
The VLDB Journal (2007)
DOI 10.1007/s00778-005-0171-7

REGULAR PAPER

Christopher Jermaine · Edward Omiecinski ·
Wai Gen Yee

The partitioned exponential file for database
storage management

Received: 18 June 2003 / Revised: 8 February 2005 / Published online: 26 July 2006
c© Springer-Verlag 2006

Abstract The rate of increase in hard disk storage capacity
continues to outpace the rate of decrease in hard disk seek
time. This trend implies that the value of a seek is increasing
exponentially relative to the value of storage.

With this trend in mind, we introduce the partitioned ex-
ponential file (PE file) which is a generic storage manager
that can be customized for many different types of data (e.g.,
numerical, spatial, or temporal). The PE file is intended for
use in environments with intense update loads and concur-
rent, analytic queries. Such an environment may be found,
for example, in long-running scientific applications which
can produce petabytes of data. For example, the proposed
Large Synoptic Survey Telescope [36] will produce 50–100
petabytes of observational, scientific data over its multi-year
lifetime. This database will never be taken off-line, so bursty
update loads of tens of terabytes per day must be handled
concurrently with data analysis. In the PE file, data are or-
ganized as a series of on-disk sorts with a careful, global
organization. Because the PE file relies heavily on sequen-
tial I/O, only a fraction of a disk seek is required for a typical
record insertion or retrieval.

In addition to describing the PE file, we also detail a set
of benchmarking experiments for T1SM, which is a PE file
customized for use with multi-attribute data records ordered
on a single numerical attribute. In our benchmarking, we im-
plement and test many competing data organizations that can
be used to index and store such data, such as the B+-Tree,
the LSM-Tree, the Buffer Tree, the Stepped Merge Method,

C. Jermaine (B)
Department of Computer and Information Sciences and Engineering,
University of Florida, Gainsville, Florida, USA
E-mail: cjermain@cise.ufl.edu

E. Omiecinski
College of Computing, Georgia Institute of Technology, Atlanta,
Georgia, USA
E-mail: edwardo@cc.gatech.edu

W. G. Yee
Computer Science Department, Illinois Institute of Technology,
Chicago, Illinois, USA
E-mail: yee@iit.edu

and the Y-Tree. As expected, no organization is the best over
all benchmarks, but our experiments show that T1SM is the
best choice in many situations, suggesting that it is the best
overall. Specifically, T1SM performs exceptionally well in
the case of a heavy query workload that must be handled
concurrently with an intense insertion stream. Our experi-
ments show that T1SM (and its close cousin, the T2SM stor-
age manager for spatial data) can handle very heavy mixed
workloads of this type, and still maintain acceptably small
query latencies.

Keywords Storage management · Indexing · Data
warehousing

1 Introduction

The majority of database access methods in use today are
effectively based on the I/O model formalized by Aggarwal
and Vitter [1]. In this model, disk-based data are organized
into atomic units known as “blocks” or “pages,” and the key
to increasing the query processing and update rate is to re-
duce the number of pages read and written. However, hard
disk performance trends over the past 30+ years force us
to reexamine the validity of this model. In this paper, we ex-
plore an alternative data organization that takes advantage of
notable trends in hard disk performance [7, 13], including:

• Storage capacity per disk has increased historically at a
rate of 27% per year [7], doubling every 3 years. The rate
of increase seems only to have increased recently. Now,
mid- to high-end PCs are regularly being shipped with
200 + GB hard drives.

• Seek time, defined as the time required to move a disk
arm plus rotational delay, has decreased only at a rate of
8% per year [7]. Modern seek times seem to have stalled
at around 5 ms for a commodity disk.

• The sequential data transfer (I/O) rate has increased his-
torically at a rate of 22% per year [7]. Although the se-
quential I/O rate has not kept pace with storage capacity
(that is, the time required to sequentially scan an entire

16: 417 437–

C. Jermaine et al.

disk has slowly crept upward), it has come much closer
to keeping pace than has seek time.

We also point out that these are historical trends based
on relatively old numbers [7]; an examination of recent hard
disk specifications would seem to indicate that the rates of
increase for storage capacity and sequential data transfer
have accelerated. Consequently, a modern commodity disk
can transfer data at a fast, sustained rate of 40+ MB per
second. However, due to the constraint in seek time, the time
required to complete a random I/O is not significantly less
than it was 10 or 20 years ago. Furthermore, disk storage ca-
pacity has grown exponentially in size, increasing the disk’s
seek load per byte of storage. In response, the hard drive
market has evolved, as now a variety of different drive char-
acteristics are available (small or large capacity, slow or fast
transfer rates, etc.). But the fact is that across the spectrum of
modern hard drives, the number of seeks available per byte
of storage is still orders-of-magnitude less than it was several
decades ago. This is problematic, since common database
storage structures such as the B+-Tree were developed at a
time when the relative cost of a seek was far less than it is
today.

In this paper we revisit the use of exponential (or log-
arithmic) file structures [5, 30] as a way of exploiting the
hard disk performance trends described above. First pro-
posed decades ago, exponential files are characterized by
their sequential organization of data on disk; with it, fewer
seeks are required to access data. They were largely ignored
in production database systems, however, due to the reason-
able performance of hierarchical, page-based access meth-
ods (e.g., the B+-Tree), as well as their own inability to scale
with large datasets. Furthermore, seek conservation was not
cost-effective in the past, especially considering the com-
plexity introduced by previous exponential file implemen-
tations. The work in this paper demonstrates the potential
performance advantage of exponential data organization on
modern storage devices and describes the design of a sim-
ple and scalable storage manager based on it. Before pro-
ceeding, we introduce some concepts behind exponential file
structures.

1.1 The exponential file

In exponential files, data are organized on disk as a series
of ongoing merge sorts. Each sort, or component, is multi-
plicatively larger than the previous one. When a component
fills with data, it is flushed, and its contents are merged (and
sorted) with those of the next, larger component. For fast in-
sertion, the smallest component can be pinned in memory.
For fast data access within a component, each can be orga-
nized as a tree or hashed file. The basic idea is depicted in
Fig. 1.

The promise of the exponential data organization stems
from its basis on sequential disk I/O. Given the evolution of
hard disk technology, there are two traits of this organization
that are very attractive:

Fig. 1 Basic exponential file

• Updates depend almost exclusively on sequential I/O.
Exponential files can therefore handle more intense up-
date loads than page-based access structures.

• Data are written to disk in long runs. This allows us to
organize data among disk pages in ways that minimize
seeks during query processing. For example, we can tune
inter-component organization in order to optimize the
performance of range queries.

These benefits, however, are not without cost. There are
two major reasons that the exponential data organization, as
originally proposed [5, 30], is not practical for use in a real
database system:

• The time required to merge two components is un-
bounded. This is a consequence of the unbounded com-
ponent size. For example, merging two components that
are GBs or TBs in size may take hours. This performance
is debilitating in a database system where efficient, con-
current processing of queries is critical. As we will show,
this is a factor in even the most modern variations of the
exponential file paradigm, such as the LSM-Tree [29].

• Exact-match search time is a function of database size.
Depending on when it was inserted, a given record can
reside in any component. Searching for it therefore re-
quires a search of every component in the worst case,
negating the benefits of an exponential file over a page-
based one.

In this paper, we present a novel data organization called
the partitioned exponential file template (or PE file for
short). The PE file is based on the exponential file, and
can concurrently handle tremendous update loads and heavy,
analytic query processing. The PE file divides data into
many partitions (potentially thousands). Each partition cor-
responds to an exponential file of bounded size, but stores
only records falling within a range of key values. The design
is illustrated in Fig. 2.

The PE file alleviates the latency/exact-match prob-
lems to a great extent. Merge performance is improved
because partition size, and therefore component size, is
bounded. Exact-match query evaluation performance is im-
proved because partition key ranges are disjoint, and there-
fore searches only span a partition.

The use of partitions has other benefits as well, includ-
ing:

• A partition is a natural unit of concurrency control;

418

The partitioned exponential file for database storage management

Fig. 2 Design of PE file

• Multiple partitions handle skewed update patterns grace-
fully, because buffer memory is concentrated with the
partitions that are actively being updated.

Finally, the PE file can be treated as a template data or-
ganization. Like the generalized search trees of Hellerstein
et al. [15], it is general enough to be adapted and optimized
for many data types and data-intensive applications.

The major contributions of this paper are a detailed anal-
ysis of the PE file as well as comprehensive benchmarks on
virtually every major data organization and access method
suitable for data intensive applications. The analysis of the
PE file includes a discussion on its design as well as the
details of a particular PE file implementation called T1SM.
By default, we assume in our discussion that the PE file
stores multi-attribute records ordered on a single numerical
attribute, unless otherwise specified.

The benchmarks include results from modern versions of
the exponential file (i.e., the LSM-Tree [29] and the Stepped
Merge Method [16]) as well as tree-based access methods,
such as the classical B+-Tree and variants such as the Buffer
Tree and the Y-Tree [3, 8, 17]. We also consider the option of
not clustering the data on disk at all. That is, we could simply
write the data to disk in the order they are received, and then
maintain a secondary index on the data. To give the reader
a preview of our results, in Sect. 5.4 we rank the various al-
ternatives from first to last in each of six different categories
(such as raw insertion processing speed, range query pro-
cessing ability, and so on). While we stress that such rank-
ings necessarily mask many of the strengths and weaknesses
of each method, they still provide a reasonable summary of
our results. We found that an instantiation of the PE file had
the best average ranking (at 2.16), followed by the LSM-
Tree (at 2.83) and the no-clustering option (at 3.33). Next
was the Stepped Merge Method (at 3.83), followed by the
B+-Tree (at 4.16), the Y-Tree (at 4.66), and the Buffer Tree
(at 5.5). Thus, our benchmarks indicate the utility of the PE
file for processing update-heavy workloads.

The remainder of the paper is organized as follows. In
Sect. 2, we discuss the basic partition structure and the

process of inserting data. Section 3 discusses some higher
level details of the PE file organization. Section 4 describes
the instantiation of a PE file template, called T1SM. Section
5 compares the performance of T1SM against other data or-
ganizations and access methods. Related work is discussed
in Sect. 6. We conclude the paper in Sect. 7. In the Appendix,
we discuss PE file concurrency control and recovery.

2 The PE file structure

In this section, we describe the structure and basic operation
of the PE file. The PE file is composed of K data partitions
and a database engine. Each partition, Pi (1 ≤ i ≤ K), is de-
fined by a range of key values, (ki−1, k j], where k0 = −∞
and kK = ∞. All partitions have a size limit, Spart, and to-
tal amount of data that the entire PE file can store is initially
limited to S f ile (See Fig. 2). The database engine is in charge
of maintaining the partitions and handling user operations,
e.g., data queries and insertions. We will describe partitions
and PE file operations in more detail in the next sections.

2.1 Basic partition structure

Each partition is made of two distinct parts: the header and
the body. We will discuss the body first. The body is com-
posed of a series of M levels. Level i of partition j is denoted
Li j (1 ≤ i ≤ M, 1 ≤ j ≤ K). (For simplicity, we will only
use the second subscript indicating the partition when nec-
essary.) In the simplest version of the PE file, L1 for all par-
titions can store Slev bytes (this requirement will be relaxed
in Sect. 3.3). To achieve the best possible performance, the
first level L1 is stored in main memory; subsequent levels
reside on disk. Each subsequent level Li (2 ≤ i ≤ M) is
larger than its predecessor by a factor F > 1; i.e., level size
grows exponentially. When a level overflows during inser-
tion, its contents are flushed and merged with those of the
next larger level. (Note that a level is analogous to a com-
ponent of an exponential file, described in Sect. 1. The main
difference between the two is that a level contains only data
with keys that fall within its partition’s key range, whereas a
component may contain data with any key.)

The header serves as a directory for the partition, storing
indexes for each level. A query begins by reading the header,
which helps it guide its search through specific levels within
a partition. This header is organized as a hierarchical, B+-
Tree-style index. We will discuss such operations in more
detail later in the paper.

2.1.1 Physical layout of a partition on disk

When a partition is created, a contiguous block of disk space
is allocated for its header and the body. The header is al-
located enough space at the beginning of the block to ac-
commodate its maximum possible size, Shead. The body is
pre-allocated enough space to completely accommodate the

419

C. Jermaine et al.

Fig. 3 Organization of a partition on disk

eventual growth of levels L2 to LM −1, i.e., Slev × F ×(F M −
1)/(F −1) bytes, followed by enough space to hold the data
currently stored in LM . The first portion of this space is al-
located exclusively to level L2, the next exclusively to L3,
and so on, and each portion is large enough to accommodate
its level’s maximum size. As a performance optimization,
we pin L1 of all partitions in memory, so it is not allocated
any space in the body. Also, we only allocate enough disk
space to hold the amount of data currently stored in level LM .
LM consumes more space than all other levels combined, so
deferring its full allocation increases flexibility in finding a
suitably large extent on disk for the rest of the body. We will
discuss handling changing space requirements for LM later
in this paper.

Level indexes are sorted in reverse order of the size of
their respective levels, and packed to the left (low address)
part of the header. Because smaller levels are more subject
to change, so are their indexes. Placing them closer to free
space in the header (the right part) makes updating them
simpler. Increasing the size of the index for the smallest
level, for example, can be done without perturbing the oth-
ers. Packing indexes together allows multiple indexes to be
read quickly. In general, the goal of header design is to al-
lows its entire contents to be read with only short, forward
seeks, which are more than an order of magnitude faster than
random seeks (see Fig. 3).

In our prototype PE file, we index each level using a
tree similar to a generalized search tree [15]. For simplic-
ity, we will subsequently refer to this structure as a B+-tree,
though like a generalized search tree it can be adapted for
other types of data. Besides the design optimizations de-
scribed above, each of this B+-tree’s nodes are organized
on disk in a breadth-first manner. Breadth-first organization
ensures that traversing an index can be done using forward
seeks (see Sect. 2.4 and Fig. 7). In addition, the first level of
each index can be pinned in memory as a performance opti-
mization. Additional index levels can be pinned in memory
depending on the amount of memory available.

The data stored in each level are also packed together on
disk as far left as possible, and conform to the organization
implied by their respective indexes. In our case, the data are

Fig. 4 Conceptual organization of a partition i

organized as the leaves of the B+-tree, and stored in key
order within the disk space allocated for the level. The basic
logical partition organization is shown in Fig. 4.

2.2 The PE file as a template: Handling other data types

As mentioned above, the PE file is a template that can be cus-
tomized for use with various data types and data-intensive
applications. It is for ease of presentation that we assume
that data are identified by a one-dimensional numerical at-
tribute and organized as a B+-tree. Although we could have
based our discussion on other, tree-based organizations such
as an R-Tree or a generalized search tree, doing so would

420

The partitioned exponential file for database storage management

have increased complexity without adding any additional in-
sight.

In the course of our discussion on the design of a PE
file, some design decisions are data type specific. We will
point out such cases, and discuss design alternatives. One
technique we use to delineate and encapsulate application-
dependent functionality is to introduce functions into the
discussion, of the form FunctionName(arguments). This
technique is meant to help both the researcher and program-
mer identify parts of the PE file that are meant to be cus-
tomized per the application. We will treat application spe-
cific functionality in more detail in Sect. 4.

2.3 Insertion

Data inserted into a PE file are directed by the database en-
gine to the partition based on each record’s key value. Once
a partition is determined, data are inserted into its smallest
level, L1. When a level is full, its contents are read from disk
(if necessary) in a single sequential scan with the contents
of the next, larger level. These data are merged, sorted, and
packed (organized into pages and written to disk) into the
larger level in a sequential write, leaving the smaller level
empty. We call the merge, sort, pack operations merge/pack
for brevity.

2.3.1 Example: Merge/pack of overflowing levels

Consider the insertion example shown in Fig. 5. Initially,
items 4 and 8 are buffered in memory in L1 (a). Inserting
item 11 causes L1 to overflow, so items 4, 8, and 11 are
sorted and then written to L2 on disk using a single sequen-
tial write (b). Items 2 and 15 are then inserted and buffered
in memory in L1 (c). Subsequently inserting item 16 causes
L1 to overflow. The contents of L2 are then read from disk
in a single sequential scan, then merge/packed with items
from L1, and rewritten to L2 in a single sequential write
(d). In (e) and (f), we insert items 7, 13, and 12 (in this or-
der) to the partition. Item 12 causes L1 to overflow, so we
merge/pack L1 with L2. This process causes L2 to overflow,
so we merge/pack L2 with L3, yielding (f). In steps (g)–(k),
we insert items 1, 5, 6, 3, 17, 18, 9, 10, and 14 into the par-
tition. The last three items, 9, 10, and 14, cause L1 and L2
to overflow, forcing us to merge/pack levels L1, L2, and L3.
In this case, two levels, L2 and L3, are read from disk with
a sequential scan during the merge/pack phase. When data
are rewritten to disk with a sequential write, we get the state
shown in (k). The process can easily be generalized to ac-
commodate any number of levels.

2.3.2 Example: Effect of inserts on partition organization

An example of the effect of insertions on physical partition
organization is given in Fig. 6. This figure illustrates how
the partition layout addresses a fundamental goal of partition

Fig. 5 Insertion into a partition

Fig. 6 Merges and their effect on partition layout

design: the minimization of I/O required to update the parti-
tion. This is achieved by ensuring that merges from L1 into
the on-disk partition levels have only relatively localized ef-
fects on the partition. In our example, L1 is merge/packed
four times with L2. The first two merge/packs only affect L1
and L2. The third overflows L2, forcing it to be merge/packed
with L3. L2 is left empty, and the effect of the fourth merge
is isolated to L1 and L2 again. Notice also the effect of
merge/pack on the indexes in the header. The sizes of the
indexes change in accordance with changes to the amount
of data in the corresponding levels. Consequently, the index
for L2 is most dynamic. Ordering indexing in the header ac-
cording to the inverse capacity of each level, and packing all
indexes to the left minimizes the impact of the reorganiza-
tion.

2.3.3 Overflowing a partition

Partitions are allowed to grow only to a certain size, Spart.
When a merge into the highest level causes the partition to
grow larger than Spart, the entire partition is read from disk in
a single sequential scan, and its contents are split into multi-
ple parts. The parts into which the partition are divided form
the bases new partitions.

421

C. Jermaine et al.

The nature of the partition splitting is application de-
pendent and is encapsulated in a function called SplitPar-
tition(P) where P is a partition (equivalently, the records in
partition P). If the data are organized on a single, numerical
attribute, it makes sense to split the overflowing partition in
two, around the median element, similar to a B-tree split. But
for other applications or data types (for example, the T2SM
storage manager for spatial data [18]), a more complex or
multi-way splitting scheme may be preferable. In general,
the optimal number of new partitions and the initial sizes
of each are subject to definition. Sect. 4 contains details on
customizing a PE file for particular applications.

2.3.4 Insertion performance

At first glance, the merge/pack process seems to cause sig-
nificant insertion overhead compared to more traditional
data organizations. The opposite is true, however, for many
reasons. First of all, partitions are assigned a maximum size,
Spart, which is tuned to fit in memory. The limit on Spart
bounds the amount of I/O and memory necessary to reorga-
nize a partition, thereby limiting the overall reorganization
cost.

Another reason PE file insertions are faster is its bet-
ter use of buffer space. In a hierarchical file, a fundamental
problem is that even given a huge amount of buffer mem-
ory, under a uniform insertion pattern, the probability that
a random insert hits a buffered page is basically zero. For
example, assume that the buffer is on the order of 1% of
the database size. In this case, the probability that a random
insert hits a buffered page is also 1%. The probability of a
buffer miss and the resultant disk access is therefore 99%.

Alternatively, one may use buffer memory to cache in-
serts instead of leaf pages, flushing the inserts to disk in
a batch. If multiple insertions are destined to be inserted
into the same leaf page, then they may be processed at
once in this case [32]. Performance, however, would not be
much better. Again, assume that buffer memory is 1% of the
database size, leaf pages are 16 KB, and the insertion pattern
is uniform. In this case, when the buffer is full, the amount
of buffer data that corresponds to an average leaf page is
only 1% of 16 KB, or about 160 B. In other words, only a
few records will be flushed to an average leaf page when
the buffer is full. Even if the entire access tree (except the
leaves) is pinned in memory, accessing a leaf would still re-
quire two seeks per insertion: one to read the leaf page and
one to write it. For an intense insertion load, those two seeks
can be debilitating.

In a PE file, because partitions are orders of magnitude
larger than leaf pages in a hierarchical structure, we need
to support fewer of them, and can therefore maintain larger
buffers for each (in practice, on the order of 100 KB). These
larger buffers allow us to buffer more inserts, dramatically
reducing the number of seeks required during update pro-
cessing. We concede that if pages in a hierarchical structure
were stored contiguously on disk, then we could read these
pages in sequence in order to insert more records per seek

in a way similar to the PE file. However, we must then han-
dle the difficult issues associated with keeping those pages
contiguous as different regions of the data grow through in-
sertion. This is a non-trivial issue, and has been the focus
of considerable research [28, 29, 31, 37]. We will consider
some of these other options experimentally in Sect. 5.

We also point out that dividing a partition into multi-
ple levels mitigates the higher transfer costs associated with
reading and writing large amounts of contiguous disk space
by reducing the number of bytes transferred. The total num-
ber of bytes read/written can actually be lower in a PE file
than in a hierarchical file. See Appendix A for an analytical
treatment of these issues.

2.4 Queries

The database engine first determines the partition(s) that
could contain data that match the query, based on their key
ranges (See Fig. 2). For each of these partitions, a query eval-
uation thread is created that checks L1 (the level pinned in
memory) for matching data. Each thread then obtains exclu-
sive access to the disk containing its partition, protecting the
access with a semaphore. Such access is necessary to avoid
competing queries from moving the disk arm to other parti-
tions. The thread then proceeds with searching the portion of
the partition stored on disk. It first performs a possibly long
disk seek to the beginning of the partition, and reads the di-
rectory information (the indexes) contained in the header,
as depicted in Fig. 7. Depending on the directory, the pages
from levels are read in the order they appear on disk: first,
the relevant L2 pages are read in sequence, followed by the
relevant L3 pages, and so on.

2.4.1 Query performance

The nature and limited number of seeks are the sources of
the PE file’s query evaluation speed. Because partition levels
are contiguously stored on disk, usually only fast, track-to-
track seeks are needed so scan them. Furthermore, only a
limited number of seeks is required to search a partition: one
seek is required to reach the header for the partition, and L-1
seeks are then required to retrieve the relevant pages from
each of the L-1 levels stored on disk. Because blocks are
packed tightly within each level, this is the case even for

Fig. 7 Linearization of index directory pages in the header of a parti-
tion. Note that a range query that needs to touch index leaves 1, 3, 4,
10, 11, and 12 requires only a few short, forward seeks

422

The partitioned exponential file for database storage management

larger range queries (as long as they stay within a partition).
Most I/Os are fast, sequential reads.

2.4.2 Long-lived queries

Although the obvious benefit of locking the disk in this man-
ner is that reads are accomplished in an orderly fashion with
little thrashing, the drawback of such locking is that con-
current writes (as well as other query threads) will not be
granted access to the disk while a query is reading a par-
ticular partition. If the query must read the entire partition,
this could cause all subsequent disk operations to block for
several seconds as the partition is read.

In practice, this problem will be mitigated to a certain
extent for insertions because L1 is pinned in memory, so sub-
sequent insertions can be processed as long as the memory
available to buffer L1 has not been exhausted. If the available
buffer memory is exhausted during a particularly long-lived
query, then the simple solution is to block subsequent inser-
tions until the query finishes. Sections. 5.3.3 and 5.3.4 give
experimental evidence that even in an environment charac-
terized by bursts of heavy insertions with concurrent queries,
this simple solution has acceptable performance characteris-
tics.

However, there will be certain application domains
where the serialization forced by locking of the disk in this
fashion is simply unacceptable. One example is online ag-
gregation, where the answer to the query is computed incre-
mentally, and a current estimate for the eventual answer is
made available to the user at all times, with associated sta-
tistical error bars. In online aggregation, it would not be ac-
ceptable to access the partitions serially, because no statisti-
cal information would be available for the partitions that had
not been processed. This would effectively lead to infinitely
large error bars being associated with the online estimate.
In this particular case (and for other applications with simi-
lar characteristics), it would probably be necessary to allow
some degree of parallel access to the partitions relevant for
answering a query, and to accept the inefficiencies incurred
as the result of a less-controlled usage of the disk arm.

2.5 Deletions

The manner of handling deletions is similar to that of inser-
tions, and are not described in detail. Basically, when a tuple
is to be deleted, a control record containing its key is in-
serted into a partition. However, a flag on the control record
is set indicating that the data record with this key is to be
deleted. When the control and data record are merge/packed
into the same partition, both are deleted.

2.5.1 Deletion performance

Storing a control record until it reaches its targets may in-
cur some overhead, but because it only consists of a key
value, the expected overhead is small. If overhead becomes

a problem, the partition can be rebuilt to remove deletion
records.

3 Details of the PE file data organization

3.1 Main memory usage

By definition, the smallest partition level L1 is memory-
resident. In practice, L1 is on the order of 0.1–1% of the
size of the overall partition, Spart. This proportion is gov-
erned in part by the ratio of the cost of main memory to
the cost of magnetic disk per unit of storage. Historically,
this ratio has hovered around 50:1 [12], which means that
buying main memory for L1 increases storage cost by about
2.5% (L1 is 0.1% of Spart) to 25% (L1 is 1% of Spart), assum-
ing that the disk-based structures are mirrored for fault tol-
erance. This additional cost is acceptable in most situations,
especially considering the performance increase, which we
will demonstrate later.

3.2 High-level maintenance of a PE file

For a large database, thousands of partitions may be stored
on disk. Partitions can be of many different sizes, with sizes
differing by orders of magnitude. This presents a problem
because, as partitions are constantly growing and shrinking
with updates, the PE file can become extremely fragmented.
For example, consider Fig. 8. Because of a merge into its
highest level, partition 6 (which was formerly located be-
tween partitions 4 and 5) has grown too large to fit in any
empty, contiguous storage in the PE file (the unpatterned
spaces in the figure), even though there is clearly enough
total room to accommodate it.

To reclaim large extents of space, the PE file must be
reorganized by moving other partitions. Moving a partition
consists of first identifying empty contiguous chunk of disk
space and a partition currently on disk that would fit into it.
The entire partition is then read into memory, written into the
identified space, and the old space it occupied is marked as
empty. As an optimization, the contents of a moved partition
are merge/packed into its highest level while in memory. In
this way, we take advantage of the I/Os already taking place
by eagerly performing some in-memory reorganization of
the partition.

Reorganizing a PE file is a complex task, but the final
plan should minimize the following expression:

∑

P∈{partitions moved during reorganization}
Cost(P)

In the expression above, Cost(P) is the cost of moving
partition P, and its exact definition is application-dependent.
For example, moving a partition containing data organized
on several attributes may require more time and CPU
resources than moving a partition containing data organized
on a single attribute. One reasonable cost function for
simple, single-attribute data is Cost(P) = (size of P, in

423

C. Jermaine et al.

Fig. 8 PE file fragmentation

bytes). That is, the larger a partition, the more costly it is to
read and write it again. A more complicated cost function
is Cost(P) = (size of P, in bytes) × (% empty space in
levels L1 through LM −1). In this case, cost is a function
of the volume of empty space left in the partition, which
roughly reflects the inverse probability that P will soon be
merge/packed. By moving P, we can merge/pack P and
reclaim disk space at the same time.

Even using a very simple cost, computing an optimal re-
organization plan is an NP-hard problem (using a reduction
from bin-packing). To deal with this complexity, we define
the following classes of reorganization:

Definition 1 A level 0 reorganization to accommodate a
partition P is a reorganization where there exists enough
empty, contiguous storage on disk to accommodate P.

Definition 2 A level r reorganization to accommodate a
partition P is a reorganization where for each partition P′
that overlaps the contiguous storage where P is to be moved,
P′ can itself be accommodated by a level r−1 reorganiza-
tion.

In the definitions above, r is a user-defined value and
governs the maximum complexity of reorganization. In our
experience, the optimal level 1 reorganization is easy to im-
plement, is quickly computed using brute-force, and yields
good performance. We have observed an 80–90% space uti-
lization in a PE file using optimal level 1 reorganization in
our prototype.

The general algorithm for maintenance of the PE file is
as follows. We start with a small, arbitrary initial size for the
PE file, Sfile≥cSpart, for some small c>1. Data are inserted,
and whenever any partition grows because of a merge into
LM , we perform the optimal, level r reorganization of the
file, based on the definition of Cost(). If no such level r or-
ganization exists, the PE file is declared full. In this case, we
allocate more disk space to the PE file by increasing Sfile by
a user-defined factor exp_fac, and try the level r organization
again. In our prototype, we set exp_fac to 1.1; when a PE file
with Sfile = 1.0 GB is full, it grows to 1.1 GB.

3.3 Accommodating skewed insertion patterns

Another issue that must be discussed in the design of the PE
file is a method for dealing with skewed insertion patterns. In
practice, certain partitions at certain times receive the bulk of
the workload. The PE file described so far does not handle
such workloads well. Say we have a 1 TB database orga-
nized into 20,000 50 MB partitions using a total of 10 GB
of buffer memory. If we uniformly allocate buffer memory
across partitions, each receives 500 KB of RAM for its mem-
ory resident L1 level. In this case, if only a few partitions

are being updated, the buffer memory for the partitions that
are not accessed effectively go unused, wasting hundreds of
megabytes of memory. This buffer space would experience
higher utilization if it were allocated to the partitions that are
actively receiving updates.

To deal with this problem, we modify the basic insertion
algorithm depicted in Fig. 5. All available main memory (in
our example, 10 GB) is organized into small pages and put
together to form what is called the L1buffer pool. This buffer
pool is kept separate from the normal pool of DBMS buffer
pages. When a partition runs out of space in its L1 buffer, it
is allowed to draw another page from the L1 buffer pool to
add to its own L1 buffer.

When the L1 buffer pool holds no additional free
pages, we invoke the ChoosePartitionToMergePack() func-
tion. This function chooses a victim partition that is to have
its L1 merge/packed with its upper levels (as in Fig. 5). After
merge/packing the victim partition surrenders its L1 buffer
pages, which are empty, to the L1 buffer pool.

Just as with the Cost() and SplitPartition() functions, the
definition of the ChoosePartitionToMergePack() function
is application-dependent. The most obvious solution is to
choose the partition with the largest L1; since this will
immediately free up the most buffer pages. However, we
have found in our prototype that this can be a poor choice
in practice, since common insertion patterns can easily
defeat this scheme. For example, imagine that key values
were added almost in monotonically increasing order, but
that some “older” key values were periodically inserted out
of order. For example, consider temporally clustered data,
where the data are generally inserted in the order that they
are produced. If some data items are delayed or arrive out
of order (due to network latencies, for example), one would
frequently expect such an insertion pattern. The problem
in this case is that data objects which are inserted out of
order will be buffered in memory associated with partitions
having older or smaller key values, but the partition holding
the newest or greatest key values will always be the one that
has its L1 buffer pages returned to the L1 buffer pool. Thus,
the data objects inserted out of order are essentially buffered
indefinitely in memory, when they should have been written
to disk long ago. Due to this phenomenon, in our prototype,
we choose to empty L1 from the least-recently-added-to
partition 20% of the time, and we empty the partition with
the largest L1 80% of the time. Choosing the partition with
the largest L1 most of the time makes sense, since it frees up
the most L1 buffer pages. On the other hand, choosing the
least active partition periodically alleviates the problem of
having costly memory associated with infrequently updated
partitions. Although this 80/20 split is admittedly somewhat
arbitrary, one of the benefits of the PE File is that it is
customizable (see Sect. 4). Because it is a general-purpose

424

The partitioned exponential file for database storage management

template, other schemes can easily be used, such as the
LRU k algorithms described in [27]. When combined with
a periodic emptying of the largest L1, an LRU k algorithm
may do an even better job of identifying those partitions
which are unlikely to need buffer memory associated with
them in the near future.

4 Instantiating the PE file

To tailor a PE file to a specific application (or data type), cer-
tain functionality must be defined, in a manner similar to the
generalized search trees of Hellerstein et al. [15]. Below is a
list of the major PE file functions and a description of their
actions that are not common to both the PE file and gen-
eralized search trees. Altering their definitions allows sub-
stantial customization of the framework. In addition to the
functions described below, several functions/parameters are
common both to the PE file and to generalized search trees
(specifically, these functions are IsOrdered(), Compare(),
Consistent(), Union(), Compress(), and Decompress()). Be-
cause these are not substantially different than in a gener-
alized search tree, we refer the reader to Hellerstein et al.’s
paper for descriptions of these functions. The remainder are
described below:

• Pack(array of data records). When data from a lower
level of a partition are merge/packed with data from a
higher level, two basic operations must be performed in
addition to basic disk operations. First, all of the data in
the higher level must be organized into page-sized parti-
tions. Second, data within the partitions must be ordered
to reduce seeks during query evaluation. These opera-
tions are encapsulated in the Pack() function.

For example, if data are organized on a single attribute,
Pack() is simple: it sorts the data records based on the key
attribute, and insert page breaks when appropriate. With spa-
tial data, however, Pack() is slightly more complex. In Fig. 9,
we show one way to pack spatial data shown in (a). First,
the data from (a) are packed into pages using the STR pack-
ing algorithm [21], as shown in (b). These pages are then
ordered using a Hilbert curve (see Kamal [19]) (c) and writ-
ten to disk (d). We implemented this packing technique in
T2SM. T2SM [18] is an instantiation of the PE file that is
suitable as an alternative to the R-Tree [14] or TSB-Tree [24]
for spatial or multidimensional temporal data.

• SplitPartition(array of data records). As described in
Sect. 2.3.3, over-full partitions must be split. The Split-
Partition() function splits the data from the over-full par-
tition two or more parts, based on the application. Multi-
way splits can greatly improve global organization when
compared to a hierarchical file. For example, for spatial
data, data records can be split into many parts to mimic
the natural clustering structure of the underlying data,
whereas a traditional two-way split, common for data
organized on a single attribute, might force an unnatu-
ral organization on the data (Fig. 10a).

Fig. 9 Steps for packing a partition over spatial data

Fig. 10 Examples of spatial data

• ChoosePartitionForInsertion(data record). At first
glance, this may seem similar to the task of choosing
which subtree receives an insertion in a hierarchical
file. However, a key additional degree of freedom is
provided in a PE file. ChoosePartitionForInsertion()
may decide that no partition is appropriate for the new
record, and create a new partition for it. There are many
cases when such an option is useful. Consider the cases
where the new record is an outlier, (Fig. 10b), or where
expanding a partition to include the new record would
cause significant overlap among partitions (Fig. 10c).
In both cases, it may be preferable to create a new
partition holding a single data record. This option is
possible because there is no restriction on the minimum
size of a partition; no analogous option is provided in
a hierarchical file. ChoosePartitionForInsertion() can
also be made to handle special characteristics of the
input data, such as large runs of duplicate key values. If
the case ever arose where a split caused two partitions
to cover the same key value (one had values k1 to k2,
the other had values k2 to k3), then the PE file could be
made to use the heuristic that whenever a new record
with key k2 is added to the file, the record is added to the
smaller of the two relevant partitions. If the file had even
more partitions covering the same range of key values, a
similar heuristic could be used.

• Cost(partition) and ChoosePartitionToMergePack().
These are more systems-oriented functions that were
already described in Sects. 3.2 and 3.3, respectively.

425

C. Jermaine et al.

In addition, the following parameters must be set. All
have been described previously:

• Sfile, the maximum size of the PE file. Discussed in
Sect. 3.2.

• Main memory buffer size. Discussed in Sect. 3.1.
• F, the multiplicative factor describing the size difference

between consecutive partition levels. See discussion for
M, below.

• M, the number of levels in a partition. The choice of M
determines the value of F. Increasing M increases inser-
tion speed, but decreases query evaluation speed. Each
increment of M increases the number of seeks within a
partition during query evaluation by one.

• r, the maximum level of reorganization. Discussed in
Sect. 3.2.

• exp_fac, the expansion factor of the PE file. Discussed in
Sect. 3.2.

5 Benchmarking

We now consider the performance of the PE file. In the ma-
jority of our experiments, we benchmark the performance
of the Taboose One Storage Manager (T1SM), which is an
instantiation of the PE file for use with numerical data orga-
nized on a single attribute. We compare T1SM with six al-
ternative data organizations that represent the state of the art
for processing a workload of intense, concurrent queries and
insertions: B+-Tree, Y-Tree, Log-Structured Merge Tree,
Stepped-Merge Method, and No Clustering (all described
below). We have also conducted experiments on spatial data,
comparing the performance of the Taboose Two Storage
Manager (T2SM), which is a PE file instantiated for spatial
data, with an R-Tree in processing concurrent insertions and
queries. For brevity, Sect. 5.7.4 only contains a subset of our
spatial data results. A more detailed description of T2SM,
including benchmarks, can be found in [18].

5.1 Data sets

Our experiments consist of several different insertion
and query workloads over two synthetic, one-dimensional
datasets called Skewed and LessSkewed. Both Skewed and
LessSkewed consist of 256 byte records, organized over
4 byte integer keys having values from 0 to 231. Each set
contains 39.06 million records, which amounts to 10 GB of
total data. The keys for records of the Skewed dataset are
produced by a one-dimensional, normally distributed cluster
which slowly wanders through the data space. This cluster
provides a single “hot spot” for insertion. The standard de-
viation of the cluster is such that around 5–10% of the data
space could be expected to be actively receiving insertions
at any given time. The LessSkewed dataset is produced in a
similar way, except that it has 200 such clusters. While data
insertion in LessSkewed is considerably more diffuse than
in Skewed, its insertion pattern is still far from uniform. Be-
cause insertion into a real database is unlikely to be uniform

over time, these two datasets represent fairly realistic inser-
tion workloads.

5.2 Benchmarking environment

All experiments are run on a single processor, 1.2 GHz
Pentium PC with 512 MB of RAM, running the Linux ker-
nel, version 2.2.9–19 mdk. Each of the data organizations
is implemented in C++. On-disk data structures are built
on a 40 GB hard disk, managed using the Linux ext2 file
system. Each data organization interfaces with ext2 through
the Linux kernel via our own virtual file system, which
provides additional facilities such as large (multi-gigabyte)
files, LRU read/write caching, pinning of disk blocks, and
pre-allocation of space for the large files (forcing them to
be stored sequentially on disk). Each data organization is
allowed 100 MB of main memory for use in storing the per-
sistent main-memory data structures required by the orga-
nization (such as the memory required to buffer L1 in the
case of the PE file). If the data organization does not require
any such data structures (for example, a B+-Tree will not
require any long-lived structures other than the pinning of
the root node), then that 100 MB is managed by our virtual
file system as an LRU read/write buffer. This provides for
the fairness of the comparison, since every data organization
has 100 MB to use for long-term storage. Each data organi-
zation is allowed to use as much memory as is needed for
short-lived operations (for example, many of the data orga-
nizations end up sorting large, in-memory sets of records),
but any memory in excess of the 100 MB can only be used
temporarily by the data organization.

The primary reason for managing the raw disk using the
ext2 file system via the Linux kernel (and not directly us-
ing our virtual file system) was to provide a simple way to
allow all of the system memory not used by each data or-
ganization to be used as a file system cache, without hav-
ing to implement our own memory management software.
In other words, all processes associated with a data orga-
nization request whatever memory they need via calls to
malloc(), and we leave it to the operating system to han-
dle issues such as removing memory from the file system
cache to service the request, providing protection by mak-
ing sure that all memory lookups remain in the correct ad-
dress space, and so on. While a modern DBMS will usually
handle these tasks internally, in our experience the Linux
kernel does a good job of handling these tasks in the ab-
sence of other, concurrently running applications. Thus, we
believe that this represents a reasonable environment for
our benchmarking. We do not consider concurrency con-
trol in the initial set of experiments, but do consider it in
Sect. 5.7.3.

5.3 Data organizations tested

The various parameters given below for each of the differ-
ent organizations are chosen to maximize the performance

426

The partitioned exponential file for database storage management

of each of the different options, as dictated by our experi-
ence with implementing and using the different organiza-
tions. The seven organizations that we tested are:

• T1SM. This is the instantiation of the PE file for use with
one-dimensional data. Maximum partition size Spart=
12.5 MB. The number of levels in each partition M = 3.
The amount of memory available for the L1 buffer pool
is held constant at 1% of the total size of the data that
had been loaded into the structure. Because T1SM (and
all of the other organizations) is allowed to use 100 MB
of memory, the memory not used in the L1 buffer pool at
any given moment is used as a separate LRU buffer for
disk reads/writes. The maximum level of reorganization
r = 1. The expansion factor of the PE file, exp_fac = 1.1.
Disk page size is 8 KB.

• B+-Tree. We use a classical B+-Tree as a baseline for
comparison. B+-Tree pages are 8 KB in size. The B+-
Tree uses a 100 MB LRU buffer.

• Y-Tree [17]. The Y-Tree is similar to the B+-Tree, ex-
cept that it is designed specifically to allow fast in-
sert processing. All pages in the Y-Tree tested are
98 KB in size, and the insertion set size is 54 tuples.
A 100 MB LRU buffer is used in conjunction with the
Y-Tree.

• Buffer Tree [3]. The Buffer Tree is another tree-based
structure, with design goals similar to those of the
Y-Tree. However, the Buffer Tree is more suitable for use
as a primary file organization holding larger records than
the Y-Tree. We use 8 KB-sized pages in the Buffer Tree.
As described in the original Buffer Tree design, 8 KB
of data are inserted at a time, and tree nodes can store
4 MB of data. It is assumed that there is enough memory
to store an entire tree node. This node size strikes a bal-
ance between insertion and deletion performance. Larger
tree nodes improve insertion performance, but hurt query
performance, as more data must be read and processed
to satisfy searches. Finally, we assume that queries must
be evaluated immediately, so our version of the Buffer
Tree does not allow lazy query evaluation, as originally
prescribed by its design [3]. All queries actively traverse
the tree until satisfied. Again, a 100 MB LRU buffer is
available to the Buffer Tree.

• The Log-Structured Merge (LSM) Tree [29]. The LSM-
Tree is essentially a modern variation on the exponen-
tial file organization described in Sect. 1. We use a
three-component LSM-Tree. The smallest component is
100 MB in size, residing in main memory. The second
component is given 1 GB of disk space, and the largest
component is given 10 GB of space. We use multi-page
runs of 64 pages [29].

• The Stepped Merge Method [16]. The Stepped Merge
Method (SMM) is best viewed as a variation of the LSM-
Tree, allowing multiple trees at each level. This allows us
to avoid writing any record more than once to a level (in
contrast to the LSM-Tree). As it was originally defined,
the SMM writes data to levels in a set of monolithic
merges (or reorganizations). This is problematic while

processing loads of concurrent queries and insertions
(like the loads we test experimentally), because of the
latency caused by these reorganizations. To address this
problem, we use a variation of the rolling merge tech-
nique of the LSM-Tree [29] to perform merges in the
SMM. Multi-page runs of 96 pages are used. We use
twin 50 MB AVL trees (Gormen et al. [9], Chapter 6)
for the lowest level. One is filled with new data, as the
other is emptied into the next level. Then, there are four
additional levels of up to four components each.

• No Clustering (NoClus). The last organization we con-
sider is to simply write the data to disk in the order they
are inserted (which will allow very fast insertion process-
ing), and to then maintain a secondary index on the data
to facilitate fast lookups of individual records. We use
a Y-Tree for the secondary index, with 16 KB pages, as
the Y-Tree supports very fast insertions for a secondary
index where records are small. Again, a 100 MB buffer
is used.

5.4 Organization of the remainder of Sect. 5

Using the Skewed and LessSkewed datasets and the six data
organizations described above, our benchmarking is orga-
nized into three distinct sets of experiments. In the first set
of experiments (described in Sects. 5.5 and 5.6), we test the
standalone insertion and query processing speeds of each
data organization. To facilitate this testing, each organiza-
tion is used to load up each dataset as fast as possible. To test
query speed, the loading process is periodically halted to is-
sue non-noncurrent test queries. Insertion rates are discussed
in Sect. 5.5, and query processing speeds are discussed in
Sect. 5.6.

We also describe two sets of experiments designed to test
the ability of the various data organizations to handle con-
current queries and insertions. These results are reported in
Sect. 5.7. First, we describe a set of experiments that are
aimed at determining the maximum query load that can be
processed along with a given insertion load, for each of the
six data organizations. These experiments are discussed in
Sect. 5.7.1. In a final set of experiments (described in Sect.
5.7.2 and 5.7.3), we test the efficacy of the concurrency con-
trol mechanisms associated with the PE file. In particular,
these experiments explore the effect of concurrent insertions
on query latencies. The PE file is tested as a data organi-
zation both for one-dimensional and for spatial data, and
its concurrency control mechanisms are compared head-to-
head against the concurrency provided by both a B+-Tree
and an R-Tree. Finally, Sect. 5.8 summarizes our overall ex-
perimental findings.

5.5 Insertion

5.5.1 Experiments

In our first set of experiments, we measure the amount of
data each access structure can insert in a fixed amount of

427

C. Jermaine et al.

time. The size of the dataset is 10 GB and the time limit is
12 h. For these experiments, we measure average and worst-
case insertion performance.

5.5.2 Average (or overall) insertion time

We can draw some interesting conclusions from the exper-
iments. First, simply writing data to disk in the order they
arrive, and maintaining a secondary index with a fast struc-
ture such as a Y-Tree (e.g., using NoClus) is likely to be the
fastest method of processing insertions, especially if most
of the index can fit in memory. The size of the secondary
index required is on the order of 500 MB for each of our
two datasets. In the Skewed dataset, LRU buffering of in-
dex disk pages is more efficient and the active portion of
the index could fit in memory, explaining the faster inser-
tion speed for NoClus over the Skewed dataset, as opposed
to LessSkewed. The SMM is also very fast, since with the
configuration we use guarantees that no single record item
is written more than four separate times to disk. The SMM
insertion processing speed (and also the speed of the LSM-
Tree, with which it shares many characteristics) is nearly
independent of data distribution. Note that T1SM is com-
petitive with the other methods tested. The results of this
experiment are shown in Fig. 11.

5.5.3 Worst-case insertion time

Overall insertion time only tells part of the performance
story. With the exception of the B+-Tree, each of the data
organizations considered works to some extent by process-
ing updates in batch. This leads to fast amortized insertion
times, but may mean that individual updates can take a long
time to process. Long individual insertion times are prob-
lematic because in each of the structures tested, long-lived
insertions are effectively blocking. Due to problems with
disk arm thrashing, loss of sequential I/O, and the blocking
of additional insertions, long-lived insertion make efficient
co-evaluation of queries difficult (Table 1).

Most of the organizations have acceptable worst-case in-
sertion times, except for the Buffer Tree. The phenomenon
of long-lived buffer tree insertions is related to the fact that
when a Buffer Tree node’s associated buffers are full, the
buffers’ contents are emptied in a series of flushes into all its
children that have the corresponding key ranges. The more

Table 1 Insertion durations (in ms)

Data Var Max. Var Max.
org. (Skewed) (Skewed) (LessSkewed) (LessSkewed)

T1SM 2608 22,704 1796 10,433
SMM 1556 18,153 1709 15,667
LSM 2923 40,539 1488 18,916
Buffer Tree 24,095 101,918 116,269 451,203
Y-Tree 1315 3276 1675 2851
No Clustering 99 9321 185 6284
B+-Tree 678 2709 1849 2223

Fig. 11 Processing insertions for the Skewed and LessSkewed datasets

uniform the insertion pattern, the more children are affected,
resulting in more I/O. Furthermore, this emptying process
is recursive. If the majority of the children of a node are al-
most full, then a single emptying into all of a node’s children
can cause all of those nodes to overflow as well, which can
result in cascading reorganizations that affect most of the
Buffer Tree. The problem is worse with more uniform inser-
tion patterns, where there is a high likelihood that all chil-
dren of a node tend to fill up at around the same time. This
accounts for the particularly poor worst-case performance
of a single insertion for the Buffer Tree for the LessSkewed
dataset.

A reasonable solution for the Buffer Tree is to use an
anticipatory write, emptying its buffers before they become
full. Aside from causing a prolonged period of slowed inser-
tion processing, this solution has a qualitative consequence
on Buffer Tree performance. Specifically, the Buffer Tree
would no longer be I/O-optimal, ostensibly slowing overall
insertion processing performance. See the Buffer Tree paper
for details [3].

428

The partitioned exponential file for database storage management

As mentioned above, poor worst-case insertion times
make efficient concurrent query processing difficult, if not
impossible. The Buffer Tree, in particular, can have such
an extensive series of cascading buffer flushes that it is far
from obvious how one could even guarantee that a record is
not missed (or read multiple times) during concurrent query
evaluation. Also, the reorganization represents a significant
time window during which additional insertions cannot be
processed.

5.6 Queries

5.6.1 Experiments

We test query performance for each organization by pausing
the insertion process described above every 2 min to query
the data. (Note that query time is not added to the construc-
tion time limit.) In this Section, we discuss raw query perfor-
mance and consider concurrent queries and insertions later.
We test three types of queries:

1. Q1. This is an exact-match point query, searching for all
records with a given key value. The key value is ran-
domly chosen from those already inserted.

2. Q2. This is a “medium” sized range query. The expected
result set size is 1/50,000 of the database based on the
range.

3. Q3. This is our largest range query. The expected result
set size is 1/1000 of the database based on the range.

In Figs. 12 and 13, we plot the time required to evaluate
the different query types for each of the data organizations.
For the un-clustered organization (NoClus), we run only Q1
queries. Under this organization, it is not possible to effi-
ciently evaluate range queries because each tuple in the re-
sult set would require a separate seek. We plotted 30-point
(or 1 h) running medians to smooth the graph and remove
most of the anomalies from the data. This smoothing ex-
plains why the graphs do not start at 0 seconds when the
structure is small enough to be buffered entirely in memory.

Note that some of the graphs abruptly stop (particularly
for the B+-Tree and the Y-Tree). This is a result of the lim-
ited size of data available for querying. After 12 h of inser-
tions, the B+-Tree and the Y-tree contain only 1 and 2.5 GB,
respectively, of the 10 GB insertion set. In these cases, ap-
plying insertions until the file reaches the 10 GB limit is im-
practical. We project that it would take more than 2 weeks
to build a 10 GB B+-Tree using our experimental configu-
ration.

5.6.2 Discussion

T1SM is by far the fastest organization tested for the small
(Q1) and medium-sized (Q2) queries on the Skewed dataset,
but it is outdone by the B+-Tree on the LessSkewed dataset.
In general, however, we believe that T1SM would be slightly
outperformed by a well-tuned B+-Tree over point queries

Fig. 12 Query processing speed, in milliseconds

for most datasets, if insertions are rare. The reason that
T1SM is not outperformed by the B+-Tree on the Skewed
dataset for our experiments is that while insertions are con-
fined to a few hot spots, the queries are distributed uniformly
and are issued only periodically. Thus, the LRU buffer as-
sociated with the B+-Tree adapts to the insertion pattern,
and is generally ineffective for handling queries. If queries

429

C. Jermaine et al.

Fig. 13 Query processing speed, in milliseconds

were issued in isolation, this effect should disappear. In the
case of the LessSkewed data, more of the B+-Tree is actively
receiving insertions. As a result, more memory is allocated
to buffering its upper levels than to its leaves. This is the
ideal situation for evaluating the smaller, random queries
of the experiment: the distribution of queries matches the
distribution of insertions more closely for the LessSkewed
data than for Skewed data. This match makes query process-

ing more efficient. The Y-Tree shows a similar tendency to-
ward better performance over the LessSkewed dataset.

Both the Buffer Tree and the SMM are not generally
well-suited for point queries. The Buffer Tree is slow be-
cause of the substantial on-disk buffer (up to several MB). A
query may require many such buffers to be read. The SMM
is slow because a dozen or more individual trees might need
to be searched to find the desired key value during point
query evaluation. We note that the suggestion made by the
designers of the SMM of including a bitmap or filter (that is,
some sort of secondary index for each tree) in order to indi-
cate which trees have which key values would be helpful for
speeding point query evaluation. However, maintenance of a
secondary index can be expected to slow update processing.

For larger queries, (especially queries of type Q3) T1SM
is always at least as fast as any of the other organizations.
This performance is again attributable to the clustering
provided by the partition abstraction. However, two points
warrant further discussion. First, the LSM-Tree’s perfor-
mance is identical to that of T1SM for Q3 queries. In fact,
the performance of the LSM-Tree and T1SM for larger
range queries would be very hard to improve upon, as for
both we found that the median Q3 query processing time was
typically within 20% of what would be required to simply
read the equivalent amount of data sequentially from disk.
For smaller queries, the LSM-Tree is slow because search-
ing multiple components hurts performance significantly.
With larger queries, however, this (fixed) time is amortized
by the time required to perform long, sequential scan.

Second, the significant performance improvement of the
SMM for Q3 queries is noteworthy. Its performance eventu-
ally approaches that of TISM for large range queries as the
database grows. As with the LSM-Tree, a fixed SMM cost
becomes insignificant for larger queries. While the SMM
must search many trees in order to evaluate a query, the
time required is fixed, and amortized by scan time of large
queries.

5.7 Mixed workloads

Perhaps just as significant as the insertion performance de-
scribed in Sect. 5.5 and the query performance described
in Sect. 5.6 is the ability of a data organization to handle
a insertions and queries simultaneously. In this section, we
first measure the heaviest query load each data organization
can handle given a minimum insertion rate. We then explore
TISM’s performance in more detail, and compare its per-
formance with that of the B+-Tree on a mixed workload
over a wide range of query and insertion rates. At the end of
this section, we consider the PE file’s performance on spatial
data, demonstrating its ability to conform to other data types.

5.7.1 Experiments: Maximum query load with a given
insertion rate

In our experimental setup, we preload 4 GB of data from the
LessSkewed dataset into each of the seven organizations (the

430

The partitioned exponential file for database storage management

Fig. 14 Maximum insert/query loads per second for type Q1 (point
queries) and Q3 (range queries)

B+-Tree required nearly 5 days to do this). We then insert
data at various rates: 2, 4, 8, . . . , 1024 inserts per second.
For each insertion rate, we interleave as many queries as
possible, subject to the constraint that the insertion rate is
maintained. We perform two 20-min experiments using this
setup: one using Q1 queries, and the other using Q3 queries.
Because of the inability of the NoClus method to handle
large range queries, we do not consider it in the second ex-
periment.

The rates (in queries per second) that each organization
is able to handle are presented in Fig. 14. These results show
how queries and insertions interact to affect the performance
of each of the different organizations. Again, the graphs rep-
resent the maximum load each organization can handle.

5.7.2 Discussion

Interestingly, all organizations, except the Buffer Tree
and the Y-Tree, take turns having the best performance
depending on the experimental parameters. Not surprisingly,
for point queries (Fig. 14a) with a light insertion load, the
B+-Tree works best. However, its performance degrades
quickly with increasing insertion rate. When the insertion

rate is more than eight insertions per second, TISM is su-
perior to the B+-Tree. At more than 80 insertions per sec-
ond, the B+-Tree has absolutely no additional capacity with
which it can process insertions, making it unusable. The
non-clustered organization with a secondary Y-Tree (No-
Clus) is a close second to TISM for the medium to heavy
insertion loads, and actually outperforms TISM for the heav-
iest insertion loads. The Y-Tree, the Buffer Tree, and the
SMM all show relatively poor Q1 query processing perfor-
mance regardless of insertion load.

For large range queries, Q3, TISM is again able to con-
sistently handle the heaviest loads (Fig. 14b). The LSM-Tree
has close (and occasionally better) performance until around
500 insertions per second, which is not surprising consider-
ing its raw query performance matched TISM for large range
queries (see Sect. 5.6). However, as the insertion rate in-
creases, the inferior insertion performance of the LSM-Tree
hurts overall performance. The opposite is true of the SMM
organization. It has inferior query performance, but better
insertion processing performance compared to T1SM. Thus,
it becomes very competitive with TISM for heavier insertion
loads.

5.7.3 Experiments: Effects of insertions on query latencies
for T1SM

We also consider the exact performance penalty that a
high rate of insertions has on TISM’s concurrent query re-
sponse time. One concern is insertions occasionally trigger
merges, splits or reorganizations of a PE file. These opera-
tions might not significantly affect the average query perfor-
mance, but they might significantly hurt worst-case query
performance, especially considering the effect of TISM’s
concurrency control mechanism (described in Appendix B).
In this Section, we address a performance measure that was
only partially treated by the insertion performance experi-
ments described in Sect. 5.5.3.

We used the following setup to test the effect of con-
current insertions on TISM’s query performance. A second
Pentium PC functions as a client, transmitting a stream of
inserts and queries to the original PC, which acts as a T1SM
server, via Ethernet. T1SM is pre-loaded with 80 million 16-
byte records. In this case, T1SM contains relatively small
records, as it would if it were used as a secondary index
(we run experiments with larger records in the next Section,
using T2SM). The data are produced by 20 randomly po-
sitioned one-dimensional clusters, whose centroids slowly
“wander” throughout the range 0 to 231. Each cluster pro-
duces integer keys distributed around the centroid using N,
a normally distributed random variable with standard devia-
tion 1. The value of each key produced by a cluster is (cluster
centroid) + N × 10000. Thus, at any given time, there are
20 “hot spots” for data insertion. Insertion records for the
latency experiments are generated in this way as well by the
client PC.

Queries over the data are issued concurrently with the
insertions, and are randomly generated in the following

431

C. Jermaine et al.

manner. N, a normally distributed random variable with stan-
dard deviation of 0.0001 and a mean of 0, is used to gener-
ate the expected fraction of the database to be returned by
the query, subject to the constraint that N is positive and not
greater than 1. Average queries generated in this way return
around 6000 tuples (or 96 KB of data). There is great vari-
ation in the number of tuples returned by the queries; many
queries are effectively point queries and returned little or no
data.

We test many combinations of concurrent query and in-
sertions rates. To test a query rate Q with an insert rate I, we
run an experiment where the client PC sends a stream of in-
serts and queries to the server PC for 10 min. The insert rate
and query rate are each held constant for a second. After 1
s, they fluctuate, such that the query and insert rates for the
next second are governed by random variables having a Pois-
son distribution, with means Q and I, respectively. In this
way the rates averaged Q and I over the 10 min, but within
those 10 min they are allowed to fluctuate substantially, as
one would perhaps expect in reality under a heavy workload.

For each of these 10-min experiments, we measure the
average elapsed time between the time the server receives
the query, and the time the server totally determines the re-
sult set. The result is not transmitted to the client, so that
network costs are not a factor in the results. If queries and
inserts back up and the server is not able to recover substan-
tially during the 10 min of the experiment, the server is said
to have failed the experiment.

For a comparison, we perform the same experiments on
our B+-Tree implementation. For simplicity, we do not im-
plement a concurrency control mechanism in the B+-Tree.
This eliminates the possibility of implementation bias, and
yields “idealized” B+-Tree performance. Reads and writes
are allowed to occur simultaneously without locking. To
avoid creating an inconsistent B+-Tree, leaf pages are never
modified due to insertions. To simulate update costs, how-
ever, leaf pages that should be updated are read into mem-
ory, and then written out unchanged. Thus, the tree is never
updated and conflicts never occur, but most of the costs as-
sociated with updates are measured.

The results of these experiments are shown in Fig. 15.
This Figure depicts the mean query latency for each of the
10 min experiments. The results clearly indicate that while
T1SM occasionally encounters long-lived insertions (as de-
scribed in Sect. 5.5), its query latencies, even in an insert-
heavy environment, are very small overall. Moreover, T1SM
significantly outperforms the B+-Tree in each of the tests.
The reason that the cells in the two plots of Fig. 15 do not
darken monotonically as one moves up and to the right is
that each cell corresponds to a single, 10-min experiment,
and the distribution of queries and inserts is very bursty.
Thus, some variation is expected, since during one experi-
ment, the B+-Tree or T1SM may simply be very unlucky,
and encounter a really bad burst that it is unable to recover
from. Still, we believe that despite this variation, the plots
do clearly highlight the different characteristics of the two
schemes.

Fig. 15 Comparison of results for concurrent query/insert experiments
between TISM and the B+-Tree

5.7.4 Experiments: Effects of insertions on query latencies
on spatial data using T2SM

We also conduct tests similar to those described in the previ-
ous section on spatial data. In this case, we compare the per-
formance of the Taboose 2 Storage Manager (T2SM [18]), a
PE file customized for spatial data, with that of an R-Tree.
To perform this comparison, we consider the following two
datasets.

• The Cluster dataset. This synthetic dataset is gener-
ated as follows. One-hundred two-dimensional Gaussian
clusters are scattered randomly across a 20 by 20 field.
The standard deviation of each cluster along each dimen-
sion is 1. Individual data points are allotted to clusters
in a skewed manner, according to a Poisson distribution,
with a mean point count of 300,000. As a result, there are
a total of 30 million points in the dataset. Each tuple in
the dataset contains a search key and a pointer consum-
ing a total of 36 B. Thus, the structures are effectively
being tested as secondary indices, as in the previous sec-
tion. The total amount of data for this dataset is 1.08 GB.
A visualization of a small, random sample of this dataset
is shown in Fig. 16, left.

• The Random Walk dataset. This is another synthetically
generated dataset. One hundred particles are scattered
throughout an area 10,000 units wide. Each particle has
a certain amount of energy, distributed according to a
Poisson distribution, with a mean of 5. The particles are
tracked for 100,000 clock ticks, where at each clock tick
the particle moves in a random direction. The distance
travelled per tick is governed by a Poisson distribution,
with a mean distance equivalent to the particle’s energy.
There are thus 10 million total tuples. Each tuple has
120B of information about a particle’s position and mo-
tion at a given instant. Tuples are organized by position.
The total size of the dataset is 1.2 GB. It is visualized
shown in Fig. 16, right. Clearly, the spatial distribution
of data is very skewed.

As in Sect. 5.7.3, the goal of these experiments is to test
the effect of heavy insertion loads on concurrent query pro-
cessing. To do this, we use a very similar setup to the one

432

The partitioned exponential file for database storage management

Fig. 16 A visualization of a subset of the Cluster (left) and Random
Walk (right)

used in Sect. 5.7.3; one PC is used as a T2SM server, and
another PC generates a stream of insertions and queries to
be processed by the server.

For both datasets, queries are issued concurrently with
various insertion loads, just as in the last Section. Queries
are randomly produced, and uniformly scattered over the
dataspace. The size of the region queried in a given query
is produced by a normally distributed random variable, N,
with standard deviation of 0.0001. This absolute value of
this variable determines expected fraction of the database to
be returned by the query. For queries generated in this way,
the average result set is 2404 tuples (or 87 KB of data) for
the Cluster dataset, and 870 tuples (or 104 KB of data) for
the Random Walk dataset. The aspect ratio of the queries is
generated as follows. A normally distributed random vari-
able N with standard deviation 1 is used to produce a num-
ber, n. If n is greater than 0, then the aspect ratio of the query
region is 1 + n. If n is less than 0, then the aspect ratio is set
to 1/(1 − n). Thus, the “average” query is a square, with
more rectangular queries becoming rarer as the degree of
“rectangularness” increased.

The R-Tree is fully packed using the STR algorithm [21]
to produce a high-quality organization that has minimal
problems with overlap and strangely shaped regions. As in
Sect. 5.7.3, we sidestep the problem of concurrency con-
trol in the R-Tree by not allowing insertions to actually
change the R-Tree organization; all they do is to cause disk
head movements. Thus, this R-Tree also demonstrate “ideal-
ized” concurrency control performance. It is worth mention-
ing that when using standard, incremental update techniques
like forced re-inserts, modern variations on the R-Tree struc-
ture can require more than 5 disk I/Os per insertion [11].
Thus, our test is simulation a very idealized case for the R-
Tree.

The results of our experiments are summarized in Fig. 17
for the Cluster and the Random Walk datasets. Again, the
absolute latencies experienced using T2SM are acceptable,
and significantly better compared to those of the R-Tree.

5.8 Summary of experimental results

It would be unreasonable to expect that any one of the data
organizations that we studied would be preferred for use in
every situation. The fact that 30 years of research has gone
into the development of database access methods (and that
the problem is still far from solved) testifies to the breadth

Fig. 17 Comparison of results for concurrent query/insert experiments
for T2SM and an R-tree on the Cluster A and Random walk B Datasets

and variety of the different requirements that can be placed
on a storage organization for even one-dimensional data, and
to the difficulty of finding a single, ultimate solution to the
problem.

With this in mind, we attempt to summarize in Table 2
the relative performance that we observed for each of the
data organizations tested during our benchmarking. For each
of several categories, we rank the various data organizations
from one to seven, and we also give a final, average ranking
for each. The rankings are necessarily somewhat arbitrary,
and do not tell the whole story. For example, a B+-Tree
would deserve to be ranked first for concurrent point queries
processed with a light insertion load, but would deserve to
be ranked last for point queries processed concurrently with
a heavy insertion load; we gave it a ranking of three overall
in this category. The ranking can also mask significant gaps
in relative performance. For example, there is a large gap in
medium range query performance between T1SM and the
LSM-Tree on one hand and the SMM on the other; how-
ever, the former occupy the top two slots and SMM is ranked
third. Finally, many other issues would be important to fully
explore, but are beyond the scope of the paper in general
and the rankings in particular. For example, what is the ef-
fect of record size on the different organizations? The ef-
fect might be significant, as fewer (or more) records fit on a
page. We considered variable record sizes in Sects. 5.7.3 and
5.7.4, but not in a systematic fashion. Other factors we did

433

C. Jermaine et al.

Table 2 Summary of results

T1SM SMM LSM NoClus BTree YTree BufTree

Raw insertion speed 3 2 5 1 7 6 3
Insertion latency 5 4 5 1 2 3 7
Point query evaluation 2 6 3 3 1 5 7
Range query evaluation 1 3 1 7 6 4 5
Point queries + inserts 1 5 3 1 3 6 7
Range queries + inserts 1 3 1 7 6 4 4
Avg ranking 2.16 3.83 2.83 3.33 4.16 4.66 5.5

not systematically consider include maintaining secondary
indexes, and using different organizations as a secondary
index.

Thus, we include the rankings with some reluctance. But
despite these issues, we believe that Table 2 provides the
most succinct summary of the different strengths and weak-
nesses of the organizations we tested. Based on our experi-
ments, T1SM showed good to excellent performance in each
of the categories considered.

6 Related work

Indexing has been studied for decades in the database com-
munity, and hence there are literally thousands of papers
related to the work described in this paper. At the highest
level, most indexing and data organization schemes rely ei-
ther on randomization (as in hashing) or on linearization,
where “similar” data are mapped to the same page on disk
(as in the B+-Tree).

Broadly speaking, methods relying on randomization
are dominated by those based on various hashing methods.
Widely cited examples of hashing are linear hashing [22]
and extendible hashing [10], and the various external hash-
ing schemes described by Knuth [20]. We have not consid-
ered hashing in this paper, because the goal of this work is
the development of methods for drastically reducing disk
seeks in an insert or update heavy environment with con-
current, analytic queries. Hashing is usually not useful for
reducing random seeks. Randomization generally destroys
locality, and hence range queries over a hashed file can re-
quire more than one seek for each record returned (this is
debilitating for large queries). To overcome this problem,
hashing could be performed using the most significant bits in
the search key (for example, using extendible hashing), but
such a data organization would still require one seek per data
insertion. Hashing is clearly very useful in many situations,
but probably not in the environments that we consider.

On the other hand, methods relying on linearization map
similar key values into the same disk block in order to re-
duce random I/Os during query processing, and are there-
fore more relevant to our work. Classic examples of such
organizations are the B+-Tree [8] and its close cousin, the
R-Tree [14]. The PE file also falls into this category. These
data organizations are typically more useful for answering
analytic or range queries, because similar records are written

to the same page. This organization of records into pages re-
duces seeks during query evaluation, because only one seek
is required to retrieve all of the records on a page, which may
all be needed to answer a given range query.

Although all of the data organizations falling into this
category are somewhat related to the PE file, a primary goal
of the PE file is keeping pages clustered intelligently on disk,
so that all of the pages needed to answer a query can be
read in a single, sequential scan. This difficult issue has been
studied before in the context of linear data organizations.
Examples include the Lomet’s bounded disorder file [23],
and O’Neil’s SB-Tree [28]. The bounded disorder file orga-
nization partitions the data space into large ranges of key val-
ues that can be stored contiguously on disk, with each range
is organized as a hashed file. The SB-Tree can be seen as
a precursor to the LSM-Tree [29] (also partially developed
by O’Neil), in that the SB-Tree maintains multi-page runs
of blocks for sequential operations over the data. For spatial
data, a related idea was explored by Seeger et al. [34]. More
recently, Tao and Papadias [35] have considered a B+-Tree
variant that allows multi-page blocks, where the size of the
blocks are chosen based on previous query characteristics.
These multi-page blocks can be stored contiguously on disk,
though Tao and Papadias did not consider the lower-level
issues that arise when varying-sized runs of pages must be
managed on disk (such as fragmentation). Broadly speaking,
also related are methods for performing monolithic reorga-
nizations of data on disk. If blocks are not kept clustered in a
dynamic manner, they can be reorganized during a dedicated
reorganization period [31, 37].

None of the above methods address the problem that
each database update can still require one or more random
seeks. Avoiding such random seeks during update process-
ing was a primary goal in the design of the PE file. Several
other structures have been proposed that can be used to re-
duce the cost per update to a fraction of a seek in a linear
data organization. Many of these structures have been de-
scribed and benchmarked in Sect. 5. Those specifically con-
sidered in Sect. 5 are the Y-Tree [17], the LSM Tree [29],
the Buffer Tree [3], and the Stepped Merge Method [16].
Some variations on the ideas benchmarked in Sect. 5 for use
with different types of data exist in the literature. Van den
Bercken et al. [6] and Arge et al. [4] both describe varia-
tions on the Buffer Tree for spatial data. Muth et al. [25]
describe a variation on the LSM-Tree for use with temporal
data. In the introduction of the paper, we mentioned some

434

The partitioned exponential file for database storage management

early variations on the idea of an exponential/logarithmic
file that allow very fast updates/insertions [30]. This idea has
also been extended to data structures for other data, such as
multidimensional data [2].

Finally, we mention the work from the operating systems
community on log-structured file systems [26, 33]. In this
work, the idea is to speed writes and reduce seeks by treat-
ing the file system as a log, and always appending writes or
updates to the files in the file system to the end of the log.
Log-structured file systems are not closely related to the is-
sues discussed in this paper, since they are meant to speed
updates in a general-purpose file system, not in a DBMS
where information about data semantics and query patterns
must also be considered. However, the idea of organizing
data as a log in a DBMS in order to speed the processing
of update-heavy workloads has been considered previously,
and forms the basis for the LSM-Tree, for example.

7 Conclusions and future work

In this paper, we presented the PE file organization. The PE
file is a generic template for data organization that is suit-
able for use with many different types of data (for example,
data organized on a single numerical attribute, or spatial or
temporal data). The PE file is designed specifically for use
in an environment that is insertion or update intensive, but
where queries (especially over large ranges of key values)
must be processed concurrently. This situation is common
in modern data recording environments where updates must
be installed and available immediately.

A key design principle of the PE file is that it uses disk
seeks only sparingly, since their cost is increasing expo-
nentially over time, with respect to storage capacity and
scan rate. The goal of minimizing seeks, especially ran-
dom seeks, naturally results in the linearization of on-disk
data structures, which is done with exponential file data
organizations [5, 30]. The problem with such data organi-
zations is that, unlike traditional, page-based organizations
(like the B+-Tree), the cost of query processing is a func-
tion of database size. We solve this problem by partitioning
the dataset, thereby bounding query processing cost.

We experimentally demonstrated that the performance
of the PE file performing point queries is very competitive
with that of page-based data organizations, which are
expressly designed for such workloads. We also experi-
mentally demonstrated that the PE file performing larger
range queries is very competitive with exponential data
organizations, which are optimized for such workloads.
Overall, the PE File is competitive over a wide range of
workloads when compared to data organizations optimized
for those workloads. The continued evolution of hard disk
technology should make such performance advantages
clearer in the future.

The most obvious avenue for future work is an extension
of the PE file for a multi-disk environment, as one would
naturally expect to find in the type of large-scale storage

application that the PE file is designed for. The most signifi-
cant question that must be addressed when extending the PE
file to a multi-disk environment is how to handle the natural
seek versus sequential transfer trade-offs that become even
more difficult to address across multiple disks. For exam-
ple, for large updates and data objects where the sequential
transfer time dominates, it makes sense to stripe the PE file
partitions across many disks, to make use of parallel I/O.
However, for smaller data objects and updates, the PE file
partitions should be kept on only one or perhaps a few disks,
in order to conserve seeks (because each disk holding part
of a data object must use a seek to perform an update). In
addition, a PE file could be striped horizontally or verti-
cally across disks, or the PE file could make use of both op-
tions simultaneously. Because of the careful way in which
the PE file manages seeks and sequential I/O, the PE file
offers an exciting opportunity to develop efficient and adap-
tive schemes for managing data in a multi-disk environment.
This is an exciting avenue for future research.

Appendix A: Analytically expected insertion speed

We assume a uniform pattern of insertions in our analysis. (Uniform
insertion is often the most difficult case for an indexing scheme to
deal with because buffering becomes less effective.) We wish to build
a database SDB bytes in size, with an available insertion-processing
buffer memory of SDB/1,000, and a partition size of Spart.

In a PE file under these conditions, the number of disk seeks per-
formed is two for every Spart/1000 bytes of inserted data (because this
is the size of L1 for each partition, assuming buffer memory is evenly
distributed among them). Whenever the L1 buffer pool is empty, we
must merge/pack L1 from some partition with one or more of that par-
tition’s upper levels. Each merge/pack requires two seeks: one to read,
and one to write the appropriate levels. Note that this is independent of
record size.

Now, let us compare this against a standard, hierarchical structure,
like a B+-Tree or R-Tree. For such a structure, we could buffer leaf
nodes in main memory, but this would be essentially useless because
the probability that a single insertion falls into a buffered leaf page is
very small (1/1000, under our assumption of uniform insertion). In-
stead, it would make sense to pin in memory as many of the upper
levels in the tree as possible. Assuming all internal levels are pinned,
there would be two seeks for each insertion: one to read the leaf and
one to write it.

What about the total amount of data read/written to build a PE
file? As we indicated above, each time some partition’s L1 is full, a
merge/pack for that partition is required. This means that there are
(SDB × 1000)/Spart merge/pack operations performed to build the
database, each of which has a cost of:

2 ×
M∑

l=1
(Fl/2) × (1/F (l−1)) × (Spart/1000)

= 2 ×
M∑

l=1
(F/2) × (Spart/1000) = M×F×Spart

1000

The intuition here is that on average, a partition level is 1/2 full. Each
level has an exponentially decreasing probability of being merged into
(because only one out of F merges into Li cause a merge into Li +1) but
an exponentially increasing cost for being merged into (due to expo-
nentially increasing size). These two exponents cancel one another out.
The two is included in the expression because we must both read and
write to merge/pack. To complete the above expression, we must ask:
given the number of disk-based partition levels M, what is the multi-
plicative factor F? This is easily computed using the fact that FM =

435

C. Jermaine et al.

Fig. 18 Insertion costs for PE and hierarchical files

1000. This is because the size of a partition is 1000 times the size of
L1 For example, if M is 3, then L2 is ∼31 times as large as L1, and
L3 is ∼31 times as large as L2, or 1000 times as large as L1. Solving
for F and substituting into the above expression gives us the read/write
cost per merge. Because there are SDB × 1000/Spart merge/pack oper-
ations performed in total, the total number of bytes read/written is then
approximately M×F×SDB bytes read and written, in total.

We also consider the number of bytes read/written for a hierar-
chical structure per insert. Again, ignoring page splits and assuming
the upper levels of the tree are pinned, we must read/write a leaf node
for each insert. With a record size Srec and a page size Spage, the total
number of bytes read/written is (SDB/Srec) × Spage × 2.

In the final analysis, seek costs in a hierarchical file are possibly
debilitating when processing a large number of insertions. We evaluate
the above expressions for a 60 GB DB to be stored on a single disk,
for both the hierarchical structure and the PE file, assuming 60 MB of
memory for buffers, a partition size of 30 MB (with M = 3) for the PE
file, and a 8 KB page size for the hierarchical file. We assume sequen-
tial read and write rates of 20 MB/s and a seek time of 10 ms. Records
are 128B each, for a total of 383 million records. The results of the
evaluation are shown above in Fig. 18. The most striking result is the
huge time requirement for the seeks in the hierarchical file. Assuming
two seeks per insertion (which is conservative, especially for spatial
indices; one modern method requires on the order of five per insert to
build a small database [11]) this works out to more than 3 months of
time required to perform disk arm movements. Note that in both cases,
time required for sequential I/O is negligible when compared to a hier-
archical file’s seek cost.

Appendix B: PE file concurrency control and recovery
(CC&R)

In this Appendix, we briefly outline CC&R for the PE file.

Appendix B1: Concurrency control

The PE file relies heavily on a shadow paging method for CC&R.
Whenever a partition needs to be written in its entirety (that is, when
there has been a flush into the highest level of the structure, or during
the type of reorganization described in Sect. 3.4), the new version of
the partition is always written to a new, empty location on disk. Be-
cause of this, queries can be processed concurrently on the old version,
while the new version is being constructed and written.

For simplicity, we only discuss single-insertion transactions. Mul-
tiple insertion transactions will likely require more complicated tech-
niques, or higher level locking of the entire structure.

At the highest level, when a new insert is to be processed, the inser-
tion thread first obtains a write lock on the global, in memory structures
depicted in Fig. 4. Then, there are three cases:

• Most frequently, the insertion is simply written to an available
main memory buffer page (which is done entirely in memory) and
the lock is released almost instantaneously.

• Less frequently, a merge from a lower partition level to a higher
level is required to free up the partition’s main memory buffer
pages. In this case, the partition which is to be merged and packed
returns its main memory buffer pages to the L1 buffer pool, and the

global structures of Fig. 3 are unlocked. Then, a merge/pack with
the contents of the partition and its main memory buffer pages are
performed. The partition to be operated on is locked to exclude
reads and writes over it during the merge/pack.

• In the relatively rare case that one or more partitions must be writ-
ten in their entirety to process the insertion, a boolean flag called
ReorgFlag is set to true, and the partitions which are to be re-
organized are locked to block subsequent insertions into them.
The flag ReorgFlag signifies that a reorganization is in progress.
Subsequent insertions into other, non-locked partitions may pro-
ceed, but they are not allowed to trigger another reorganization
while the current one is in progress. Then, each partition to be
merged/packed and re-written is processed in turn. Because of the
shadow paging method which is used, queries may still read the
shadow copy of a partition, even as a new version of it is under
construction. After the partition has been merged/packed and writ-
ten to its new position, the global structures are updated to indicate
this change, and the shadow copy of the partition is freed.

Appendix B2: Recovery

Recovery is facilitated through the use of logical logging. To facilitate
fast logging, batches of transactions should be committed simultane-
ously in a group commit (which would allow only a fraction of an I/O
to be used per insertion).

Obviously, checkpointing must be performed periodically to avoid
arbitrary growth in the size of the log. To perform a checkpoint, we
copy the contents of all but the highest level of all partitions to a sep-
arate location on disk. This checkpoint is not too costly, because the
total size of the lower levels of partition is only a small fraction of its
overall size.

In the case of a failure, we have two cases for each partition: either
we were physically writing that partition at the time of the failure, or
we were not. We now describe the actions required for recovery in each
case.

• If we were not writing a given partition at the time of the failure,
then we need to reconstruct that partition’s L1 (its main memory
level), by replaying all updates to that partition from the log, be-
ginning with the last time that a flush from L1 to L2 happened, for
that partition.

• If we were writing that partition at the time of the failure, there are
two subcases. If we were writing the partition in its entirety, then
we simply go back to the shadow copy of the partition, and then
reconstruct L1 for that partition, using the recent entries from the
log. If instead we were performing a merge into one of the lower
levels of the partition, then we have the most costly situation. Here,
we must redo all of the updates to the partition, beginning with the
last time it was written out in its entirety. If it was not written out in
its entirety since the last checkpoint, then we take its lower levels
from the last checkpoint as a starting point, and redo all of the
updates to it from the log.

Note that, using this recovery scheme, we never need to replay
changes to a partition that occurred before the last time the partition
was written in its entirety. This has the effect of truncating the length
of the log naturally, and might be used to speed checkpointing.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sort-
ing and related problems. Communications of the ACM 31, 1116–
1127 (1988)

2. Agarwal, P.K., Arge, L., Procopiuc, O., Vitter, J.S.: A framework
for index bulk loading and dynamization. In: Proceedings of the
28th International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2001) pp. 115–127. Crete, Greece (2001)

436

The partitioned exponential file for database storage management

3. Arge, L.: The buffer tree: A new technique for optimal I/O-
algorithms (extended abstract). In: Algorithms and Data Struc-
tures, 4th International Workshop (WADS 1995) pp. 334–345.
Kingston, Ontario, Canada (1995)

4. Arge, L., Hinrichs, K., Vahrenhold, J., Vitter, J.S.: Efficient bulk
operations on dynamic R-trees. Algorithm Engineering and Ex-
perimentation, International Workshop (ALE-NEX 1999), Balti-
more, MD, USA. January 15–16, pp. 328–348 (1999)

5. Bentley, J.L.: Decomposable searching problems. Information
Processing Letters 8(5), 244–251 (1979)

6. Bercken, Jochen Van den, Seeger, B., Widmayer, P.: A generic
approach to bulk loading multidimensional index structures. In:
Proceedings of 23rd International Conference on Very Large Data
Bases (VLDB 1997) pp. 406–415. Athens, Greece, (1997)

7. Chen, P.M., Lee, E.L., Gibson, G.A., Katz, R.H., Patterson, D.A.:
RAID: High-performance, reliable secondary storage. ACM Com-
puting Surveys 26(2), 145–185 (1994)

8. Comer, D.: The ubiquitous B-Tree. ACM Computing Surveys
11(2), 121–137 (1979)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algo-
rithms, MIT Press, Massachusetts (1992)

10. Fagin, R., Nievergelt, J., Pippenger, N., Strong, H.R.: Extendible
hashing—A fast access method for dynamic files. ACM Transac-
tions on Database Systems 4(3), 315–344 (1979)

11. Garcia, Y.J., Lopez, M.A., Leutenegger, S.T.: On optimal node
splitting for R-trees. In: Proceedings of the 24th International Con-
ference on Very Large Data Bases (VLDB 1998) pp. 334–344.
New York City, New York, USA (1998)

12. Gray, J., Shenoy, P.J.: Rules of thumb in data engineering. In: Pro-
ceedings of the 16th International Conference on Data Engineer-
ing (ICDE 2000) pp. 3–12. vol. 3 San Diego, CA, USA.

13. Growchowski, E.G.: Emerging Trends in Data Storage on Mag-
netic Hard Disk Drives. Datatech (1998)

14. Guttman, A.: R-Trees: A dynamic index structure for spatial
searching. In: Proceedings of 1984 SIGMOD Conference (SIG-
MOD 1984) pp. 47–57. Boston, Massachusetts (1984)

15. Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search
trees for database systems. In: Proceedings of 21th International
Conference on Very Large Data Bases (VLDB’95) pp. 562–573,
Zurich, Switzerland (1995)

16. Jagadish, H.V., Narayan, P.P.S., Seshadri, S., Sudarshan, S., Kan-
neganti, R.: Incremental organization for data recording and
warehousing. In: Proceedings of 23rd International Conference
on Very Large Data Bases (VLDB 1997) pp. 16–25. Athens,
Greece (1997)

17. Jermaine, C., Datta, A., Omiecinski, E.: A novel index supporting
high volume data warehouse insertion. In: Proceedings of 25th In-
ternational Conference on Very Large Data Bases (VLDB 1999)
pp. 235–246. Edinburgh, Scotland, UK (1999)

18. Jermaine, C., Omiecinski, E., Yee, W.G.: Maintaining a Large
Spatial Index with T2SM. In: Proceedings of the Ninth
ACM International Symposium on Advances in Geographic
Information Systems (ACM-GIS 2001). Atlanta, GA, USA.
(2001)

19. Kamel, I., Faloutss, C.: Hilbert R-tree: An improved R-tree us-
ing fractals. In: Proceedings of the 20th International Conference
on Very Large Data Bases pp. 500–509. Santiago de Chile, Chile
(VLDB 1994) (1994)

20. Knuth, D.E.: The art of computer programming, Vol. III: Sorting
and Searching. Addison-Wesley, Reading, MA (1973)

21. Leutenegger, S.T., Edgington, J.M., Lopez, M.A.: STR: A simple
and efficient algorithm for R-tree packing. In: Proceedings of the
Thirteenth International Conference on Data Engineering (ICDE
1997) pp. 497–506. Birmingham, UK (1997)

22. Litwin, W., Hashing, L.: A new tool for file and table address-
ing. In: Proceedings of the Sixth International Conference on
Very Large Data Bases pp. 212–223. Montreal, Quebec, Canada
(VLDB 1980) (1980)

23. Lomet, D.B.: a simple bounded disorder file organization with
good performance. ACM Transactions on Database Systems
13(4), 525–551 (1988)

24. Lomet, D., Salzberg, B.: Access methods for multiversion data. In:
Proceedings of the 1989 ACM SIGMOD Conference on the Man-
agement of Data (SIGMOD 1989) pp. 315–323. Portland, Oregon,
(1989)

25. Muth, P., O’Neil, P.E., Pick, A., Weikum, G.: Design, implemen-
tation, and performance of the lham log-structured history data
access method. In: Proceedings of 24rd International Conference
on Very Large Data Bases (VLDB 1998) pp. 452–463. New York
City, New York, USA (1998)

26. Neefe, J.M., Roselli, D.S., Costello, A.M., Wang, R.Y., Ander-
son, T.E.: Improving the performance of log-structured file sys-
tems with adaptive methods. In: Proceedings of the Sixteenth
ACM Symposium on Operating System Principles (SOSP 1997)
pp. 238–251. St Malo, France (1997)

27. O’Neil, J.E., O’Neil, P.E., Weikum, G.: The LRU-K page replace-
ment algorithm for database disk buffering. In: Proceedings of the
1993 ACM SIGMOD International Conference on Management
of Data (SIGMOD 1993) pp. 297–306. Washington, DC (1993)

28. O’Neil, P.E.: The SB-tree: An index-sequential structure for high-
performance sequential access. Acta Informatica 29(3), 241–265
(1992)

29. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The Log-
Structured Merge-Tree (LSM-Tree). Acta Informatica 33(4), 351–
385 (1996)

30. Overmars, M.H.: The design of dynamic data structures. Springer-
Verlag, LNCS p. 156 (1983)

31. Park, J.S., Sridhar, V.: Probabilistic model and optimal reorgani-
zation of B+-Tree with physical clustering. IEEE Transactions on
Knowledge and Data Engineering 9(5), 826–832 (1997)

32. Pollari-Malmi, K., Soisalon-Soininen, E., Ylönen, T.: Concur-
rency control in B-Trees with batch updates. IEEE Transactions
on Knowledge and Data Engineering 8(6), 975–984 (1996)

33. Rosenblum, M., Ousterhout, J.K.: The design and Implementation
of a log-structured file system. ACM Transactions on Computer
Systems 10(1), 26–52 (1992)

34. Seeger, B., Kriegel, H.-P.: The Buddy-Tree: an efficient and robust
access method for spatial data base systems. In: Proceedings of the
16th International Conference on Very Large Data Bases (VLDB
1990) pp. 590–601. Brisbane, Queensland, Australia (1990)

35. Tao, Y., Papadias, D.: Adaptive Index Structures. In: Proceed-
ings of 28th International Conference on Very Large Data Bases
(VLDB 2002) pp. 418–429. Hong Kong, China (2002)

36. Tyson, A., The LSST Collaboration: Large synoptic survey tele-
scope: Overview. In: Proceeedings of SPIE; International Society
of Optical Engineering 4836, pp. 10–20 (2002)

37. Zou, C., Salzberg, B.: On-line reorganization of sparsely-
populated B+trees. In: Proceedings of the 1996 ACM S1GMOD
International Conference on Management of Data (SIGMOD
1996) pp. 115–124. Montreal, Quebec, Canada (1996)

437

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

