximals survive, and that exactly half came
from each of the two input sets. In truth, fewer might
come from A and more from B sometimes. So the square
of an even split is an over-estimate, given variance of
resulting set sizes. In [4], it is established that the var-
iance of the number of maximals under CI converges
on Hk−1,n. Thus in the limit of n, runtime of SD&C will
converge up to an asymptotic above the recurrence. ��

This is bad news. SFS requires n comparisons in the
limit of n, for any fixed dimensionality k. SD&C, how-
ever, requires on the order of (22k/

√
k)×n comparisons

in n’s limit!
In [8], it was advocated that SD&C is more appro-

priate for larger k (say, for k > 7) than BNL, and is
the preferred solution for data sets with large k. Our
analysis conclusively shows the opposite: SD&C will per-
form increasingly worse for larger k and with larger
n. We believe their observation was an artifact of the
experiments in [8]. The data sets they used were only
100,000 points, and up to 10 dimensions. Even if the
data sets used were a million points instead (and 10
dimensions), SD&C would have performed proportion-
ally significantly much worse.

We can model LD&C’s behavior similarly. For a merge
(of A and B) in LD&C, it calls DD&C. Since A and B are

14 P. Godfrey et al.

0 2 4 6 8 10 12 14 16 18
#dimensions

0 10
20

30
40

50
60

70
80

90
100

lg2(#vectors)

1
100000
1e+10
1e+15
1e+20
1e+25
1e+30

ratio

Fig. 6 Behavior of LD&C

maximal sets, most point will survive the merge. The cost
of the call to DD&C is bounded below by its worst-case
runtime over the number of points that survive. The dou-
ble recursion must run to complete depth for these. So
if m points survive the merge, the cost is mlg k−2

2 m steps.
As in the proof of Theorem 7 for SD&C, we can approxi-
mate the expected number of maximals from below. Let
mk,n = (ln k−1(n + γ))/(k − 1)!. The recurrence is

T(1) = 1
T(n) = 2T(n/2) + max(mk,nlg k−2

2 mk,n, 1)

We plot this in Fig. 6.13 This shows the ratio of the
number of comparisons over n. The recurrence asymp-
totically converges to a constant value for any given k.
It is startling to observe that the k-overhead of LD&C
appears to be worse than that of SD&C! The explana-
tion is that mk,ilg k−2

2 mk,i is larger initially than is m2
k,i,

for the small i sizes of data sets encountered near the
bottom of the divide-and-conquer. (Of course m2

k,i

mk,ilg k−2

2 mk,i in i’s limit; or, in other words, as i
approaches n each subsequent merge level, for very
large n.) However, it is those initial merges near the
bottom of the divide-and-conquer that contribute most
to the cost overall, since there are many more pairs of
sets to merge at those levels. Next, we prove a lower
bound on LD&C’s average case.

Theorem 8 Under CI (Definition 2), LD&C has average-
case runtime of �((k − 1)k−2n). [20]

Proof 8 Let n = 2q for some positive integer q, without
loss of generality.

mk,nlg k−2
2 mk,n

≈ ((ln k−1n)/(k − 1)!)lg 2(((ln
k−1n)/(k − 1)!))k−2

c1 = 1/(k − 1)!
= c1(ln 2)k−1(lg 2n)k−1

13 The behavior near the dimensions axis is an artifact of our
log approximation of Hk−1,i, the expected number of maximals. In

computing the graph, mk,ilg
k−2
2 mk,i is rounded up to one when-

ever it evaluates to less than one.

· (lg 2((ln 2)k−1(lg 2n)k−1) − lg 2(k − 1)!)k−2

c2 = ln k−12

> c1c2(lg k−1
2 n)

· ((k − 1)((lg 2q) + (ln 2) − (lg 2(k − 1)))k−2

when lg 2q > lg 2(k − 1)

> c1c2(lg k−1
2 n)(k − 1)k−2

when lg 2q − lg 2(k − 1) ≥ 1
thus q ≥ 2(k − 1)

Let l = 2(k − 1). Consider the function T as follows.

T(n) = 2T(n/2) + max(mk,nlg k−2
2 mk,n, 1)

> c1c2(k − 1)k−2
q

∑

i=l

2q−iik−1

for n ≥ 2l

= c1c2(k − 1)k−22l
(q−l)
∑

i=0

2(q−l)−iik−1

≈ c1c2(k − 1)k−22l(lg k−1
2 e)(k − 1)!2(q−l)

= (k − 1)k−22q

= (k − 1)k−2n

T(n) is a strict lower bound on the number of com-
parisons that LD&Cmakes, in average case. We only sum
T(n) for n ≥ 2l and show T(n) > (k − 1)k−2n.

We can use the same reasoning to obtain an asymp-
totic lower bound on DD&C’s average-case runtime.

Theorem 9 Under CI (Definition 2), DD&C has an aver-
age-case runtime of �(knlg n + (k − 1)k−3n). [20]

Proof 9 DD&C first does a divide and conquer over the
data on the first dimension. During a merge step of this
divide-and-conquer, it recursively calls DD&C to do the
merge, but considering one dimension fewer. The fol-
lowing recurrence provides a lower bound.

T(n) = 1
T(n) = 2T(n/2) + max(mk,nlg k−3

2 mk,n, 1)

By the same proof steps as in the proof for Theo-
rem 8, we can show T(n) > (k − 1)k−3n. Of course,
DD&C sorts the data along each dimension before it com-
mences divide and conquer. The sorting costs �(knlg n).
Thus, DD&C considered under CI has average-case run-
time of �(knlg n + (k − 1)k−3n). ��

Should one even attempt to adapt a divide-and-con-
quer approach to a high-performance, external algo-
rithm for maximal vectors? Divide-and-conquer is quite
elegant and efficient in other contexts. We have already
noted, however, it is quite unclear how one could
externalize a divide-and-conquer approach for maximal

Maximal vector computation 15

vectors effectively. Furthermore, we believe their aver-
age-case runtimes are so bad, in light of the dimension-
ality k, that it would not be worthwhile.

Divide-and-conquer has high overhead with respect
to k because the ratio of the number of maximals to the
size of the set for a small set is much greater than for
a large set. Vectors are not eliminated quickly as they
are compared against local maximals. The scan-based
approaches such as BNL and SFS find global maximals—
maximals with respect to the entire set— early, and so
eliminate non-maximals more quickly.

3.3 The skyline algorithms

In some respects, the skyline algorithms are simpler than
previous maximal-vector algorithms. They are scan-
based and so are more amenable to externalizing. Their
worst-case runtimes are worse than most of the divide-
and-conquer algorithms; however, they are no worse in
any practical sense. (For example, DD&C’s worst-case of
knlg n + (k − 1)k−3n steps is asymptotically better than,
say, BNL’s kn2, but these two functions only cross for
a reasonable k at extreme n.) How do the skyline algo-
rithms perform in average case, though? Surprisingly, we
have learned that the skyline algorithms are significantly
better than the previous algorithms. We prove that here.

In other respects, the skyline algorithms are more
complex than their earlier counterparts. There are more
design choices involved, and these choices can have dra-
matic effects on runtime performance. Furthermore, it
has been— and, in many cases, remains— quite opaque
as to why these lead to the behaviors they do.

For BNL and SFS (and later, LESS), the following
policies must be determined.

• window management policy. How should window
points (tuples) be organized in the window? In what
order are they to be compared against a candidate
from the stream?

• window size (w). This is likely a runtime parameter
that a query processor would set. How does window
size affect the runtime performance?

For SFS (and later, LESS), there is an additional pol-
icy to decide.

• stream order. How should the stream be sorted prior
to processing? How does the choice of stream order
affect performance?

To consider BNL’s average-case runtime, let us sim-
plify these parameters. For now, we consider that the

window size is effectively unbounded; that is, it is suffi-
ciently big (w
 m) that a second pass is not required.
For BNL’s window management policy, when a tuple is
added to the window, it is appended at the end of the
window list. When a candidate tuple is compared against
the window, it is compared one-by-one against the win-
dow list in order. Call this window policy append.

Let the input stream— or likewise called list or table—
Ln consist of t0, . . . , tn−1 so ordered. Define the partial
list Ln as t0, . . . , ti−1. Define ∇i, the intermediate skyline
set i, as the the set of maximals with respect to Ln. Note
that not all tuples in ∇i are maximals with respect to Ln;
some tuple tj for j ≥ i may dominate some of the tuples
in ∇i. In BNL, each ti is considered, in turn. Let us call
the time at which ti is considered stage i.

At the beginning of stage i, the window must hold
exactly the tuples from ∇i.14 By the append window pol-
icy, these will be ordered in the window in the same order
that they appeared in the stream. Thus, ti is compared
against the tuples in ∇i. The expected value of the size
of ∇i is m̂k,i = Hk−1,i. The number of ∇i tuples that BNL
will compare ti against depends upon how many of the
∇i tuples dominate ti. If all do, then the first comparison
suffices to eliminate ti. If none does, ti will be compared
against all the ∇i tuples (and then itself be appended to
the window, and be thus in ∇i+1). If only one ∇i tuple
dominates ti, during the walk through the window, BNL
would compare ti against (|∇i|+1)/2 tuples, on average.
(The window is randomly ordered because the stream is
randomly ordered.) And so forth.

How many of the (local) maximals from ∇i dominate
ti depends on ti’s coordinates. Let function mttfk— for
mean time to failure— measure how many comparisons
are made for some ti against ∇i. We want to determine
the expected value of this, ̂mttfk. The function mttfk

takes as arguments the k coordinates of a tuple (e.g.,
ti) and an argument j for how many points have been
previously seen (e.g., i).

For the argument’s sake, assume the point set Ln is
normalized. Under CI, ti has a uniform probability of
falling anywhere in (0, 1)k, the k-cube. Therefore, the
expected value of the number of comparisons made at
stage i is

1
∫

xk−1=0

· · ·
1

∫

x0=0

̂mttfk(x0, . . . , xk−1, i)dx0 · · · dxk−1

We can estimate a ceiling on ̂mttfk(x0, . . . , xk−1, i).
Given ti’s coordinates as x0, · · · , xk−1, we know that
of the preceding i points, (1 − x0) · · · (1 − xk−1) · i of

14 For the first stage, let ∇0 = {}.

16 P. Godfrey et al.

0

1

x2

x
1

1 0

2

x1

x

1

1

Fig. 7 The dominating box of ti

them are expected to fall into the “box” (the k-sub-
cube) of space that dominates ti. (This is visualized in
Fig. 7 for k = 2.) The maximals of these points will
be found in ∇i, of course, but ∇i contains additionally
other maximals that do not dominate ti. By CI, we ex-
pect there to be Hk−1,(1−x0)···(1−xk−1)·(i) of these. The ratio
Hk−1,(1−x0)...(1−xk−1)·i/Hk−1,i then is the expected portion
of maximals in ∇i that dominate ti (of known coordi-
nates).

The inverse ratio then
Hk−1,i

Hk−1,(1−x0)···(1−xk−1)·i

is the expected value of how many ∇i BNL would com-
pare ti against, if it selected tuples randomly from ∇i with
replacement (and, in this case, with the proviso that some
∇i tuple dominates ti). This then is a strict upper-bound
on the expected value without replacement. BNL under
the append window policy will walk over the window
tuples in order. However, since the (local) maximals in
∇i are randomly ordered, this is the same as random
selection without replacement.

We can approximate H by ln . Let us define lh though
as

lh x =
{

γ if x < 1
(ln x) + γ otherwise

This is better behaved for 0 ≤ x < 1, and adds in γ to
approximate more closely H. We now can approximate

Hk−1,i/Hk−1,(1−x0)···(1−xk−1)·i

by

lh k−1i/lh k−1(1 − x0) · · · (1 − xk−1) · i

as a strict ceiling. A ceiling on the expected value of the
number of comparisons for ti of unknown coordinates
is thus

1
∫

xk−1=0

· · ·
1

∫

x0=0

lh k−1i

lh k−1x0 · · · xk−1i
dx0 · · · dxk−1

Summing this for each stage provides a bound on the
average number of comparisons made by BNL:

n
∑

i=1

1
∫

xk−1=0

· · ·
1

∫

x0=0

lh k−1i

lh k−1x0 · · · xk−1i
dx0 · · · dxk−1

Thus, a ceiling on the number of comparisons made
per vector, on average, is

1
∫

z=0

1
∫

xk−1=0

· · ·
1

∫

x0=0

lh k−1zn

lh k−1x0 · · · xk−1zn
dx0 · · · dxk−1dz

Theorem 10 Under CI, BNLwith an unbounded window
and a window policy of append, in average-case, in the
limit of n, makes one comparison per input vector. This
is an average-case runtime of O(kn).

Proof 10 It is easy to show that

lim
n→∞

1
∫

z=0

1
∫

xk−1=0

· · ·
1

∫

x0=0

lh k−1zn

lh k−1x0 · · · xk−1zn

dx0 · · · dxk−1dz

= 1 �
This is a remarkable result. No maximal-vector algo-
rithm could do better than one comparison per vector!
It may seem, at this point, there is no possibility to im-
prove on this. However, there is. BNL does not converge
quickly on this ideal, so this asymptotic result is some-
what misleading. The dimensionality k does play a role,
as it did with the divide-and-conquer algorithms, even
though, in this case, any effect of k asymptotically van-
ishes in the extreme limit. For data sets of realistic size
and dimensionality, BNL has an appreciable “multiplica-
tive constant”, which we shall discuss.

First though, we made assumptions for the above
analysis of BNL: append as the window management
policy; an unbounded window size; and that the input
stream is randomly ordered. Since append works here,
we could certainly choose it to be BNL’s window policy.
However, BNL would not be a useful external algorithm
if its main-memory requirement is dictated by the size
of its input. Is BNL still efficient if the window size is not
unbounded? Is BNL still efficient if the input stream is
ordered?

Let us consider BNL at the opposite extreme with a
window size of one (w = 1). This is effectively the Best
algorithm.15 First, we must recognize that Best will not

15 There is a small difference between Best as described in Fig. 3
and BNL with w = 1. BNL, once a maximal has gone full cycle, will
add the next tuple from the stream into the empty window. Best,
however, would commence at the beginning of the stream (list)
again. This difference is unimportant, however, for analysis since
we assume that the stream is randomly ordered. The same tuples
are eliminated by both algorithms in a pass, so where in the stream
the next pass commences is immaterial for the average-case anal-
ysis.

Maximal vector computation 17

find the maximals in a random order, even though the
input list is randomly ordered.

Lemma 1 Under CI, in each pass, it is more probable
that Best finds a maximal with a higher volume than
one with a lower volume.

Proof 1 It can be shown that Best’s procedure will ar-
rive at a maximal with higher volume with higher prob-
ability. (Rather, the chance that Best’s window slot ac-
crues a vector outside a smaller volumed maximal is
greater, thus ruling it out as the ultimate selection.)

Lemma 2 A vector drawn randomly from a normalized
set of vectors is eliminated in fewer comparisons against a
list of the maximals that is correlated by volume descend-
ing— but not more strongly correlated with the volume
for any subset of r dimensions than with any other subset
of r dimensions, for r < k— on average, than against a
list of the maximals randomly ordered.

Proof 2 This can be shown to follow since the probabil-
ity that the vector is eliminated in comparison to a given
maximal is proportional to the maximal’s volume.

Now we prove that Best has average-case runtime
of O(kn) under CI.

Theorem 11 Under CI, BNL with a window size of one,
and hence,Best, have an average-case runtime of O(kn).

Proof 11 We prove this by induction.
property. Best— BNL with a window size of one—
makes the same number or fewer comparisons than
BNL-open— BNL with an unbounded window with the
append window policy— makes, on average.

base case. Consider an input of size one.
hypothesis. For some r > 1, assume the property

for lists of vectors randomly ordered under CI of
length r or fewer.

induction. Consider a randomly ordered list of size
r + 1 under CI, t0, . . . , tr. Consider tr. ∇r contains
all the maximals, excepting tr if it is a maximal.

BNL-open will compare against the maximals in ∇r in
order— the same order as they appeared in the stream,
so random— until tr is eliminated, or is compared against
them all and found to be maximal.
Best compares tr against maximals (and only maxi-

mals, since tr is the last tuple) until tr is eliminated, or tr

is the selected maximal in some pass. The order of com-
parisons is the order in which Best finds the maximals,
one per pass. This order is not random, but correlated
by volume descending, by Lemma 1.

By Lemma 2, Best then makes fewer comparisons
for tr, on average, than does BNL-open. By Theorem 10,
BNL-open is O(kn). Thus so is Best. ��

Given that BNL is well behaved if its window is un-
bounded and if its window is bounded to just one, does
BNL remain well behaved for fixed window sizes in be-
tween? We do not know, although we conjecture it would
still be O(kn) in average case for any window size.

Conjecture 1 Under CI, BNLwith any fixed window size
(w ≥ 1) and using the append window policy has an
average-case runtime of O(kn).

The difficulty behind proving this is that it is now
quite hard to characterize what is in the window at any
given stage. Once the window becomes full, any stream
tuple that is incomparable with all the window tuples
is written to an overflow file, since there is no space to
append it to the window. A stream tuple that dominates
some some window tuples, however, will be added to
the window, since its eliminations create room. Further-
more, this means the window may no longer be full (as
the stream tuple may have eliminated several window
tuples), so the next incomparable stream tuples can be
added.

In fact, BNL is observed to be badly behaved with
respect to window size. One would expect that the more
resources that the algorithm is allocated— in this case,
more main memory— the better it would perform.
However, the opposite is true. It has been shown exper-
imentally in [17] that Best makes far fewer compari-
sons thanBNL (with an unbounded window). During our
development of SFS [15],16 we found that BNL’s perfor-
mance worsened significantly as we increased its window
allocation. Of course, we know now that BNL with an
unbounded window (under the append policy) is O(kn),
by Theorem 10. So while BNL with an unbounded win-
dow performs worse than Best, it can only be worse by
some constant factor. It would be interesting to observe
experimentally whetherBNLunder certain fixed window
sizes are seen to perform significantly worse than BNL
with an unbounded window.

While BNL does not need the input set to be sorted,
its good performance relies on the input set being ran-
domly ordered. Unfortunately, data is often ordered.
For instance, data in a database system is often ordered
as it is usually indexed in various ways. It was shown
in [15] that, if the data set is already ordered in some
way, but not for the benefit of finding the maximals as
in SFS, BNL can perform very badly. In fact, it is easy to
prove that under certain stream orders and for a fixed
window size, BNL would have O(knlg n) average-case
performance, or potentially worse.

16 The authors of this paper and of the SFS work [15]— Jan
Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang—
overlap.

18 P. Godfrey et al.

Let us next consider SFS. The SFS algorithm consists
of two phases: in phase one, the input set is sorted; and,
in phase two, the sorted stream is filtered for the maxi-
mals. Of course, SFS is immune to any original ordering
on the input since it sorts the data itself. Let us sort the
data as a nested sort on dk−1, . . . , d0 descending. This is
equivalent to what the SQL statement order by dk−1
desc, . . . , d0 desc would provide. Of course, since we
are assuming sparseness— and so there are no repeated
values on dk−1— this is equivalent to just order by
dk−1 desc. We assume the window management strat-
egy compares against window tuples in a random order
(random walk), and we assume for now an unbounded
window.

The bounds on mttf introduced for BNL are the same
here. When considering ti, we need to consider the ra-
tio of the number of maximals in the dominating space
above ti over the number of maximals in the window
collected so far, ∇i. However, we note that all the tuples
that precede ti have a higher dk−1 value. This reduces
the degrees of freedom by 1 in the estimation formula
for how many comparisons for ti are expected:

1
∫

xk−2=0

· · ·
1

∫

x0=0

lh k−1i

lh k−1x0 · · · xk−2i
dx0 · · · dxk−2

So the overall number of comparisons per vector SFS
is expected to make is bounded by

1
∫

z=0

1
∫

xk−2=0

· · ·
1

∫

x0=0

lh k−1zn

lh k−1x0 · · · xk−2zn
dx0 · · · dxk−2dz

We could not safely choose append as a window pol-
icy for this version of SFS as we did for BNL. It would
not perform well. The list of maximals (in the order they
are found) is not independent with respect to the sort
order of the stream. As the value on dk−1 decreases, the
average of d0, . . . , dk−2 of the maximals increases. The
dimensions with respect to the maximal set are anti-
correlated. This maximal list would be correlated with
that from least dominating to most. (So a prepend pol-
icy in this case would, in fact, work well.) Generally,
an analysis of average-case performance is made signifi-
cantly more complex when we must consider an “intel-
ligent” window policy. Thus, consider a random-walk
policy: a candidate is compared against window tuples
in a random order. Then it does not matter whether
the tuples in the window have an inherent order or not.
In the case of BNL, the append policy we used with it
is effectively the same as using a random-walk policy
with it. In either case, BNL would compare the candi-
date against window tuples in a random order.

While SFS with the stream sorted by one of the
dimensions reduces the degrees of freedom by one,
the estimated number of comparisons per vector is still
based on a dimensionality of k. An improvement on
the SFS algorithm in this case is to change the win-
dow strategy to eliminate tuples. Since we sorted on
dk−1, we only need to maintain the maximals with re-
spect to d0, . . . , dk−2 of the tuples added to the win-
dow. Thus, if a new maximal ti is added to the window,
any maximals in the window that it dominates with re-
spect to d0, . . . , dk−2— so not considering dk−1— can be
removed. The expected number of comparisons made
against stream tuple ti and the window is now bounded
by

lh k−2zn/lh k−2x0 · · · xk−2zn

instead of

lh k−1zn/lh k−1x0 · · · xk−2zn

So the expected number of comparisons per vector is
bounded by

1
∫

z=0

1
∫

xk−1=0

· · ·
1

∫

x0=0

lh k−2zn

lh k−2x0 · · · xk−2zn
dx0 · · · dxk−2dz

This is precisely one dimension better than BNL. This
version of SFS can be considered as a variation of BNL
which sorts the data first along one dimension. The
advantages are a reduction of 1 in degrees of freedom
(k) and that whenever a tuple is added to the window, it
is already known to be maximal and can be reported.

We can safely choose append as the window policy
this time for SFS with an elimination policy, as we did
for BNL. Under the assumptions of CI, the local maxi-
mals with respect to d0, . . . , dk−2, up to any given stage,
are distributed randomly and uniformly over the stream
sorted on dk−1. Therefore, the order they collect in the
window is random.

Theorem 12 Under CI, SFS with an unbounded win-
dow size, sorting by one dimension descending, and with
append with elimination as the window policy, has an
average-case runtime of O(kn).

Proof 12 This follows from the proof for Theorem 10.
��

If we change the window policy for eitherBNL orSFS,
or we change the sort order for SFS, then a new analysis
may be needed. It is not guaranteed that any variant of

Maximal vector computation 19

BNL or SFS will have O(kn) average-case runtime per-
formance. We must be careful in our design choices.17

For SFS, consider ordering on a volume (or entropy)
measure as in [15,16]. For the window policy, consider
the append policy, so the window is ordered by volume
also. The proof of Theorem 12 does not apply to this
version of SFS. For average-case analysis of SFS under
these assumptions, we need to know how many of the
maximal points dominate any given non-maximal. For
any maximal point, it is compared against every max-
imal point before it in stream. There are m(m − 1)/2
of these comparisons. For any non-maximal point, how
many maximals (points in the window) will it need to be
compared against before being eliminated?

Lemma 3 Under UI (Definition 2), in the limit of n, the
probability a non-maximal point is dominated by the
maximal point with the highest volume converges on one.
[20]

Proof 3 Assume UI. Let the values of the points be dis-
tributed uniformly on (0, 1) on each dimension.

We draw on the proof of FLET’s average case runtime
in [5]. Consider the (virtual) point v with coordinates
v [i] = 1 − ((ln n)/n)1/k, for each i ∈ k. The probabil-
ity that no point from the data set dominates v then is
(1 − (ln n)/n)n, which is at most e−ln n = 1/n.

The expected number of points dominated by v (and
hence, dominated by any point that dominates v) is (1 −
((ln n)/n)1/k)k.

lim
n→∞(1 − ((ln n)/n)1/k)k = 1

Thus any maximal with a volume greater than v’s
(which would include any points that dominate v) will
dominate all points in the limit of n. The probability
there is such a maximal is greater than (n − 1)/n, which
converges to one in the limit of n.

Theorem 13 Under UI (Definition 2), SFS sorting the
stream by volume descending and using the append win-
dow policy, for any fixed window size, has an average-
case runtime of O(kn + nlg n). [20]

Proof 13 The sort phase for SFS is O(nlg n). On the
initial pass, the volume of each point can be computed
at O(kn) expense. During the filter phase, m(m − 1)/2
maximal-to-maximal comparisons are made. Expected
m is �((ln k−1n)/(k − 1)!), so this is o(n). Number of
comparisons of non-maximal to maximal is O(n). Thus
the comparison cost is O(kn).

17 Note that best-case and worst-case for SFS as discussed in
Sect. 3.1 are unaffected by the sort order (as long as the sort is a
valid topological sort).

0

100

200

300

400

500

600

10 100 1000 10000 100000 1e+06

#vectors

#c
om

pa
ri

so
ns

 p
er

 v
ec

to
r BNF 1

BNF 2

SFS 1

SFS 2

3SFS

Fig. 8 Number of comparisons per vector (k = 7)

We use the append window policy. This means that
the window contains maximals in volume descending
order, the same order from the stream. No tuples are
eliminated from the window, except when the window
is cleared between passes. Any stream tuple written to
overflow will be compared against the next batch of
maximals in the next pass. Thus, the window size cannot
affect the number of comparisons.

By simulation, performances for two variants of BNL
and three variants of SFS are shown in Fig. 8. Data
sets of ten vectors to one million vectors (by powers of
ten) were generated, and the variants were simulated to
count the number of comparisons per vector made. At
least thirty trials were run in each bracket. The data was
normalized and the order random.

• BNL1: BNL with the append window policy as for
Theorem 10.

• BNL2: BNL with a window policy that keeps the win-
dow tuples sorted by volume descending, with re-
spect to d0, . . . , dk−2.

• SFS1: SFS sorting the input on one dimension desc-
ending and with the random-walk window policy
without elimination.

• SFS2: SFS sorting the input on one dimension desc-
ending and with the append window policy with
elimination as for Theorem 12.

• SFS3: SFS sorting the input on one dimension desc-
ending and with a window policy that keeps the win-
dow sorted by volume descending. (No elimination
is done in the window, but the comparison against
the window can terminate early.)

The variants BNL1, SFS1, and SFS3 are the ideal-
ized versions we used for analyses. The variants BNL2
and SFS2 are realistic versions of the algorithms with
seemingly good choices made for sort order and window

20 P. Godfrey et al.

policy to improve performance. For BNL2, we keep the
window sorted by the local maximals’s volume measure.
A candidate is then compared against window tuples in
order. Tuples near the beginning of window are more
likely to dominate. In [8], they keep a counter with each
window tuple. Any time a candidate is dominated by a
given window tuple, the corresponding counter is incre-
mented. The window is then kept sorted by the coun-
ters’s values. Thus, they attempt to measure dynamically
a tuple’s dominance capacity.
SFS2’s performance is precisely what we would see

for BNL for data sets of dimensionality six (k = 6). SFS3
represents one of the more effective variants of SFS we
have found: the data is sorted on one dimension (as by
order by); the window is kept sorted by tuples’s vol-
ume measures; and a candidate is compared against the
window tuples in order. As an extra optimization, once
the candidate’s volume measure exceeds the next win-
dow tuple’s, we stop the comparisons. The candidate is
clearly a maximal. None of the rest of the window tuples
could dominate it, since each has a lower volume mea-
sure. This effectively curtails many maximal-to-maxi-
mal comparisons to well below m(m − 1)/2. Thus SFS3
performs remarkably well in comparison with the
others.

The graph in Fig. 8 does not reflect SFS’s sort phase.
Even so, note that even adding the sorting expense for
SFS, it outperforms BNL in number of comparisons. For
a million records, SFS would need to do roughly 20
comparisons extra per vector in the sort.18 Adding this,
SFS still does far less comparison work than BNL. Of
course, in the extreme limit, SFS must do more com-
parison than BNL, on average. Furthermore, SFS could
lose to BNL in implementation; there are other expenses
besides CPU-load to consider, such as I/O-load. (In fact,
for the experiments in this paper in Sect. 3.4.2, this is the
case.)

One must note that all of these are still quite expen-
sive algorithms, in practice. It is surprising that each
would only make one comparison per vector, on aver-
age, in the extreme limit of n.19 However, for realis-
tic input sizes (n), the number of comparisons made
per vector is appreciably high. (Note that the graph in
Fig. 8 is in log-scale along the x-axis.)

Runtime for these algorithms is quite affected by the
dimensionality. Each extra dimension added is, after
all, an additional degree of freedom, thus the problem

18 Note that lg 2106 ≈ 20 and that merge-sort is close to ideal on
the concrete number of comparisons made.
19 Note that we do not actually know this for the realistic vari-
ations BNL2 and SFS3 here, but one would assume so for them
also.

becomes correspondingly more complex and more
expensive to solve. This should only be expected.
BNL is a remarkable algorithm. Still, we have seen

that there are issues with its performance, and improve-
ments can be made. By sorting, SFS effectively reduces
the dimensionality of the problem by 1 (which can be
a substantial improvement on its own), and addresses
many of the weaknesses of BNL. However, the sort step
gives SFS too high an average-case runtime. We would
like to have the best of both: SFS’s improvements, but
still O(kn) overall average-case runtime performance.

3.4 The LESS algorithm

3.4.1 Description

We devise an external, maximal-vector algorithm that
we call LESS (linear elimination sort for skyline) that
combines aspects of SFS, BNL, and FLET, but that does
not contain any aspects of divide-and-conquer. LESS fil-
ters the records via a skyline-filter (SF) window, as does
SFS. The record stream must be in sorted order by this
point. Thus LESS must sort the records initially too, as
does SFS. LESS makes two major changes:

1. it uses an elimination-filter (EF) window in pass zero
of the external sort routine to eliminate records
quickly; and

2. it combines the final pass of the external sort with
the first skyline-filter (SF) pass.

The external sort routine used to sort the records
is integrated into LESS. Let b be the number of buffer-
pool frames allocated to LESS. Pass zero of the standard
external sort routine reads in b pages of the data, sorts
the records across those b pages (say, using quicksort),
and writes the b sorted pages out as a b-length sorted
run. All subsequent passes of external sort are merge
passes. During a merge pass, external sort does a num-
ber of (b−1)-way merges, consuming all the runs created
by the previous pass. For each merge, (up to) b−1 of the
runs created by the previous pass are read in one page
at a time, and written out as a single sorted run.
LESS sorts the records by their entropy (volume)

scores, as discussed in Sect. 3.1 with regards to SFS.
LESS additionally eliminates records during pass zero
of its external-sort phase. It does this by maintaining a
small elimination-filter window. Copies of the records
with the best entropy scores seen so far are kept in the
EF window (Fig. 9(a)). When a block of records is read
in, the records are compared against those in the EF
window. Any input record that is dominated by any EF
record is dropped. Of the surviving input records, the

Maximal vector computation 21

Buffer Pool

E
F W

indow

Block for quicksort

...

in pass zero

Buffer Pool

SF W
indow

k

...

...1

2

OutputInputs

in pass f

(a) (b)

Fig. 9 Buffer pool for LESS

one with the highest entropy is found. Any records in
the EF window that are dominated by this highest en-
tropy record are dropped. If the EF window has room,
(a copy of) the input record is added. Else, if the EF
window is full but there is a record in it with a lower en-
tropy than this input record, the input record replaces it
in the window. Otherwise, the window is not modified.20

The EF window acts then similarly to the elimination
window used by BNL. The records in the EF window are
accumulated from the entire input stream. They are not
guaranteed to be maximals, of course, but as records are
replaced in the EF window, the collection has records
with increasingly higher entropy scores. Thus the collec-
tion performs well to eliminate other records.
LESS’s merge passes of its external-sort phase are

the same as for standard external sort, except for the
last merge pass. Let pass f be the last merge pass. The
final merge pass is combined with the initial skyline-fil-
ter pass. Thus LESS creates a skyline-filter window (like
SFS’s window) for this pass. Of course, there must be
room in the buffer pool to perform a multi-way merge
over all the runs from pass f − 1 and for a SF window
(Fig. 9(b)). As long as there are fewer than B − 2 runs,
this can be done: one frame per run for input, one frame
for accumulating maximal records as found, and the rest
for the SF window. (If not, another merge pass has to be
done before commencing the SF passes.) This is the same
optimization done in the standard two-pass sort-merge
join, implemented by many database systems. This saves
a pass over the data by combining the last merge pass of
external sort with join-merge pass. For LESS, this typ-
ically saves a pass by combining the last merge pass of
the external sort with the first SF pass.

As with SFS, multiple SF passes may be needed. If
the SF window becomes full, then an overflow file will
be created. Another pass then is needed to process the
overflow file. After pass f — if there is an overflow file
and thus more passes are required— LESS can allocate

20 We use a practical variation on this EF policy in the version
ran in the experimental evaluation in the next section. There, the
EF window keeps the maximals of what has been seen so far, just
as BNL does in its filtering for the skyline.

b − 2 frames of its buffer-pool allocation to the SF win-
dow for the subsequent passes.

In effect, LESS has all of SFS’s benefits with no addi-
tional disadvantages. LESS should consistently perform
better than SFS. Some buffer-pool space is allocated to
the EF window in pass zero for LESS which is not for
SFS. Consequently, the initial runs produced by LESS’s
pass zero are smaller than SFS’s; this may occasion-
ally force that LESS will require an additional pass to
complete the sort. Of course LESS saves a pass since it
combines the last sort pass with the first skyline pass.
LESS also has BNL’s advantages, but effectively none

of its disadvantages. BNL has the overhead of tracking
when window records can be promoted as known max-
imals. LESS does not need this. Maximals are identified
more efficiently once the input is effectively sorted. Thus
LESS has the same advantages as does SFS in compar-
ison to BNL. LESS will drop many records in pass zero
via use of the EF window. The EF window works to
the same advantage as BNL’s window. All subsequent
passes of LESS then are over much smaller runs. Indeed,
LESS’s efficiency rests on how effective the EF window
is at eliminating records early. In Sect. 3.4.3, we show
this elimination is very effective— as it is for FLET and
much for the same reason— enough to reduce the sort
time to O(n).

3.4.2 Experimental evaluation

To implement LESS and other skyline algorithms for
benchmarking, we implemented a code base that we
nicknamed Shiprec.21 An implementation of LESS
requires integration with an external sort routine which,
in turn, requires at least simplified buffer pool and
diskspace managers. Shiprec is implemented to use
page-based, nonblocking reads and writes, and double-
buffering. It is implemented in C for the gcc compiler.
It uses the pthreads library. A thread “watchdog” is at-
tached to each active buffer pair to implement nonblock-
ing I/O. A large file is allocated via the operation system
(Linux) via dd in advance to serve as the program’s
diskspace.

The experiments were run on an Intel-based com-
puter running Linux with a 2.4.32 kernel. The machine
has a single CPU, an Intel Pentium 4 (with 8k L1 and
512k L2 cache) clocked at 3.20 GHz. It has one GB main
memory. The disk controller and bus are IDE-SCSI, and
the machine has two standard ATA disks.

21 The initial Shiprec package was part of the work that Ryan
Shipley (one of the authors) did for his undergraduate honors the-
sis at the College of William and Mary in 2003 under the supervi-
sion of Parke Godfrey (another of the authors).

22 P. Godfrey et al.

The experiments are run on 5,000,000 record sets with
respect to five through nine dimensions.22 Each record
is 100 bytes, so the total size of a record set is 500 mil-
lion bytes. This size helps defeat page caching by the
operating system— as the machine has 1 GB of main
memory— to ensure the I/O cost is accurately reflected.

The record sets are generated by Shiprec. Column
values are chosen randomly, and the record sets obey
the UI criteria from Definition 2. Each column used as a
skyline criterion has an integer value on 1, . . . , 215. The
disk-page size in Shiprec was set to 8,192 bytes.

There are many parameters that can be adjusted for
these algorithms within Shiprec, each of which can
affect performance. A key parameter, of course, is the
buffer pool allocation made to the algorithm. LESS also
uses an EF window during its quicksort pass. Its size
needs to be set.

If the EF window is too large, it will take more time
simply as management of the EF window starts to have
an impact. On the other hand, if the EF window is too
small, the algorithm might become less effective at elim-
inating records early. As more records survive the sort to
the SF-phase, LESS’s performance degrades. We exper-
imented with varying the size of the EF window from
1 to 30 pages. Its size made little difference to LESS’s
overall performance, with some small trade-offs in com-
parisons and I/O usage. (We make clear why this should
be the case in Sect. 3.4.3.) We set the EF window at a
single page (80 records) for what we report here.

We experimented with various buffer pool alloca-
tions, from 10 to 500 pages. The size affects primarily
the efficiency of the sorting phase, as expected. BNL
is also quite sensitive, and ill behaved, with respect to
buffer pool allocation. In many cases, it is slowed down
with a larger allocation, due to a large increase in the
number of comparisons the algorithm performs. We set
the allocation at 100 pages as a reasonable choice for
what we report here. (As double buffering is used, this
accommodates up to a 50-way merge or a 50-page block
operation, such as quicksort. With a 8,192- byte page
size, this is 819,200-bytes of main memory available to
the program for data operations.

Figures 10 and 11 report timing and I/O results,
respectively. All experiments were run using our Ship-
rec code as described above. ExtSort represents just
running the external sort procedure on the record set;
the maximals are not computed. The records are sorted

22 These are not the same experiments that are reported in [20].
Each input set there had 500,000 records for a size of 50 million
bytes. We were asked to run these over larger record sets. The
machine used for these experiments is also different than before.
We also made minor improvements to our experimental platform,
Shiprec, including implementing BNL within it for comparison.

0

50

100

150

200

5 6 7 8 9

LESS

#dimensions

tim
e

(i
n

se
cs

)

500

550

600

650

BNL
SFS'
SFS

ExtSort

Fig. 10 Time

0

100

200

300

400

500

5 6 7 8 9

SFS

LESS

#dimensions

I/
O

's
 (

in
 th

ou
sa

nd
s)

BNL
SFS'

ExtSort

Fig. 11 I/O’s

descending on an entropy field that is generated when
the records are initially read. SFS is an implementa-
tion of the SFS algorithm as described in Sect. 3.1. For
SFS, the records are initially sorted descending by their
entropy values (as by ExtSort). The skyline window
policy used is append. SFS′ makes one of the two ma-
jor changes from SFS to LESS: the last merge pass of
the sort is combined with the first skyline pass. This
saves I/O’s but does not reduce any of the comparison
load. LESS is an implementation of the LESS algorithm
within Shiprec as described in the previous sub-sec-
tion. Again, the records are sorted by entropy descend-
ing. The skyline window policy used is append.
BNL is an implementation of theBNL algorithm within

Shiprec as described in Sect. 3.1. The window policy
used is a variation on append. The window list is walked
in order for each stream record. If the stream record
is found to dominate a window record, it replaces that
record in that list location within the window; otherwise,
it is appended to the window list (if there is room). This
has a better profile for BNL than simple append, simi-
lar to that of BNL2 discussed in Sect. 3.3. No sorting is

Maximal vector computation 23

done for BNL, of course; the input stream is randomly
ordered.

In each case, the results are written back to disk and
this cost is reflected in the measures. The record set is
already generated and on disk before the clock is started,
so this cost is not reflected (nor should it be).

For these settings and the Shiprec implementation,
the external sort takes 67 s, on average. This is regard-
less of the number of dimensions considered as the
sort is with respect to a single field (entropy). This is
a lower bound then on SFS’s performance. For five and
six dimensions, one can see the improvement of SFS′
as it does better than the external sort. This is because
the skyline filtering has started during the last merge
pass and many records are eliminated. This results in
I/O savings. In all the experiments, the I/O cost for SFS′
is better than for ExtSort, which, in turn, is necessar-
ily better than for SFS. The number of comparisons for
SFS and SFS′ are the same, however.
LESS shows a large performance improvement over

SFS and SFS′. The filtering by the EF window during
the quicksort pass of the external sort is not only theo-
retically beneficial— this renders LESS to be O(kn) as
proved in the next sub-section— it is also practically ben-
eficial. This reduces LESS’s I/O load significantly com-
pared with SFS. Shiprec’s LESS computes the skyline
for the 5,000,000 records on seven dimensions in 30 s.
Shiprec’s BNL performs quite well under these

parameters, particularly for lower dimensionality. On
the data set on five dimensions, it computes the sky-
line in 2 s while LESS takes 6 s. The two tie at around
10 s for the skyline on six dimensions. On seven dimen-
sions, BNL has fallen behind to 48 seconds with LESS
taking 30 s. On eight dimensions, it performs no better
than SFS′. On nine dimensions, it performs significantly
worse than the rest. It has the best I/O cost of all the
algorithms. Its computational load (how many compar-
isons are performed), however, is worse than the rest.
This profile fits well with our analytic understanding of
the algorithms.
BNL is also ill behaved. If the buffer pool allocation

is increased here, BNL’s performance worsens as it com-
parison load goes up. For the other algorithms, their per-
formance improves step-wise, as expected, as the buffer
pool allocation is increased. Mainly, at some point, the
external sorting can be done in fewer passes, reduc-
ing the I/O load. SFS and LESS do not experience an
increase in comparison load as the allocation is inc-
reased. BNL is also sensitive to the order of the input
stream. If the input stream is sorted (or correlated with)
a topological order that is opposite the skyline order,
BNL will thrash. (This was demonstrated in [15].) For
instance, Shiprec’s BNL run for five dimensions from

Fig. 10 for which the data is randomly ordered took 2 s.
When run on a five million record set that has been
ordered by one of the dimension fields from lowest to
highest— the skyline criteria here are for highest— BNL
takes 418 s. Of course, SFS and LESS are immune to
input order.

All the processes show signs of being CPU-bound
even for computing the seven dimensional skyline.
Although SFS′, BNL, and LESS have I/O costs below
ExtSort, by eight dimensions, all have much worse
times than ExtSort, meaning that the computational
load is out-stripping the I/O load. For 7 dimensions, BNL
and LESS have proportionally much less I/O cost than
ExtSort, but their times approach ExtSort which
demonstrates CPU-boundedness.

The results also demonstrate just how expensive each
additional dimension to the skyline problem truly is in
practice. This primarily arises due to the fact that the
final skyline set is larger for higher dimensionality. For
instance, for the data sets used here, the final skyline sets
were 2,840, 9,126, 25,715, 59,171, and 128,058 records
for five through nine dimensions, respectively. 23 All the
algorithms effectively must compare each skyline record
against every other one to verify it.

There are many improvements that could be made
to our Shiprec code base that would improve per-
formance of the algorithms. Shiprec does not exploit
sequential reads and writes. Doing so could improve
on the cost of the external sort operations significantly.
We have seen that Shiprec pays a fair overhead in
thread management. In part, this is due to inefficiencies
in thread management by the Linux 2.4 kernel. (The 2.6
kernel reportedly improves greatly on this.) It is also
due to our design: Shiprecmaintains a thread for each
active buffer pair. If a 200-way merge is being per-
formed, that means 200 watchdog threads. In retrospect,
this is wasteful and not needed. One could use a small
pool of threads and semaphore for this purpose. This
design also limits Shiprec’s buffer pool management.
Linux 2.4 has a limit of around 250 threads allowed per
process. This effectively meant we could not test with
over 500 buffer frames. A number of processing steps in
Shiprec are nanve and could be improved. (For exam-
ple, when performing a multi-merge, it polls for the next
record rather than using a priority queue.) Lastly,Ship-
rec can only address up to 2 GB in diskspace as limited
by a 32-bit integer. This limited us to testing on up to half
a gigabyte data sets, as in these experiments. (For some
of the algorithms, it can handle up to a gigabyte data
set.) We would like to test on much larger record sets.

23 These sizes match well with the analytically predicted values
for a five million record set under CI.

24 P. Godfrey et al.

A commercial caliber implementation of these algo-
rithms, and the next generation of our Shiprec plat-
form, could improve performance of LESS and SFS
further significantly. Some improvements could no
doubt benefit BNL also, but likely to a lesser degree.
For instance, Shiprec’s thread overhead did not affect
BNL much; it does not use multi-way merges.

3.4.3 Analysis

LESS also incorporates implicitly aspects of FLET.
Unlike FLET, we do not want to guess a virtual point
to use for elimination. In the rare occasion that the vir-
tual point was not found to be dominated, FLET must
process the entire data set by calling DD&C. Such hit-or-
miss algorithms are not amenable to relational systems.
Instead, LESS uses real points accumulated in the EF
window for eliminating. We shall show that these col-
lected points ultimately do as good a job of elimination
as doesFLET’s virtual point. Furthermore, the EF points
are points from the data set, so there is no danger of fail-
ing in the first pass, as there is with FLET.

To prove that the EF points are effective at eliminat-
ing most points, we can construct an argument similar
to that used in [5] to prove FLET’s O(n) average-case
runtime performance and in Lemma 3.

Theorem 14 Under UI (Definition 2), LESS has an
average-case runtime of O(kn). [20]

Proof 14 Let the data set be distributed on (0, 1)k under
UI.

Consider a virtual point v with coordinate x ∈ (0, 1)

on each dimension. Call the “box” of space that dom-
inates v A, and the “box” of space dominated by v B.
(This is shown in Fig. 12 for k = 2.) The size of B is then
xk, and the size of A is (1 − x)k. Let x = (1 − n−1/2k).
Thus the size of B, xk, is (1 − n−1/2k)k. In the limit of n,
the size of B is 1.

lim
n→∞(1 − n−1/2k)k = 1

If a point exists in A, it dominates all points in B. The
expected number of points that occupy A is proportional
to A’s volume, which is 1/

√
n by our construction. There

are n points, thus
√

n is the expected number of points
occupying A.

If points are drawn at random with replacement from
the data set, how many must be explored, on average, be-
fore finding one belonging to A? 24 If there were exactly√

n points in A, the expected number of draws would be

24 This is simpler to consider than without replacement, and is an
upper bound with respect to the number of draws needed without
replacement.

A

B

x

x 1

1

Fig. 12 Choosing point v

n/
√

n = √
n. Of course,

√
n is only the expected number

of points occupying A. Sometimes fewer than
√

n points
fall in A; sometimes, more. The actual number is distrib-
uted around

√
n via a binomial distribution. Taking the

reciprocal of this distribution, the number of draws, on
average, to finding a point in A (or to find no point is in
A) is bound above by (ln n)

√
n.

So during LESS’s pass zero, in average case, the num-
ber of points that will be processed before finding an A
point is bounded above by (ln n)

√
n. Once found, that

A point will be added to the EF window; else, there is
a point in the EF window already that has a better vol-
ume score than this A point. After this happens, every
subsequent B point will be eliminated.

The number of points that remain, on average, after
pass zero then is at most 1 − (1 − n−1/2k)k + (ln n)

√
n.

This is o(n). Thus, the surviving set is bound above by
nf , for some f < 1. Effectively, LESS only spends effort
to sort these surviving points, and nf lg nf is O(n).

Thus the sort phase of LESS is O(kn). The skyline
phase of LESS is clearly bound above by SFS’s aver-
age-case, minus the sorting cost. SFS average-case cost
after sorting is O(kn) (Theorem 12). In this case, only nf

points survived the sorting phase, so LESS’s SF phase is
bounded above by O(kn).

Proving this bound on LESS’s best-case performance
directly is not so straightforward. Of course, it follows
directly from the average-case analysis, which we have
already established.

Theorem 15 Under CI (Definition 2) and the model in
Sect 2.4, LESS has a best-case runtime of O(kn). [20]

Proof 15 The records have a linear ordering. Thus, this
is like considering the average-case runtime for skyline
problem with dimensionality one. ��

Worst-case analysis is straightforward.

Theorem 16 Under CI (Definition 2), LESS has a
worst-case runtime of O(kn2). [20]

Proof 16 Nothing is eliminated in the sort phase, which
costs O(nlg n). The SF phase costs the same as the worst-
case of SFS, O(kn2) (Theorem 6). ��

Maximal vector computation 25

3.5 Issues and improvements

Since our experiments in Sect. 3.4.2, we have been focus-
ing on how to decrease the CPU load of LESS, and
of maximal-vector algorithms generally. LESS and SFS
must make m(m − 1)/2 comparisons just to verify that
the maximals are, indeed, maximals. BNL faces this same
computational load, and does cumulatively more com-
parisons as records are compared against non-maximal
records in its window.

There are two ways to address the comparison load:
reduce further somehow the number of comparisons
that must be made; and improve the efficiency of the
comparison operation itself. The divide-and-conquer
algorithms have a seeming advantage here. DD&C, LD&C,
and FLET have a o(n2) worst-case performance. They
need not compare every maximal against every maxi-
mal. Of course, Sect. 3.2 demonstrates that the divide-
and-conquer algorithms have their own limitations.

The sorted order of the input stream need not be the
same as that in which the records are kept in the EF
and the SF windows. Indeed, we have learned that using
two different orderings can be advantageous. (Likewise,
this is true for SFS also. SFS3 in Fig. 8 and discussed in
Sect. 3.3 does this.) Say that we sort the data in a nested
sort with respect to skyline columns, and keep the EF
and SF windows sorted by entropy as before. This has
the additional benefit that the data can be sorted in a nat-
ural way, perhaps useful to other parts of a query plan.
Now when a stream record is compared against the SF
records, the comparison can be stopped early, as soon
as the stream record’s entropy is greater than the next
SF record’s. At this point, we know the stream record is
maximal. We have observed this change to reduce the
maximal-to-maximal comparisons needed by roughly a
quarter.

The dual-order versions of LESS— one order for the
input stream and one for the skyline window— that we
are investigating have given us insight into how we can
handle better sets with anti-correlation. This represents
the worst-case scenario for maximal-vector algorithms
(Sect. 2.4). We are able to handle reasonably well some
cases of anti-correlation, for instance, when one dimen-
sion is highly anti-correlated with another one. We may
be able to extend this to handle most anti-correlation
effects in the input to still achieve good running time.
Furthermore, this may lead to ways to improve onLESS-
like algorithms worst-case running time to better than
O(kn2).

There may be other ways to reduce the computa-
tional load of the comparisons themselves. Clearly, there
is much to gain by making the comparison operation
that the maximal-vector algorithm must do so often

more efficient. We are exploring these techniques fur-
ther, both experimentally and analytically, to see how
much improvement we can accomplish. We anticipate
improving upon the algorithm significantly more.

3.6 Lifting the assumptions

The example in Sect. 2.1 violates the assumptions made
in Sect. 2.4 that we used for average-case analyses. The
prices of the hotels do not seem uniformly distributed,
and likely they are not. The number of stars (quality)
of hotels is not sparse. There are only several possible
values. It is likely that number of stars and price are cor-
related, and price and distance to the beach are quite
possibly anti-correlated, thus the dimensions are not
independent. Most real-world data—and skyline que-
ries over that data—will violate those assumptions. How
important in truth are they?

In many cases, we did not need to assume uniformity.
The assumption seemed necessary in other cases. The
algorithms FLET and LESS relied on it, and SFS bene-
fits from it. We can actually remove the assumption for
these.
FLET needs to choose a virtual point that it will use

to eliminate points on the initial pass. The coordinates
of this virtual point can be trivially determined if the
data set is normal. Note that we simply need to know
a rank-value along each dimension: that so many vec-
tors rank above that given value. This selection problem
is known to be linear, however. One can find the ele-
ment of a given rank from an unordered list in O(n)

steps [7]. We could determine therefore the value cor-
responding to the target rank along each dimension in
O(kn) work. (This could be accomplished in fewer than
six passes over the data.) Thus, with O(kn) preprocess-
ing, we remove the need for uniformity for FLET and
LESS.25

In a database system, one often has statistics about
the data available. In many cases, these can be used to
approximate the normalization mapping for the data.

When the sparseness (distinct-value) assumption is
violated, so that there are repeated values along a dimen-
sion, the expected value of m goes down, up to the
point at which the set is dominated by duplicate points
(that is, points that are equivalent on all the dimen-
sions) [19]. We can prove that if there are few duplicates
over the vectors, but repeated values along the dimen-
sions, the expected number of maximals decreases. Since
our average-case for maximal-vector algorithms is

25 We would not want to do this in practice. This does show,
however, that FLET and LESS theoretically have O(kn) average-
case runtime under CI.

26 P. Godfrey et al.

predicated on m̂, all will perform at least as well when
the data is dense.

The case when there are many duplicates in the input
is different. Then the number of maximals may be much
greater than m̂ under CI: the same maximal is repeated
many times. For an industrial-caliber skyline algorithm,
it would be possible to address this case. LESS, for in-
stance, does not need to keep the tuples in the window. It
only needs to keep a projection of the tuple on the sky-
line columns. Furthermore, there is no need to maintain
duplicates in the window. Thus, if an optimizer predicts
a duplicate flood, LESS could first find all the distinct
maximal projections, hash these in main memory, and
on a subsequent pass of the data, select the maximal
tuples.

The only intrinsically difficult assumption is indepen-
dence. Maximal-vector algorithms perform poorly when
there are many maximals, and this occurs when the
dimensions have anti-correlations among them.
Whether better algorithmic approaches exist to handle
maximal-vector computation for highly anti-correlated
cases remains open.

4 Related work

In recent years, there has been much interest in maxi-
mal vector computation in the database community. In
this paper, we have focused on generic algorithms to
find the maximal vectors. However, research in this area
also covers index-based algorithms, and extensions to
the standard maximal vector problem.

The goals of index-based algorithms are to be able to
evaluate the skyline without needing to scan the entire
dataset— so for sub-linear performance, o(n)— and to
produce skyline points progressively, to return initial
answers as quickly as possible.

The shooting-stars algorithm [24] exploits R-trees and
modifies nearest-neighbor’s approaches for finding sky-
line points progressively. This work is extended upon
in [27,28] in which they apply branch-and-bound tech-
niques to reduce significantly the I/O overhead. In fact,
the algorithm in [27] is shown to deliver better perfor-
mance than any previous (prior to 2003) index-based
algorithms. In [18,30], bitmaps are explored for sky-
line evaluation, appropriate when the number of values
that are possible along a dimension is small. In [1], an
algorithm is presented as instance-optimal when the
input data is available for scanning in k sorted ways,
sorted along each dimension. If a tree index were avail-
able for each dimension, this approach could be applied.
No performance comparison with other algorithms is
provided, however.

We note that the generic SFS algorithm can be mod-
ified to become an index-based algorithm. The result of
the first phase of the algorithm, the nest-sorted list of
tuples, can be maintained using a B+ tree index. The
second phase of the algorithm, the actual Skyline com-
putation, can then be performed against that index.

Index-based algorithms for computing the skyline
(the maximal vectors) have serious limitations. The per-
formance of indexes (such as R-trees as used in [24,27])
does not scale well with the number of dimensions. Al-
though the dimensionality of a given skyline query will
be typically small, the range of the dimensions over
which queries can be composed can be quite large, often
exceeding the performance limit of the indexes. For an
index to be of practical use, it would need to cover most
of the dimensions used in queries.

We also note that building several indexes on small
subsets of dimensions (so that the union covers all the
dimensions) does not suffice, as the skyline of a set of
dimensions cannot be computed from the skylines of
the subsets of its dimensions. It is possible, and proba-
ble, that

maxes{d0,...,di−1}(T) ∪ maxes{di,...,dk−1}(T)

� maxes{d0,...,dk−1}(T)

Furthermore, if the sparseness (distinct-values)
assumption from Sect. 2.4 is lifted, the union is no longer
even guaranteed to be a subset. (This is due to the pos-
sibility of ties over, say, d0, . . . ,di−1.)

Another difficulty with the use of indexes for comput-
ing skyline queries is the fact that the skyline operator
is holistic, in the sense of holistic aggregation operators.
The skyline operator is not, in general, commutative
with selections. (In [13], cases of commutativity of sky-
line with other relational operators are shown.) For any
skyline query that involves a select condition on an attri-
bute which is not a skyline attribute, an index that would
have applied to the query without the select will not be
applicable.

Recall the criteria for good skyline algorithms [28]
discussed in Sect. 2.3. To satisfy criterion one, progres-
siveness, some preprocessing is required: index creation
for index-based algorithms, or sorting for SFS or LESS.
This preprocessing is a one-time effort and can be used in
subsequent queries, provided that the maintained struc-
ture is easily updateable.

All of the discussed algorithms satisfy the second cri-
terion, absence of false hits, as they compute the exact,
not an approximate, skyline. Also, all algorithms, ex-
cept BNL, satisfy criterion three, absence of temporary
false hits. The nearest-neighbor algorithm of [24] vio-
lates the fourth criterion, fairness, as it returns skyline
points according to their minimum coordinates in some

Maximal vector computation 27

dimension. The algorithms in [1,24,28] and the LESS
algorithm described in this paper are the only algorithms
that can incorporate user preferences (criterion five) to
order skyline points. As discussed above, none of the
index-based algorithms scales well with respect to the
number of dimensions, and thus violate the sixth crite-
rion, universality.

There has been much work recently devoted to
extending research in skyline computation to new prob-
lems and domains. Some of this work includes:

• semantics and computation of skyline in subspac-
es [29,31];

• computation of skyline cubes [34];
• skyline computation over partially ordered domains

[3,10,11];
• skyline computation over sliding windows [26];
• skyline computation in mobile environment [22];
• skyline of categorical data [2];
• approximate skyline [23]; and
• estimation of skyline cardinality [12,19].

5 Conclusions

We have reviewed extensively the existing field of algo-
rithms for maximal vector computation and analyzed
their runtime performances. We show that the divide-
and-conquer-based algorithms are flawed in that the
dimensionality k results in very large “multiplicative-
constants” over their O(n) average-case performance.
We proved that the scan-based skyline algorithms, while
seemingly more nanve, are much better behaved. We
introduced a new algorithm, LESS, which improves over
the existing skyline algorithms, and we prove that its
average-case performance is O(kn).

There remains room for improvement, and there are
clear directions for future work. While we can construct
algorithms that are asymptotically good without the uni-
formity assumption, with it we can improve
performance. We want to understand how to improve
performance in similar ways without needing to assume
uniformity. We want to reduce the comparison load of
maximal-to-maximal comparisons necessary in LESS-
like algorithms. While the divide-and-conquer algo-
rithms do not work well, their worst-case running times
are o(n2), while LESS’s is O(n2). It is a question whether
the O(n2) worst-case of scan-based algorithms can be
improved. Even if not, we want an algorithm to avoid
worst-case scenarios as much as possible. For maximal
vectors, anti-correlation in the data set causes m to
approach n. We want to be able to handle sets with

anti-correlation much better. We are presently working
on promising ideas for this, as discussed in Sect. 3.5.

We have found it fascinating that a problem as seem-
ingly simple as maximal vector computation is, in fact,
fairly complex to accomplish well. While there have
been a number of efforts to develop good algorithms
for finding the maximals, there has not been a clear
understanding of the performance issues involved. This
work should help to clarify these issues, and lead to bet-
ter understanding of maximal-vector computation and
related problems.

References

1. Balke, W.T., Güntzer, U.: Multi-objective query processing for
database systems. In: Nascimento, M.A., Özsu, M.T., Koss-
mann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds)
Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB), pp. 936–947. Morgan Kaufmann,
Toronto, Canada (2004)

2. Balke, W.T., Güntzer, U.: Supporting skyline queries on cate-
gorical data in web information systems. In: IASTED Inter-
national Conference on Internet and Multimedia Systems and
Applications (IMSA 2004), pp. 1–6 (2004)

3. Balke, W.T., Güntzer, U.: Efficient skyline queries under weak
pareto dominance. In: IJCAI-05 Multidisciplinary Workshop
on Advances in Preference Handling (Preference 2005),
pp. 1–7 (2005)

4. Barndorff-Nielsen, O., Sobel, M.: On the distribution of the
number of admissible points in a vector random sample. The-
ory Probab Appl 11(2), 249–269 (1966)

5. Bentley, J.L., Clarkson, K.L., Levine, D.B.: Fast linear
expected-time algorithms for computing maxima and con-
vex hulls. In: Proceedings of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 179–187.
ACM/SIAM (1990)

6. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.:
On the average number of maxima in a set of vectors and
applications. JACM 25(4), 536–543 (1978)

7. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.:
Time bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461
(1973)

8. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline opera-
tor. In: Proceedings of the 17th ICDE, pp. 421–430 (2001)

9. Buchta, C.: On the average number of maxima in a set of
vectors. Inf. Process. Lett. 33, 63–65 (1989)

10. Chan, C.Y., Eng, P.K., Tan, K.L.: Efficient processing of sky-
line queries with partially-ordered domains. In: ICDE, pp.
190–191 (2005)

11. Chan, C.Y., Eng, P.K., Tan, K.L.: Stratified computation of
skylines with partially-ordered domains. In: SIGMOD Con-
ference, pp. 203–214 (2005)

12. Chaudhuri, S., Dalvi, N., Raghav, K.: Robust cardinality and
cost estimation for skyline operator. In: ICDE (To appear,
2006)

13. Chomicki, J.: Querying with intrinsic preferences. In: Jensen,
C.S., Jeffery, K.G., Pokorný, J., Saltenis, S., Bertino, E., Böhm,
K., Jarke, M. (eds) Proceedings of the 8th International Con-
ference on Extending Database Technology (EDBT), LNCS
2287, pp. 34–51. Springer, Prague, Czech Republic (2002)

28 P. Godfrey et al.

14. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with
presorting. Technical. Report 04, Computer Science, York
University, Toronto, Ontario, Canada (2002)

15. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with pre-
sorting. In: Proceedings of the 19th International Conference
on Data Engineering (ICDE), pp. 717–719 (2003). See [14]
for a longer version

16. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with
presorting: Theory and optimization. In: Klopotek, M.A.,
Wierzchon, S.T., Trojanowski, K. (eds) Proceedings of the
Intelligent Information Systems Conference (IIS): New
Trends in Intelligent Information Processing and Web Mining,
Advances in Soft Computing, pp. 593–602. Springer, Gdansk,
Poland (2005)

17. Ciaccia, P.: Evaluating preferences with non-transitive pref-
erences. Presentation at the Dagstuhl Seminar 04271 (Prefer-
ences: Specification, Inference, Applications) (2004)

18. Eng, P.K., Ooi, B.C., Tan, K.L.: Indexing for progressive sky-
line computation. Data Knowl. Eng. 46(2), 169–201 (2003)

19. Godfrey, P.: Skyline cardinality for relational processing. In:
Seipel, D., Torres, J.M.T. (eds) Proceedings of the 3rd Interna-
tional Symposium on Foundations of Information and Knowl-
edge Systems (FoIKS), pp. 78–97. Springer, Wilhelminenberg
Castle, Austria (2004)

20. Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computa-
tion in large data sets. In: Böhm, K., Jensen, C.S., Haas, L.M.,
Kersten, M.L., Larson, P.Å., Ooi, B.C. (eds) Proceedings of
the 31st International Conference on Very Large Data Bases
(VLDB 2005), pp. 229–240. ACM, Trondheim, Norway (2005)

21. Hellerstein, J.M., Avnur, R., Chou, A., Hidber, C., Olston, C.,
Raman, V., Roth, T., Haas, P.J.: Interactive data analysis: The
control project. IEEE Comput. 32(8), 51–59 (1999)

22. Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline queries
against mobile lightweight devices in manets. In: ICDE (To
appear, 2006)

23. Jin, W., Han, J., Ester, M.: Mining thick skylines over large
databases. In: PKDD, pp. 255–266 (2004)

24. Kossmann, D., Ramask, F., Rost, S.: Shooting stars in the
sky: An online algorithm for skyline queries. In: Proceedings
of 28th International Conference on Very Large Data Bases
(VLDB-2002), pp. 275–286 (2002)

25. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima
of a set of vectors. JACM 22(4), 469–476 (1975)

26. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: effi-
cient skyline computation over sliding windows. In: ICDE,
pp. 502–513 (2005)

27. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and pro-
gressive algorithm for skyline queries. In: Proceedings of the
2003 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 467–478. ACM Press, Newyork (2003)

28. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline
computation in database systems. ACM Trans. Database Syst.
30(1), 41–82 (2005)

29. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the best views of
skyline: a semantic approach based on decisive subspaces. In:
VLDB, pp. 253–264 (2005)

30. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline
computation. In: Apers, P.M.G., Atzeni, P., Ceri, S., Parabo-
schi, S., Ramamohanarao, K., Snodgrass, R.T. (eds) Proceed-
ings of 27th International Conference on Very Large Data
Bases (VLDB), pp. 301–310. Morgan Kaufmann, Rome, Italy
(2001)

31. Tao, Y., Xiao, X., Pei, J.: SUBSKY: efficient computation of
skylines in subspaces. In: ICDE (to appear, 2006)

32. Torlone, R., Ciaccia, P.: Finding the best when it’s a matter of
preference. In: Ciaccia, P., Rabitti, F., Soda, G.: (eds) The 10th
Italian National Conference on Advanced Data Base Systems
(SEBD 2002), pp. 347–360 (2002)

33. Torlone, R., Ciaccia, P.: Which are my preferred items?
In: Workshop on Recommendation and Personalization in
eCommerce (RPEC), pp. 1–9. Malaga, Spain (2002)

34. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Effi-
cient computation of the skyline cube. In: VLDB, pp. 241–252
(2005)

	Algorithms and analyses for maximal vector computation
	Abstract
	Introduction
	The maximal vector problem
	An example
	An algorithm
	Criteria for a good algorithm
	Assumptions for Analysis
	Algorithms and analyses
	The algorithms
	The case against divide and conquer
	The skyline algorithms
	The LESS algorithm
	Description
	Experimental evaluation
	Analysis
	Issues and improvements
	Lifting the assumptions
	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

