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Abstract The notorious “dimensionality curse” is a well-
known phenomenon for any multi-dimensional indexes at-
tempting to scale up to high dimensions. One well-known
approach to overcome degradation in performance with re-
spect to increasing dimensions is to reduce the dimension-
ality of the original dataset before constructing the index.
However, identifying the correlation among the dimensions
and effectively reducing them are challenging tasks. In this
paper, we present an adaptive Multi-level Mahalanobis-
based Dimensionality Reduction (MMDR) technique for
high-dimensional indexing. Our MMDR technique has four
notable features compared to existing methods. First, it dis-
covers elliptical clusters for more effective dimensional-
ity reduction by using only the low-dimensional subspaces.
Second, data points in the different axis systems are indexed
using a single B+-tree. Third, our technique is highly scal-
able in terms of data size and dimension. Finally, it is also
dynamic and adaptive to insertions. An extensive perfor-
mance study was conducted using both real and synthetic
datasets, and the results show that our technique not only
achieves higher precision, but also enables queries to be pro-
cessed efficiently.

Keywords High-dimensional indexing · Dimensionality
reduction · Correlated clustering · Subspace · Projection

1 Introduction

Many database applications, such as multimedia retrieval,
exploratory data analysis, market basket application and
timeseries matching, involve high-dimensional data. In-
dexing high-dimensional data has been an area of active
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research for a long time and many indexing techniques have
been proposed [1]. However, the performance of these in-
dexes degrades rapidly with increasing dimensionality [2].

One approach to minimize the effect of this “dimension-
ality curse” is to reduce the number of dimensions of the
high-dimensional data before indexing it [3, 4]. The data is
first transformed into a much lower-dimensional space using
dimensionality reduction methods and then an index is built
on it.

Transforming data from a high-dimensional space to a
lower-dimensional space without losing critical information
is not a trivial task. In this paper, we propose a dimension-
ality reduction technique called Multi-level Mahalanobis-
based Dimensionality Reduction (MMDR) for indexing
based on the following two observations. First, elliptical-
shaped (correlated) clusters are more suitable for dimen-
sionality reduction than spherical-shaped clusters. Second,
we observe that certain levels of the lower-dimensional sub-
spaces may contain sufficient information for correlated
cluster discovery in high-dimensional space. In MMDR,
Principal Component Analysis (PCA) [5] is employed to
find the lower dimensions for dimension reduction. Most of
the information in the original space can be condensed into a
few dimensions along which the variances in the data distri-
bution are the largest. We make use of Mahalanobis distance
(MahaDist) in our approach instead of the standard L-norm
distance functions.

Mahalanobis distance could be applied to find ellipsoidal
correlated data, by taking local elongation into account. In-
stead of equally treating all values, MahaDist weights the
differences by the range of variability in the dimension of
the data points. It weights the variation along the axis of
elongation less than that in the shorter axis of the ellipse.
It can be shown that the surfaces on which MahaDist is a
constant are ellipses.

Euclidean distance-based clustering algorithms are not
meant to discover elliptical shape, since the clusters identi-
fied are circular in shape. Figure 1 illustrates two clusters,
one obtained using Euclidean distance and the other ob-
tained by Mahalanobis distance. Point A is a valid point and



220 H. T. Shen et al.

Fig. 1 Mahalanobis vs. Euclidean

Point B is a noise in the cluster of the circle if Euclidean dis-
tance is employed. However, in terms of Mahalanobis mea-
surements, Point B has a substantially smaller distance to
the centroid than Point A, since it lies along the direction
of the group that has the largest variance. Thus, Point A is
a noise, while Point B is valid. Therefore, while Euclidean
distance-based algorithms produce circular subsets as shown
in Fig. 1, Mahalanobis distance-based algorithms produce
elliptical clusters where data points are well correlated and
more natural for dimensionality reduction, as dimensions
with large variances of data are kept and dimensions with
small variances of data are eliminated.

Based on multi-level low-dimensional projections pro-
duced by PCA and the Mahalanobis distance function,
MMDR can quickly identify highly correlated elliptical
clusters. After dimensionality reduction, each cluster of data
is in a different axis system. Instead of creating one in-
dex for each cluster, we build one index for all the clus-
ters for K nearest neighbor (KNN) queries. We extend a
recently proposed B+-tree-based index – iDistance [1, 6],
to index the data projections from the different reduced-
dimensionality spaces. The extended iDistance allows us to
index data points from different axis systems in a single in-
dex efficiently. Performance studies using real and synthetic
datasets were conducted to evaluate the effectiveness and
precision of the technique. The results show significant per-
formance gain over an existing method [4]. Experiments on
datasets with very high dimensionality (up to 200 dimen-
sions) and datasets with dynamic insertions show that the
proposed method is scalable in terms of both size and di-
mensionality, and is able to adapt to dynamic insertions.

A preliminary version of this paper appeared in [7].
There we stressed the algorithm of MMDR. Here in this pa-
per, we extended the work in several ways. First, we present
the more detailed algorithm of Scalable MMDR. Second,
and more importantly, we introduce the algorithm of dy-
namic MMDR to handle dynamic updating. Third, more ex-
perimental results are reported by using much larger real-life
datasets. Fourth, two more traditional dimensionality reduc-

tion methods and two more index accessing methods are also
investigated and compared. Fifth, the effect of dynamic in-
sertion and noise is also reported in the experiment.

The rest of the paper is organized as follows. In Sect.
2, we present some related works. In Sect. 3, we provide
the definitions for using PCA and Mahalanobis distance in
dimensionality reduction. We present our MMDR algorithm
and its variant in Sect. 4. In Sect. 5, we propose the extended
iDistance for indexing data points in reduced-dimensionality
spaces and for handling dynamic insertions. Experiments are
presented in Sect. 6 and conclusion is drawn in Sect. 7.

2 Related work

In dimensionality reduction for indexing, [4] proposed two
strategies. In the first strategy, called Global Dimensionality
Reduction (GDR), all the data as a whole is reduced down to
a suitable dimension on which search time and access costs
are optimized. This strategy is unable to handle datasets
that are not globally correlated. The other strategy, called
Local Dimensionality Reduction (LDR), divides the whole
dataset into separate clusters on the basis of the correlation
of the data, and then indexes each cluster separately. Un-
fortunately, LDR is not able to detect all correlated clusters
effectively because it does not consider correlation or depen-
dency between dimensions. After performing dimension-
ality reduction on each cluster, a much lower-dimensional
subspace corresponding to each cluster is generated, and
each subspace is in different axis system. To index the re-
duced subspaces, a Global indexing structure [4] was in-
troduced, which consists of separate high-dimensional in-
dices for every subspace. All these indices are connected
to a single root node, which serves the purpose of a global
directory.

High-dimensional structures have been the focus of ex-
tensive research [8]. Recent proposals can be categorized
into the following two approaches: data approximation and
data transformation. The technique of representing of the
original data points using smaller and approximate represen-
tations is referred as data approximation. The VA-File [9]
is one of typical proposals. The VA-File (Vector Approx-
imation file) represents the original data points by much
smaller vectors in form of bit sequences. The main draw-
back of the VA-File, however, is that it defaults in assessing
the full distance between the approximate vectors, which im-
poses a significant overhead, especially if the underlying di-
mensionality is very large. Moreover, the VA-File does not
adapt gracefully to highly skewed data. Data transforma-
tions provide another direction for high-dimensional index-
ing. Such techniques include the Pyramid technique [10],
iDistance [6], etc. The Pyramid technique [10] divides the
D-dimensional data space into two-dimensional pyramids
and then cuts each pyramid into slices each of which forms
a data page. It provides a mapping from D-dimensional
space to single-dimensional space. iDistance [6] transforms
a high-dimensional point into a single-dimensional distance
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value with reference to its corresponding reference point.
They suffer, however, from the fact that the search involves
comparing distances between the full high-dimensional rep-
resentation of the data points; thus, pruning during search
becomes problematic as the dimensionality increases.

Clustering algorithms have been studied recently in the
domain of data mining and pattern discrimination. Methods
proposed for high-dimensional data clustering are related to
our work. PROCLUS [11] clusters data according to the cor-
relation among the data along certain original dimensions.
OptGrid [12] finds clusters in a high-dimensional space by
projecting data onto each axis and partitioning the data by
using cutting planes at low-density points. Techniques based
on the wavelet transform [13] and discrete cosine trans-
form [14] rely on the partitioning of data space into grids
similar to OptGrid. Wavelet transform [13] and discrete co-
sine transform [14] based techniques rely on the partitioning
of the data space into grids similar to OptGrid. These ap-
proaches do not work well when well-separated clusters in
actual space overlap after they are projected onto a certain
axis.

Ref. [15] presents various results of qualitative behav-
iors of L-norm distance matrices for measuring proximity in
high-dimensional spaces, and examines the meaningfulness
of similarity in such spaces. The study shows that cluster-
ing quality and answer sets vary from one distance metric to
another. In this paper, we examine a different distance func-
tion, the Mahalanobis function [16], to explore the local in-
trinsic cluster shape for elliptical clusters discovery (which
cannot be detected by L-norm functions). Mahalanobis dis-
tance has been used in face detection to discover actual non-
isotropic face patterns among thousands of face images us-
ing a k-means like algorithm called the elliptical k-means
method [17]. It is a nested loop algorithm, where the inner
loop performs k-means using Mahalanobis distance and the
outer loop re-computes the covariance matrix of each clus-
ter. Both loops stop when there is no change to the cluster
membership.

3 Definitions

In this section, we provide the basic definitions.

Definition 1 (Ellipticity)
Ellipticity(e) is the deviation of an ellipse or an ellipsoid

from the form of a circle or a sphere, which is the ratio of
the difference of the two sub-axes to the minor axis:

e = b − a

a

where b is the radius along the major axis and a is the radius
along the minor axis, as shown in Fig. 2.

Assume all the points are clustered inside the ellipse. To
reduce the dimensionality, all the points are projected onto

a

b

Minor/2nd PC

Major/1st PC

Fig. 2 Illustration of ellipticity

the major axes. Thus, the minor axes can be eliminated. Ob-
viously, the larger the e is, the more effective dimensional-
ity reduction can be obtained. When e = 0, the data points
form a circle, and the dimensionality reduction technique be-
comes ineffective.

Definition 2 (Mahalanobis distance)
The covariance of data in two feature spaces mea-

sures their tendency to vary together. In a multi-dimensional
space, the variance measures the relative ‘radius’ of a clus-
ter along each dimension, and the covariance indicates the
orientation of the cluster. Both the variance and the covari-
ance co-determine the shape of the cluster. Collecting them
together, we get the covariance matrix C. Now let us look at
the distance function called Mahalanobis distance by using
the inverse of covariance matrix.

Given a cluster centered at O , the Mahalanobis distance
between a point P and O is given as follows:

MahaDist(P, O) = (P − O)T C−1(P − O)

where C is the covariance matrix describing the cluster’s
shape.

From the Mahalanobis distance, we get a normalized
measure: Normalized Mahalanobis distance.

MahaDistn(P, O) = 1

2
(d ln(2�· | C |)

+ (P − O)T C−1(P − O))

where d is the dimensionality, � is the trigonometric
number 3.14 and | C | is the determinant of C. Notice
that given a spatial displacement between a point and an
ellipsoid, the standard Mahalanobis distance tends to be
smaller for long clusters with large covariance matrices than
for small clusters. With standard Mahalanobis distance, the
larger cluster will keep increasing in size, and eventually
overwhelm the smaller clusters. Normalized Mahalanobis
distance avoids such situations [17].



222 H. T. Shen et al.

......

Projection distance to 
eleminated subspace

Projection distance to 
eleminated subspace

......
......

............
......

............ ......
............

......

......
............

......
......

......

............... . ..
......

......
...............

. . ..
......... ...............

... ...

Fig. 3 Two projection distances

Definition 3 (Multi-level projections)
PCA [5] examines the variance structure in the dataset

and determines the directions along which the data exhibits
high variance. The first principal component is the eigenvec-
tor corresponding to the largest eigenvalue of the dataset’s
covariance matrix C, the second component corresponds to
the eigenvector with the second largest eigenvalue and so
on. It is interesting that the principal components in PCA
are just the eigenvectors of the covariance matrix in the Ma-
halanobis distance which describes the dataset’s shape. An
example is shown in Fig. 3, where the preserved dimension
is the first principal component, and the eliminated dimen-
sion is the second principal component. In dimensionality
reduction, given a point P in a dataset, there are two pro-
jections. One is the projection on the preserved subspace P ′
that we are interested in; the other is the projection on the
eliminated subspace P ′′. The dr -dimensional projection P ′

dr
can be defined as:

P ′
dr

= P · �dr

where �dr represents the matrix containing first to dr th prin-
cipal components. Changing dr with different values, we can
generate multi-level projections of the data for cluster dis-
covery purposes in the MMDR algorithm.

Definition 4 (Projection distance)
Continuing with the previous two projections, ProjDistr

measures the distance from P to P ′ and ProjDiste mea-
sures the distance from P to P ′′ on the eliminated subspace.
More specifically, ProjDistr is the information lost from
the original representation P to its reduced dr -dimensional
representation P ′. ProjDiste is the information retained. Fig-
ure 3 illustrates the two projection distances. In the follow-
ing paragraphs, ProjDist represents ProjDistr .

Based on the previous two projection distances, we ex-
tend the definition of ellipticity to multi-dimensional space
as:

e = Max(ProjDiste) − Max(ProjDistr )

Max(ProjDistr )

Table 1 Table of symbols and default values

Symbols Descriptions Value

N Data size
d Original dimensionality
dr Optimal dimensionality
s_dim Subspace dimensionality
e Ellipsoid’s ellipticity
r Mahalanobis radius
C Covariance matrix
ProjDistr Distance to remaining subspace
ProjDiste Distance to eliminated subspace
MPE Mean Projection Error
σ Outlier set
β ProjDistr Threshold 0.1
Max M P E Maximum MPE Allowed 0.05
EC Elliptical cluster
Max EC Maximum EC allowed 10
Max Dim Maximum remaining dimensions allowed 20
ε Data stream percentage 0.005
ξ Outlier percentage 0.005
k Num of IDs in lookup table 3

where Max(ProjDiste) is the radius along the remaining sub-
space, and Max(ProjDistr ) is the radius along the elim-
inated subspace. The cluster’s Mahalanobis radius r is
Max(ProjDistr ). For dimensionality reduction, the larger the
ellipticity value, the more effective dimensionality reduction
can be performed.

Definition 5 (Mean ProjDistr Error (MPE))
Mean ProjDistr Error is defined as the average represen-

tation error when points are mapped from the original space
to the eliminated subspace.

MPE =
∑N

i=1 ProjDistr (Pi , O)

N

This parameter indicates the average information lost af-
ter performing dimensionality reduction. It is used in our al-
gorithm to control the user-defined maximal error allowed.

Table 1 gives a summary of the symbols and their respec-
tive description with default values used in the experiments.

4 Multi-level Mahalanobis-based Dimensionality
Reduction

In this section, we present our MMDR algorithm, followed
by its cost analysis and optimization. Finally, one variation
of MMDR called Scalable MMDR is also introduced to han-
dle very large dataset.

4.1 MMDR algorithm

The MMDR algorithm, which is outlined in Fig. 4, consists
of two major steps, namely: Generate Ellipsoid and Dimen-
sionality Optimization.
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Fig. 4 MMDR algorithm

In Generate Ellipsoid, we recursively apply multi-level
projections from low- to high dimensionality until the ellip-
soids are all discovered. At each level, Mahalanobis distance
is applied to detect possible ellipsoids. Any unqualified el-
lipsoid is passed to Generate Ellipsoid with a higher sub-
space dimensionality so that more information can be used
for clustering. We adopt this divide-lower-before-conquer-
upper approach on the basis of the following observations.
First, in high-dimensional space, some dimensions may con-
tain little information, which may not be very helpful when it
comes to identifying cluster membership. Second, for well-
separated clusters in the subspace, their correspondences in
the higher-dimensional space are usually well separated be-
cause of the property of PCA. In our algorithm, MPE in-
dicates how much information is lost during the projection
process. It is used as the parameter to determine if the sub-
space projections carry enough information to reflect the
shape of their correspondence in the original space.

Generate Ellipsoid is invoked with a small subspace di-
mensionality – s_dim. In line 1 of Fig. 4 the low-dimensional
projections are produced from the original d-dimensional
space, followed by elliptical k-means clustering in this low-
dimensional subspace, line 2. The data are then partitioned
into semi-ellipsoids at s_dim-dimensional subspace. We call
this semi-ellipsoid, since we have not decided yet whether
it properly indicates the shape of its correspondence in
the original space. From lines 3 to 11, each semi-ellipsoid

is handled individually. For each semi-ellipsoid discovered
earlier, its corresponding shape is restored in the original di-
mensional space (line 5), and its local s_dim-dimensional
subspace is generated (line 6). The newly produced projec-
tions are local to individual semi-ellipsoid and different from
the projections produced in line 1. At line 7, the MPE to
s_dim-dimensional subspace is computed.

If a semi-ellipsoid has an MPE smaller than the maxi-
mum error allowed, it suggests that the s_dim-dimensional
subspace can approximately represent its original data. Oth-
erwise, there are two possible reasons for the big MPE. First,
it could be due to the overlap of several clusters in the sub-
space such that each point does not project to its local sub-
space. Higher subspace dimensionality should be retained in
order to distinguish each cluster. Second, though it is a single
cluster, the s_dim could be too small for a subspace to rep-
resent original dimensional data. To further discover ellip-
soids in each semi-ellipsoid, we increase the s_dim twofold
without losing generality and recursively call Generate El-
lipsoid (line 9). Therefore, the semi-ellipsoid is repeatedly
partitioned locally. This step produces possible ellipsoids. It
should be noted that the process of discovering ellipsoids in
subspaces is the first step of dimensionality reduction, where
the remaining subspace dimensionality of each ellipsoid at
this stage is their respective s_dim, and further dimension-
ality optimization is performed in the next step.

Since the earlier step produces possible ellipsoids in their
respective s_dim-dimensional subspaces, and ellipsoids are
effective for dimensionality reduction, the s_dim of the sub-
spaces discovered in Generate Ellipsoid can be further re-
duced (it should be noted that each ellipsoid may correspond
to a different s_dim value). That is, if the change of MPE is
less than the pre-set threshold, we decrease the dimensional-
ity by 1, and the process is repeated till the aforementioned
condition is false (lines 15–17). The final dimensionality is
treated as the ‘optimal’ one and denoted as dr . The points
are projected into this dr -dimensional subspace (line 18). A
threshold value β is employed to determine whether a point
belongs to a cluster. If the projection distance on (d − dr )-
dimensional eliminated subspace for a point is greater than
β, this point is taken as an outlier (lines 23–24). Otherwise,
it is classified as a member of the subspace (lines 21–22).

The final output of the algorithm is a set of subspaces
and outliers. Each subspace may have a different optimal
number of reduced dimensions. The outlier set remains
in the original space, since its data points are not well
correlated.

In a dataset, some clusters are elongated along certain
directions and yet they are locally correlated. Such elonga-
tion may be detected in its lower-dimensional subspaces.
Consider a two-dimensional subspace as shown in Fig. 5
projected from a higher-dimensional space (say four dimen-
sional). This two-dimensional subspace can represent the
original dimensional space with very little information be-
ing lost. The LDR technique [4] is able to discover cor-
related clusters on the original four-dimensional space and
produce 2 one-dimensional subspaces as shown in Fig. 5a.
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Fig. 5 LDR vs. MMDR

In order to partition the bigger shape cluster for dimension-
ality reduction, the clustering radius must be suitably large.
However, this will result in smaller clusters being grouped
together as one. Obviously, substantial information is lost
with the smaller shaped clusters. The situation is even worse
for small-shaped clusters with a high density.

Figure 5b shows 3 one-dimensional subspaces produced
by the MMDR algorithm. MMDR first projects the original
dimensional space into one-dimensional subspace, then the
elliptical k-means method partitions one-dimensional pro-
jections of whole data into two partitions: cluster 1’s one-
dimensional subspace and cluster 2 and 3’s one-dimensional
subspace. After restoring cluster 1’s one-dimensional sub-
space to the original dimensional space and performing lo-
cal one-dimensional projections (lines 5–6), MMDR detects
that it is an ellipsoid, since its MPE is small. The one-
dimensional subspace projected from clusters 2 and 3 over-
laps heavily with the high MPE and thus its corresponding
full dimensional shape/data is passed to Generate Ellipsoid
by increasing the subspace dimensionality to 2. In the two-
dimensional subspace, these two ellipsoids can be discov-
ered by the Mahalanobis function. Dimensionality reduction
is further performed in Dimensionality Optimization so that
both can be reduced to one-dimensional subspaces with less
information lost than if the LDR method were used.

In summary, MMDR has the following advantages. First,
the ellipsoids can be effectively discovered at the subspace
level of the data, rather than in the original space. Second,
the ellipsoids can be discovered as soon as the shapes can
be identified. Third, using Mahalanobis distance, the cost to
perform clustering can be reduced dramatically, since it is
done in low-dimensional subspace.

4.2 Cost analysis on MMDR

The cost of MMDR comes mainly from the elliptical k-
means method (line 2), which takes O(Iterout × Iterinn ×

d_sim2 × N ×MaxEC), where Iterout and Iterinn is the num-
ber of iterations for the outer and inner loop, respectively,
and d_sim2 comes from distance computation. However, in
MMDR, the input dimensionality s_dim is very small com-
pared to the original d . Meanwhile, the input data size N
becomes smaller as s_dim increases, which leads to Iterout
and Iterinn being reduced also. To further reduce the cost of
MMDR, we use the cost reduction techniques described in
the next section.

4.3 Cost optimization on MMDR

We note that the most time-consuming step of the MMDR
algorithm is the Mahalanobis distance computation between
centroids and data points in the elliptical k-means method.
In this section, we reduce the computational cost by using
the following techniques. The factor MaxEC can be reduced
to a small number by avoiding the computing of all the dis-
tances between MaxEC centroids and a data point. We only
need to re-compute the distance between the k most clos-
est centroids which may change the membership of a point,
where k � Max EC . This is based on the following obser-
vations. First, if a data point is to be re-assigned to another
cluster, that cluster is most probably the one with the closest
distance except the current assignment. Second, in each iter-
ation, only a small portion of data points may change their
membership. As the converging process continues, the num-
ber of data points changing memberships decreases quickly.
Third, some data points may never change their member-
ship.

A lookup table is designed to store the k most closest
centroids’ IDs computed in the previous iteration for each
data point. In the next iteration, only those centroids whose
IDs are stored in the lookup table are taken to compute and
find the closest centroid. A data point entry in the lookup
table is updated only when its membership is changed. By
doing so, the factor MaxEC is removed from the overall cost.
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Fig. 6 Scalable MMDR algorithm

To further reduce the cost for large datasets, we introduce
one additional field called Activity to the lookup table to in-
dicate how frequently a data point changes its membership.
It records the number of iterations that a data point does not
change its membership. If the value of Activity is larger than
a threshold, we say this data point is inactive, otherwise it
is active. Inactive data points need not make any further dis-
tance computation and re-assignment unless the number of
clusters is changed. This reduces the value of N dramati-
cally at each iteration. Assume that at each iteration, only

1
Iter inn

of the dataset change their memberships, the factor

of N is replaced by N
Iter inn

. As the converging process con-
tinues, the number of points which change their membership
decreases dramatically. Therefore, the time complexity be-
comes O(Iterout × d_sim2 × N ). Compared to LDR’s time
complexity of O(N × d2 × MaxEC), MMDR has a smaller
dimensionality of d_sim than d , but with a larger factor of
Iterout than Max EC .

4.4 Scalable MMDR

For a very large dataset that cannot be completely loaded
into the main memory buffer, the data scan at each iteration
is extremely expensive. To make MMDR scalable for very
large datasets, we introduce Scalable MMDR.

In Scalable MMDR, we divide the dataset into a number
of data streams, which is defined as a sequence of data points
read in order of indices, and we process one data stream at
a time. A temporary array called Ellipsoid Array (EA) is
created to store the ellipsoids’ centroids generated for each
data stream. Scalable MMDR loads a single data stream at a
time and performs Generate Ellipsoid operation to generate
small-size ellipsoids. These small ellipsoids’ centroids are
stored in the Ellipsoid Array. After all the data streams have
been processed, only the Ellipsoid Array is in the buffer. By
calling Generate Ellipsoid on the Ellipsoid Array, Scalable
MMDR forms bigger sized ellipsoids by merging smaller
ellipsoids whose centroids are stored in the Ellipsoid Array.
Let the size of a data stream be ε percent of the data size,
where ε is a very small positive value. The detailed algo-
rithm is outlined in Fig. 6.

The key idea in Scalable MMDR is to summarize each
small ellipsoid existing in data streams using its centroid. All
centroids are then processed as a data stream whose size is

very small. Since the size of the data stream is much smaller
than the original data size N , empirically, it is reasonable
to expect that Iterdata stream � Iteroriginal data. Hence, the to-
tal time required to cluster 1

ε
data streams of size ε × N is

generally much less then the time required to cluster N data
points.

5 Indexing reduced subspaces

After dimensionality reduction, the projections in the re-
duced dimensionality subspaces have to be indexed using
efficient indexes. Instead of using an index for each sub-
space, we want all the projections to be indexed in a single
structure for ease of maintenance. We selected iDistance [1]
as our base index due to its efficiency and its B+-tree base
structure.

The design of iDistance was motivated by two fac-
tors. One, the triangular inequality relationship enables the
(dis)similarity between a query point and a data point to be
derived with reference to a chosen reference point. Two, data
points can be ordered on the basis of their distances to a
reference point, and indexed on the basis of such distance
value. This enables one to represent high-dimensional data
in a single-dimensional space and use an existing B+-tree.
However, iDistance has to be extended to index subspaces
in different axis systems and handle the dynamic insertion
of data points.

5.1 Extended iDistance

The data partitioning strategy and reference point selection
are straightforward, as the data partitions are determined
by the MMDR algorithm and the centroid of each cluster
is the ideal choice as the reference point. For each sub-
space (outliers as a subspace in its original dimensional-
ity), all data points in subspaces are represented in a single-
dimensional space with reference to its centroid of cluster.
This is achieved by the following mapping function:

y = i × c + dist(P, Oi )

where P is a data point in the subspace of i th ellipsoid ECi ,
and Oi is its centroid. dist (P, Oi ) is the distance function
that returns the distance between Oi and P . y is the index
key for P . c is some constant to stretch the data range so
that distance values are range partitioned on the basis of the
reference points. That is, it serves to partition the single di-
mension space into regions so that points in the i th cluster
will be mapped to the range [i × c, (i + 1) × c].

Extended iDistance employs three data structures:

– A B+-tree is used to index the transformed single-value
points to facilitate speedy retrieval.

– An array is required to store the centroids and princi-
pal components of ellipsoids, and their respective near-
est and farthest radii that define the subspace. This array
is used for search purposes.
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Fig. 7 A sample B+-tree indexing two clusters

– An array is required to store covariance matrices of el-
lipsoids, the Mahalanobis radius, and the dimensionality
retained. This array is used for the purpose of dynamic
insertion.

Figure 7 depicts an example of two clusters indexed by
a single B+-tree, where the c is set as 10, the light shaded
pages contain the keys of points from the first cluster and
the dark shaded pages contain the keys of points from the
second cluster.

To search for the K nearest neighbors of a query point
q , the distance of the K th nearest neighbor to q defines the
minimum radius required for retrieving the complete answer
set. Such a distance cannot be predetermined, and hence,
an iterative approach that examines an increasingly larger
sphere in each iteration has to be employed.

The algorithm works as follows. Given a query point
q , finding K nearest neighbors (NN) begins with a query
sphere defined by a relatively small radius R around q . For
each cluster ECi , the query point is mapped into qi , which
is the projection of q on the i th subspace.

Figure 8 shows an example with the maximum radius
ranges of three clusters in the different axis systems, where
EC1 is in XY -plane, EC2 in X Z -plane and EC3 in Y Z -
plane. Here, for a query point q , its projection on three sub-
spaces are q1, q2, and q3 respectively. The shaded regions
are the areas that need to be checked.

Searching in extended iDistance begins with the scan-
ning of the auxiliary structure to identify the centroids whose
data space (sphere area of cluster) overlaps with the query
sphere defined by qi and R. The search starts with a small
global radius R for all subspaces, and step by step, the ra-
dius is increased to form a bigger query sphere. For each
enlargement, there are three main cases to consider:

– The data space ECi contains qi . In this case, we want
to traverse the data space sufficiently to determine the K
nearest neighbors. This is done by first locating the leaf
node where qi may be stored. Since this node does not
necessarily contain points whose distance is closest to
qi compared to its sibling nodes, we need to search left
and right (inward and outward of data space) from the

R
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q3

 R

R3
Z

Y

X

EC3

O3

EC1

EC2
R2

    R1

q1

O2

O1

q2

Fig. 8 Searching for NN Queries q1, q2 and q3.

reference point accordingly. This situation is illustrated
by the subspace EC1 and q1.

– The data space intersects the query sphere. In this case,
we only need to search leftward (inward), since the query
point is outside the data space. This situation is illus-
trated by the subspace EC3 and q3.

– The data space does not intersect the query sphere. Here,
we do not need to examine the data space. This situation
is illustrated by the subspace EC2 and q2.

The search stops when the distance of the K th NN ob-
ject to q is less than search radius R. The search is correct
as the distance between image query point and data point
always lower bounds the actual distance between the actual
query point and data point in the original space. The sub-
space search can be fast pruned by using the triangle inequal-
ity property:

‖Q − P‖ ≥ ‖Q j − Pj‖ ≥ ‖Q j − O j‖ − ‖Pj − O j‖
≥ ‖Q j − O j‖ − R j

where Q is query, P is original data point, Q j is the projec-
tion in j th subspace, Pj the projection of P in j th subspace,
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Fig. 9 Dynamic MMDR algorithm

O j the reference point in j th subspace, and R j the maxi-
mum radius in j th subspace. ‖Q j − O j‖ − R j specifies the
tightest searching bound for j th subspace.

5.2 Dynamic MMDR

In the real world, the database is not static, and it is too costly
for a dimensionality reduction algorithm to re-analyze the
whole database after some insertions. It is granted that for
a very large database, a single data point insertion should
not greatly affect the effectiveness of clustering and dimen-
sionality reduction. However, over time, query accuracy and
efficiency will be affected if the indexing mechanism is not
adaptive to new data insertions.

To handle dynamic insertions, the MMDR algorithm is
made to be adaptive to new insertions by splitting and merg-
ing subspaces if necessary. In the following algorithm, we
treat a set of insertions as a batch insertion of a small dataset,
which is the data stream described in Sect. 4.4.

For each data point P in the data stream, we first get
the ellipsoid with minimal MahaDist to P and denote it as
O (lines 2–3). If this distance is less than O’s Mahalanobis
radius – r , we get its projection in O’s subspace (line 5),
followed by mapping it to indexing value (line 6) and insert-
ing it into the index (line 7), then removing it from the data
stream. Next, the updated data stream is passed to MMDR to
generate subspaces (line 9). For each subspace, if it has the
same elongation and intersects with an existing subspace i ,
we delete all the entries whose indexing values are in the
range of [i ∗c, (i +1)∗c] (line 12) and form a new subspace
with the same ID – i (line 13). Otherwise, we treat this sub-
space as a new subspace with a new ID (line 15). Finally, for
each new subspace (lines 16–19), we map each data point

r1

r2

O1

O2

MahaDist(O1,O2) <= r1+r2

Fig. 10 Two ellipsoids intersect with same elongation

into an indexing value with corresponding subspace, then
insert it into the index.

One important step in the algorithm shown earlier is to
merge two subspaces when necessary. The following condi-
tion must be satisfied in order to merge two subspaces: their
ellipsoids must have the same elongation and intersect each
other. Figure 10 illustrates such a scenario. In Fig. 10, we
only indicate the circumscribing ellipse of the cluster, and r
is the Mahalanobis radius. If the MahaDist of two centroids
of ellipsoids is not greater than the sum of their Mahalanobis
radii, these two ellipsoids intersect. In this case, the two el-
lipsoids are merged into a new ellipsoid. Based on the new
centroid, we re-map the points into indexing values with the
existing ellipsoid’s ID, followed by the standard insertion
operation.

It is important to note that the algorithm does not require
us to rebuild the whole tree. Instead, it only affects the par-
titions where merging is performed.

6 Performance study

In this section, we present the performance study that eval-
uates the effectiveness of MMDR and the efficiency of ex-
tended iDistance. For the experiments, we used the default
values as shown in Table 1, and all experiments were done
with an Ultra-10 SunOS 5.7 processor (333 MHz CPU and
256 MB RAM).

We have two categories of test data.

1. Real-life datasets: We have two small real-life datasets
and one large real-life dataset. The first small dataset
consists of 64-dimensional color histograms extracted
from 70,000 color images from the Corel Database used
in LDR [4]. The second small dataset consists of 64-
dimensional Daubechies’ wavelet [18] features extracted
from 73,715 WWW images randomly crawled from over
40,000 websites. Wavelet features describe an image’s
shape, texture, and location information in a single rep-
resentation. Here, we truncated the 64 most dominat-
ing wavelet coefficients as an image’s visual feature.
The large dataset consists of about 2.2 million frames



228 H. T. Shen et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

P
re

ci
si

on

Ellipticity

MMDR
LDR
GDR

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on

Number of correlated clusters

MMDR
LDR
GDR

Fig. 11 Effect on precision

extracted from 3,000 video clips, which are TV adver-
tisements captured by us from TV stations. Video clips
(about 30 s average time length) are recorded by using
Virtual Dub at PAL frame rate of 25 frames per sec-
ond [19]. Each frame is represented by a 64-dimensional
feature vector in the RGB color space.

2. Synthetic datasets: We have four sets of synthetic
datasets: one small synthetic dataset containing 100,000
points in a 64-dimensional space, and three large syn-
thetic datasets with 1,000,000 points each in a 50-, 100-,
and 200-dimensional space. For each synthetic dataset,
we used the algorithm (Appendix A) to generate corre-
lated clusters in different subspaces with different dis-
tensibilities. Each subspace has its own size, orientation,
and ellipticity.

We used 100 queries to obtain the mean precision and
query cost on 10 NN, and L2 distance was used for search-
ing (note that Mahalanobis distance is used for discovering
intrinsic ellipsoids, not for searching). The query precision
is defined as follows:

Precision = Rdr

⋂
Rd

Rd

where Rd and Rdr are the results respectively returned from
the original space and reduced subspaces.

6.1 Query precision

Here, dimensionality reduction methods serve the purpose of
efficient indexing. However, they are lossy in nature. When
a dimensionality method tries to reduce more, it may cause
bigger loss of information and hence reduce query precision.
Query precision is also affected by the correlation between
data points and the number of correlated clusters. Here, we
used the small dataset with 100,000 points.

Figure 11a shows the query precision with respect to in-
creasing ellipticity. As we can see, the MMDR method per-
formed much better than the LDR and GDR methods. The
GDR method could achieve at most 15% of precision as the
dataset is not globally correlated. As ellipticity decreased,

LDR dropped faster than MMDR. Obviously, less correla-
tion had more negative effect on the query precision of LDR
than that of MMDR. In the next experiment, we varied the
number of correlated clusters to test its effect on query pre-
cision. The results in Fig. 11b show that MMDR, LDR, and
GDR all performed equally well when there was only one
correlated cluster. But as the number of correlated clusters
increased, MMDR was able to locate all correlated clusters
effectively while maintaining its query precision. However,
the query precision of LDR dropped rapidly, and so did that
of the GDR method. This indicates that when clusters inter-
sect and have different ellipticities and scales, LDR cannot
discover all of them. As more such clusters exist, LDR per-
forms worse. In contrast, the MMDR can discover the in-
trinsic number of correlated cluster based on Mahalanobis
distance and thus is independent of the number of correlated
clusters.

To see the effect of the number of eliminated dimensions
on the effect of query precision, we conducted experiments
using the small synthetic dataset and three real datasets. In
this experiment, we set the maximum remaining subspace
dimensionality Max Dim as 20. Figures 12–14 present the
effect of the number of dimensions retained after dimension-
ality reduction on the query precision on four datasets. In
this experiment, we also compared traditional dimensional-
ity reduction methods including Discrete Wavelet Transfor-
mation (DWT) and Discrete Fourier Transformation (DFT).
The conjugate property of DFT was considered [20]. Notice
that unlike the DWT coefficients that are real numbers, the
DFT coefficients are complex numbers thus require twice
the storage space. In line with [20], for the rest of this sec-
tion, we assume that a DFT coefficient takes two floating
numbers, while a DWT coefficient takes only one floating
number. Given the same storage space and indexing struc-
ture, the number of coefficients of DWT that we can index is
twice that of DFT’s. For the sake of fair comparison with the
same storage space and indexing structure, the dimensional-
ity of DFT and DWT refers to the number of float numbers
being indexed.

All the five methods showed increasing precision as the
remaining dimensionality increased for the four datasets.
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Fig. 12 Effect of dimensionality on query precision for small synthetic
data
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Fig. 13 Effect of dimensionality on query precision for color his-
togram
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Fig. 14 Effect of dimensionality on query precision for video frames

However, MMDR achieved much higher precision. As
shown in Fig. 12 for the synthetic dataset, at 20 dimen-
sions, LDR could only achieve at most 60% of precision,
and GDR could not achieve more than 25% of precision due
to uncorrelated property. DFT performed similar to GDR,
while DWT performed even worse than GDR since both are
not meant to identify the correlations among dimensions.
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Fig. 15 Effect of dimensionality on query precision for wavelet feature

Figure 13 shows the effect of retained dimensionality on the
query precision using the color histogram dataset. It is in-
teresting that all five methods were not performing as well
as before. Nevertheless, the MMDR method performed the
best and was least affected. The higher precision obtained
by the MMDR method confirms two important observa-
tions. First, there exist some local elongated clusters. Sec-
ond, some intrinsic local elongated shapes/correlations can-
not be detected by LDR. Compared to the synthetic dataset
(Fig. 12), the precision of the methods on color histogram
dataset is much worse. One reason could be that the real
dataset might have clusters that are highly uncorrelated. Too
many outliers might be another reason. This was possible,
as for each image in the real dataset, the color histograms
tended to be very skewed towards a small set of colors, with
many attributes being 0. Figure 14 shows the effect of re-
tained dimensionality on the query precision using the video
frame’s RGB color dataset. It has a similar performance to
Fig. 13. Figure 15 shows the effect of retained dimensional-
ity on the query precision using the wavelet feature dataset.
It has a trend similar to Figs. 13 and 14, but with lower preci-
sions. The reason is possibly that higher uncorrelated prop-
erty exists in our WWW images. Since our images were ran-
domly crawled from WWW, their wavelet features may not
be well correlated in some clusters. However, the gap be-
tween LDR and MMDR became even larger for this dataset.

The aforementioned experiments confirm that the
MMDR method is a much more effective dimensionality
reduction technique in correlated environments with lower
loss of distance information, as it can achieve better reduc-
tion performance with higher precision, which should lead
to faster search and retrieval.

6.2 Query efficiency

In this experiment, we examined the query performance of
the index methods on reduced dimensionality data points.
Note that the final purpose of performing effective di-
mensionality reduction by using MMDR is to improve
query performance, as it is well known that existing multi-
dimensional indexing structures are not able to index very
high dimensional (30-dimensional or higher) data space.
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Fig. 16 Effect of dimensionality on efficiency for small synthetic data

Here, we have five indexing schemes to compare: extended
iDistance on MMDR data (iMMDR), extended iDistance
on LDR data (iLDR), Global indexing method [4] on LDR
data (gLDR) which is the state-of-the-art method in di-
mensionality reduction category, VA-File on MMDR data
(VA-File) and sequential scan on MMDR data (Scan). The
Global indexing method makes use of one Hybrid tree [21]
for each cluster, and maintains the information about each
cluster and index in an array. The VA-File is constructed
by uniformly representing each dimension by 5 bits. Fur-
thermore, to have a clearer picture on the effect of di-
mensionality reduction, we also present the performance of
iDistance on the original data, i.e., full dimensional data
(iFull). Here, we used the same datasets as in the previous
section.

Figures 16–19 show the I/O and CPU cost of the five
indexing schemes in reduced subspaces, when the subspace
dimensionality varied from 10 to 30, and the iDistance on
the full dimensional data. Figure 16a shows that for the
synthetic dataset, as the dimensionality increased, the iM-
MDR had much lower I/O cost than the iLDR, which con-
firms that a more effective dimensionality reduction method
leads to an overall improved query efficiency. We also no-
tice that the gLDR was worse than the iLDR, which in-
dicates that extended iDistance is more efficient than the
Global indexing method. It is also obvious that the perfor-
mances of VA-File and Scan on MMDR data are similar and
worse than iMMDR. This is reasonable, since the synthetic
data are skew/correlated and VA-File has been proved to be
inefficient for skew data because of extensive random ac-
cesses [22]. This further confirms the superiority of the ex-
tended iDistance. The extended iDistance was more efficient
in terms of I/O cost, as it had to traverse only one index, and
this index was smaller since only one-dimensional distance
values were used in the internal nodes. Figure 16a also indi-
cates the performance of iDistance on the original data. As
we can see, as less dimensions are retained, i.e., more dimen-
sions are discarded, greater improvement can be achieved.
However, recall that eliminating more dimensions results in
lower precision, as shown in Fig. 12a. Hence, a trade-off be-
tween precision and performance is needed. For this dataset,
10–20 is a good range for the reduced dimensionality, since

we can achieve more than 80% precision, while the I/O cost
can be improved by nearly an order of magnitude.

Figure 16b shows the CPU cost of the five indexing
schemes for synthetic dataset and iFull. We can see that
as the dimensionality increased, the gap became wider be-
tween iLDR and gLDR. iMMDR was the best. The perfor-
mance difference between iMMDR and iLDR was relatively
small. When the dimensionality reached 30, the CPU cost
for gLDR was an order of magnitude higher than that for
iMMDR and iLDR. The main reason is clear. In the gLDR
indexing structure, tree nodes contain multi-dimensional
data points. However, in the extended iDistance structure,
tree nodes contain one-dimensional key values. Extended
iDistances (iMMDR and iLDR) incur single-dimensional
value comparison in searching, while L-norm computation
is involved in the Hybrid-Tree. Thus, computation in gLDR
is much more expensive. More L-norm computations occur
in VA-File and sequential scan, since all approximations in
VA-File and all data points in sequential scan are compared.
As a results, both perform worst and get close to the CPU
cost of iDistance on full dimensional data space.

Figures 17–19 show similar trends on I/O cost and CPU
cost for the color histogram, wavelet feature, and video
frame datasets respectively. Consequently, in terms of both
I/O cost and CPU cost, the single dimensional extended
iDistance index outperforms the Global indexing structure
significantly. Furthermore, a more effective dimensionality
reduction method leads to more efficient indexing.

6.3 Scalability

All high-dimensional indexes are affected by the data size
and the number of dimensions of the data. In this experi-
ment, we looked at the scalability of MMDR. We set the
data stream ratio ε as 0.005, the k value in the lookup table
to 3, and the number of iterations that indicated a point as
inactive as 10. The parameter we used here is the total re-
sponse time (TRT) for MMDR to generate the optimal sub-
spaces from the original data.

Figure 20a describes the effect of data size on the total
response time. We kept the number of dimensions fixed at
100, while we varied the data size from 50,000 to 1,000,000.
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Fig. 17 Effect of dimensionality on efficiency on color histogram
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Fig. 18 Effect of dimensionality on efficiency for wavelet feature
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Fig. 19 Effect of dimensionality on efficiency for video frame

From Fig. 20a, we make the following observation. The re-
sponse time increased linearly to the data size. When the
data size reached the limit of the buffer – 500K, there was
no jump in response time for the Scalable MMDR, since
we needed only to scan the whole dataset once. Figure 20b
shows the effect of the number of dimensions on the total
response time. For this experiment, we used 1,000,000 data
points and varied the number of dimensions from 50 to 200.
As expected, the total response time was nearly quadratic to

the dimensionality. The results again exhibit that the limited
buffer has no effect on the total response time.

6.4 Effects of dynamic update

The dimensionality reduction algorithm and the associated
indexing structure must be dynamic and adaptive in or-
der to handle dynamic update effectively. In this experi-
ment, we see how dynamic MMDR adapts and keeps its
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Fig. 21 Effect on dynamic insertion

precision high, while keeping the KNN search cost low.
For this experiment, we used the 1,000,000 100-dimensional
dataset and 100 NN queries. For dynamic insertion, we con-
structed the index using the first 100,000 points and then we
inserted 100,000 points at a time. At each insertion step, we
performed KNN queries, and measured their query cost and
precision. Meanwhile, we also study the performance of the
dynamic deletion. For dynamic deletion, we constructed the
index using the 1,000,000 points and then deleted 100,000
points at a time. The standard deletion operation in B+-tree
is performed. As a step further, we compare the dynamic in-
sertion/deletion with one-off construction (i.e., index rebuilt
on each insertion/deletion).

Compared to the performance of MMDR with one-off
construction given in Fig. 21a, we notice that the perfor-
mance of dynamic MMDR slightly degrades. For dynamic
insertion, as more data points were inserted, a slightly higher
I/O cost was incurred. Similarly, as more data points were
deleted, a higher I/O cost happened too. However, the over-
head is marginally small. This shows the robustness of our
method to dynamic update, without rebuilding the index.
Figure 21b shows the precision of MMDR as the data size
varies. Note that given the same query and the same dataset
on each insertion/deletion, the precision for dynamic inser-
tion/deletion and one-off construction is the same, since an
exact KNN search is performed for the query. As we can see
from Fig. 21b, as the data size increased, MMDR adapted

dynamically and yielded better precision. This again con-
firms the suitability of Mahalanobis distance in identify-
ing effective clusters for dimensionality reduction for our
method.

6.5 Effects of outliers

Outliers are data points that do not form effective clusters
and are not included in any clusters obtained during dimen-
sionality reduction. They form a cluster of their own, and
they are indexed in their actual data space. Since outliers are
composed of ‘abnormal’ points, the maximum radius of the
cluster is very large after mapping into one-dimensional dis-
tance values. Hence, it is searched for most queries. We used
the 1,000,000 100-dimensional dataset. Figure 22a shows
that as more outliers were introduced, higher I/O cost was
incurred. However, as shown in Fig. 22b, it is interesting
that outliers did not affect query precision severely, since
they were grouped into an outliers set and were searched
like other clusters.

7 Conclusions

In this paper, we have presented an effective and dynamic
dimensionality reduction algorithm – MMDR, which is able
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Fig. 23 Synthetic datasets generation

to reduce the number of dimensions while keeping the preci-
sion high, and is able to effectively handle large datasets and
dynamic insertions. We used an extended iDistance to index
the data points in different reduced subspaces. We conducted
extensive experimental studies using both real and synthetic
datasets to compare the algorithm with existing approaches.
The results show that the proposed technique, as a whole,
is very effective and efficient in supporting KNN search in
very high-dimensional space. Furthermore, it is scalable for
very large databases and able to handle dynamic insertions
adaptively.
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Appendix A: Generate synthetic datasets

In order to generate the local correlated datasets, we use the algorithm
outlined in Fig. 23 to generate different clusters in different subspaces
with different orientations and distensibilities retained. Table 2 gives
the descriptions of input parameters.

In this algorithm, array s_dim[i] contains the dimensions that
should be remained for each cluster. We can randomly choose which
dimension should be retained. For simplicity, we make remained

Table 2 Table of input parameters and description

Parameters Descriptions

N Data size
d Original dimensionality
s_dim Subspace dimensionality
EC Number of elliptical clusters
EC_si ze Size of elliptical cluster
s_r_dim Starting remained dimension for EC
variance_e Variance for eliminated subspace
variance_r Variance for remained subspace
lb Lower bound value for EC

dimensions continuous starting with s_r_dim[i]. For example, if
s_r_dim[i] = 6, then the remained dimensions for i th cluster starts
from sixth to (6 + s_dim)th dimensions. Specifying the different val-
ues for each cluster allows each reduced subspace in different axis
systems. Method gen_ f loat () will return a random float value in
[lb, lb+variance]. It can also return a value based on other distribu-
tion functions, such as Zipfian. For each cluster, we also specify their
different lower bound values, which can be used to control the po-
sitions of centers of each cluster together with its variance. Along
each of the remaining s_dim[i] dimensions, we assign a randomly
chosen value falling in range of [lb[i], lb[i]+variance_r [i]] to all
the points in the cluster. Along each of the reduced (d − s_dim[i])
dimensions, we assign a randomly chosen value falling in range of
[lb[i], lb[i]+variance_e[i]] to all the points in the cluster. The ratio
between variance_r [i] and variance_e[i] in fact specifies the ratio be-
tween the energy carried by remained and reduced dimensions for each
cluster, or the degree of correlation/ellipticity. Both values can be ad-
justed for different clusters in order to have different level of correla-
tion. To make the subspace arbitrarily oriented, we can generate a ran-
dom orthogonal rotation matrix (generated using MATLAB) and rotate
the cluster by multiplying the data matrix with the rotation matrix.
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