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Abstract Existing spatiotemporal indexes suffer from
either large update cost or poor query performance,
except for the Bx-tree (the state-of-the-art), which con-
sists of multiple B+-trees indexing the 1D values trans-
formed from the (multi-dimensional) moving objects
based on a space filling curve (Hilbert, in particular).
This curve, however, does not consider object veloci-
ties, and as a result, query processing with a Bx-tree
retrieves a large number of false hits, which seriously
compromises its efficiency. It is natural to wonder “can
we obtain better performance by capturing also the
velocity information, using a Hilbert curve of a higher
dimensionality?”. This paper provides a positive answer
by developing the Bdual-tree, a novel spatiotemporal
access method leveraging pure relational methodology.
We show, with theoretical evidence, that the Bdual-tree
indeed outperforms the Bx-tree in most circum-
stances. Furthermore, our technique can effectively
answer progressive spatiotemporal queries, which are
poorly supported by Bx-trees.
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1 Introduction

A spatiotemporal database supports efficient query
processing on a large number of moving objects, and
has numerous applications (e.g., traffic monitoring, flight
control, etc.) in practice. The existing studies can be clas-
sified into two categories, depending on whether they
focus on historical retrieval, or predictive search. In this
paper, we consider predictive search, where the goal is
to report the objects expected to qualify a predicate in
the future (e.g., find the aircrafts that will appear over
Hong Kong in the next 10 min).

An object is a multi-dimensional point moving with
a constant velocity, and issues an update to the server
whenever its velocity changes. In Fig. 1, object o1 is at
coordinates (2, 9) at time 0, and its velocities (repre-
sented with arrows) on the x- and y- dimensions equal
1 and −2, respectively. A negative value means that the
object is moving towards the negative direction of an
axis. Similarly, object o2 positions at (9, 2) at time 0, and
is moving at velocity −1 (1) on the x- (y-) axis.

A range query returns the objects that will appear
(based on their existing motion parameters) in a moving
rectangle q during a (future) time interval qt. Figure 1
shows a query q1 with qt = [0, 2], whose extents at time
0 correspond to box q1(0). The left (right) edge of q1
moves towards right at a velocity 1 (2), and the velocity
of its upper (lower) boundary is 2 (1) on the y-dimen-
sion. The box q1(2) demonstrates the extents of q1 at
time 2. Notice that q1(2) has a larger size than q1(0)
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Fig. 1 Examples of spatiotemporal data and queries

since the right (upper) edge of q1 moves faster than the
left (lower) one. The query result contains a single object
o1, whose location (4, 5) at time 2 falls in q1(2).

Given a moving point q and a time interval qt, a
nearest neighbor (NN) query finds the object with the
smallest “minimum distance” to q during qt. In Fig. 1,
for instance, query q2 has a location (10, 8) at time 0,
and moves with velocity −1 on both axes. Assuming qt
= [0, 2], the NN of q2 is o2, whose minimum distance

√
5

to q2 (obtained at time 2) is smaller than that
√

17 of o1.
In general, a kNN query returns the k objects with the
smallest minimum distances.

Motivation and contributions. Existing indexes
[16,13,6] for moving points suffer from certain disad-
vantages. Although the TPR-tree [15,16] has good query
performance, it incurs expensive update cost, and thus, is
not appropriate for real-time applications with frequent
updates. STRIPES [13] is efficient to update, but (as ex-
plained in Sect. 2.1) has high space consumption and
low query performance. Neither structure can be easily
integrated in an existing DBMS because they are based
on techniques that are not supported by a relational
database. The Bx-tree [6], the state-of-the-art, involves
several B+-trees indexing the order of objects on a space
filling curve (e.g., Hilbert [3]). Hence, it can be incorpo-
rated into an off-the-shelf DBMS (e.g., Oracle, DB2). As
explained in Sect. 2, however, Bx-trees do not achieve
satisfactory query efficiency due to the large number of
“false hits” (i.e., non-qualifying objects that need to be
inspected).

In this paper, we present the Bdual-tree, which com-
bines the advantages of the existing solutions without
sharing their disadvantages. Table 1 summarizes the
properties of the new structure compared to the
previous indexes. In particular, the Bdual-tree (i) han-
dles both updates and queries effectively, (ii) is space-
efficient, and (iii) is readily implementable using pure
relational technologies, as long as B+-trees are supported.
The Bdual-tree is motivated by a simple observation that
the Hilbert curve deployed in a Bx-tree considers only

Table 1 Comparison of predictive spatiotemporal indexes

Bdual Bx TPR∗ STRIPES

Query cost Low High Low High
Update cost Low Low High Low
Storage size Low Low Low High
DBMS integration Easy Easy Hard Hard

objects’ locations (i.e., not velocities), which leads to the
retrieval of numerous false hits. The Bdual-tree is also
based on B+-trees, but avoids false hits by indexing a
Hilbert curve of a higher dimensionality, which captures
both locations and velocities.

It turns out that the above observation generates
numerous non-trivial issues. From the algorithmic per-
spective, specialized methods must be designed for uti-
lizing a high dimensional Hilbert curve to perform range
and kNN search (the original Bx solutions are no longer
applicable, as explained in Sect. 4.3). From a theoretical
viewpoint, it is well known that, as the dimensionality
increases, the efficiency of Hilbert curves drops, making
it important to justify why the penalty can be compen-
sated by retrieving fewer false hits. We derive analytical
formulae that elaborate why and when a curve captur-
ing velocities provides better query performance. Our
equations quantify the cost of Bdual- and Bx-trees, and
prove that our method outperforms Bx-trees in most
circumstances.

We further demonstrate the superiority of the Bdual-
tree by showing that it has higher applicability, and can
effectively answer progressive queries that are poorly
supported by Bx-trees. For example, a progressive
(aggregate) range query aims at continuously refining
its estimate about the number of qualifying objects, and
(when allowed to execute until termination) returns the
actual result. A Bdual-tree can produce a highly accu-
rate estimate well before the query terminates, while a
Bx-tree incurs significant error until nearly the end of
processing.

Specifically, our contributions include:

− Establishing the importance of capturing velocities
in indexing moving objects based on space filling
curves;

− Developing the algorithms for using a velocity-con-
scious Hilbert curve to solve various types of
queries;

− Careful analysis of the performance of Bdual- and
Bx-trees;

− Solutions for progressive spatiotemporal search;
− Extensive experimental evaluation of the proposed

and existing spatiotemporal indexes.
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The rest of the paper is organized as follows. Section
2 reviews the previous work directly related to ours.
Section 3 formally defines the problem. Section 4 ex-
plains the structure of the Bdual-tree and its range/kNN
algorithms. Section 5 provides theoretical justification
about the superiority of our technique over Bx-trees.
Section 6 discusses progressive processing, while Sect. 7
experimentally compares Bdual-trees against the previ-
ous structures. Finally, Sect. 8 concludes the paper with
directions for future work.

2 Related work

The existing predictive spatiotemporal structures can be
classified into three categories, depending on whether
they focus on the dual space, adopt the TPR-tree rep-
resentation, or resort to a space filling curve. Next, we
discuss each category in turn.

2.1 Dual space indexing

Kollios et al. [7] present a transformation that converts a
1D moving object to a static point in a 2D “dual space”.
Agarwal et al. [1] extended the transformation to arbi-
trary dimensionality, and proposed theoretical indexes
that achieve good asymptotic performance. These solu-
tions, however, are not efficient in practice due to the
large hidden constants in their complexities.

Kollios et al. [8] developed a practical access method
based on similar transformations. Let o be a 2D point
whose movement on the i-th dimension (1 ≤ i ≤ 2) is
given by o[i](t) = o[i] + o.v[i] · (t − tref), where o.v[i] is
its velocity along this dimension, and o[i](t), o[i] are its
i-th coordinate at a future timestamp t and the (past)
reference time tref, respectively. The Hough-X repre-
sentation of o is a vector (o.v[1], o[1], o.v[2], o[2]), and
its Hough-Y representation

(−o[1]
o.v[1] , 1

o.v[1] ,
−o[2]
o.v[2] , 1

o.v[2]
)

.

Accordingly, four 2D R-trees are created to manage the
following 2D spaces, respectively:

− Hough-X of Dimension 1 containing points of the
form (o.v[1], o[1]);

− Hough-X of Dimension 2 for points of (o.v[2], o[2]);
− Hough-Y of Dimension 1 for

(−o[1]
o.v[1] , 1

o.v[1]
)

;

− Hough-Y of Dimension 2 for
(−o[2]

o.v[2] , 1
o.v[2]

)
.

An object o may be inserted in various ways depend-
ing on the velocities of o. If o.v[1] is small1 (or large), a

1 We refer the interested readers to [8] for the criteria of “small”.

point (o.v[1], o[1])
(

or
(−o[1]

o.v[1] , 1
o.v[1]

))
is inserted in the

R-tree managing the Hough-X (or Hough-Y) of Dimen-
sion 1. Similarly, if o.v[2] is small (or large), a point

(o.v[2], o[2])
(

or
(−o[2]

o.v[2] , 1
o.v[2]

))
is incorporated. Hence,

two R-tree insertions are needed for o, whose entry
in each R-tree, however, contains the object’s complete
motion parameters (i.e., the parameters are duplicated).

To evaluate a range query, the algorithm of [8] relies
on a heuristic that decides an appropriate dimension to
search (i.e., only one dimension is considered). Assume
that the first dimension is chosen; then, the query is con-
verted to two “simplex queries” in the Hough-X and
Hough-Y spaces of the dimension, which are answered
using the R-trees. The problem with this approach is that
all objects qualifying the query along only one dimen-
sion must also be retrieved. Consider uniform data dis-
tribution and a query with selectivity 1/10 along each
dimension. Around 1/100 of the objects satisfy the query,
whereas the above algorithm may access 1/10 of the
dataset, fetching an excessive number of false hits.

Patel et al. [13] propose STRIPES, where 2D mov-
ing objects are mapped to 4D points (by the Hough-X
transformation) that are indexed by a PR bucket quad-
tree. Since the tree includes data on both dimensions,
STRIPES does not retrieve false hits. This, however,
does not imply lower query cost, because a node in
STRIPES may contain an arbitrarily small number of
entries, and hence, more pages need to be accessed to
obtain the same number of results. Furthermore, low
page utilization also leads to large space consumption.
To alleviate the problem, the authors of [13] suggest
a “half-page” storage scheme. Specifically, a leaf node
with occupancy at most 50% is stored in half of a page,
whereas a full page is used for leaf nodes with more than
50% occupancy (see [13] for details).

2.2 The TPR-tree

Saltenis et al. [15] propose the TPR-tree (later improved
in [16]) that augments R-trees [4] with velocities to index
moving objects. Figure 2a shows an example. The black
dots represent the positions of 4 objects a, b, c, d at time
0, and the arrows indicate their movements. Figure 2b
illustrates the object locations at timestamp 1.

A node in the TPR-tree is represented as a moving
rectangle (MOR), which includes an SBox and a VBox.
The SBox is a rectangle that tightly encloses the loca-
tions of the underlying objects at time 0, while the VBox
is a vector bounding their velocities. For example, the
SBox of node N1 is a rectangle with a projection [2,
5] ([3, 6]) on the x- (y-) dimension. Its VBox equals
(−2, 1, −2, 2), where the first/second number captures
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Fig. 2 A TPR-tree example

the smallest/largest object velocity on the x-dimension
(decided by b, a, respectively), and similarly, the third
and fourth values concern the y-axis. Figure 2 demon-
strates a VBox with 4 white arrows attached to the edges
of the corresponding SBox.

The extents of an MOR grow with time (at the speeds
indicated by its VBox) so that at any future timestamp
it contains the locations of the underlying objects, al-
though it is not necessarily tight. For example, in Fig. 2b,
at time 1 the MOR of N1 (or N2) is considerably larger
than the minimum bounding rectangle for its objects.
Consider a range query at time 1 whose search region
q is the shaded rectangle in Fig. 2b. Since N1 at time 1
does not intersect q, it does not contain any result, and
can be pruned from further consideration. On the other
hand, the query examines N2, which contains the only
qualifying object c.

The TPR-tree has been deployed to solve a large
number of spatiotemporal problems (e.g., kNN retrieval
[2], location-based queries [19], etc.). However, it has a
major defect: each insertion/deletion requires numerous
page accesses. Therefore, the TPR-trees are not feasi-
ble for real-life applications where objects issue updates
frequently.

2.3 The Bx-tree

The solutions in the previous sections cannot be easily
integrated into an existing relational database, since
considerable changes are required in the “kernel” of
a system (e.g., query optimization, concurrency con-
trol, introducing “half-pages”, etc.). Motivated by this,
Jensen et al. [6] propose the Bx-tree, which consists of
B+-trees indexing the transformed 1D values of mov-
ing objects based on a space filling curve (e.g. Hilbert
curve). In [9], Bx-trees are extended to manage historical
data.

Figure 3 shows an exemplary Bx-tree on 4 moving
points. The location of an object at the reference time
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Fig. 3 A Bx-tree example

0 is mapped to a Hilbert value, which is indexed by a
B+-tree. Object updates are highly efficient by resorting
to the B+ insertion/deletion procedures. To process a
range query, the query region is enlarged to cover the
locations of the qualifying objects at time 0. Consider,
for example, the small rectangle in Fig. 3 as a range query
q at timestamp 1. To avoid false misses, q is expanded
to rectangle q′, according to the maximum object veloc-
ities on the two dimensions. For example, since 2 is the
largest velocity along the positive direction of the x-axis,
the distance between the right edges of q′ and q equals 2
(i.e., the length traveled with speed 2 in one timestamp).
The enlargement guarantees that if an object appears in
q at time 1, its location at time 0 must fall in q′.

Region q′ intersects the Hilbert curve into 6 one-
dimensional intervals: AB, CD, EF, GH, IJ, KL shown
in Fig. 3. As a result, 6 one-dimensional range queries are
executed on the B+-tree for retrieving the points in q′.
For each resultant object, its actual location and velocity
are verified against the original query. In this example,
only c and d satisfy the query, although all the objects
are examined. In the sequel, we refer to the processing
strategy as the 1D-range reduction, because it reduces
spatiotemporal search to several 1D range queries on
the B+-tree.

Since expanding the query based on the maximum
velocities of the entire dataset may lead to an excessively
large search region, the Bx-tree uses histograms to main-
tain the largest velocities of objects in various parts of the
data space (so that smaller query enlargement is suffi-
cient based on these velocities). However, in case there
are slow and fast objects across the whole data space,
the benefits of the histogram are limited, in which case
the query performance of Bx-trees can be much worse
than that of TPR-trees. Another problem of the Bx-tree
is that it does not support kNN queries efficiently, be-
cause the kNN search is performed using iterative range
queries (by expanding the search area incrementally),
as opposed to a single-traversal algorithm [2] for the
TPR-tree.
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3 Problem definition and notations

We represent a d-dimensional (in practice, d = 2 or 3)
moving point o with

− A reference timestamp o.tref,
− Its coordinates o[1], o[2], . . . , o[d] at time o.tref, and
− Its current velocities o.v[1], o.v[2], . . . , o.v[d].

For example, object o1 in Fig. 1 has reference time
o1.tref = 0, coordinates o1[1] = 2, o1[2] = 9, and veloci-
ties o1.v[1] = 1, o1.v[2] = −2. We use vector o(t) = (o[1](t),
o[2](t), . . . , o[d](t)) to denote the location of o at a time-
stamp t ≥ o.tref, where, for 1 ≤ i ≤ d:

o[i](t) = o[i] + o.v[i] · (t − o.tref) (1)

A database consists of N moving points o, each of which
issues an update whenever its velocity changes. The ref-
erence time o.tref equals the time of its last update. In
accordance to the existing techniques [1,7,6,13], we con-
sider that an object issues at least one update every T
timestamps.

A d-dimensional moving rectangle (MOR) r is
captured by

− A reference timestamp r.tref,
− A spatial box (SBox), a 2d-dimensional vector

(r�[1], r�[1], ..., r�[d], r�[d]), where [r�[i], r�[i]] is the
i-th (1 ≤ i ≤ d) projection of r at time r.tref, and

− A velocity box (VBox), a 2d-dimensional vector
(r.V�[1], r.V�[1], ..., r.V�[d], r.V�[d]), where r.V�[i]
(or r.V�[i]) indicates the velocity of the left (or right)
edge on the i-th dimension.

Denoting the spatial extents of r at a timestamp
t ≥ r.tref as r(t) = (r�[1](t), r�[1](t), ..., r�[d](t), r�[d](t)),
we have:

r�[i](t) = r�[i] + r.V�[i] · (t − r.tref)

r�[i](t) = r�[i] + r.V�[i] · (t − r.tref)

A range query specifies a time interval qt = [qt�, qt�],
and an MOR q whose reference time is qt�. For instance,
for the range search in Fig. 1, qt = [0, 2], and the query
q1 is an MOR with reference time 0, SBox (2, 3, 3, 4),
and VBox (1, 2, 1, 2). An object o satisfies q if o(t) falls
in q(t) for some t ∈ qt.

A k nearest neighbor query has a time interval qt =
[qt�, qt�], and a moving point q with reference time qt�.
The minimum distance dmin(o, q) between an object o
and q equals the shortest Euclidean distance between

o(t) and q(t) for all t ∈ qt. The query result consists of
the k objects with the smallest dmin.

For both query types, we say that q is a timestamp
query if qt involves a single timestamp (i.e., qt� = qt�);
otherwise, q is an interval query. Our objective is to min-
imize the CPU and I/O cost in answering a query.

4 The Bdual-tree

Section 4.1 discusses the structure of the proposed index
and its update algorithms. Section 4.2 clarifies the deci-
sion of a crucial parameter of the Bdual-tree. Section 4.3
explains why the query algorithms of Bx-trees are ineffi-
cient for Bdual-trees. Section 4.4 illustrates the concept
of “perfect MOR”, based on which Sect. 4.5 elaborates
the range and kNN algorithms.

4.1 The structure and update algorithms

A Bdual-tree has two parameters: a horizon H, and a
reference time Tref. H decides the farthest future time
that can be efficiently queried. Similar to TPR-trees
[15], a Bdual-tree constructed at time t optimizes que-
ries about the period [t, t + H]. Queries that concern
timestamps later than t +H are also correctly answered,
but they are not optimized due to their lower importance
(predicting about a distant timestamp is not useful since
many objects may have issued updates by then).

The second parameter Tref is needed to convert data
to their duals. The Tref is not necessarily equal to the
construction time of the tree (the computation of Tref
will be discussed in the next section). Let o be a mov-
ing point with a reference timestamp o.tref, coordinates
o[1], ..., o[d], and velocities o.v[1], ..., o.v[d]; its dual is a
2d-dimensional vector:

odual = (o[1](Tref), ..., o[d](Tref), o.v[1], ..., o.v[d])

where o[i](Tref) is the i-th coordinate of o at time Tref,
and is given by

o[i](Tref) = o[i] + o.v[i] · (Tref − o.tref)

Equivalently, odual is a point in a 2d-dimensional dual
space, which contains d location dimensions (for the first
d components of odual) and d velocity dimensions. The
dual space can be mapped to a 1D domain using any
space filling curve. We choose the Hilbert curve because
it preserves the spatial locality better than other curves
[6], leading to a lower query cost. The Hilbert value of
odual can be computed using a standard algorithm [3],
based on a partitioning grid that divides the data space
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into 2λ·2d cells. In particular, the grid has 2λ cells on each
dimension, and λ is an integer called the resolution.

Objects whose duals fall in the same cell have iden-
tical Hilbert values, which are indexed by a B+-tree.
Each leaf entry stores the detailed information of an
object (i.e., its reference time, locations, and velocities).
An insertion/deletion is performed in the same way as
a B+-tree, by accessing O(log N) pages where N is the
dataset cardinality.

As with the Bx-tree, a Bdual-tree is composed of two
B+-trees, BT1 and BT2. Each tree has two states: (i) a
growing state when objects can be inserted/deleted, and
(ii) a shrinking state when only deletions are allowed.
At any time, one tree is in the growing state, and the
other in the shrinking state. They swap states every T
timestamps, where T is the largest interval between two
consecutive updates from the same object.

Initially, BT1 (BT2) is in the growing (shrinking) state
for time interval [0, T), when all the updates are di-
rected to BT1, and BT2 remains empty. During [T, 2T),
the states of BT1 and BT2 are reversed. In this period,
every insertion is performed in BT2. A deletion, how-
ever, may remove an object from BT1 or BT2, depend-
ing on whether it was inserted during [0, T) or [T, 2T),
respectively. At time 2T, BT1 becomes empty (all the
objects inserted during [0, T) have issued updates), and
the two trees switch states again.

Given a query, both BT1 and BT2 are searched, and
the results are combined to produce the final answer.
Since BT1 and BT2 are symmetric, in the rest of Sect. 4,
we focus on a single tree, and refer to it simply as a
Bdual-tree.

4.2 Deciding the reference time

The selection of Tref has a significant impact on query
performance. Without loss of generality, consider a Bdual-
tree that enters the growing state at time tgrow. Although
previous methods [1,13,8] set Tref to tgrow, we will show
that a better choice of Tref is tgrow +H/2, where H is the
horizon parameter.

Any cell c in the partitioning grid can be regarded as
a d-dimensional MOR (moving rectangle) whose SBox
(VBox) captures the projection of the cell on the loca-
tion (velocity) dimensions of the dual space. Figure 4
shows an example where d = 1, and the dual space
has 2d = 2 dimensions. The partitioning grid contains
23·2 = 64 cells (i.e., the resolution λ = 3), and the num-
ber in each cell is the Hilbert value (of any point inside).
The cell 53, for example, has a 1D SBox [0.5, 0.625] (its
projection on the horizontal axis) and a VBox [0.375,
0.5], assuming that all the dimensions have a domain
[0, 1].

Fig. 4 Hilbert range
decomposition (d = 1, λ = 3)

Fig. 5 Integrated areas with different tref

Given a range query q (an MOR), objects in a cell c
need to be inspected if and only if the MOR c intersects
q during the query interval qt. For example, assume Tref
= 0 and let c be the cell in Fig. 4 with value 53. According
to the SBox and VBox of c, the spatial extent of c at time
1 is c(1) = [0.5 + 0.375, 0.625 + 0.5] = [0.875, 1.125]. For a
query with q = [0.7, 0.8], q.V = [0.1, 0.1], and qt = [0, 1],
all the objects with Hilbert value 53 must be examined
because q(1) = [0.8, 0.9] intersects c(1); otherwise, we
may risk having false misses.

Hence, to maximize query efficiency, we should re-
duce the probability that the MOR of c intersects a
query q. The analysis in [15] shows that the proba-
bility is decided by the “integrated area” of c during
[tgrow, tgrow + H], calculated as:

tgrow+H∫

tgrow

AREA(c(t)) dt (2)

where c(t) is the spatial extents of c at time t. Figure
5a, b illustrates the integrated areas (the grey regions)
of a 1D MOR, assuming reference time Tref = tgrow and
Tref = tgrow + H/2, respectively. Let l (lv) be the side
length of a cell on a location (velocity) dimension. For
general dimensionality d, the integrated area of c equals:

Tref−tgrow∫

0

(l + t · lv)d dt +
tgrow+H−Tref∫

0

(l + t · lv)d dt (3)

Lemma 1 Equation 3 is minimized when Tref equals
tgrow + H/2.
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Proof Let us consider the difference between the inte-
grated area achieved with Tref = tgrow + t′ for any
t′ ∈ [0, H/2) and that with Tref = tgrow +H/2. The differ-
ence equals:

t′∫

0

(l + t · lv)d dt +
H−t′∫

0

(l + t · lv)d dt − 2

H/2∫

0

(l + t · lv)ddt

=
H−t′∫

H/2

(l + t · lv)d dt −
H/2∫

t′
(l + t · lv)d dt

≥
(

H
2

− t′
)(

l + lv · H
2

)d

−
(

H
2

− t′
)(

l + lv · H
2

)d

= 0

which indicates that Tref = tgrow+H/2 produces a smaller
area than Tref = tgrow + t′. By symmetry, we can show
that the same is true for Tref = tgrow + H − t′ (given any
t′ ∈ [0, H/2)), thus completing the proof. 	


Rigorously, Formula 2 captures the access probabil-
ity of a cell for a timestamp range query q with qt�
uniformly distributed in [tgrow, tgrow +H]. Hence, Tref =
tgrow+H/2 minimizes the query cost only in this scenario.
The analysis for general queries is more complex. Never-
theless, the above analysis shows that tgrow is most likely
not an appropriate value for Tref. As a heuristic, we set
Tref to tgrow + H/2 in any case, which leads to a lower
query cost than Tref = tgrow in all of our experiments.

4.3 Pitfall of the 1D-range reduction

As reviewed in Sect. 2.3, the Bx-tree adopts the 1D-
range reduction for solving range search. Specifically,
the search is converted to several 1D range queries on
the B+-tree (e.g., in Fig. 3, six queries are required for
segments AB, CD, EF, GH, IJ, KL, respectively). In
this section, we will show that this strategy is inefficient
for Bdual-trees, and outline an alternative processing
framework.

To apply the 1D-range reduction, we need to trans-
form range search into a simplex query in the dual space.
As mentioned in Sect. 2.1, a simplex query specifies a
set of linear constraints (each corresponding to a 2d-
dimensional half-space in the dual space), and aims at
finding the (dual) points that fall in the intersection of
all the half-spaces. Although these constraints can be
formulated using the derivation of [8], the intersection
can be a very complex polyhedron, rendering it difficult
to compute the smallest set of segments on the Hilbert
curve constituting the polyhedron.

Furthermore, even if an algorithm was available to
discover these segments, applying the 1D-range reduc-
tion to Bdual-trees would suffer from another problem:

the number of required 1D range queries increases expo-
nentially with the dimensionality d. This is a well-known
drawback of the Hilbert curve, regardless of the shape of
a search region. For simplicity, we explain the phenome-
non using regular regions, which are hyper-squares cov-
ering b cells (of the partitioning grid) on each dimension
(i.e., the square contains totally b2d cells), where b is an
integer smaller than 2λ. Consider each cell c such that (i)
it is at the border of the square, and (ii) the cell whose
Hilbert value precedes that of c lies outside the square.
The number of necessary 1D range queries (for finding
all the points in the square) equals exactly the number of
cells satisfying the conditions (i) and (ii). Unfortunately,
there are on average b2d−1 such cells in the square [11].
Note that the value of b depends on the resolution λ.
A typical value of λ is 10 (i.e., each dimension consists
of 1,024 cells), and thus, b is at the order of 100 for a
search region covering 10% of each axis. In this case,
issuing b2d−1 1D range queries becomes prohibitively
expensive.

Motivated by this, we devise an alternative query
evaluation strategy for Bdual-trees. We avoid generat-
ing 1D range queries, and instead focus on develop-
ing algorithms for checking whether the subtree of an
intermediate entry (in a Bdual-tree) may contain any ob-
ject satisfying a spatiotemporal predicate. As we will
see, this strategy allows us to re-use the existing algo-
rithms of TPR-trees for query processing with Bdual-
trees (applying simple modifications). Furthermore, as
shown in Sect. 4.5, our approach supports kNN search
much more efficiently than Bx-trees. In particular, we re-
trieve the nearest neighbors in a single traversal of the
tree, as opposed to the iterative solution (with multiple
range queries) for Bx-trees.

4.4 The MOR representation of an intermediate entry

Next, we show that each intermediate entry e can be
associated with a set of MORs {r1, r2, ... rm} with the
following property: at any future time t, the location of
any object o in the subtree of e is enclosed in the extents
of some MOR. Formally, there exists at least one MOR
ri (for some i ∈ [1, m]) such that ri(t) covers o(t). These
MORs are crucial for the query algorithms presented in
the next section.

In fact, as a property of the B+-tree, an interme-
diate entry e is implicitly accompanied by an interval
[e . h�, e . h�), which contains the Hilbert values of all
the objects in the subtree. We refer to [e . h�, e . h�) as
the Hilbert interval of e. Each integer in the interval
corresponds to a cell in the partitioning grid. As men-
tioned in Sect. 4.2, each cell can be regarded as an MOR,
and thus, e can be trivially associated with e . h� − e . h�
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MORs. However, the number of these MORs can be
2λ·2d in the worst case (i.e., all the cells in the grid),
such that the resulting query algorithms incur expensive
CPU cost. In the sequel, we present an approach that
associates e with at most (4d − 1) · (2λ − 1) MORs.

Our goal is to break [e . h�, e . h�) into several disjoint
intervals, such that the union of the cells in each inter-
val is a hyper-square in the dual space. For example, in
Fig. 4, [23, 49] can be broken into six intervals [23, 23],
[24, 27], [28, 31], [32, 47], [48, 48], [49, 49] satisfying the
above condition. In particular, the cells in [23, 23], [24,
27], [32, 47] constitute 1 × 1, 2 × 2, and 4 × 4 squares,
respectively. Each resulting square can be regarded as
an MOR whose projection on a location/velocity dimen-
sion is identical to that of the square (e.g., [23, 49] can
be associated with six MORs).

We say that an MOR is perfect if

− it is created by a 2d-dimensional square of cells in
the partitioning grid, and

− the cells have continuous Hilbert values.

In fact, a set of cells can produce a perfect MOR if
and only if their Hilbert values constitute an interval of
the form
[
a · 2i·2d, (a + 1) · 2i·2d − 1

]
(4)

where i is an integer in [0, λ], and a another integer
in

[
0, 22d·(λ−i) − 1

]
. For instance, [32, 47] can be repre-

sented in the above form with a = 2 and i = 2, and hence,
it leads to a perfect MOR.

Lemma 2 An intermediate entry e can be associated with
at most (4d − 1) · (2λ − 1) perfect MORs.

Proof Since all the MORs in this proof are perfect
MORs, we omit the word “perfect” for simplicity. We
say that an MOR is of level i if it is generated by an
interval of Formula 4. Let [x, y] be the Hilbert interval
of e, and S the set of MORs that will be associated with
e. Consider, among the MORs whose Hilbert intervals
contain [x, y], the one r of the minimum level l. The
lemma is trivially correct if [x, y] is identical to r (i.e., S
has a single MOR r). Next, we focus on the case where
[x, y] is a proper subset of r, i.e., the length of [x, y] is
shorter than 2l·2d.

We add to S all the MORs of level l−1 whose Hilbert
intervals fall in [x, y]. Since each interval has a length
of 2(l−1)·2d, there can be at most �(2l·2d − 1)/2(l−1)·2d� =
4d − 1 such MORs. If we remove these intervals from
[x, y], the remaining part of [x, y] consists of at most two
disjoint intervals [x, y1] and [x1, y], appearing at both

level l-1 x yy1 x1

x y2 x2 ylevel l-2

level 0

. . .

x
yl xl

y

perfect MORs

Fig. 6 Illustration of the proof for Lemma 2

Fig. 7 Decomposing a Hilbert interval

ends of [x, y], respectively, as shown in Fig. 6. Each of
the two remaining intervals is shorter than 2(l−1)·2d.

Let us recursively decompose [x, y1] into MORs of
lower levels. If [x, y1] is already an MOR of level l − 2,
no recursion is necessary. Otherwise, we add to S all
the MORs of level l − 2 (whose Hilbert intervals are)
fully enclosed in [x, y1]. By the reason mentioned ear-
lier, at most 4d − 1 such MORs are added. We remove
their intervals from [x, y1], which has only one remain-
ing part [x, y2] with length shorter than 2(l−2)·2d (there
is not any remaining interval of [x, y1] on the right end,
because y1 must be “aligned” with a perfect interval of
level l−2). The decomposing process can be repeated at
most l times, such that eventually we obtain an interval
[x, yl] of length at most 4d −1 (see Fig. 6), corresponding
to at most 4d − 1 level-0 MORs (i.e., an MOR for each
integer in [x, yl]).

Since the same situation also applies to interval [x1, y],
it is clear that, at each level i (0 ≤ i ≤ l − 2), at most
2 · (4d − 1) MORs are created in S. At level l − 1, as
mentioned earlier, at most 4d − 1 MORs are obtained.
Hence, the largest size of S equals (4d − 1) · (2l − 1).
Given that l is at most λ (the resolution of the grid), the
size of S is bounded by (4d − 1) · (2λ − 1). 	


Figure 7 presents the algorithm for finding the per-
fect MORs of a non-leaf entry e in arbitrary dimension-
ality. Note that the actual number of MORs produced
is usually much smaller than the upper bound stated
in Lemma 2 (e.g., the number 6 for the interval [23,
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49] in Fig. 4 is significantly lower than the upper bound
(41 − 1) · (2 · 3 − 1) = 15). The algorithm terminates
in O(4d · λ) time. Since d = 2 or 3 in most real applica-
tions, the computational cost is essentially linear to the
resolution λ.

An important implication of Lemma 2 is that a Bdual-
tree is as powerful as a TPR-tree in terms of the queries
that can be supported. Intuitively, since the intermediate
entries of both structures can be represented as MORs,
an algorithm that applies to a TPR-tree can be adapted
for the Bdual-tree. Adaptation is needed only because
an entry of a TPR-tree has a single MOR, while that of
a Bdual-tree corresponds to multiple ones. In the next
section, we demonstrate this by developing the range
and kNN algorithms.

4.5 Query algorithms

Let e be an intermediate entry, which is associated with
m MORs r1, r2, ..., rm

(
m ≤ (4d − 1) · (2λ − 1)

)
, returned

by the algorithm of Fig. 7. Given a range query q, the
subtree of e is pruned if no ri (1 ≤ i ≤ m) intersects q
during the query interval qt. The processing algorithm
starts by checking, for each root entry e, whether any of
its associated MORs intersects q during qt (in the same
way as in TPR-trees [15]). If yes, the algorithm accesses
the child node of e, carrying out the process recursively
until a leaf node is reached. Then, detailed information
of each object encountered is simply examined against
the query predicate.

We proceed to discuss the nearest neighbor retrieval.
For an MOR r, let dmin(r, q) be the minimum distance
between rectangle r(t) and point q(t) for all t ∈ qt. For an
intermediate entry e associated with m MORs r1, . . . , rm,
we define the minimum distance dmin(e, q) between e and
q as:

dmin(e, q) = m
min
i=1

(dmin(ri, q)) (5)

Given an intermediate entry e and an object o in its
subtree, we have dmin(e, q) ≤ dmin(o, q), where
dmin(o, q) is the smallest distance between o and q during
qt. Similarly, if e′ is an intermediate entry in the subtree
of e, it holds that dmin(e, q) ≤ dmin(e′, q). These proper-
ties permit us to deploy the “best-first” algorithm [5] for
kNN search with a Bdual-tree. Specifically, the algorithm
uses a heap H to organize all the (leaf/non-leaf) entries
encountered in ascending order of their minimum dis-
tances to q. Initially, all the root entries are inserted to
H. Then, the algorithm repeatedly processes the entry
e that has the smallest minimum distance among the
elements in H. Specifically, if e is an intermediate entry,

we en-heap the entries in its child node; otherwise (e is
an object), it is returned as the next NN. The algorithm
terminates as soon as k objects have been reported.

It remains to clarify the computation of dmin(e, q).
By Eq. 5, this is equivalent to calculating the minimum
distance dmin(r, q) between an MOR r and a moving
point q, for which we are not aware of any existing solu-
tion2. In the sequel, we provide a method that obtains
dmin(r, q) in O(d) time.

Let dmin(t) be the minimum distance between r(t) and
q(t) at a particular timestamp t. Denote [r�[i](t), r�[i](t)]
and q[i](t) as the projection of r(t) and q(t) on the i-th
dimension, respectively (1 ≤ i ≤ d). We use dmin[i](t)
to represent the minimum distance between the 1D
interval [r�[i](t), r�[i](t)] and value q[i](t). Hence:

d2
min(t) =

d∑
i=1

(dmin[i](t))2 (6)

To derive dmin[i](t), we need to solve t from the fol-
lowing equations (each a linear equation of t):

r�[i](t) = q[i](t) (7)

r�[i](t) = q[i](t) (8)

Let t�[i] be the solution of Eq. 7, and t�[i] that of
Eq. 8. We have:

dmin[i](t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r�[i](t)−q[i](t) if (t�[i] < t�[i] and t < t�[i])
or (t�[i] > t�[i] and t > t�[i])

0 if (t�[i]<t�[i] and t∈[t�[i],t�[i]])
or (t�[i]>t�[i] andt∈[t�[i],t�[i]])

q[i](t)−r�[i](t) if (t�[i] < t�[i] and t > t�[i])
or (t�[i] > t�[i] and t < t�[i])

(9)

Therefore, t�[i] and t�[i] partition the time dimension
into three disjoint pieces such that, when t falls in each
piece, dmin[i](t) can be represented as a piecewise linear
function. Combining Eq. 6, 7, 8, 9 we can see that the
time axis is divided into 6d segments by the 2d values
t�[1], t�[1], ..., t�[d], t�[d] such that, when t is in each
segment, d2

min(t) (in Eq. 6) is a quadratic function of t
(i.e., totally 6d quadratic functions).

Recall that our goal is to obtain dmin(r, q), which
equals the minimum of dmin(t) for t ∈ qt. To find
dmin(r, q), it suffices to compute the minimum of each of

2 The closest method was presented by Benetis et al. [2] for the
problem of continuous NN search. Applying their derivation in
our case, however, results in formulae that are much more com-
plex than our results.
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the 6d quadratic functions, and d2
min(r, q) is the

smallest of these 6d minimums. Solving the minimum
of a quadratic function involves only trivial mathemati-
cal manipulation, and can be achieved in O(1) time.

5 Theoretical evidence about the necessity of capturing
velocities

In this section, we analyze theoretically why and when
it is important to capture velocities in indexing moving
objects with a space filling curve. For this purpose, we
derive analytical formulae that mathematically reveal
the behavior of the Bdual- and Bx-trees, subject to the
following simplification and assumptions:

− Simplification 1. Although each (Bdual- or Bx-) tree
consists of two B+-trees, due to symmetry we dis-
cuss only one of them. In particular, we consider
that the Bdual- and Bx-trees both contain a B+-tree
with the same reference time Tref, and aim at com-
paring the query performance of the two B+-trees.
Without ambiguity, we still use the name Bdual and
Bx to distinguish the two trees, respectively.

− Simplification 2. The Hilbert values for both indexes
are computed using a partitioning grid with resolu-
tion λ. This is reasonable because λ = 10 is enough
for ensuring that very few objects have the same
Hilbert value.

− Simplification 3. Since the entries of Bdual- and Bx-
trees have identical formats, the two trees on the
same dataset have the same space consumption. We
consider that the number NL of leaf nodes in each
B+-tree equals 2i·2d, where i is an integer at most λ.
In practice, NL is proportional to the dataset cardi-
nality, and therefore, this simplification implies that
the cardinality equals NL · f , where f is the node
fanout (the average number of entries in a node). In
practice, f is independent of NL, and equals 69% of
the node capacity (i.e., the largest number of objects
in a leaf node).

− Simplification 4. We measure the query cost as the
number of leaf nodes accessed (in practice the inter-
mediate levels of a B+-tree are usually memory-
resident).

− Simplification 5. All the queries are timestamp que-
ries. We use qt� to denote the query timestamp (re-
call that qt� is the starting time of a general query
interval qt).

− Assumption 1. The duals of the objects are uni-
formly distributed in the dual space. Furthermore,
the query distribution is also uniform; specifically,

for range (kNN), the search region (query point) is
randomly distributed in the data space.

− Assumption 2. As discussed in Sect. 4.4, each inter-
mediate entry is accompanied by an interval of
Hilbert values. Then, the interval for the parent
entry of each leaf node covers 2(λ−i)·2d values, i.e.,

1
NL

of the Hilbert domain (because of the previous
assumption).

The above assumptions are needed for obtaining rig-
orous equations that are not excessively complex, but
can capture the behavior of alternative structures. As
we will see, our findings are highly intuitive, and are
valid also in general scenarios (as demonstrated in the
experiments). Section 5.1 first develops a cost model that
quantifies the overhead of range search for the Bdual-
tree. Then, Sect. 5.2 presents a similar model for the
Bx-tree, and compares it with that of the Bdual-tree. In
Sect. 5.3, we extend the analysis to kNN search.

5.1 The range search cost of Bdual-trees

Our derivation is based on the following lemma.

Lemma 3 The parent entry of each leaf node is associated
with a single perfect MOR (returned by the algorithm of
Fig. 4), whose projection on each (location or velocity)
dimension covers 1/2i of that dimension.

Proof By Assumption 2, the parent entry of the first
(left-most) leaf node has a Hilbert interval [0, 2(λ−i)·2d),
the entry of the second leaf has an interval [2(λ−i)·2d,
2 · 2(λ−i)·2d), and so on. In general, the entry of the j-th
(1 ≤ j ≤ NL) leaf has an interval

[
(j − 1) · 2(λ−i)·2d, j · 2(λ−i)·2d − 1

]

Note that the above formula is consistent with
Formula 4, by setting a to j − 1, and replacing the i in
Formula 4 with λ − i. Therefore, the intermediate entry
is associated with a single perfect MOR, which contains
2(λ−i)·2d cells in the partitioning grid. Since the MOR
is a hyper-square, its edge on each dimension contains(
2(λ−i)·2d

) 1
2d = 2λ−i cells. Given that there are totally 2λ

cells on a dimension, the length of the edge accounts for
2λ−i/2λ = 1/2i of a dimension. 	


We illustrate the lemma using Fig. 4 (where d = 1 and
λ = 3). Suppose that NL equals 22·2 = 16 (i.e., i = 2 in
Lemma 3). As a result, the parent entry of the first leaf
node has a Hilbert interval [0, 3], where the value 3 is
obtained as 2(λ−i)·2d − 1. As in Fig. 4, this interval covers
four cells that form a square, whose side length is 1/4
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of the corresponding dimension (as stated in Lemma 3).
It is easy to verify that the same is true for all the leaf
nodes.

Without loss of generality, assume that each location
dimension has a unit length, and each velocity dimen-
sion has a length V. Let e be the parent entry of any
leaf node, and r its associated perfect MOR. Denote L
(LV) as the projection length of r on a location (velocity)
dimension. Lemma 3 states that:

L = 1/2i

LV = V/2i

Recall that L describes the size of r at the reference
time Tref of the Bdual-tree. Hence, if L(qt�) is the extent
of r(qt�) at the query timestamp qt�, we have:

L(qt�) = L + LV · (qt� − Tref) (10)

As discussed in Sect. 4.5, the child node of e needs
to be accessed if and only if r(qt�) intersects the query
region q. We concentrate on the case that the region is
a square with side length LQ. By Assumption 1, q uni-
formly distributes in the data space, in which case the
probability Pacs that r(qt�) and q intersect equals (this is
based on the well-known result [18] on the intersection
probability of two random rectangles):

Pacs = (L(qt�) + LQ)d (11)

where L(qt�) is given in Eq. 10. The subscript of Pacs
indicates that Pacs is also the probability that the child
node of e is visited in answering q. Thus, the expected
query overhead IOdual

range is computed as:

IOdual
range = NL · Pacs (12)

where NL is the number of leaf nodes. Recall that NL
has two equivalent representations, i.e., it equals 2i·2d, or
can be written as N/f , where N is the dataset cardinal-
ity, and f the node fanout. Solving i from the equation

2i·2d = N/f leads to 2i = (N/f )
1

2d . Combining the above
analysis, Eq. 12 can be resolved into a closed formula:

IOdual
range = N

f
·
((

f
N

)1/2d

+ V ·
(

f
N

)1/2d

·(qt�−Tref)+LQ

)d

(13)

5.2 Comparison between Bdual- and Bx-trees

Before analyzing the performance of the Bx-tree, we
first present an alternative strategy for processing range

search, which is never slower than the original algorithm
[6]. Recall that the Bx-tree adopts a Hilbert curve in
the d-dimensional spatial space (excluding the velocity
dimensions). The curve is also defined over a partition-
ing grid, where each cell c can still be regarded as an
MOR. In particular, the SBox of the MOR is simply
c, and its VBox covers each of d velocity dimensions
entirely.

For any algorithm, objects whose Hilbert values are
equal to those of c must be accessed, if and only if the
MOR c intersects the search region q sometime in the
query interval qt (in order to prevent false misses), based
on the reasoning elaborated in Sect. 4.2. This observa-
tion implies that the range query algorithm of Bdual-trees
can be applied to Bx-trees as well. Specifically, we asso-
ciate each intermediate entry e of a Bx-tree with a set of
MORs, and visit its child node only if any of the MORs
intersects q during qt.

A result similar to Lemma 3 also holds for Bx-trees:

Lemma 4 The parent entry of each leaf node in the Bx-
tree is associated with a single MOR, whose projection
on each location (velocity) dimension covers 1/22i of
(completely) that dimension.

Proof The reason why the MOR covers each velocity
dimension completely has been mentioned earlier. To
prove the lemma regarding the location projections, we
need Assumption 2, i.e., the Hilbert interval of e in-
cludes 2(λ−i)·2d values. Similar to the proof of Lemma 3,
it is easy to show that the 2(λ−i)·2d cells in the inter-
val constitute a hyper-square, whose edge, therefore,

contains
(
2(λ−i)·2d

) 1
d (note that the outmost exponent

is not 1
2d because the Hilbert curve concerns only loca-

tion dimensions), that is, 22(λ−i) cells. Given that there
are (22λd)1/d = 22λ cells per dimension, the length of the
edge accounts for 1/22i of the dimension. 	


Following the notations in the previous section, we
use L′ (L′

V) for the projection length of the MOR of e,
and according to the previous lemma:

L′ = 1/22i

L′
V = V

where V is the length of a velocity dimension. Note
that Eqs. 10, 11, 12 are still valid for Bx-trees (replac-
ing L and LV with L′ and L′

V , respectively). Based
on these results, we obtain the formula for the cost of
Bx-trees:

IOx
range = N

f
·
((

f
N

)1/d

+ V · (qt� − Tref) + LQ

)d

(14)
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where the semantics of the variables are identical to
those of Eq. 13. Comparing the cost models of Bdual-
and Bx-trees, we observe the following characteristics
of the two structures:

− The query cost increases monotonically with qt� −
Tref, i.e., predicting farther into the future is more
expensive.

− The resolution λ of the partitioning grid does not
affect the query performance, as long as λ is suffi-
ciently large. If λ is too small, numerous objects have
the same Hilbert value, and they must be searched
altogether even if only one of them may qualify the
query.

− If qt = Tref (the query timestamp coincides with the
reference time of the tree), a Bx-tree actually has
better performance (the term (f/N)1/d in Eq. 14 is
smaller than (f/N)1/2d in Eq. 13). In general, a Bx-
tree better preserves objects’ spatial locality, since
the Hilbert curve of an Bdual-tree attempts to cap-
ture also the locality along the velocity dimensions.
Processing a query with qt = Tref requires only ob-
jects’ locations, in which case a Bx-tree incurs lower
cost than a Bdual-tree.

− As qt� increases, the efficiency of the Bx-tree
deteriorates considerably faster than that of the
Bdual-tree. When qt� reaches a certain threshold t�,
the Bdual-tree starts outperforming its competitor,
and the difference becomes larger as qt� grows fur-
ther. We can quantify t� as the value of qt� that
makes IOdual

range equivalent to IOx
range, or specifically:

t� = Tref + 1
V

·
(

f
N

)1/2d

− If V (i.e., the length of a velocity dimension) is large,
t� is small, meaning that a Bdual-tree is better than
a Bx-tree even if the query timestamp qt� is very
close to Tref. This confirms the intuition that ignor-
ing velocities is feasible in practice only if objects
have similar motion parameters. In an application
where objects can have drastically different speeds,
the Bdual-tree is the more effective solution.

5.3 Discussion on kNN search

Next, we will show that the previous observations for
range search also hold for kNN retrieval, due to an inher-
ent connection between the two query types. Given a
kNN query q, let dist be the distance between the k-th
NN and point q at the query time qt�. Then, the cost of
a Bdual-tree (in solving q) is identical to that of a range

query with the same qt�, whose search region is a cir-
cle centering at q with radius dist. This is a well-known
property of the best-first algorithm [5]. In fact, the algo-
rithm is optimal, meaning that any other method deploy-
ing the Bdual-tree to process a kNN query will incur at
least the same overhead.

Using the technique (illustrated at the beginning of
Sect. 5.2) of associating an intermediate entry in a Bx-
tree with a set of MORs, the best-first algorithm can
also be applied to this index for answering a kNN query
optimally (in the sense as mentioned earlier). In fact,
this algorithm (traversing the tree only once) is ex-
pected to significantly outperform that of [6] that re-
quires numerous range queries. With this improvement,
the kNN cost of a Bx-tree is also identical to the over-
head of a range query, formulated in the same fashion
as explained earlier for Bdual-trees. Hence, the relative
behavior of Bdual- and Bx-trees is analogous to that for
range search.

6 Progressive query processing

Conventional algorithms return exact results to a user at
the moment they are produced. The query does not ter-
minate until all the results have been generated. On the
other hand, progressive algorithms return informative
results to a user early, and progressively refine them.
The user can terminate the query if the approximate
results obtained so far are satisfactory. In this section,
we study the progressive versions of range and kNN
search. Such queries can be posed by the end users of
a database, or by the query optimizer to estimate query
selectivity efficiently.

6.1 Aggregate range search

An aggregate range query retrieves the number of ob-
jects that will appear in a moving rectangle q during a
time interval qt. For instance, “find the number of air-
crafts expected to be within 20 miles from flight UA80
in the next 10 minutes”. The query can be processed
as a conventional range query, followed by counting
the number of qualifying aircrafts. Here, we propose a
progressive algorithm that uses the Hilbert intervals of
the intermediate entries in a Bdual-tree to progressively
compute estimates for the result.

Figure 8 shows the pseudocode for the algorithm. Let
nqualify(q, e) be the estimated number of qualifying ob-
jects in the subtree of entry e. First, the root is loaded,
and the estimates for its entries are summed up to rsltest,
which is the first approximation of the query result (we
will discuss how to derive nqualify(q, e) shortly). The root
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Fig. 8 Progressive aggregate range search algorithm

entries are added to a max-heap H. At each step, the
entry e in H with the largest nqualify(q, e) is de-heaped,
and its contribution in rsltest is replaced by the estimates
for the entries in its child node (these entries are also
inserted in H). The rationale is that by refining entries
with large estimates early, we can reduce the estimation
error as soon as possible.

The algorithm continuously improves rsltest to the
actual result. At each step (Line 6), the user can dis-
continue the query processing if the current estimate is
satisfactory (e.g., it has converged to a roughly constant
value). Convergence can be automatically detected by
analyzing the moving average of the last few results. If
the moving average stabilizes, we can terminate, with
confidence that rsltest will not change significantly after-
wards. Such techniques for automatic termination could
be particularly useful to a query optimizer for selectivity
estimation.

It remains to clarify the computation of nqualify(q, e).
Given the node fanout f , we estimate the number of
objects in the subtree of e as f level(e), where level(e) is
the level of e. Recall that e is accompanied by a Hilbert
interval HI(e), and it is associated with a set S of per-
fect MORs r (returned by the algorithm of Fig. 7), each
of which also corresponds to a Hilbert interval (in the
form of Formula 4) HI(r). Consider the set of objects
(underlying e) that are covered by an MOR r of S in
the dual space. We estimate the cardinality of the set as
f level(e) · |HI(r)|/|HI(e)|, where |HI(e)| and |HI(r)| are
the lengths of the Hilbert intervals for e and r, respec-
tively. Let Pr(q, r) be the probability that an object in
the set satisfies q (it can be calculated using the for-
mula in [17] for predicting the range search selectivity
on random moving objects). As a result, nqualify(q, e) can
be computed as:

nqualify(q, e) =
∑
∀r∈S

(
f level(e) · Pr(q, r) · |HI(r)|

|HI(e)|
)

6.2 kNN distance search

Given a moving point q and a time interval qt, a kNN
distance query retrieves the distance of the k-th nearest
object from q (where the distance is defined in Sect. 3).
For instance, “what is the shortest distance between
flight UA80 and any other aircraft in the next 10 min-
utes?”. The progressive version of the query provides
early estimates of the kNN distance, which are iteratively
refined.

Figure 9 presents the details of the algorithm, which
maintains an array W containing the estimates for the
distances of the k NNs. Specifically, the i-th (1 ≤ i ≤ k)
element of W has the form (W[i].entry, W[i].dist), where
W[i].entry is the i-th nearest object currently known or
an intermediate entry whose subtree may contain such
an object, and W[i].dist equals the predicted i-th nearest
distance. Initially, W[i].entry = ∅ and W[i].dist = ∞ for
all elements W[i].

The algorithm operates like the best-first NN algo-
rithm [5], maintaining a min-heap H of the visited entries
by their minimum distances from q (computed as dis-
cussed in Sect. 4.5). Before an entry e is de-heaped the

Fig. 9 Progressive kNN distance algorithm
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user can terminate the algorithm, if she/he is satisfied
with the current value of W[k].dist. Let e be the de-
heaped entry. If the child node of e is a leaf, we compute
the distance for all the objects o encountered. Otherwise
(the child of e is a non-leaf node), for each entry e′
in the node, we estimate the largest possible distance
dmax(e′, q) between q and any object in the subtree of e′.
Towards this, the algorithm obtains the set S of perfect
MORs associated with e′. For each MOR r ∈ S, we com-
pute its maximum distance from q as a function of t (by
a set of equations similar to those in Sect. 4.5), and then
take the minimum value of this function during t ∈ qt.
Thus, dist is bounded by the largest of the minimums for
all the MORs, or formally:

dmax(e′, q) = max
r∈S

(
min
t∈qt

dmax(q(t), r(t))
)

W is updated whenever we (i) find an object whose dis-
tance to q is smaller than W[k].dist, or (ii) can assert that
such an object exists underneath an intermediate entry
e (i.e., dmax(e′, q) < W[k].dist). The subtree of e can be
pruned pruned if dmin(e, q) (Eq. 5) is at least W[k].dist.

We close this section by pointing out that the above
aggregate range and kNN distance algorithms also apply
to the Bx-tree. However, the structure does not provide
good result estimates until nearly the end of execution,
since its intermediate entries do not incorporate object
velocities.

7 Experiments

In this section, we experimentally compare the
Bdual-tree against the best indexes of the three catego-
ries in Sect. 2: STRIPES 3 [13] (representing structures
based on dual transformations), the TPR∗-tree [16] (an
enhanced version of the TPR-tree), and the Bx-tree [6].
All experiments were performed on a machine with a
Pentium IV 2.3GHz CPU and 512 Mb of memory. The
disk page size is fixed to 1K bytes. We use a relatively
small page size to simulate realistic scenarios where the
dataset cardinality is much higher. Unless otherwise
stated, we do not use memory buffers for consecutive
queries or updates. All reported I/O costs correspond to
page accesses.

3 For STRIPES, we store non-leaf nodes as tuples in a relation
file and apply the “half-page” storage optimization of [13] for leaf
nodes. Sibling half-page nodes are packed into the same physical
disk page, in order to minimize I/Os during traversal.

7.1 Data and query generation

We generated spatiotemporal data following the meth-
odology of [16,13,6]. The data space is two-dimensional,
where each dimension has a domain of [0, 1000]. Nearly
5,000 rectangles are sampled from a real 128K spatial
dataset;4 their centroids model positions of airports.
Each object is an aircraft, which moves along the line
segment connecting two airports. Initially, each aircraft
is positioned at an arbitrary airport, and randomly se-
lects another airport as the destination. At the subse-
quent timestamps, the aircraft will move from the source
airport to the target airport, at a speed that is generated
in the range [0,5], following a Zipf distribution (skewed
towards 0). As soon as the object reaches the destina-
tion, it chooses another airport as the next destination,
at a new speed obtained in the same way as described
earlier. At this moment, the aircraft updates its motion
parameters in the underlying index, including a deletion
(erasing the previous entry) followed by an insertion. In
addition to these updates (caused by switching destina-
tions), an aircraft also issues an update 25 timestamps
(= T) after the previous one.

An index with time horizon H = 2T = 50 time units
is created for each dataset. All objects are created and
inserted into the index at time 0. At each update, exactly
one object insertion and one deletion is performed. Que-
ries are issued after H/2, when two Bdual-trees, Bx-trees,
and STRIPES-quadtrees are used for indexing moving
objects (as opposed to a single TPR∗-tree). The reso-
lution level λ for the Hilbert curves of Bdual-trees and
Bx-trees is 10. We measure the query cost, by averag-
ing it over a workload of 100 queries, issued at different
current time tnow as the index runs. A moving (square)
range query q is generated with the following param-
eters: the initial spatial extent q.Slen (default 50); the
velocity with extent q.Vlen (default 6), centered at a
random number in [−5, 5], and the query time inter-
val length qtlen (default 15). qt� is a random instant in
[tnow, tnow + 40 − qtlen]. The initial spatial location of q
follows the data distribution. For moving kNN queries,
parameter q.Slen is replaced by k (default 50).

7.2 Space requirements

Figure 10a shows the sizes of the different indexes, as a
function of the number N of moving objects. Bdual-, B-x,
and TPR∗-trees have similar sizes. On the other hand,
due to the low storage utilization of PR bucket quadtrees

4 Available at http://www.rtreeportal.org/datasets/spatial/US/RR.
zip.
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Fig. 10 Index sizes and effect of H on updates

 0

 5

 10

 15

 20

 25

 30

 35

 0  100  200  300  400  500  600  700  800

U
pd

at
e 

I/O

Number of objects (K)

B^dual
B^x

TPR*
STRIPES

 0

 1

 2

 3

 4

 5

 0  100  200  300  400  500  600  700  800

U
pd

at
e 

C
P

U
 (

m
s)

Number of objects (K)

B^dual
B^x

TPR*
STRIPES

(a) I/O cost (b) CPU cost
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[14], STRIPES occupies much more space. Statistically,
pages that store STRIPES leaf nodes are only 33% full
on the average, whereas the node occupancy for other
indexes is approximately 69%. As verified in subsequent
experiments, the size difference affects negatively the
query performance of STRIPES.

7.3 Update performance

We compare the update performance of the indexes with
respect to various factors. Figure 10b shows the aver-
age update cost as a function of time horizon H. As
H increases, the overlapping of entries in TPR∗-tree
increases and more pages are accessed during updates.
The other three indexes are not affected by H; only a
single path is traversed during updates. Figure 11 shows
the average update cost of the indexes as a function of
the data size N. The update cost of the TPR∗-tree is
much higher than that of other indexes and increases
with N. As the non-leaf entries of TPR∗-tree overlap,
multiple paths need be searched during an insertion and
deletion. In addition, the tree performs expensive active

tightening of the nodes during updates. The cost of the
other three indexes increase only slightly with N; each
update only searches a single path. The Bdual- and Bx-
trees have the lowest cost as they are both based on the
balanced B+-tree. The STRIPES has higher update cost
because the PR bucket quadtree is unbalanced; on the
average, a longer path, compared to the Bdual/Bx-tree,
is traversed during updates.

Finally, we study whether the update performance
degrades over time. At timestamp 0, 100K objects are
inserted to all indexes. We record the update perfor-
mance of the indexes after every 5K updates. Figure 12
shows the update cost with respect to the number of
updates. Observe that the update cost (both I/O and
CPU) of the TPR∗-tree increases slightly with time. The
other indexes are not sensitive to the time of the updates.
Summarizing, the high update cost of TPR∗-tree makes
it impractical for real-time applications. On the other
hand, as we will see in the next experiments, the TPR∗-
trees perform consistently better than other structures
at queries; thus their query cost should be interpreted as
a lower bound when compared with other methods (for
update-intensive applications).
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7.4 Query performance

Figure 13a shows the performance of range queries with
the default parameter values, issued at tnow as the index
runs. The periodic behavior is caused by the use of two
indexes. Bdual has good performance and it only has
small fluctuation of query cost. Figure 13b shows the
performance of the indexes on the default range query
workload as a function of reference time Tref. The ref-
erence time Tref for the Bdual-, Bx-trees, and STRIPES
can directly be set to values other than the index crea-
tion time tgrow. This technique is not directly applicable
to the TPR∗-tree. The TPR∗-tree performs active tight-
ening of nodes during updates and its effect is equiva-
lent to implicitly update the reference time of affected
nodes to tnow (instead of tgrow). Observe that all indexes
achieve better performance when Tref is set to tgrow +
H/2. The performance of Bx-tree is too sensitive to Tref
because the query region is enlarged by maximum veloc-
ities. As Tref approaches tgrow + H/2, the average query
enlargement is reduced. In all subsequent experiments,
the value Tref for all indexes (except the TPR∗-tree) is
set to tgrow + H/2.

Figure 14a shows the performance of the indexes on
the default range query workload, by varying the skew-

ness parameter θ of the Zipf distribution (for
generating object velocity values) from 0 (uniform) to 2
(highly skewed). The performance of the Bdual-, TPR∗-
trees, and STRIPES improves because the extents of
VBRs (i.e., velocity bounding rectangles) in leaf nodes
become smaller when the number of fast moving objects
decreases. However, the Bx-tree has little performance
gain, since the small number of fast moving objects are
still distributed in many different spatial regions, result-
ing in significant query enlargement. Figure 14b shows
the average number of perfect MORs decomposed and
examined from an entry, as a function of query win-
dow size q.Slen. Full denotes the standard decompo-
sition method in Sect. 4.4. Progressive represents an
optimized version which combines with query predicate
checking in a single step, employs branch-and-bound
technique for fast computation and returns as soon as
an MOR of the entry is found to intersect the query.
Consequently, for a Bdual-tree entry, only a small num-
ber of MORs is computed and examined on the average
(6–9 as opposed to 102–106 MORs in the full decom-
position). This justifies why searching the Bdual-tree is
computationally efficient.

Figure 15 shows the performance of the indexes on
the default query workload, on datasets with different
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number N of moving objects. The I/O cost increases lin-
early with N. The CPU costs have similar trends. Next,
we study the effect of the time horizon H on the indexes.
A query workload was generated for each value of H,
such that qtlen is proportional to H. Figure 16a shows
the range query I/Os as a function of H. The Bdual- and
TPR∗- trees have similar costs. The Bx-tree degrades fast
with H, since the average query enlargement increases
with H. STRIPES is not cheap, due to its large size.

We also evaluate the performance of the indexes for
different values of the query parameters. Figure 16b–d
shows the I/O cost when we fix two of the parameters
q.Slen, q.Vlen, and qtlen to their default values and we
vary the others. The query cost increases as any param-
eter value increases. The performance gaps between the
indexes are almost insensitive to the parameter values.
Note that the case for qtlen = 0 corresponds to the
special case of timestamp queries.

We then study the performance of the indexes for
kNN queries with respect to various factors. The time-
stamp kNN algorithm for Bx-trees proposed in [6] was
adapted for moving kNN queries (i.e., for qtlen ≥ 0).
Note that the kNN search techniques for STRIPES were
not mentioned in [13]. We apply the incremental NN

search [5] with equations in Sect. 4.5 for computing the
minimum distance of STRIPES entries from the query.
Figure 17a shows the I/O cost of kNN queries as a func-
tion of the time horizon H of the indexes, by fixing k =
50. The result is consistent with that of range queries:
both Bx-tree and STRIPES become much more expen-
sive than the Bdual-tree as H increases. Figure 17b com-
pares the indexes for kNN queries as a function of k, by
fixing qtlen = 15. The query costs do not change much
when k is small compared to the data size N. Figure 17c
shows the I/O cost of kNN queries as a function of qtlen,
for k = 50. Note that the case for qtlen = 0 corresponds
to the special case of timestamp queries. The perfor-
mance differences are similar to those of range queries;
the Bdual- and TPR∗- trees have almost the same cost,
however, the Bx-tree degrades fast as qtlen increases.
In general, the indexes show similar behavior in kNN
queries as in range queries.

Next, we study the effect of data dimensionality on
the query performance of the indexes. Figure 18a shows
the query cost on the indexes as a function of the data
dimensionality d, with default range queries. The
Bdual-treesandTPR∗-treeshavesimilarquerycostswhile
Bx-trees have much higher costs. The cost of STRIPES
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explodes as d increases because a quadtree node split
may generate up to 4d leaf nodes (in the worst case),
dramatically reducing the disk utilization of the tree.

Figure 18b summarizes the performance of the in-
dexes for mixed workloads (with updates and range
queries of default parameter values), as a function of
the query-to-update ratio. The figure plots the average
I/O cost of a single operation (either update or query)
in the workload. The TPR∗-tree is the most expensive
index for applications with high update rates. It starts
outperforming the Bx-tree and STRIPES at a ratio of
1:50 and the Bdual-tree at a ratio of 1:5, since the cost
of a typical query is much higher than that of a single
update. Notice that the Bdual-tree is the best index for
update-intensive applications, while it has similar query
performance to the TPR∗-tree.

So far, we measured update and query I/O without
considering the existence of a memory buffer. Practi-
cal systems include buffers that reduce the I/O cost,
by exploiting the common access patterns of consecu-
tive queries or updates. We compare the performance
of the indexes in the presence of an LRU memory
buffer (Fig. 19), for update and query workloads, using
the default parameters and data. The buffer offers sig-

nificant performance gain for updates (similar for all
methods). During updates, more non-leaf pages than
leaf pages are accessed, which have high chances to re-
side in the buffer at subsequent operations. Note that
the B+-tree indexes maintain their performance gain
over STRIPES and the TPR∗-tree for different buffer
sizes. Regarding query performance, the effect of small
or moderate buffers is negligible. The reason is that (i)
the sequence of queries is random (i.e., queries do not
exhibit locality, thus two consecutive queries only share
a very small set of common leaf pages) and (ii) 94% of
the accessed pages by a query are leaf pages; thus, even
when the whole set of directory pages is pinned in the
buffer, there is not large performance gain. In short, the
buffer size does not affect the relative performance of
the indexes.

7.5 Accuracy of the cost model

In this section, we test the accuracy of the cost mod-
els proposed in Sect. 5 for timestamp range queries.
100K moving points are inserted into a Bdual-tree and
a Bx-tree at timestamp 0. We applied a workload of
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Fig. 20 Cost estimation error

100 timestamp queries and for each query we measured
the actual acti and estimated esti cost of the indexes.
The error rate [17] is then defined as err = ∑100

i=1 |esti −
acti|/∑100

i=1 acti.
Figure 20a shows the error rate as a function of the

query window size. A query refers to a random time-
stamp qt� in [tgrow, tgrow + H] (H = 50). Observe that
the maximum error is only below 4%. The error esti-
mates when varying other parameter values (i.e., query
velocity interval q.Vlen and query timestamp qt�) are
similar and shown in Fig. 20b, c. Figure 20d compares the
costs of the two trees, as a function of the time instant
qt� of timestamp queries. In accordance to our analy-
sis, there is an instant t� (� Tref + 7 in Fig. 20d), after
which the Bdual-tree begins to outperform the Bx-tree.
A symmetric observation holds for values of qt smaller
than Tref − 7. Figure 20d corresponds to the case which
all objects are stored in the same tree, in order to verify
our analysis. In practice, when the query timestamp is
close to the Tref of one tree, it is far from the Tref of
the other tree. The combined effect on two trees is that
Bdual outperforms Bx for any timestamp.

7.6 Progressive and continuous queries

Next, we study the performance of the indexes on con-
tinuous queries, by following the evaluation approach

in [6]. The objective is to maintain the query result at
any time instant. After a query is issued, the query is in-
voked periodically every l timestamps (the recomputa-
tion interval). Each invocation retrieves the set of results
for the next l timestamps. When object updates arrive,
the set of results is maintained continuously. Deletion of
objects from the result set (e.g., for a kNN query) may
invalidate the result and the query needs to be recom-
puted for the next l timestamps. Figure 21a shows the
amortized maintenance cost of a range query (with de-
fault parameters) per update. As l increases, the query
is re-invoked less frequently and the maintenance cost
is reduced. Figure 21b shows the amortized mainte-
nance cost of a kNN query (with default parameters)
per update, as a function of l. Maintenance costs of all
indexes first decrease and then increase. When l be-
comes too large, a large set of results need to be main-
tained and the probability of removing an object from
the result set increases. This invalidates the result set
and forces the query to be re-computed frequently. We
note that specialized methods for monitoring continu-
ous (range [10] and NN [12]) queries are preferred more
than general-purpose spatiotemporal indexes.

In the last set of experiments, we demonstrate the
effectiveness of progressive queries on Bdual-trees in
estimating the result early. We also implemented ver-
sions of the progressive algorithms for the Bx-tree.
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Fig. 21 Continuous query I/O versus recomputation interval l
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Fig. 22 Progressive query estimates

Figure 22a shows the estimated result of an aggregate
range query with the standard parameter values
(q.Slen = 50, q.Vlen = 6, qtlen = 15) on the default
dataset, as a function of the number of nodes read.
The horizontal dotted envelope represents a 10% error
bound from the actual result (5,833). Observe that the
Bdual-tree converges much faster to a good estimate of
the query result, as opposed to the Bx-tree which does
not reach the envelope, even at the time needed by the
Bdual-tree to compute the exact result.

Figure 22b shows the estimated kNN distance as a
function of the number of pages accessed for a query
with k = 50, qtlen = 15 on the default dataset. The
Bdual-tree progressively refines the estimated distance,
however, it reaches an estimate with a small relative
error slower compared to aggregate range queries. Note
that the kNN distance is very small, thus progressive
algorithms are prone to relatively larger estimates. Sum-
marizing, aggregate range queries using the Bdual-tree
can return informative results to the users early.

8 Conclusions

We proposed the Bdual-tree, a new spatiotemporal in-
dex for predictive search that combines features and

advantages of state-of-the-art methods; dual space
indexing (STRIPES[13]), fast query processing (TPR∗-
tree [16]), and fast updates (Bx-tree [6]). We provided an
analytical study, which justifies the superiority of Bdual-
tree compared to the Bx-tree and a thorough experimen-
tal evaluation, which shows that our method has the best
overall (query and update) performance compared to
all three past indexes. Finally, we proposed progressive
versions of aggregate (range and kNN) query algorithms
that use the Bdual-tree to predict early an accurate esti-
mate of the result, which is gradually refined.
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