
The VLDB Journal (2005) 14(4): 373–396
DOI 10.1007/s00778-005-0156-6

REGULAR PAPER

Deepavali Bhagwat · Laura Chiticariu ·
Wang-Chiew Tan · Gaurav Vijayvargiya

An annotation management system for relational databases

Received: 30 November 2004 / Revised version: 12 April 2005 / Published online: 25 October 2005
c© Springer-Verlag 2005

Abstract We present an annotation management system for
relational databases. In this system, every piece of data in
a relation is assumed to have zero or more annotations
associated with it and annotations are propagated along,
from the source to the output, as data is being transformed
through a query. Such an annotation management system
could be used for understanding the provenance (aka lin-
eage) of data, who has seen or edited a piece of data or the
quality of data, which are useful functionalities for applica-
tions that deal with integration of scientific and biological
data.

We present an extension, pSQL, of a fragment of SQL
that has three different types of annotation propagation
schemes, each useful for different purposes. The default
scheme propagates annotations according to where data is
copied from. The default-all scheme propagates annotations
according to where data is copied from among all equiv-
alent formulations of a given query. The custom scheme al-
lows a user to specify how annotations should propagate. We
present a storage scheme for the annotations and describe
algorithms for translating a pSQL query under each prop-
agation scheme into one or more SQL queries that would
correctly retrieve the relevant annotations according to the
specified propagation scheme. For the default-all scheme,
we also show how we generate finitely many queries that can
simulate the annotation propagation behavior of the set of all
equivalent queries, which is possibly infinite. The algorithms
are implemented and the feasibility of the system is demon-
strated by a set of experiments that we have conducted.

Keywords Data provenance · Lineage · Annotation
propagation · Metadata

D. Bhagwat · L. Chiticariu (B) · W.-C. Tan · G. Vijayvargiya
Department of Computer Science, University of California, Santa
Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
E-mail: laura@cs.ucsc.edu

1 Introduction

For many scientific domains, new databases are often cre-
ated to support the data analysis needs of domain-specific
scientists. Some examples of such databases from biology
include UniProt [1] and SWISS-PROT [2]. Data that is col-
lected from other sources is often cleansed and reformatted
before it is compiled into a new database. Furthermore, it
is common for such newly created databases to contain new
analysis or results that are derived by scientists. By associ-
ating old and new data together in the new database, an inte-
grated perspective is provided to scientists and this is critical
for further analysis and scientific discovery. Very often, there
is information about data that is not kept in the database but
one would like to propagate this information along as data
is being moved around. Examples include information about
the perceived accuracy or reliability of experimental results
by domain experts, or information about who has seen or
edited a piece of data. In fact, our initial motivation for the
design of a system that can propagate additional information
around is to propagate the provenance of data items along as
data is being copied. With the proliferation of many such
interdependent databases (see [3] for a catalog of biology
databases), it is natural to ask what is the provenance of a
piece of data (i.e., where that piece of data is copied or cre-
ated from) in a database. Understanding the provenance of
data is important towards understanding the quality of data
which may help, for example, a scientist to decide on the
amount of trust to place on a piece of information that she
encounters in a database.

We describe an annotation management system for re-
lational databases where every column of every tuple in
every relation can be annotated with zero or more anno-
tations. We use the term annotation to mean information
about data such as provenance, comments, or other types
of metadata. The annotations are automatically propagated
along as data is being transformed through a query. In its
default behavior, our system propagates annotations based
on where data is copied from. As a consequence, if ev-
ery column of every tuple in a database is annotated with

374 D. Bhagwat et al.

its address, the provenance of data is propagated along as
data is being transformed. Hence, one immediate applica-
tion is to use these annotations to systematically trace the
provenance and flow of data. Even if the data had under-
gone several transformation steps, we can easily determine
the origins (or the flow of data for that matter) through the
transformation steps by examining the annotations. Another
use of annotations is to describe information about data that
would otherwise have not been kept in a database. For ex-
ample, an error report or remarks about a piece of data may
be attached and propagated along to other databases, thus
notifying other users of the error or additional information.
The quality or security level of a piece of data can also be
described in annotations. Since annotations are propagated
along as a query is executed, the annotations on the result
of a query can be aggregated to determine the quality or
degree of sensitivity of the resulting output. This idea of
using annotations to describe the security level of various
data items or to specify fine-grained access control policies
is not new and can be found in various forms in existing
literature [4–6].

We describe three propagation schemes for propagating
annotations that are motivated by different needs. They
correspond to the default, default-all, and custom propa-
gation schemes. The default scheme uses provenance as
the basis for propagating annotations. If an output piece of
data d ′ is copied from an input piece of data d , then the
annotations associated with d are propagated to d ′. A piece
of output data d ′ is copied from an input piece of data d
if d ′ is created from d according to the syntax and eval-
uation of the query. Although this definition corresponds
intuitively to how people reason about provenance, the way
annotations are propagated is dependent on the way a query
is written. As shown in [7], two equivalent queries may
propagate annotations differently. For instance, consider
the relations R(A, B) and S(B, C). The following two
equivalent queries compute the join of R and S on the B
attribute.

Q1:
SELECT r.B
FROM R r , S s
WHERE r.B = s.B

Q2:
SELECT s.B
FROM R r , S s
WHERE r.B = s.B

Intuitively, it is easy to see that Q1 propagates the an-
notations from the B attribute of R, while Q2 propagates
annotations from the B attribute of S. While this behavior
may seem disturbing at first, in many applications includ-
ing those described above, such an automatic provenance-
based annotation propagation scheme which allows one to
trace where data is copied from or copied to based on a
given query is still very desirable. Indeed, similar ideas were
proposed before in [8, 9]. We also describe an alternative
method of propagating annotations, called the default-all
scheme, which propagates annotations according to where
data is copied from in all equivalent formulations of the
given query since one may be interested in obtaining all rel-
evant annotations of a piece of data in the output regardless

of how a query may have been written. Unlike the default
scheme, two equivalent queries will always propagate anno-
tations in the same way under this scheme. In some cases,
a user may only be interested in annotations provided by a
certain trusted data source. Hence, we also provide a third
propagation scheme, called the custom propagation scheme,
where the user is free to specify how annotations should be
propagated.
Summary of Results We have implemented all three prop-
agation schemes in our annotation management system by
extending a fragment of SQL. We call this extension pSQL.
A pSQL query is essentially an SQL query extended with
a PROPAGATE clause that would propagate annotations ac-
cording to one of the schemes described above as data is
transformed. In our implementation, we assume that for ev-
ery attribute of every relation, there is an additional column
that stores the annotations for that attribute. A translation
algorithm translates a given pSQL query into one or more
SPJ queries against these underlying relations and these
SPJ queries will retrieve the relevant annotations accord-
ing to the specified propagation scheme. In the default-all
scheme, we are required to propagate annotations accord-
ing to every possible equivalent reformulations of a given
query. At first sight, the default-all scheme seems impos-
sible to implement as there are infinitely many equivalent
reformulations of a given query. We show, however, that it
is always possible to find a finite set of equivalent queries
whose annotation propagation behavior is representative
of all equivalent queries. Hence, by running every query
in this finite set and taking the union of resulting tuples
and annotations, we are able to obtain the annotated out-
put of the given query under the default-all scheme. We
have conducted experiments to evaluate the feasibility of
such an annotation management system. Our experimen-
tal results indicate that the execution time of a query un-
der any propagation scheme increases only slightly when
the number of annotations in a database is doubled (on
the average, the default and default-all queries we experi-
mented with took about 0.71%, and respectively 0.1% more
time to execute on the 100 MB database when the num-
ber of annotations was doubled from 30 to 60%). Our re-
sults also show that for the queries we executed, the per-
formance of a query under the default-all scheme can be
at worst eight times slower than the performance of the
same query under the default or no propagation scheme
(i.e., SQL query). At best, it runs about twice as slow. For
the default scheme, however, the execution times of pSQL
queries are comparable to those of SQL queries. On the av-
erage, the pSQL queries with default scheme that we ex-
perimented with on a 100 MB database took around 40%
more time to execute than their corresponding SQL queries.
For larger databases (500 MB and 1 GB), the pSQL queries
with default scheme took only about 15%, and respectively
24% more time to execute than their corresponding SQL
queries on the average. However, our empirical results indi-
cate that the performance of pSQL queries starts to degrade
on databases annotated more than 100%. This suggests that

An annotation management system for relational databases 375

perhaps our scheme for storing annotations is not the best
suited in such scenarios. We plan to investigate the trade-offs
between different other annotation storage schemes in the
future.
Related Work The problem of computing data provenance
is not new. Cui, Widom, and Wiener [10] first approached
the problem of tracing the provenance of data that is the
result of a query applied on a relational database. The so-
lution proposed in [10] was to first generate a “reverse”
query Qr when asked to compute the provenance of an
output tuple t in the result of a query Q applied on a
database D (i.e., Q(D)). The result of applying Qr on D
consists of all combinations of source tuples in D such that
each combination of source tuples and Q explain why t
is in the output of Q(D). The type of provenance studied
by [10] is called why-provenance according to Buneman,
Khanna, and Tan [11]. Additionally, we may also be inter-
ested in knowing where the values of a tuple t in the result
of Q(D) are copied from in D. The latter type of prove-
nance is called where-provenance in [11] and it is this type
of provenance that we use for determining where annota-
tions are propagated from. In both works [10, 11], a “re-
verse” query is generated in order to answer provenance.
While the reverse query approach works well in general, it
requires a reverse query to be generated and evaluated ev-
ery time the provenance of an output tuple is sought for.
Hence, if the provenance of a large number of output tu-
ples is required, this may not be the optimal way to compute
provenance.

The reverse query approach is what we call the lazy ap-
proach for computing provenance; a query is generated and
executed to compute the provenance only when needed. In
this paper, we propose to trade space for time and carry
along the provenance of data as data is being transformed.
Hence, in this approach, the provenance of data is eagerly
computed and immediately available in the output. The
idea of eagerly computing provenance by forwarding an-
notations along data transformations is also not new and
has been proposed in various forms in existing literature
[8, 9, 12]. In fact, our annotation propagation rules which
propagate annotations based on where-provenance are sim-
ilar to those proposed in [9]. In [9], however, only infor-
mation about which source relations a value is copied from
is propagated along. In contrast, our system is flexible in
the amount of information that is carried along to the re-
sult (i.e., it could be the source relations, or the exact loca-
tion within the source locations, or a comment on the data).
An annotation is also an example of superimposed informa-
tion (data “placed” over existing information), as described
in [13].

Numerous annotation systems have been built to support
and manage annotations on text and HTML documents [14–
18]. Recently, annotation systems for genomic sequences
[19–21] have also been built. Laliberte and Braverman [15]
discussed how to use the HTTP protocol to design a scal-
able annotation system for HTML pages. Schickler, Mazer,
and Brooks [17] discussed the use of a specialized proxy

module that would merge annotations from an annotation
store onto a Web page that is being retrieved before sending
it to the client browser. Annotea [14, 18] is a W3C effort
to support annotations on any Web document. Annotations
are also stored on annotation servers and XPointer is used
for pinpointing locations on a Web document. A special-
ized client browser that can understand, communicate, and
merge annotations residing in the annotation servers with
Web documents is used. Phelps and Wilensky [16, 22, 23]
also discussed the use of annotations with certain desir-
able properties on multivalent documents [23] which sup-
port documents of different media types, such as images,
postscript, or HTML. DAS or Biodas [19, 20] and the Hu-
man Genome Browser [21] are specialized annotation sys-
tems for genomic sequence data. In almost all of these sys-
tems, the design includes multiple distributed annotation
servers for storing annotations and data is merged from var-
ious sources to display it graphically to an end user. The re-
search of these systems has been focused on the scalability
of design, distributed support for annotations, or other added
features.

We designed and implemented an annotation manage-
ment system for relational databases where annotations can
be made on relational data. This idea was first proposed in
[7, 24]. Unlike Web pages, the rigid structure of relations
makes it easy to describe the exact position where an anno-
tation is attached. Web pages, however, are often retrieved in
part or as a whole. Hence, the issue of what annotations to
propagate along when a web page is retrieved is straightfor-
ward. In contrast, an annotated relation in our system may
undergo a complex transformation as a result of executing a
query. We are thus concerned with how annotations should
propagate when such complex transformations occur. To the
best of our knowledge, this is the first implementation of
an annotation management system for relational databases
that would allow a user to specify how annotations should
propagate.

In Sect. 2, we describe pSQL and the three different
propagation schemes. In Sect. 3, we describe the algorithm
for generating a finite set of queries that can simulate the
annotation propagation behavior of all equivalent queries of
a given pSQL query. In Sect. 4, we describe the architec-
ture of our system and a storage scheme for annotations as
well as our translation algorithm that rewrites a pSQL query
into an SQL query against the underlying storage scheme. In
Sect. 5, we describe our experimental results and in Sects. 6
and 7, we conclude with some possible future extensions to
our system.

2 pSQL

In our subsequent discussions, we focus on a fragment of
SQL that corresponds to conjunctive queries with union [25]
(also known as the Select-Project-Join-Union fragment of
SQL). We extend this fragment of SQL with a PROPAGATE

376 D. Bhagwat et al.

Fig. 1 Three protein databases, a mapping table and the result of three pSQL queries

clause to allow users to specify how annotations should
propagate.

Definition 1 A pSQL query is a query of the form Q1
UNION ... UNION Qk, k > 0, where each Qi , i ∈ [1, k], is
a pSQL query fragment of the form shown below:

SELECT DISTINCT selectlist
FROM fromlist
WHERE wherelist
PROPAGATE DEFAULT | DEFAULT-ALL |

r1.A1 TO B1, . . . , rn .An TO Bn

The fromlist of a pSQL query fragment is of the form
“R1 r1, . . . , Rk rk” where ri is a tuple variable of the cor-
responding relation Ri . The selectlist of a pSQL query
fragment is of the form “r1.C1 AS D1, . . . , rm .Cm AS
Dm” where ri is a tuple variable defined in fromlist,
Ci is an attribute of the relation that corresponds to ri ,
and Di is an attribute name of the output relation. The
WHERE clause is optional and the wherelist is a conjunc-
tion of one or more equalities between attributes of re-
lations or between attributes of relations and constants.
The PROPAGATE clause can be defined with DEFAULT,
DEFAULT-ALL, or a list of clauses of the form “r.A TO
B” definitions where r.A denotes an attribute A of the tu-
ple that is bound to r and B is an attribute among the
D j s. ��
The SQL query that corresponds to a pSQL query Q is
the SQL query that results when all PROPAGATE clauses
in Q have been removed. The meaning of a pSQL query
is similar to that of its corresponding SQL query except
that annotations are also propagated to each emitted tu-
ple according to the specification given in the PROPAGATE
clauses.

We note at this point that other set operators (such as in-
tersection or set difference) and aggregate functions are not
allowed to appear in a pSQL query. In Sect. 6.2, we describe

how we extend pSQL queries to a larger fragment of SQL
where some aggregates are also allowed.

Example 1 Consider three databases SWISS-PROT (a
protein database), PIR (another protein database), and
Genbank (a gene database). Each of these databases is
modeled as a relation. The schemas and an instance of each
relation are shown at the top of Fig. 1. An annotation, shown
in braces, is placed on every column of every tuple. Each
annotation can be interpreted as the address of the value in
the corresponding column of the tuple. An example of a
pSQL query with the default propagation scheme is shown
below.

Q1 = SELECT DISTINCT s.ID AS ID, s.Desc AS Desc
FROM SWISS-PROT s
WHERE s.ID = “q229”
PROPAGATE DEFAULT

Intuitively, the default scheme specified in Q1 propa-
gates annotations of data according to where data is copied
from. The result of Q1 executed against the relation SWISS-
PROT is shown in Fig. 1. The annotation a3 is attached to the
value q229 in the output since q229 is copied from the ID
attribute of the second tuple in SWISS-PROT. Likewise, a4
in the output is propagated from the annotation of the Desc
attribute of the second tuple in SWISS-PROT. ��

While the default scheme is a natural scheme for prop-
agating annotations, this scheme is not robust in that two
equivalent queries that return the same output may not prop-
agate the same annotations to the output.

Example 2 Consider two equivalent SQL queries Q′ and Q′′
(two queries are equivalent if they produce the same result
on every database).

An annotation management system for relational databases 377

Q′ = SELECT DISTINCT p.ID AS ID, p.Name AS Name
FROM PIR p, Mapping Table m
WHERE p.ID = m.pir

Q′′ = SELECT DISTINCT m.pir AS ID, p.Name AS Name
FROM PIR p, Mapping Table m
WHERE p.ID = m.pir

The results of running Q′ and Q′′ under the default
propagation scheme are shown below.

Result of Q′:
ID Name
p332 {a7} AB {a8}
p916 {a9} AB {a10}

Result of Q′′:
ID Name
p332 {a17} AB {a8}
p916 {a21} AB {a10}

For Q′, the annotations for the ID column are from the
PIR table while for Q′′, the annotations for the ID column
are from the Mapping Table. ��

While it is likely that a user will realize that Q′ will
generate a different annotated outcome from Q′′ in gen-
eral, the situation is not so straightforward for more complex
queries. The above example motivates the need for a propa-
gation scheme that is invariant under equivalent queries. One
should be able to retrieve all relevant annotations about a
piece of output data regardless of how the query is written, if
desired. The default-all propagation scheme propagates an-
notations according to where data is copied from among all
equivalent formulations of the given query. Hence, the anno-
tated outcome is the same for equivalent queries under this
scheme. In case a user prefers to retrieve annotations from
one source over another, the user is also free to specify how
annotations should propagate in the custom scheme.

Example 3 The queries Q2 and Q3 are examples of
pSQL queries with the default-all and custom propagation
schemes, respectively.

Q2 = SELECT DISTINCT p.ID AS ID, p.Name AS Name
FROM PIR p
PROPAGATE DEFAULT-ALL

Q3 = SELECT DISTINCT g.ID AS ID, g.Desc AS Desc
FROM Genbank g
PROPAGATE g.ID TO ID, g.Desc TO ID

The results of Q2 and Q3 are shown at the bottom
of Fig. 1. The query Q2 retrieves all tuples from the PIR
table under the default-all propagation scheme. Since the
following query is equivalent to Q2,

SELECT DISTINCT p.ID AS ID, p.Name AS Name
FROM PIR p, PIR q
WHERE p.Name = q .Name

annotations of proteins with the same name are combined
together. As a consequence, the protein with name AB has
both annotations a8 and a10. Intuitively, the annotations we
get in the result of a default-all pSQL query fragment Q
are the combined annotations of results from all equivalent
queries of Q. In the custom scheme of Q3, annotations are

propagated according to the given user specification (i.e.,
g.ID TO ID, g.Desc TO ID). A clause “g.ID TO ID” states
that the annotations associated with the value of the ID at-
tribute of the tuple that is currently bound to g should prop-
agate to the ID attribute of the output tuple. Similarly, the
annotations associated to the value of the Desc attribute of
the tuple that is currently bound to g should propagate to the
ID attribute of the output tuple. ��
Some Terminology A cell (or location) is a triple (r , t , i)
which denotes the i th column of the tuple t in relation r .
We sometimes use the attribute name at position i instead
of the position i . We also write a cell simply as a pair (t ,
i) in the context where the relation r is clear. Let L denote
the set of all strings. Each cell c in a database is associated
with a set of annotations {a1, . . . , ak} where each ai , i ∈
[1, k], is an element in L. We also say each ai , i ∈ [1, k],
is an annotation attached to c. We use the notation A(r , t ,
i) to denote the set of all annotations attached to the cell
(r , t , i). Similarly, A(t , i) denotes the set of all annotations
attached to the cell (t , i) in the context where the relation r is
clear.

Example 4 Figure 1 shows several examples of annotated
relations. The value z131 in SWISS-PROT is the value at
cell (SWISS-PROT, (z131, AB), ID) which denotes the ID
column of tuple (z131, AB) in the SWISS-PROT relation.
Note that the attribute names in the tuple (z131, AB) have
been omitted. The annotation {a1} is the set of annotations
associated with this cell. Hence, A(SWISS-PROT, (z131,
AB), ID) is {a1}. In the result of Q2, A((p332, AB), Name) is
{a8, a10}. ��
Containment vs. Annotation-Containment. Two pSQL
queries Q and Q′ are equivalent, denoted as Q = Q′, if
for every database D, Q(D) = Q′(D). The query Q is
contained in Q′, denoted as Q ⊆ Q′, for every database
D, Q(D) ⊆ Q′(D). Two pSQL queries Q and Q′ are
annotation-equivalent, denoted as Q =a Q′, if Q and Q′
produce the same annotated output on all databases. More
precisely, this means that for every database D, Q(D) is
equal to Q′(D) and the set of annotations A(Q(D), t, i) is
identical to A(Q′(D), t, i) for every output location (t, i)
in Q(D). A pSQL query Q is annotation-contained in Q′,
denoted as Q ⊆a Q′, if for every database D, we have
Q(D) ⊆ Q′(D) and for every output location (t, i) in
Q(D), it is the case that A(Q(D), t, i) ⊆ A(Q′(D), t, i).

Example 5 The queries Q′ and Q′′ in Example 2 are
equivalent. However, they are not annotation-equivalent
since different annotations are associated with the results.
Consider the following query Q:

SELECT DISTINCT g.ID AS ID, g.Desc AS Desc
FROM Genbank g
PROPAGATE g.ID TO ID, g.Desc TO ID, g.ID TO Desc

The query Q3 of Example 3 is annotation-contained in
Q since they are equivalent and the annotations associated

378 D. Bhagwat et al.

with each cell in the result of Q3 is contained in the set of
annotations associated with the corresponding cell in the re-
sult of Q. Intuitively, Q3 is annotation-contained in Q be-
cause they are equivalent and the ID attribute in the selectlist
of both queries receive the same annotations from g.ID and
g.Desc. Furthermore, the Desc attribute in the selectlist of Q
receives annotations from g.ID. ��

2.1 The custom propagation scheme

We allow the user the flexibility to specify custom propaga-
tion schemes using a PROPAGATE clause of the form “r1.A1
TO B1, . . . , rn .An TO Bn”. The queries Q3 of Example 3
and Q of Example 5 are examples of pSQL queries with
custom propagation scheme. The semantics of a pSQL query
fragment Q with custom propagation scheme is as follows.
For every binding µ of tuple variables to tuples in the re-
spective relations according to the fromlist of Q such that the
conditions in the wherelist are satisfied, emit an output tuple
t according to the selectlist. For every clause “ri .Ai TO Bi ”
specified in the PROPAGATE clause, we add the set of anno-
tations at the location (ri , Ai) to the set of annotations (ini-
tially empty) at the output location (t , Bi). Finally, duplicate
output tuples are merged. Suppose t1, . . . , tk are the emitted
tuples and s1, . . . , sm are the tuples that result when dupli-
cate output tuples have been merged. Then, for every output
location (s, B), we have A(s, B) = ⋃

t j =s, j∈[1,k] A(t j , B).

Example 6 To illustrate the effect of removing duplicate
output tuples and merging annotations of duplicate tuples,
consider the query below:

SELECT DISTINCT Name AS Name
FROM PIR
PROPAGATE DEFAULT

The result of executing the above query will merge the anno-
tations a8 and a10 of the Name values of the first and second
tuple in PIR. Hence, the final output is a single tuple (AB)
with annotations {a8, a10}.

As another example, the query Q3 of Example 3 has a
custom propagation scheme where annotations on both ID
and Desc columns of each tuple propagate to the ID col-
umn of the output tuple. As a consequence, the ID column
of every output tuple is the union of annotations associated
with the ID and Desc columns of the corresponding tuple in
Genbank. ��

Observe that the result of a pSQL fragment evaluated
over a database would not contain any duplicate tuples, since
we assume set semantics. We refer the reader to Sect. 6.2 for
a discussion on extending pSQL to handle bag semantics as
well.

2.2 The default propagation scheme

If PROPAGATE DEFAULT is used in a pSQL query frag-
ment, the set of annotations of a piece of output data consists

of all the annotations associated with the locations where
that piece of data is copied from in the source.

The semantics of a pSQL query fragment Q with the
default propagation scheme is as follows. For every bind-
ing of tuple variables to tuples in the respective relations
according to the fromlist of Q such that the conditions in
the wherelist are satisfied, emit an output tuple t according
to the selectlist as well as the corresponding sets of annota-
tions for every cell in t . Since every value of an output cell c′
in t is generated from some value of an input cell c accord-
ing to the current bindings, the set of annotations attached
to c is also attached to c′. Finally, duplicate output tuples
are merged together. Suppose t1, . . . , tk are the emitted tu-
ples and s1, . . . , sm are the tuples that result when duplicate
output tuples have been merged. That is, for every output
location (s, B), we have A(s, B) = ⋃

t j =s, j∈[1,k] A(t j , B).

Example 7 Suppose we have the following pSQL query
where each fragment uses the default propagation scheme.

SELECT DISTINCT Desc AS Desc
FROM SWISS-PROT
PROPAGATE DEFAULT
UNION
SELECT DISTINCT Desc AS Desc
FROM Genbank
PROPAGATE DEFAULT

Result:
Desc
AB {a2, a12}
CC {a4, a14}
ED {a6}

The first subquery emits an output tuple “AB” with anno-
tations {a2} and the second subquery emits the same output
tuple “AB” but with annotations {a12}. The merged result of
these two tuples is a single output tuple “AB” with anno-
tations {a2, a12}. This explains the first output tuple in the
result. A similar reasoning applies to the rest of the output
tuples. ��

It is easy to see that a pSQL query fragment with default
propagation scheme can be translated into a pSQL query
fragment with custom propagation scheme. For example, the
query Q1 of Example 1 can be rewritten into a pSQL query
with custom scheme where the propagate clause is replaced
by “PROPAGATE s.ID TO ID, s.Desc TO Desc” since the
ID value and Desc value of an output tuple are copied from
s.ID and s.Desc, respectively.

2.3 The default-all propagation scheme

A pSQL query with the default propagation scheme is, es-
sentially, an SQL query with annotations propagated based
on where a value is retrieved according to the syntax of
the query. We have already seen an example of two pSQL
queries under the default propagation scheme (Example 2)
which are equivalent but not annotation-equivalent.

This motivates us to define a third propagation scheme,
called the default-all scheme, where the annotation propa-
gation behavior of a pSQL query is invariant to the syntax
of the query. A pSQL query Q with default-all propagation

An annotation management system for relational databases 379

scheme propagates annotations according to the default
propagation behavior of all equivalent formulations of Q.
The resulting tuples that are generated by all equivalent
queries of Q according to the default scheme are then
merged together. Despite the fact that there are infinitely
many equivalent formulations of Q, we describe a method
that would compute the desired result by examining only a
finite number of pSQL queries. We call such a finite set of
queries a query basis of Q.

Definition 2 Let Q denote a pSQL query with default-all
propagation scheme. Let SQL(Q) denote the SQL query that
corresponds to Q and let E(SQL(Q)) denote the set of all
pSQL queries Q′ under the default propagation scheme such
that SQL(Q′) is equivalent to SQL(Q). A query basis of Q,
denoted as B(Q), is a finite set of pSQL queries such that

⋃

q∈B(Q)

q =a

⋃

q∈E(SQL(Q))

q

We describe next an algorithm that finds a query basis
for a pSQL query with default-all propagation scheme. The
size of the query basis that the algorithm returns is always
polynomial in the size of Q. (The size of a query basis is
the sum of sizes of each pSQL query fragment in the query
basis. The size of each pSQL query fragment is the sum of
the number of attributes in the selectlist, the number of rela-
tions in the fromlist and the number of attributes appearing
in the wherelist.)

3 Generating a query basis

The algorithm for computing a query basis for a pSQL query
with default-all propagation scheme proceeds by first gener-
ating a representative query of Q, called Q0. (This is Step 1
of the algorithm Generate-Query-Basis below.) Intuitively,
a representative query of Q is a query that is equivalent to Q
and for every attribute B that is equal or transitively equal to
an attribute A in the selectlist of Q, the annotations of B are
propagated to A. More precisely, if A is among the selectlist
and we have A = B and D = B in the wherelist of Q, then
the propagatelist will contain the propagate clauses “A TO
A”, “B TO A” and “D TO A”.

From Q0, a finite number of auxiliary queries are also
generated and these queries, together with Q0, form a query
basis of Q. (This is Step 2 of the algorithm.) Each auxil-
iary query is equivalent to Q but may propagate additional
annotations to the output that are not propagated by Q0. In
other words, every output value may contain additional an-
notations from attributes of other relations which contain
identical values. Intuitively, only a finite number of aux-
iliary queries are needed because only one auxiliary query
needs to be generated for each attribute of a relation that
contributes annotations to the output. In the rest of the dis-
cussion, we restrict our language to be pSQL query frag-
ments. In other words, a query basis of Q, denoted as
B(Q), is a finite set of pSQL query fragments such that

⋃
q∈B(Q) q =a

⋃
q∈E(SQL(Q)) q , where E(SQL(Q)) de-

notes the set of pSQL query fragments Q′ such that SQL(Q′)
is equivalent to SQL(Q).

We present next an algorithm for generating a query ba-
sis of a pSQL query fragment with default-all propagation
scheme. The algorithm can be extended to handle pSQL
queries (i.e., union of pSQL query fragments) in general and
the details are described in the Appendix.

Algorithm Generate-Query-Basis
Input: A pSQL query fragment Q with default-all propagation
scheme.
Output: A query basis of Q, B(Q).
Let Q be a pSQL query fragment of the form shown in Definition 1
with PROPAGATE DEFAULT-ALL clause.

1. Generate Q0, the representative query of Q.
Generate a query Q0 that is identical to Q except that the prop-
agation scheme of Q is replaced with the following propagation
scheme:
For every attribute “r.A AS C” in the selectlist, add “r.A TO C” to
the PROPAGATE clause.
For every attribute “r.A AS C” in the selectlist and every attribute
s.B that is equal to r.A or transitively equal to r.A according to the
wherelist, add “s.B TO C” to the PROPAGATE clause.
(The effect is that all attributes that are equal to an attribute C in
the selectlist have their annotations propagated to C .)

2. Generate auxiliary queries of Q0.
Initialize B(Q) to the empty set. Add Q0 to B(Q). For every
attribute “r.A AS C” in the selectlist of Q0 and every “s.B TO D”
in the PROPAGATE clause of Q0 where C=D, do the following:
Create a query Q′ that is identical to Q0. Assume that s is a tuple
variable for relation S. Add “S s′” to the fromlist of Q′ where s′
is a tuple variable that does not occur in Q′. Add “s′.B=s.B” to
the wherelist of Q′ and “s′.B TO C” to the PROPAGATE clause
of Q′. (The auxiliary query Q′ is equivalent to Q but may carry
additional annotations to the output.)

3. Return B(Q).

Example 8 Consider the three databases, SWISS-PROT,
PIR, and Genbank along with a Mapping table that contains
the correspondences between identifiers of genes and
proteins in the three databases in Fig. 1. Such mapping
tables commonly occur in integrating many sources with
overlapping information [26]. Suppose we have the follow-
ing query Q that integrates information from SWISS-PROT
and PIR.

SELECT DISTINCT t .swissprot AS ID,
p.Name AS Name, s.Desc AS Desc

FROM Mapping Table t , SWISS-PROT s, PIR p
WHERE t .swissprot = s.ID AND t .pir = p.ID
PROPAGATE DEFAULT-ALL

After Step 1 of the above algorithm, we obtain the
following representative query Q0:

SELECT DISTINCT t .swissprot AS ID,
p.Name AS Name, s.Desc AS Desc

FROM Mapping Table t , SWISS-PROT s, PIR p
WHERE t .swissprot = s.ID AND t .pir = p.ID
PROPAGATE t .swissprot TO ID, s.ID TO ID,

p.Name TO Name, s.Desc TO Desc

Note that the annotations of t .swissprot and s.ID will
propagate to the output ID column according to Q0. The

380 D. Bhagwat et al.

Fig. 2 Some of the auxiliary queries generated by Step 2 of Generate-Query-Basis on Example 8

second step of the algorithm generates four auxiliary
queries. The first query is shown below and the rest are
shown in Fig. 2.

Q1 =
SELECT DISTINCT t .swissprot AS ID,

p.Name AS Name, s.Desc AS Desc
FROM Mapping Table t , SWISS-PROT s, PIR p, Mapping Table t ′
WHERE t .swissprot = s.ID AND t .pir = p.ID AND

t ′.swissprot = t .swissprot
PROPAGATE t .swissprot TO ID, s.ID TO ID,

p.Name TO Name, s.Desc TO Desc,
t ′.swissprot TO ID

The query Q1 differs from Q0 only in the additional
highlighted terms shown in Q1. There is an extra rela-
tion, condition and propagation in the FROM, WHERE, and
PROPAGATE clauses, respectively. It is easy to verify that
the SQL queries of Q0 and Q1 are equivalent. There is a ho-
momorphism h from the tuple variables of Q1 to those of Q0
such that h maps the fromlist of Q1 to a subset of the from-
list of Q0 and the conditions in the wherelist of Q0 imply
the conditions in the wherelist of Q1 under h. Furthermore,
h maps the selectlist of Q1 to the selectlist of Q0. There
is also a homomorphism in the reverse direction. Similarly,
Q2, Q3, and Q4 of Fig. 2 are each equivalent to Q0. ��

Intuitively, the representative query Q0 propagates
annotations according to where data is copied from and
also where data could have been equivalently copied from.
The reason why Q0 is generated becomes clearer if we
represent Q in conjunctive query-like notation, which we
will continue to use throughout the rest of the discussion,
for ease of exposition. In conjunctive query-like notation, a
query Q is represented as

H(x̄) : −S1(ȳ1), . . . , Sn(ȳn), equalities.

where x̄, ȳi , i ∈ [1, n], denote vectors of variables and every
variable in x̄ occurs in ȳi for some i ∈ [1, n] and equalities
is a list of zero of more y=c clauses where y is a variable
that occurs amongst ȳi s and c is a constant. The variables
in x̄ are called distinguished variables. Each subgoal
corresponds to a relation in the fromlist of Q. The equalities
between attributes in the wherelist of Q are represented

by using the same variable in the respective positions of
relations in the conjunctive query-like representation of Q.
An equality between an attribute and constant is written
out as equalities. The head of the query H(x̄) represents
the selectlist of Q. We use C(Q) to denote the conjunctive
query-like representation of the SQL query that corresponds
to Q. For example, C(Q0) of Example 8 can be written as

H0(x, y, z) :-Mapping Table(w, x, u, v), SWISS-PROT(x, z),
PIR(u, y).

Similar to the semantics of pSQL queries with the default
propagation scheme, annotations are propagated according
to where data is copied from for such queries [7] by trac-
ing the occurrence of distinguished variables in the query.
For example, by tracing the occurrence of the variable x in
the query H0, we can conclude that the annotations in the
first column of an output tuple t are obtained from the an-
notations of the second column of a tuple in Mapping Table
and the first column of a tuple in SWISS-PROT that cre-
ated t . A similar argument applies to the variables y and z
in H0. Hence, the representative query Q0 of Example 8 is
annotation-equivalent to C(Q0).

We next focus on showing that given a query Q,
the algorithm Generate-Query-Basis(Q) correctly generates
B(Q), the query basis of Q. We first formally show that
the representative query Q0 generated by the algorithm is
annotation-equivalent to its conjunctive query-like represen-
tation, C(Q0) (Proposition 1). Using this result, we further
show that the conjunctive query-like representation of each
query generated by our Generate-Query-Basis algorithm is
annotation-contained in

⋃
q∈B(Q) q , the union of all queries

in B(Q) (Proposition 2). Moreover, Lemma 1 shows that ev-
ery query that is equivalent to Q is annotation-contained in⋃

q∈B(Q) q . Finally, we prove our main result (Theorem 1)
which states that the algorithm Generate-Query-Basis cor-
rectly generates a query basis B(Q) for the input query Q.

Proposition 1 The representative query Q0 that is gener-
ated by Generate-Query-Basis(Q) is annotation-equivalent
to its conjunctive query-like representation, C(Q0).

Proof Obviously, the query Q0 is equivalent to C(Q0) since
there is a subgoal S in C(Q0) for every relation S in the

An annotation management system for relational databases 381

fromlist of Q0 and vice versa, there is an equality condi-
tion e in C(Q0) for every equality condition e the wherelist
of Q0 and vice versa and the head of C(Q0) produces
the same attributes as the selectlist of Q0. We show next
that Q0 and C(Q0) are annotation-equivalent by showing
that for every database D and every output location (t, i)
of Q0(D), the set of annotations A(Q0(D), t, i) is equal
to A(C(Q0)(D), t, i). We show that if a location l ′ in
the source D corresponds to a location l in the output of
C(Q0)(D), then the annotations at l ′ are part of the annota-
tions at l according to Q0 and D. The converse is also true.

According to the semantics of conjunctive queries with
annotation propagation stated in [7] (Appendix A.1), the set
of annotations associated with an output location l is the
union of the sets of annotations associated to each source
location l ′ that corresponds to l. A location (s, i) in D cor-
responds to (t, j) in C(Q0)(D) where C(Q0) is of the form
“H(x̄) : −S1(ȳ1), . . . , Sn(ȳn), equali ties” if the following
holds:

– for some k ∈ [1, n], ȳk[i]=x̄[j], and there exists a val-
uation ϕ from C(Q0) into D such that H(ϕ(x̄)) = t ,
Sk(ϕ(ȳk))=s and the equalities are satisfied.

Suppose there is such a valuation ϕ for C(Q0) as stated
above. Then there is a valuation ϕ′ for Q0 that produces t .
The valuation ϕ′ is such that ϕ′(r)=S(ϕ(ȳ)) where r is a tu-
ple variable in Q0 and S(ȳ) is the corresponding subgoal in
C(Q0) which represents the relation that r ranges over. So
ϕ′(u)=s for the tuple variable u in Q0 which ranges over the
relation Sk and the output tuple is t under ϕ′ according to
Q0. Since ȳk[i]=x̄[j] in C(Q0), it must be that the attribute
at position i of Sk (call it A) is equal to the attribute at posi-
tion j in the selectlist of Q0 (call it B) or transitively equal
to B. Hence, there must be a clause “PROPAGATE u.A TO
B” in the propagate clause of Q0. Therefore, under the val-
uation ϕ′, the annotations at (s, i) are part of the annotations
at (t, j) according to Q0 and D.

For the converse, suppose there is a valuation ϕ for Q0
and D such that the annotations at (s, i) are part of the anno-
tations at (t, j) according to Q0 and D with ϕ. So ϕ(u)=s for
some tuple variable u in Q0 and the output tuple is t under ϕ.
Clearly, there must also be a valuation ϕ′ for C(Q0) and D
that produces t . The valuation ϕ′ is such that S(ϕ′(ȳ))=ϕ(r)
where r is a tuple variable in Q0, S(ȳ) is a subgoal in C(Q0)
and S is the relation that r ranges over. So there exists a
subgoal Sk(ȳk) in C(Q0) for some k ∈ [1, n] such that
Sk(ϕ

′(ȳk))=s=ϕ(u). Let the i th attribute of s be A and the
j th attribute of the output tuple t be B. Hence, there must be
a “PROPAGATE u.A TO B” clause in Q0 and “v.C AS B” is
in the selectlist for some tuple variable v and attribute C . Ac-
cording to Generate-Query-Basis algorithm, this means that
either u.A is equal to v.C or transitively equal to v.C . Hence,
in C(Q0), it must be that ȳk[i]=x̄[j]. So we have ȳk[i]=x̄[j],
H(ϕ′(x̄))=t , Sk(ϕ

′(ȳk))=s and the equalities are satisfied
under ϕ′. Hence, (s, i) corresponds to (t, j) according to
C(Q0) and D with valuation ϕ′. ��

In Step 2, the algorithm generates one query for every
position in the body where a distinguished variable occurs
in H0. For example, the following four auxiliary queries,
in conjunctive query notation, are generated based on H0.
They are annotation-equivalent to the pSQL query fragments
Q1, . . . , Q4 shown in Example 8 and Fig. 2, respectively.

H1(x, y, z) :- Mapping Table(w, x, u, v), SWISS-PROT(x, z),
PIR(u, y), Mapping Table(w1, x, w2, w3).

H2(x, y, z) :- Mapping Table(w, x, u, v), SWISS-PROT(x, z),
PIR(u, y), SWISS-PROT(x, w1).

H3(x, y, z) :- Mapping Table(w, x, u, v), SWISS-PROT(x, z),
PIR(u, y), SWISS-PROT(w1, z).

H4(x, y, z) :- Mapping Table(w, x, u, v), SWISS-PROT(x, z),
PIR(u, y), PIR(w1, y).

Proposition 2 For every query Q′ ∈ B(Q) where B(Q)
is the result of Generate-Query-Basis(Q), C(Q′) is
annotation-contained in

⋃
q∈B(Q) q.

Proof First, C(Q0) is annotation-contained in
⋃

q∈B(Q) q
since Q0 ∈ B(Q) and C(Q0) is annotation-equivalent to
Q0 according to Proposition 1.

Let Q′ denote a query in B(Q) and Q′ is not Q0. That
is, Q′ is one of the auxiliary queries. Let C(Q′) be of the
form “H(x̄) : −S1(ȳ1), . . . , Sn(ȳn), equalities”. Given any
database D, let (s, i) be a location in D which corresponds to
a location (t, j) in C(Q′)(D) on a valuation ϕ. So Sk(ϕ(ȳk))
= s for some k ∈ [1, n] and H(ϕ(x̄)) = t and ȳk[i] = x̄[j].
There is also a valuation ϕ′ for Q′ and D which produces t .
The valuation ϕ′ is such that ϕ′(r) = S(ϕ(ȳ)) where r is a
tuple variable in Q′ and S(ȳ) is the corresponding subgoal in
C(Q′) which represents the relation that r ranges over in Q′.
So ϕ′(r1)=s for the tuple variable r1 in Q′ which ranges over
the relation Sk and the output tuple is t under ϕ′ according
to Q′. We show next that for every annotation propagated
by Q′, there is a query in B(Q) that would propagate the
annotation in the same way.

Suppose Sk(ȳk) is a subgoal among the subgoals of
C(Q0) where Q0 is the representative query generated by
Step 1 of the algorithm Generate-Query-Basis. (Recall that
C(Q′) differs from C(Q0) in that it has an additional sub-
goal added by Step 2 of the algorithm.) Since ȳk[i]=x̄[j] and
Sk(ȳk) is a subgoal among the subgoals of C(Q0), it must
be that the attribute at position i of Sk (call it B) is equal
to the attribute at position j in the selectlist of Q′ (call it
A) or transitively equal to A. Hence, there must be a clause
“PROPAGATE r1.B TO A” in the propagate clause of Q0
(and hence Q′). Therefore, under the valuation ϕ′, the anno-
tations at (s, i) are part of the annotations at (t, j) according
to Q′ and D.

Suppose Sk(ȳk) is not a subgoal among the subgoals of
C(Q0). That is, Sk(ȳk) is the subgoal that corresponds to the
extra relation in the fromlist, added by Step 2 of algorithm
Generate-Query-Basis. Let the attribute at the i th position of
Sk be B. By Step 2 of the algorithm, it must be that the condi-
tion “r1.B=r2.B” is the added condition in the wherelist for
some tuple variable r2 that ranges over a second Sk relation
in Q′ and “r1.B TO C” is the added propagate clause of Q′
for some output attribute C in the selectlist. Let the attribute

382 D. Bhagwat et al.

at the j th position of the output be A. If C is the same as
A, then the annotations at (s, i) are part of the annotations
at (t, j) according to Q′ and D under the valuation ϕ′. Sup-
pose C is not equal to A. Since “r1.B=r2.B” and ȳk[i]=x̄[j]
in C(Q′), it must be that r2.B is equal or transitively equal
to A. (Therefore, Q0 must contain “r2.B TO A” in the prop-
agate clause.) Hence, there must be a query q in B(Q) which
is identical to Q′ except that “r1.B TO A” is in the propagate
clause instead of “r1.B TO C”. Therefore, under the valua-
tion ϕ′, the annotations at (s, i) are part of the annotations at
(t, j) according to q and D. ��

Each auxiliary query carries annotations to the output
that may have been missed by the representative query of
Q. We shall show next that the set of pSQL query fragments
in B(Q) generated by the algorithm is a query basis for Q.
We first prove the following lemma.

Lemma 1 Let B(Q) denote the result produced by the algo-
rithm Generate-Query-Basis(Q), where Q is a pSQL query
fragment, and let Q′ denote a pSQL query fragment under
the default propagation scheme. If Q′ is equivalent to Q,
then Q′ is annotation-contained in

⋃
q∈B(Q) q.

Proof The representative query Q0 that is generated at
Step 1 of the algorithm is annotation-equivalent to the
conjunctive query representation of the SQL query that
corresponds to Q, C(Q) (Proposition 1). We can also easily
verify that Q′ ⊆a C(Q′). Since C(Q) and C(Q′) are
equivalent queries, the minimal queries of C(Q) and C(Q′)
are identical up to variable renaming. For convenience,
we shall assume that the minimal queries are identical in
the form shown below. We also assume that there are no
equalities between variables and constants, for convenience.
(A minimal query is a query in which no subquery, one that
has less subgoals or joins, is equivalent to it.)

C(Q): H(x̄) :- minpart, rest1.
C(Q′): H(x̄) :- minpart, rest2.
The subgoals denoted by minpart are the subgoals in the

minimal query of C(Q) or C(Q′) and rest1 and rest2 de-
note the rest of the subgoals in C(Q) and C(Q′), respec-
tively. Our proof makes use of an earlier result in [7] ex-
tended for unions of conjunctive queries. Given a conjunc-
tive query Q, we use the notation Q[0] to denote the head
of Q, the notation Q[i], i > 0, to denote the i th subgoal
of Q, and var(Q[i]) to denote the list of variables of the i th
subgoal of Q.

Fact 1 ([27], Appendix A.3) Given two unions of conjunc-
tive queries Q = ⋃m

i=1 Qi and Q′ = ⋃n
j=1 Q′

j , Q ⊆a Q′ if
and only if for every Qr where r ∈ [1, m], every variable x ,
every i , and every p such that x that occurs at both the i th po-
sition of var(Qr [0]) and the j th position of var(Qr [p]), there
exists a homomorphism h from Q′

s (for some s ∈ [1, n]) to
Qr such that

1. h maps the body of Q′
s into the body of Qr and the head

of Q′
s to the head of Qr , and

2. the variable that occurs at the j th position of the qth
subgoal of Q′

s (i.e., var(Q′
s[q])[j]) is identical to the

variable at the i th position of the head of Q′
s (i.e.,

var(Q′
s[0])[i]), where Q′

s[q] is a pre-image of Qr [p]
under h. That is, for some subgoal q , var(Q′

s[q])[j] =
var(Q′

s[0])[i] and h(Q′
s[q]) = Qr [p].

We shall show next that for every distinguished variable
x at the i th position in the head of C(Q′) and its occurrence
at the j th position of the pth subgoal S(ū) (i.e., the j th vari-
able of ū is x) in the body of C(Q′), there is a generated
query Qg in B(Q) and a homomorphism h : C(Qg) →
C(Q′) that satisfies the conditions (1) and (2) stated in the
fact. Then by the above fact, we have C(Q′) ⊆a C(Qg).
By Proposition 2, we know that C(Qg) ⊆a

⋃
q∈B(Q) q .

Therefore, C(Q′) ⊆a
⋃

q∈B(Q) q . Since Q′ ⊆a C(Q′) and
C(Q′) ⊆a

⋃
q∈B(Q) q , we have Q′ ⊆a

⋃
q∈B(Q) q , which

was to be shown.
Let x be a distinguished variable at the i th position in the

head of C(Q′) and suppose x occurs at the j th position of
the pth subgoal S(ū) of C(Q′).

Case 1 If S(ū) is among the subgoals in the minpart of
C(Q′), then it must also be among the subgoals in the min-
part of C(Q). Hence, the algorithm Generate-Query-Basis
would have generated one or more queries whose combined
effect is the query C(Qg), shown below,

H(x̄) :- minpart, rest1, S(w̄1, x, w̄2).

The variable x occurs at the j th position in the subgoal
S(w̄1, x, w̄2) and w̄1 and w̄2 are vectors of distinct variables
that do not occur in C(Q). This corresponds to Step 2 of
the algorithm where a new relation S is added to the FROM
clause. (Note that a clause “B TO A” is also added to the
PROPAGATE clause to simulate the effect of x propagating
annotations to the output. We assume that x occurs under
the attribute A in the output and B is the attribute name of
x in S in the named perspective. If x occurs under another
attribute D in the output of C(Qg), there will be another
query generated by Step 2 of the algorithm that propagates
the annotations of B to D. Hence, there is possibly more
than one pSQL query whose combined annotation propa-
gation effect equals that of C(Qg)). It is easy to see that
there is a homomorphism from C(Qg) to C(Q′) with the de-
sired properties required by the fact shown above. The ho-
momorphism is obtained by extending the homomorphism
h′ : C(Q) → C(Q′) which we know exists since C(Q) and
C(Q′) are equivalent. The homomorphism h′ is extended to
h′′ by mapping the i th variable in w̄1 to the corresponding
i th variable in ū and the i th variable in w̄2 to the (j + i)th
variable in ū (this is possible since w̄1 and w̄2 are distinct
variables). Clearly, h′′ satisfies the conditions required by
the above fact.

Case 2 If S(ū) are among the subgoals in rest2 of C(Q′),
we first claim that a subgoal S(ū′), where the j th variable
of u′ is x , must also occur among subgoals in the minpart
of Q′. With this, a similar argument presented before shows

An annotation management system for relational databases 383

that there must be a homomorphism from a query C(Qg)
to C(Q′) with the desired conditions required by the above
fact, which was to be shown.

We show next that if S(ū) are among the subgoals in
rest2 of C(Q′), there must exist such a subgoal S(ū′) among
the minpart of C(Q′) where the j th variable of ū′ is x . Since
there is a homomorphism g from C(Q′) to the minimal
query of C(Q′) and g(x)=x (since x is a distinguished vari-
able), this implies that there must be a subgoal S(. . . x . . .)
among the subgoals in the minpart of C(Q′) such that x oc-
curs at the j th position of this subgoal. We therefore con-
clude that S(ū′) exists. ��
Theorem 1 Let Q be a pSQL query fragment with
default-all propagation scheme. The algorithm Generate-
Query-Basis(Q) returns a query basis of Q.

Proof Let E(Q) denote the set of pSQL query fragments
q under the default propagation scheme such that the SQL
query that corresponds to q is equivalent to that of Q (i.e.,
SQL(q)=SQL(Q)). Let B(Q) denote the result of running
the algorithm Generate-Query-Basis on Q. By Lemma 1,
we have that

⋃
q∈E(Q) q ⊆a

⋃
q∈B(Q) q . Since B(Q) ⊆

E(Q) (the representative query and auxiliary queries are
each equivalent to Q), we immediately have

⋃
q∈B(Q) q ⊆a⋃

q∈E(Q) q and hence the result. ��
The next proposition shows that the size of a query basis

is polynomial in the size of Q. The size of a query basis is
the sum of sizes of each pSQL query fragment in the query
basis. The size of each pSQL query fragment is the sum of
the number of attributes in the selectlist, the number of rela-
tions in the fromlist and the number of attributes appearing
in the wherelist. This result shows that the result of execut-
ing a query basis is polynomial in the size of the database
(data complexity).

Proposition 3 Given a pSQL query fragment Q with
default-all propagation scheme, the number of queries
returned by Generate-Query-Basis(Q) is polynomial in
the size of Q. Furthermore, each query in Generate-
Query-Basis(Q) is polynomial in the size of Q.

Proof Let s, f , and w denote the number of clauses in the
selectlist, number of relations in the fromlist, and number
of equalities in the wherelist of Q, respectively. The size of
Q consists in the sum of the number of attributes in the se-
lectlist, the number of relations in the fromlist and the num-
ber of attributes appearing in the wherelist, that is |Q| is at
most s+ f +2∗w. One representative query Q0 is generated
by the algorithm. The size of the propagate list of Q0 is at
most s + s ∗ 2 ∗ w. (In the worst case, every attribute in the
wherelist propagates to every attribute in the selectlist.) The
number of auxiliary queries generated is therefore at most
s∗(s+s∗2∗w) which is |selectlist|∗|propagatelist|. Hence,
the total number of queries in Generate-Query-Basis(Q) is
at most 1 + s ∗ (s + s ∗ 2 ∗ w).

The size of the selectlist, fromlist, wherelist, and prop-
agatelist of Q0 is s, f , w, and at most s + s ∗ 2 ∗ w, re-
spectively. The size of each auxiliary query is thus at most
s + (f + 1) + (w + 2) + (s + s ∗ 2 ∗ w + 1) since one ad-
ditional relation, one condition, and one propagate clause is
added to Q0. ��
An optimization Observe that the auxiliary pSQL queries
overlap significantly in the PROPAGATE clauses (e.g., see
Fig. 2); they differ only in the last (highlighted) propaga-
tion. In fact, we show that the non-highlighted propagations
in the auxiliary queries are unnecessary (the details are omit-
ted). Intuitively, they are unnecessary because these propa-
gations are identical to the propagations of the representa-
tive query Q0. Hence, in our optimized implementation of
Generate-Query-Basis, these non-highlighted propagations
are not generated in the auxiliary queries. We refer to our
original implementation of algorithm Generate-Query-Basis
as the unoptimized implementation.

4 System architecture

The architecture of our annotation management system is
illustrated in Fig. 3. We have two main modules: the trans-
lator module and the postprocessor module. The translator
module takes as input a pSQL query and returns as output
an SQL query (i.e., a union of SPJ queries) which is sent
to the relational database management system (RDBMS).
The SQL query is then executed by the RDBMS. The tuples
that are returned by the RDBMS are sorted in a certain order
and sent to the postprocessor module which merges anno-
tations of identical cells of duplicate tuples together in one
pass through the sorted tuples.

4.1 A naive storage scheme

At present, we store our annotations using a naive storage
scheme: we assume that every attribute A of a relation
scheme R has an extra column Aa that will be used to store
annotations. We denote this new relation with extra columns
as R′. For example, a relation R(A, B) will be represented
as R′(A, Aa, B, Ba) in the naive storage scheme. Given a
tuple t in a relation of R, if {a1, . . . , ak} are the annotations
associated with the location (t, A), then there will be k
tuples t1, . . . , tk in R′ such that ti .Aa=ai for i ∈ [1, k]
and the projection of ti on the attributes of R equals t , for
i ∈ [1, k]. For convenience, we sometimes use the relation
name R to refer to R′. As an example, the two instances of
R shown below are both valid representations of the tuple

Translator Postprocessor
SQL
query RDBMS

sorted
tuples

PSQL
query

final
result

Fig. 3 Architecture of our system

384 D. Bhagwat et al.

(a {a1, a2}, b {b1}).

A Aa B Ba

a a1 b b1
a a2 b −

A Aa B Ba

a a1 b −
a a2 b −
a a2 b b1

Observe that a query returns the same result regardless
of the underlying storage instance used.
Propagating Provenance To use our system to automat-
ically propagate provenance along, we first associate each
cell with a distinct annotation to denote its address. In
what is shown below, R′ is defined as a view of an original
relation R using internal row identifiers:

CREATE VIEW R′ AS
SELECT A AS A, rowid||‘#A’ AS Aa ,

B AS B, rowid||‘#B’ AS Ba
FROM R

For the above view definition, rowid is an internal row
identifier used in many database systems such as Oracle
and Postgres. We refer the interested reader to [28] for a
detailed explanation of how one can automatically trace
the provenance and flow of data using this naive storage
scheme.

4.2 The translator

The translator module takes as input a pSQL query Q
and translates Q to an SQL query Q′ against the naive
storage scheme. A pSQL query with default or default-all
propagation scheme is first reformulated into one with a
custom propagation scheme. A pSQL query with the custom
propagation scheme is reformulated into an SQL query (i.e.,
a union of SPJ queries). The algorithm for reformulating
a pSQL query fragment with default propagation scheme
into a pSQL fragment with custom propagation scheme
is described briefly at the end of Sect. 2.2. The algorithm
for reformulating a pSQL query fragment with default-all
propagation scheme into a pSQL query fragment with
custom propagation scheme is described by the Generate-
Query-Basis algorithm in Sect. 3. We describe next the
algorithm for reformulating a pSQL query with custom
propagation scheme into an SQL query.

Algorithm Custom-pSQL-To-SQL

Input: A pSQL query fragment Q with custom propagation scheme.
Output: An SQL query Qs written against the naive schema.

Let Q be a pSQL query fragment of the form shown in Definition 1
with a custom-propagatelist.

1. Generate intermediate SQL queries. Each intermediate SQL query
retrieves annotations (as much as possible) from the naive schema
according to the given query Q.
Let Q0 be a query that is identical to Q except that it does not have
the PROPAGATE clause of Q.
For each output attribute C of Q, create an empty bin for C . De-
note this bin as bin(C). For each propagate clause “s.B TO C” in
the custom-propagatelist of Q, add “s.Ba AS Ca” to bin(C).

Let Q be the empty set of SQL queries. Repeat until all bins are
empty:

Let Q′ be a query that is identical to Q0. For each output
attribute C of Q, if bin(C) is nonempty, remove a clause
“s.Ba AS Ca” from bin(C) and add it to the selectlist of Q′.
If bin(C) is empty, we add “NULL AS Ca” to the selectlist
of Q′. Add Q′ to Q.

2. Generate a wrapper SQL query Qs for Q.
SELECT DISTINCT *
FROM (Q1 UNION · · · UNION Qn)
ORDER BY orderbylist

where Q = {Q1, ..., Qn} and orderbylist is the list of all
output attributes in the selectlist of Q. The orderbylist is
required so that the postprocessor can merge annotations
of identical tuples together with one pass over the result
of Qs .

3. Return Qs.

Example 9 Consider the SWISS-PROT relation of Fig. 1
and assume that there is an extra attribute Size. Suppose
we have the following pSQL query Q with custom propaga-
tion scheme written against SWISS-PROT:

SELECT s.ID AS ID, s.Desc AS Desc, s.Size AS Size,
FROM SWISS-PROT s
PROPAGATE s.ID TO Desc, s.Desc TO Desc,

s.Size TO Size,

Observe that every tuple in SWISS-PROT will be emit-
ted in such a way that the set of annotations associated with
the Desc column of a tuple in the output is the union of
annotations associated with both ID and Desc of the cor-
responding tuple in SWISS-PROT. Furthermore, the anno-
tations associated with the Size column of a tuple are
the same annotations associated with the Size column
of the corresponding tuple in SWISS-PROT and the col-
umn ID of every tuple in the output does not carry any
annotations.
In Step 1 of algorithm Custom-pSQL-To-SQL, the following
two intermediate SQL queries are generated since bin(ID) is
empty, bin(Desc) = { s.IDa AS Desca , s.Desca AS Desca}
and bin(Size) = { s.Sizea AS Sizea }.

Q1 = SELECT s.ID AS ID, NULL AS IDa
s.Desc AS Desc, s.IDa AS Desca ,
s.Size AS Size, s.Sizea AS Sizea ,

FROM SWISS-PROT s
Q2 = SELECT s.ID AS ID, NULL AS IDa

s.Desc AS Desc, s.Desca AS Desca ,
s.Size AS Size, NULL AS Sizea ,

FROM SWISS-PROT s

In Step 2, the algorithm generates the following wrapper
SQL query:

Qs = SELECT DISTINCT *
FROM (Q1 UNION Q2)
ORDER BY ID, Desc, Size

Observe that Q1 and Q2 are unioned and the result is
sorted according to the attributes in the selectlist of Q. The
tuples are sorted according to the selectlist of Q so that the
postprocessor can merge annotations associated with identi-
cal cells in the output of Q in one pass over the result of Qs .

An annotation management system for relational databases 385

Observe also that the number of SQL queries in Q is equal
to the maximum bin size. ��

4.3 The postprocessor

The postprocessor scans the set of tuples returned by the
RDBMS and unions together the annotations from duplicate
tuples for proper display. This operation is done in linear
time in the number and size of tuples retrieved, provided that
the set of emitted tuples is already sorted. For example, if the
postprocessor receives the first table of Sect. 4.1 as input, it
returns { (a {a1, a2}, b {b1}) }.
Example 10 Suppose the following tuples are returned by
the database system, sorted according to the attributes
A and B.

A Aa B Ba

a a1 b a2
a a3 b −
a − c a2

The result returned by the postprocessor is {(a {a1, a3},
b {a2}), (a {}, c {a2})}.

5 Experimental evaluation

We conducted several experiments to evaluate the feasibil-
ity of our annotation management system. Our main goal
is to compare the performance of queries under different
propagation schemes (default, default-all, or no propagation
scheme (i.e., SQL queries)) and to compare the performance
of queries when the number of annotations in a database is
varied.

5.1 Methodology

Our system is implemented with Java v1.4.2 on top of Or-
acle 9i Enterprise Edition Release 9.2.0.1.0. We conducted
the experiments on a Pentium 4, 2.8 GHz machine with
1 GB RAM.
Datasets The databases used to perform the experiments
are from the TPC Benchmark H (TPCH) Standard Specifica-
tion Revision 2.1.0 [29]. For our experiments we used TPCH
data of various sizes and we call these databases the unan-
notated databases. In order to create annotated datasets, we
modified the TPCH schema to conform to our naive stor-
age scheme by adding an additional attribute for every at-
tribute of every relation in the TPCH schema. For each
unannotated database, we have created three different in-
stances of the modified TPCH database schema correspond-
ing to 30, 60, and 100% annotated databases. A 30% an-
notated database means 30% of the total number of cells
in every relation of the database will contain an annota-
tion. We experimented with three datasets of sizes 100 MB,

500 MB, and 1 GB. In each dataset we have the unanno-
tated database and the three annotated databases (30, 60,
and 100%).
Workload We ran queries of increasing join sizes and with
varying number of output attributes to determine how well
our system scales for these types of queries. As mentioned
in Sect. 3, the number of joins and output attributes of a
query are in fact particularly important in our Generate-
Query-Basis algorithm. We did not use TPCH queries in
our experiments because they include aggregates and nested
queries.

The queries Q0, . . . , Q4 which denote queries with zero
to four joins, respectively, are shown in Fig. 4(a). For
example, Q2 denotes the query Supplier 	
 Nation 	

Region with two joins, on the attributes Nationkey and
Regionkey, respectively. The cardinality of each rela-
tion in the 100 MB dataset is shown in brackets. (For the
500 MB and 1 GB datasets, the cardinalities of relations Na-
tion and Region are the same, while the cardinalities of re-
lations Customer, Supplier and Partsupp are 5, and respec-
tively, 10 times larger.) Our workload consists of queries
Qi (1), Qi (3), Qi (5), i ∈ [0, 4], which denote the queries
with i joins and one, three, and five output attributes, re-
spectively.
Techniques We executed the workload queries under both
the default and the default-all schemes on the annotated
databases. We also executed the SQL query that corresponds
to each of these queries on the unannotated databases, in or-
der to be able to measure the overhead that the propagation
of annotations introduces in the overall running time of the
queries. All the experiments were performed on warm buffer
and the buffer size was set to 256 MB.

We have implemented and tested both optimized as well
as unoptimized versions of our Generate-Query-Basis al-
gorithm. In what follows we present only our results ob-
tained with the optimized version, as we observed that it
consistently and significantly outperforms the unoptimized
version.

5.2 Experimental results

Experiment 1 The goal of this experiment is to compare the
performance of pSQL queries under different propagation
schemes (default, default-all, or no propagation scheme). We
measured the performance of our system for queries under
the default and default-all propagation scheme on the 100%
annotated database in each of our three datasets. We exe-
cuted the workload queries Qi (1), Qi (3), Qi (5), i ∈ [0, 4]
on the 100% annotated databases. We also executed the
SQL query that corresponds to each of these queries on
the unannotated databases. The results we obtained with
the 100 MB, 500 MB, and 1 GB datasets are shown in
Fig. 4.

Figure 4(b) illustrates the execution time (the total time
taken by the translator, RDBMS, and postprocessor to
emit all tuples in the result) of each query for the default
and default-all propagation scheme on the 100% annotated

386 D. Bhagwat et al.

Suppkey

Nationkey

Supplier
(1000) Q0

Partsupp
(80000) Q3

Customer
(15000) Q4

Nation
(25) Q1

Nationkey

Region
(5) Q2

Regionkey

pSQL Default vs. pSQL Default-All
on 100% annotated 100Mb TPCH dataset

0.01

0.1

1

10

100

1000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB pSQL Default - 100% Annotated DB pSQL Default-All - 100% Annotated DB

(a) (b)

pSQL Default vs. pSQL Default-All
on 100% annotated 500Mb TPCH dataset

0.1

1

10

100

1000

10000

100000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB pSQL Default - 100% Annotated DB pSQL Default-All - 100% Annotated DB

pSQL Default vs. pSQL Default-All
on 100% annotated 1Gb TPCH dataset

0.1

1

10

100

1000

10000

100000

1000000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB pSQL Default - 100% Annotated DB pSQL Default-All - 100% Annotated DB

(d)(c)

Fig. 4 (a) Queries used in our experiments and (b)–(d) comparison in performance for default and default-all schemes on the 100 MB, 500 MB,
and respectively 1 GB dataset

database in the 100 MB dataset. As expected, the execution
time of each query under the default scheme (respectively,
the default-all scheme) increases slightly as more output at-
tributes are emitted (see, for instance, Q0(1), Q0(3), and
Q0(5)). The increase in time is due to longer execution time
taken by Oracle as well as additional overhead incurred in
postprocessing, as more attributes of different tuples need
to be compared. Additionally, for the default-all scheme, the
number of SPJ queries that are sent to Oracle increases (2, 4,
and 6 SPJ queries, respectively) as the number of output at-
tributes increases. Table 1 provides the exact execution times
of each query for 100% annotated database and the number
of SPJ queries that are generated for the default-all scheme.
We note that in the worst case, a query such as Q4(5) may
run about eight times slower than both the query with default
scheme and the actual SQL query. This is not unexpected,
however, as there are 6 SPJ queries, each with four joins,
that are generated and sent to Oracle for Q4(5), instead of 1.
In the best case (see Q4(1)), a query with default-all scheme
runs about twice as slow than the same query with default
scheme. We note however that for the default scheme, the
execution times of pSQL queries are comparable to those of
SQL queries. On the average, the pSQL queries with default
scheme that we experimented with took around 40% more

time to execute than their corresponding SQL queries, and at
best the execution time of a pSQL query with default scheme
is the same as the execution time of its corresponding SQL
query (e.g., Q4(1)).

For the default-all scheme there is no increase in the
number of pSQL and SPJ queries that are generated when
the number of joins increases, since the attributes that are
selected do not participate in the joins. (The performance
of default-all pSQL queries where attributes that participate
in the joins are selected as well is evaluated in Experiment
3.) The number of pSQL and SPJ queries that are generated
increases when the number of output attributes increases
and they increase linearly. The execution times of Q1(j),
j ∈ [1, 3, 5], decreases slightly when compared with Q0(j)
because a join on a small relation has been made.

We observed the same trends for larger datasets as well.
Figure 4(c) and 4(d) illustrate the execution time of each
query for the default and default-all propagation scheme on
the 100% annotated databases in the 500 MB, and respec-
tively, 1 GB datasets. However, we observed that the over-
head of propagating annotations under the default scheme
is smaller on larger datasets. On the average, the pSQL
queries with default scheme took only about 15 and 24%
more time to execute than their corresponding SQL queries

An annotation management system for relational databases 387

Table 1 The execution time of each query for each database in the 100 MB dataset and each propagation scheme. The columns “#pSQL” and
“#SPJ” denote the size of the query basis and number of SPJ queries that are generated, respectively, for the default-all scheme.

30% 30% 60% 60% 100% 100%
Query Unannotated Def Def-all Def Def-all Def Def-all #pSQL #SPJ
Q0(1) 0.0282 0.0374 0.1316 0.0408 0.125 0.0438 0.1308 2 2
Q1(1) 0.025 0.0344 0.0658 0.034 0.072 0.034 0.0624 2 2
Q2(1) 0.019 0.0312 0.0722 0.0342 0.0748 0.0346 0.075 2 2
Q3(1) 0.1532 0.1752 0.3622 0.1688 0.3594 0.1718 0.356 2 2
Q4(1) 92.4604 92.2198 190.7312 91.7214 190.826 91.2248 190.3552 2 2
Q0(3) 0.0252 0.0468 0.0848 0.0468 0.084 0.05 0.084 4 4
Q1(3) 0.0312 0.0502 0.0968 0.0374 0.0968 0.047 0.103 4 4
Q2(3) 0.0284 0.0502 0.1002 0.0562 0.0998 0.05 0.0968 4 4
Q3(3) 0.191 0.219 1.1186 0.2216 1.1188 0.225 1.1314 4 4
Q4(3) 100.0106 113.4292 422.6232 108.2372 424.6066 109.012 419.5722 4 4
Q0(5) 0.0502 0.069 0.1372 0.072 0.1438 0.069 0.1404 6 6
Q1(5) 0.0438 0.0654 0.138 0.0718 0.1312 0.0658 0.1412 6 6
Q2(5) 0.0406 0.0662 0.1498 0.0658 0.1468 0.0688 0.1466 6 6
Q3(5) 0.231 0.287 1.6128 0.2908 1.6096 0.2968 1.6064 6 6
Q4(5) 111.8918 131.3138 858.8238 130.5282 836.5362 130.6594 850.6284 6 6

on the 500 MB, and respectively, 1 GB dataset. This is ex-
plained by the fact that on larger datasets, the postprocess-
ing time tends to become less significant when compared to
the actual time taken by the database engine to execute the
queries.
Experiment 2 In this experiment we evaluate the influence
of the number of annotations in a database on the execution
time of pSQL queries under default or default-all schemes.
We executed the workload queries Qi (1), Qi (3), Qi (5), i ∈
[0, 4] under both default and default-all schemes on the 30,
60 and 100% annotated databases. The results we obtained
with the 100 MB, 500 MB, and 1 GB datasets are illustrated
in Fig. 5 (the results obtained with the 100 MB dataset are
also tabulated in Table 1).

We observed that the execution time of each query in-
creases only slightly across databases annotated in various
degrees and this fact is not unexpected. As the number of
annotations in the database increases, we expect an increase
in the postprocessing time, as more annotations need to be
compared and unioned together. Table 2 shows the average
percentage increases incurred in the total execution times of
the default and default-all queries we experimented with. On
the 100 MB dataset, for example, the total execution time
for default queries increases on the average 0.71% when the
number of annotations in the database is doubled from 30%
annotations to 60% annotations and 1.85% when the num-
ber of annotations is varied from 60% annotations to 100%
annotations. We also remark that an increase in the num-
ber of annotations in the database induces smaller increases
in the total execution times of default-all queries when com-
pared to default queries. This is intuitive because for default-
all queries, the postprocessing time is less significant when
compared to the actual time taken by the engine to execute
the queries.
Experiment 3 In this experiment we evaluate the effect
of selecting attributes that participate in join conditions on

the performance of default-all pSQL queries. For this pur-
pose, we measured the execution time of queries Qi (1 +
j), Qi (3 + j), Qi (5 + j), i ∈ [1, 3], j ∈ [1, i] under the
default-all propagation scheme on the annotated databases
in the 100 MB dataset. These queries are identical to our
original workload queries Qi (1), Qi (3), Qi (5), i ∈ [1, 3],
except that their selectlist additionally contains j attributes
selected among the attributes that appear in some join condi-
tion in the wherelist. For example, consider the query Q1(1)
which computes the join of tables Supplier and Nation on
the Nationkey attribute. The query Q1(1 + 1) is identical
to Q1(1), except that the attribute Nationkey (which does
not appear in the selectlist of Q1(1)) appears in the selectlist
of Q1(1+1). The execution times of these queries are shown
in Fig. 6 (they are also tabulated in Table 3). The execution
times of queries Qi (1), Qi (3), Qi (5), i ∈ [1, 3] are shown
as well, for comparison purposes. Table 3 also illustrates the
number of tuples retrieved by each query before the postpro-
cessing step. The number of output tuples retrieved by each
query after postprocessing is 1,000.

As expected, the execution time of the queries under
the default-all propagation scheme increases as more at-
tributes that participate in the joins are selected. On the
30% annotated database for example, the query Q2(1 + 1)
runs three times slower when compared to Q2(1) and the
query Q2(1 + 2) takes 15% more time to run compared to
Q2(1 + 1). This is expected, since more pSQL queries are
generated by our Generate-Query-Basis algorithm (hence
more SPJ queries are executed) as the number of selected
attributes involved in join conditions increases. As shown in
Table 3, there are 5, and respectively, 7 SPJ queries that are
executed in order to retrieve the correct annotations under
the default-all scheme for queries Q2(1 + 1) and Q2(1 + 2),
while only 2 SPJ queries are executed in case of Q2(1).
On the average, we observed that the queries we experi-
mented with took about 5.9, 6.2, and 34.5 times more time

388 D. Bhagwat et al.

pSQL Default on 100 Mb dataset annotated in various degrees

0.01

0.1

1

10

100

1000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated BD 30% Annotated DB 60% Annotated DB 100% Annotated DB

pSQL Default-All on 100 Mb dataset annotated in various degrees

0.01

0.1

1

10

100

1000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated BD 30% Annotated DB 60% Annotated DB 100% Annotated DB

(a) (b)

pSQL Default on 500 Mb dataset annotated in various degrees

0.1

1

10

100

1000

10000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB 30% Annotated DB 60% Annotated DB 100% Annotated DB

pSQL Default-All on 500 Mb dataset annotated in various degree

0.1

1

10

100

1000

10000

100000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB 30% Annotated DB 60% Annotated DB 100% Annotated DB

(c) (d)

pSQL Default on 1 Gb dataset annotated in various degrees

0.1

1

10

100

1000

10000

100000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB 30% Annotated DB 60% Annotated DB 100% Annotated DB

pSQL Default-All on 1 Gb dataset annotated in various degrees

0.1

1

10

100

1000

10000

100000

1000000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB 30% Annotated DB 60% Annotated DB 100% Annotated DB

(e) (f)

Fig. 5 Performance comparison for default and default-all pSQL queries on databases annotated in various degrees. (a), (b) Default and respec-
tively, default-all queries on the 100 MB dataset, (c), (d) default, and respectively, default-all queries on the 500 MB dataset and (e), (f) default,
and respectively, default-all queries on the 1 GB dataset

to execute on the 30, 60%, and respectively, 100% anno-
tated databases when one join attribute was selected com-
pared to the same queries with no join attributes appear-
ing in their selectlist. When two join attributes where se-
lected, the queries (Qi (1 + 2), Qi (3 + 2), Qi (5 + 2), i ∈
[2, 3]) run on the average about 1.03, 1.84, and 1.24 times
slower on the 30, 60%, and respectively, 100% annotated
databases compared to the same queries where only one join
attribute was selected (i.e., Qi (1+1), Qi (3+1), Qi (5+1),

i ∈ [2, 3]). Finally, the queries which select three join at-
tributes (Q3(1 + 3), Q3(3 + 3), Q3(5 + 3)) run about 4, 11,
and respectively, 10 times slower on the 30, 60%, and re-
spectively, 100% annotated databases compared to the same
queries where only two join attributes are selected (i.e.,
Q3(1 + 2), Q3(3 + 2), Q3(5 + 2)).

Observe that as the number of selected join attributes
increases, not only that there are more SPJ queries that
are executed, but the query engine and the postprocessor

An annotation management system for relational databases 389

Table 2 The average percentage increases incurred in the total execution times of the queries under both default and default-all schemes when
the number of annotations in the database is varied from 30 to 60% annotations and from 60 to 100% annotations

Default Default-all
30–60% 60–100% 30–60% 60–100%

Dataset (%) increase (%) increase (%) increase (%) increase
100 MB 0.71 1.85 0.10 0.02
500 MB 1.26 1.83 0.31 0.65
1 GB 1.22 1.36 0.44 0.99

Table 3 The execution time of each default-all query from Experiment 3 on the 30, 60, and 100% annotated databases in the 100 MB dataset.
The columns “#pSQL” and “#SPJ” denote the size of the query basis, and respectively, the number of SPJ queries that are generated. The columns
“#tuples” show the number of tuples retrieved by the queries before the postprocessing phase.

Query Unannotated 30% Def-All 60% Def-All 100% Def-All #pSQL #SPJ
#Tuples Exec. time #Tuples Exec. time #Tuples Exec. time #Tuples Exec. time

Q1(1) 1,000 0.025 1,000 0.0658 1,000 0.072 1,000 0.0624 2 2
Q1(1 + 1) 1,000 0.125 1,000 0.266 2,000 0.345 41,826 2.375 5 5
Q2(1) 1,000 0.019 1,000 0.0722 1,000 0.0748 1,000 0.075 2 2
Q2(1 + 1) 1,000 0.062 1,000 0.219 2,000 0.249 41,826 2.204 5 5
Q2(1 + 2) 1,000 0.032 1,000 0.25 8,000 0.688 47,826 2.937 7 7
Q3(1) 1,000 0.1532 1,000 0.3622 1,000 0.3594 1,000 0.356 2 2
Q3(1 + 1) 1,000 0.188 1,000 8.515 2,000 8.546 41,826 10 5 5
Q3(1 + 2) 1,000 0.187 1,000 6.547 8,000 7.359 47,826 13.718 7 7
Q3(1 + 3) 1,000 0.204 22,679 23.516 109,692 37.782 206,826 118.078 9 9
Q1(3) 1,000 0.0312 1,000 0.0968 1,000 0.0968 1,000 0.103 4 4
Q1(3 + 1) 1,000 0.063 1,000 0.234 2,000 0.313 41,826 3.093 7 7
Q2(3) 1,000 0.0284 1,000 0.1002 1,000 0.0998 1,000 0.0968 4 4
Q2(3 + 1) 1,000 0.047 1,000 0.266 2,000 0.328 41,826 3.077 7 7
Q2(3 + 2) 1,000 0.062 1,000 0.312 8,000 0.796 47,826 4 9 9
Q3(3) 1,000 0.191 1,000 1.1186 1,000 1.1188 1,000 1.1314 4 4
Q3(3 + 1) 1,000 0.187 1,000 6.937 2,000 6.859 41,826 15.485 7 7
Q3(3 + 2) 1,000 0.219 1,000 8.375 8,000 9.438 47,826 19.249 9 9
Q3(3 + 3) 1,000 0.219 22,679 30.015 109,692 115.202 206,826 334.532 11 11
Q1(5) 1,000 0.0438 1,000 0.138 1,000 0.1312 1,002 0.1412 6 6
Q1(5 + 1) 1,000 0.063 1,000 0.313 2,000 0.375 41,828 4.859 9 9
Q2(5) 1,000 0.0406 1,000 0.1498 1,000 0.1468 1,002 0.1466 6 6
Q2(5 + 1) 1,000 0.063 1,000 0.547 2,000 0.453 41,828 5.375 9 9
Q2(5 + 2) 1,000 0.063 1,000 0.375 8,000 1.047 47,828 6.11 11 11
Q3(5) 1,000 0.231 1,000 1.5128 1,000 1.6096 1,002 1.6064 6 6
Q3(5 + 1) 1,000 0.249 1,000 9.047 2,000 9.173 41,828 110.422 9 9
Q3(5 + 2) 1,000 0.265 1,000 10.953 8,000 12.297 47,828 117.984 11 11
Q3(5 + 3) 1,000 0.266 22,679 50.563 109,692 197.828 206,828 547.313 13 13

module are given significantly more tuples to sort and
respectively, merge. In the case of query Q1(1) for example,
there are 1,000 tuples that have to be sorted and further
postprocessed. However, in the case of query Q1(1 + 1)
(which additionally selects one join attribute), there are
2,000, and respectively, 41,000 tuples that have to be sorted
and postprocessed when this query is run on the 60%, and
respectively, 100% annotated databases. This explains why
Q1(1+1) runs about 5, and respectively, 38 times slower on
the 60%, and respectively, 100% databases when compared
to Q1(1). There is a simple explanation for the fact that as
many as 41,000 tuples are retrieved (before postprocessing)

when query Q1(1 + 1) is run on the 100% database. Recall
that this query performs a join between the tables Supplier
and Nation on the Nationkey attribute which is also
selected in the output. There are 1,000 tuples in Supplier
and 25 distinct values for the attribute Nationkey.
Since in the 100% database each value has one distinct
annotation, it follows that each distinct Nationkey value
in the table Supplier has about 40 distinct annotations.
According to our Generate-query-basis algorithm, a query
that performs a self-join of Supplier on the Nationkey
attribute will be executed in order to extract the 40 distinct
annotations for each Supplier tuple (these annotations are

390 D. Bhagwat et al.

pSQL Default-All on 100 Mb dataset
annotated in various degrees

0.01

0.10

1.00

10.00

100.00

1000.00

Q1(1)

Q1(1+1)
Q2(1)

Q2(1+1)

Q2(1+2)
Q3(1)

Q3(1+1)

Q3(1+2)

Q3(1+3)
Q1(3)

Q1(3+1)
Q2(3)

Q2(3+1)

Q2(3+2)
Q3(3)

Q3(3+1)

Q3(3+2)

Q3(3+3)
Q1(5)

Q1(5+1)
Q2(5)

Q2(5+1)

Q2(5+2)
Q3(5)

Q3(5+1)

Q3(5+2)

Q3(5+3)

se
co

nd
s (

lo
g

sc
al

e)

Unannotated DB 30% Annotated DB 60% Annotated DB 100% Annotated DB

Fig. 6 Performance comparison for default-all queries on the 100 MB dataset when the number of join attributes selected in the output is varied

all needed, according to the semantics of pSQL queries with
default-all propagation scheme). This query will clearly
generate around 40,000 tuples. Although it seems very
excessive to pull out all these 40 annotations for each
tuple in Supplier, we note however that this situation arose
precisely because each Nationkey value had a distinct
annotation in the Supplier table. A scenario where we may
have one annotation for each Nationkey value is when
we are interested in tracing the provenance of data and each
annotation represents an address. In this case, however, the
default scheme for propagating annotations is more suitable.
Our experimental results show that there may be significant
overhead to the default-all scheme when annotations can be
excessive.
Experiment 4 In this experiment we evaluate the perfor-
mance of pSQL queries with default and default-all prop-
agation schemes on databases annotated more than 100%.
For this purpose, we have created three additional databases
of size 100 MB with 130, 160%, and respectively, 200%
annotations. In the 130% (respectively, 160%) annotated
database, 30% (respectively, 60%) of the values have two
annotations, while the rest of the values have only one
annotation. In the 200% database, each value has two
annotations.

We measured the performance of our system for the
workload queries Qi (1), Qi (3), Qi (5), i ∈ [0, 4] under
the default and default-all propagation scheme on the 130,
160, and 200% annotated 100 MB databases. The results
we obtained are tabulated in Table 4 (For comparison
purposes, Table 4 also shows the execution time of the

corresponding SQL queries on the unannotated 100 MB
database.)

Figure 7 illustrates the execution time of each query
for the default and default-all propagation scheme on the
100 MB database with 200% annotations. As expected, the
execution time of each query under the default scheme (and
respectively, default-all scheme) increases as more output
attributes are emitted. As we previously explained (Exper-
iment 1), this increase is due to longer execution time taken
by Oracle, as well as additional overhead in postprocessing
and an increase in the number of SPJ queries that are gener-
ated and executed (for the default-all scheme). On average,
a pSQL default query Qi (1), Qi (3), Qi (5), i ∈ [0, 1, 2, 4]
took between three times (e.g., queries with 0 or 1 joins)
and 25 times (e.g., queries with 4 joins) more time to ex-
ecute compared to their corresponding SQL queries. This
is an obvious consequence of our naive scheme, since each
200% annotated relation has a double number of tuples com-
pared to the same relation with no annotations. This leads
to longer postprocessing time as well as longer execution
time taken by the query engine, as a double number of tu-
ples have to be processed from each relation. (Also note that
the more joins in the query, the longer the execution time
taken by the query engine.) Under the default-all scheme,
a query such as Q4(5) may run around 13 times slower
when compared to the same query with default propaga-
tion scheme, in the worst case. This is expected, since there
are 6 SPJ queries that are sent to the query engine, instead
of one. In the best case (see Q1(1)) a query with default-
all scheme runs about twice as slow then the same query

An annotation management system for relational databases 391

Table 4 The execution time of each query for each propagation scheme and each database annotated more than 100% in the 100 MB dataset. The
columns “#pSQL” and “#SPJ” denote the size of the query basis and number of SPJ queries that are generated, respectively, for the default-all
scheme.

Query Unannotated 130% Def 130% Def-all 160% Def 160% Def-all 200% Def 200% Def-all #pSQL #SPJ
Q0(1) 0.0282 0.0814 0.1846 0.084 0.1906 0.087 0.1844 2 2
Q1(1) 0.025 0.0746 0.122 0.0656 0.1314 0.072 0.1472 2 2
Q2(1) 0.019 0.069 0.1376 0.0782 0.1628 0.0908 0.2092 2 2
Q3(1) 0.1532 1.933 5.9284 2.875 9.2096 6.8282 37.4134 2 2
Q4(1) 92.4604 1644.0896 5029.2506 2648.0438 8392.7502 1682.842 5594.8612 2 2
Q0(3) 0.0252 0.1034 0.4622 0.1062 0.481 0.0966 0.5084 4 4
Q1(3) 0.0312 0.103 0.4968 0.1094 0.55 0.1062 0.5534 4 4
Q2(3) 0.0284 0.1128 0.5344 0.1126 0.6254 0.1312 0.725 4 4
Q3(3) 0.191 2.356 17.9904 3.4872 27.1808 7.569 135.0818 4 4
Q4(3) 100.0106 1973.217 16386.8308 3152.887 27529.0176 2324.8586 20096.4258 4 4
Q0(5) 0.0502 0.1438 0.953 0.1534 1.0408 0.1594 1.1088 6 6
Q1(5) 0.0438 0.1438 1.019 0.147 1.147 0.1498 1.216 6 6
Q2(5) 0.0406 0.147 1.1 0.156 1.443 0.175 1.5158 6 6
Q3(5) 0.231 2.7968 34.1068 4.153 51.9968 8.2562 346.1802 6 6
Q4(5) 111.8918 2347.7426 32228.192 3857.2314 53906.3124 3082.9914 42571.6014 6 6

pSQL Default vs. pSQL Default-All
on the 200% annotated 100MB TPCH database

0.01

0.1

1

10

100

1000

10000

100000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unannotated DB pSQL Default - 200% Annotated DB pSQL Default-All - 200% Annotated DB

Fig. 7 Comparison in performance for default and default-all schemes on the 100 MB database annotated 200%

under the default scheme. Under both default and default-all
schemes, the queries with 3 joins (i.e., Q3(1), Q3(3), and
Q3(5)) behaved unexpectedly. Under the default scheme,
these queries ran about 39 times slower (on the average)
compared to their corresponding SQL queries. The queries
Q3(3) and Q3(5) took about 17, and respectively, 42 times
longer to execute under the default-all scheme when com-
pared to the default scheme. While investigating this is-
sue we discovered that the anomaly arises because Ora-
cle chose really poor execution plans for these particular
queries.

Figure 8 shows the execution times of the queries with
default and default-all schemes on the 100 MB databases
with 100, 130, 160, and 200% annotations. On average, we

observed that the queries with default scheme run six times
slower when the number of annotations was increased from
100 to 130%. This is due to two factors. First, there are 30%
more tuples in the 130% annotated database compared to the
100% annotated database. Second, Oracle chose a poorer
plan for executing the queries on the 130% database, with a
different join ordering as well as different join algorithms.
The plan built for the 130% annotated database involved
the nested loops algorithm, while hash joins were used in
the plan constructed for the 100% annotated database. By
tweaking the Oracle optimizer, we were able to detect that
the plan built for the 100% annotated database (using hash
joins only) performed much better on the 130% annotated
database compared to the plan chosen by the optimizer

392 D. Bhagwat et al.

pSQL Default on 100 Mb dataset with more than 100% annotations

0.01

0.1

1

10

100

1000

10000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unnanotated DB 100% Annotated DB 130% Annotated DB 160% Annotated DB 200% Annotated DB

pSQL Default-All on 100 Mb dataset with more than 100% annotations

0.01

0.1

1

10

100

1000

10000

100000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

se
co

nd
s

(l
og

 s
ca

le
)

Unnanotated DB 100% Annotated DB 130% Annotated DB 160% Annotated DB 200% Annotated DB

(a) (b)

Fig. 8 Performance comparison for default (a) and default-all (b) pSQL queries on 100 MB databases with more than 100% annotations

(which involved nested loops). The queries with default
scheme run on the average about 1.2 times slower when
the number of annotations was increased from 130 to 160%
annotations, as well as from 160 to 200% annotations. This
increase in the execution time is mostly due to the fact
that the number of tuples in the database increases with
the number of annotations. In general, we observed that for
each query, the plan the optimizer chose for the 160 to 200%
annotated databases was the same as the plan chosen for the
130% annotated database. For the queries with 3 joins (i.e.,
Q3(1), Q3(3), and Q3(5)), the optimizer chose a poorer
plan on the 160% annotated database when compared to
the plans generated for both the 130 and 200% annotated
databases. This explains why these queries (under both
default and default-all propagation schemes) run slower
on the 160% annotated database than on both the 130 and
200% annotated databases. On the average, the queries with
default-all scheme took about 13, 1.3, and respectively, 1.8
times longer to execute when the number of annotations
was increased from 100 to 130% annotations, 130 to
160% annotations, and respectively, from 160 to 200%
annotations.
Empirical Conclusions All our results indicate that the
time required to translate the queries is insignificant when
compared to the execution time of the queries and the post-
processing time of the queries is proportional to the number
and size of emitted tuples. Also, the execution times of de-
fault queries on databases annotated up to 100% are compa-
rable to the performance of SQL queries since only one SPJ
is generated and the number of annotations in a database
does not have a major influence in the execution time of
pSQL queries in this case. The execution time of each query
for both default and default-all scheme increases marginally
when the number of annotations in the database is, for ex-
ample, doubled from 30% annotations to 60%. However,
the performance of pSQL queries starts to degrade signifi-
cantly on databases with more than 100% annotations. This
indicates that our naive storage scheme is perhaps not the

best suited in such conditions. As future work, we plan to
investigate the trade-offs between the naive storage scheme
and other possible storage schemes which we briefly discuss
in Sect. 6.1.

6 Discussion

6.1 Other possible schemes for managing annotations

Besides our naive storage scheme, there are other possible
schemes for storing and managing annotations. We briefly
discuss two of them next.
Annotation-Relation Storage Scheme In this scheme, an-
notations of a relation R are stored in a separate relation
R A, which we call the ‘annotation-relation of R’. The basic
schema of R A has three attributes (id, attribute, annotation)
where an id value uniquely identifies a tuple in R, a name
value is an attribute name in the schema of R and an anno-
tation value is an annotation of the location (id, name). An
id can either be the primary key of relation R, in which case
R A may have more than three attributes, or some unique
identifier used in the database system (e.g., rowid in Ora-
cle). For example, to store the tuples { (a {a1, a2}, b, {b1}),
(c, d) } of the relation R(A, B) with A as the key of the rela-
tion, we would have an annotation-relation R A(id, attribute,
annotation) with the following tuples: (a, A, a1), (a, A, a2),
(a, B, b1).

We have yet to investigate the trade-offs between the
naive scheme and annotation-relation scheme. However, we
expect that the annotation-relation scheme may require less
storage space than the naive scheme in general. On the other
hand, one needs to pay a performance penalty in using the
annotation-relation scheme as a join between R and R A is
required to retrieve the relevant annotations of a location
in R.
Nested Sets Approach It is easy to observe that the multi-
plicity of a tuple in the naive storage scheme depends on the

An annotation management system for relational databases 393

number of annotations associated with that tuple. Instead, a
more natural approach would have been to store annotations
associated with each location as nested sets (i.e., the rela-
tion R(A, B) would be stored as R′(A, Aa, B, Ba), where
Aa and Ba are of type nested set). Unfortunately, the nested
set approach is not currently feasible, since not all commer-
cial databases support nested sets and among those who do,
none offers satisfactory support for the operations we need.
As an example, in Oracle 10g the annotation union opera-
tion (i.e., the operation of merging duplicate tuples and their
corresponding annotations together) is not direct and has to
be performed in several steps.

6.2 Extensions

So far, our pSQL queries do not allow aggregates and bag se-
mantics (i.e., the DISTINCT keyword must be present). We
discuss briefly next how we might extend pSQL to handle
aggregates and bag queries as well.
Aggregates For the default propagation scheme, if a pSQL
query contains aggregates such as count, sum, and average,
we assume the semantics that no annotations are associated
with the result of these aggregates, since these aggregate val-
ues are not copied from any source values. However, for
aggregates such as min(a) and max(a), where a is an at-
tribute name, our semantics is that the annotations associ-
ated with the location of the resulting min (or max) value are
the union of all annotations of the corresponding a-values
whose value equals to the min (or max) value. It remains to
investigate whether the default-all propagation scheme for
pSQL queries with aggregates can be achieved.
Bag Semantics It is known from [30] that two conjunctive
queries are equivalent under bag semantics if and only
if they are isomorphic. This result of [30] implies that to
propagate annotations for a pSQL query under the default-
all propagation scheme and bag semantics, it suffices to
generate only the representative query of that pSQL query
in Algorithm Generate-Query-Basis. To handle bag queries,
however, the naive storage scheme can no longer be used
since the multiplicity of a tuple in this storage scheme
depends on the number of annotations that are associated
with that tuple. An alternative storage scheme that does
not modify the original relation is needed (e.g., store
every annotation and its location in a separate relation).
To propagate annotations under the default-all propagation
scheme and bag semantics for unions of conjunctive queries,
however, it remains to first provide a characterization of bag
equivalence for unions of conjunctive queries.

7 Conclusion and future work

We have described an implementation of an annotation man-
agement system where different propagation schemes can
be used. Insofar, our system only supports annotations on
attributes of tuples. We would like to extend our system
to handle annotations on tuples or relations and, in gen-
eral, to handle annotations on hierarchical data, such as

XML. In this extended framework we are interested in
determining which annotations to propagate under differ-
ent operators. We would also like to investigate whether
our results for the default-all propagation scheme still
hold.

In our current system, annotations are propagated based
on where-provenance. In addition, we would like to ex-
tend our system to propagate annotations based on why-
provenance, which will provide reasons to why a tuple is in
the output. The default-all propagation scheme returns the
union of all annotations of an output location returned by all
equivalent queries. Conceivably, there could be a comple-
mentary propagation scheme that returns the set of all anno-
tations in an output location if it occurs in the same output
location in the results of all equivalent queries. It remains
to be investigated whether a query basis can be generated
for such propagation scheme. The performance of our an-
notation management system on other storage schemes also
needs to be investigated. It would also be interesting to in-
vestigate opportunities for optimizations on the generated
SQL queries.

Appendix

Generating a query basis for pSQL queries

To generate a query basis for a pSQL query Q = Q1∪...∪Ql
where each Qi , i ∈ [1, l], is a pSQL query fragment with
default-all propagation scheme, we modify Generate-
Query-Basis algorithm described in Sect. 3 to the following
algorithm, called Generate-Containment-Basis. Step 1
of Generate-Containment-Basis remains the same as
in Generate-Query-Basis. The algorithm Generate-
Containment-Basis differs from Generate-Query-Basis
in Step 2, where for each pSQL query fragment Qi
(1 ≤ i ≤ l), the set of all queries that are contained in Qi
are generated and added to the auxiliary queries of Qi . A
consequence of this effect is that a query that is identical to
Qi but with an additional relation R that does not occur in
Qi is considered as a query contained in Qi . Annotations
from R may propagate to the output. In contrast, Step 2
of Generate-Query-Basis generates a set of auxiliary pSQL
query fragments that are each equivalent to Qi . Note that we
are not restricting our language to be pSQL query fragments
here (as opposed to algorithm Generate-Query-Basis). We
are computing a query basis for the set of all pSQL queries
that are each equivalent to a given pSQL query. We describe
the algorithm next and then an example.

Algorithm Generate-Containment-Basis
Input: A pSQL query Q = Q1 ∪ ... ∪ Ql with default-all propagation
scheme.
Output: A query basis of Q, B(Q).
Let Q be a pSQL query of the form Q1 ∪ ... ∪ Ql where each Qi ,
i ∈ [1, l], is a pSQL query fragment of the form shown in Definition 1
with PROPAGATE DEFAULT-ALL clause. For each Qi , i ∈ [1, l],
we execute the following two steps.

394 D. Bhagwat et al.

1. Generate Qi
0, the representative query of Qi .

Generate a query Qi
0 that is identical to Qi except that the prop-

agation scheme of Qi is replaced with the following propagation
scheme:
For every attribute “r.A AS C” in the selectlist, add “r.A TO C” to
the PROPAGATE clause.
For every attribute “r.A AS C” in the selectlist and every attribute
s.B that is equal to r.A or transitively equal to r.A according to the
wherelist, add “s.B TO C” to the PROPAGATE clause.
(The effect is that all attributes that are equal to an attribute C in
the selectlist have their annotations propagated to C .)

2. Generate auxiliary queries of Qi
0.

Initialize B(Qi) to the empty set. Add Qi
0 to B(Qi).

For every clause “s.A AS B” in the selectlist of Qi
0, for every rela-

tion R in the database and every attribute C in the relation schema
of R:
Create a query Q′ that is identical to Qi

0. Add “R r” to the fromlist
of Q′ where r is a tuple variable that does not occur in Q′. Add
the condition “r.C = s.A” to the wherelist of Q′ and the propagate
clause “r.C TO B” to the propagatelist of Q′. Add Q′ to B(Qi).
(The query Q′ is contained in Qi but may propagate additional
annotations. Furthermore,

⋃
q∈B(Qi)

q is equivalent to Qi .)

Return B(Q1) ∪ ... ∪ B(Qm).

Example 11 Assume that the database consists of the
following relations: Emp(name, dept), Dept(did, budget),
Project(proj, mgr). Consider following query Q which picks
out employees who belong to some department.

SELECT DISTINCT e.name AS Name
FROM Emp e, Dept d
WHERE e.dept = d .did
PROPAGATE DEFAULT-ALL

Two of the queries generated by Step 2 of the algorithm
Generate-Containment-Basis on Q are shown below:

Q1:
SELECT DISTINCT e.name AS Name
FROM Emp e, Dept d , Project p
WHERE e.dept = d .did AND p.proj = e.name
PROPAGATE e.name TO Name, p.proj TO Name

Q2:
SELECT DISTINCT e.name AS Name
FROM Emp e, Dept d , Project p
WHERE e.dept = d .did AND p.mgr = e.name
PROPAGATE e.name TO Name, p.mgr TO Name

The highlighted parts of Q1 and Q2 denote the addi-
tional relation, condition and propagate clauses added to the
representative query Q0 by Step 2 of the algorithm. Observe
that Q1 and Q2 are queries that are contained in Q (but
Q0 ∪ Q1 ∪ Q2 is equivalent to Q). Furthermore, Q1 prop-
agates annotations on projects to the result and Q2 propa-
gates annotations from the names of managers to the result.
Arguably, Q1 should not have been generated since the an-
notations for projects are irrelevant for names of employ-
ees. The query Q2, however, propagates the annotations for
a manager to an employee name and this is desired since
the manager and the employee have the same name (and are
therefore referring to the same entity).

Some observations from the above example follow. First,
since our language now allows for union, the query basis
for Q contains more queries than the query basis generated

by Generate-Query-Basis for the same query Q. This is be-
cause in the case of Generate-Query-Basis, we consider only
pSQL query fragments that are equivalent to Q. In contrast
here, we consider all pSQL queries that are equivalent to Q.
The above example also suggests that a more refined method
of generating a query basis is needed. Namely, one should
only generate an auxiliary query if it propagates relevant an-
notations. In the above example, Q2 is desired but not Q1.
To generate only auxiliary queries that propagate relevant
annotations, one would require the knowledge of semanti-
cally equivalent attributes in a database to be kept in the sys-
tem. Queries are then generated by adding the extra relation
and equating only semantically equivalent attributes. In what
follows, we shall assume that both Q1 and Q2 are generated.

Observe that by equating “r.C = s.A” in Step 2, we
are assuming that all attributes have the same type. The
algorithm Generate-Containment-Basis takes as input Q =
Q1 ∪ ... ∪ Ql and generates as output a query basis B(Q)
which is B(Q1) ∪ ... ∪ B(Ql). The following proposition is
similar to Proposition 2, adapted for queries generated by
algorithm Generate-Containment-Basis.

Proposition 4 For every query Q′ in the result of
Generate-Containment-Basis(Q) (denoted as B(Q)), C(Q′)
is annotation-contained in

⋃
q∈B(Q) q.

Proof Let Q = Q1∪...∪ Ql and let Qi
0 denote the represen-

tative query generated by Step 1 of the algorithm for query
Qi . We have C(Qi

0) is annotation-contained in
⋃

q∈B(Qi)
q

since Qi
0 ∈ B(Qi) and C(Qi

0) is annotation-equivalent to
Qi

0 according to Proposition 1.
Let Q′ denote a query in B(Q) and Q′ is not Qi

0 for ev-
ery i ∈ [1, l]. That is, Q′ is one of the auxiliary queries,
generated by Step 2 of the algorithm. Let C(Q′) be of
the form “H(x̄) : −S1(ȳ1), . . . , Sn(ȳn), equalities”. Given
any database D, let (s, i) be a location in D which corre-
sponds to a location (t, j) in C(Q′)(D) on a valuation ϕ.
So Sk(ϕ(ȳk)) = s for some k ∈ [1, n] and H(ϕ(x̄)) = t
and ȳk[i] = x̄[j]. There is also a valuation ϕ′ for Q′ and
D which produces t . The valuation ϕ′ is such that ϕ′(r) =
S(ϕ(ȳ)) where r is a tuple variable in Q′ and S(ȳ) is the
corresponding subgoal in C(Q′) which represents the rela-
tion that r ranges over in Q′. So ϕ′(r1) = s for some tuple
variable r1 in Q′ and the output tuple is t under ϕ′ according
to Q′. We show next that for every annotation propagated
by Q′, there is a query in B(Q) that would propagate the
annotation in the same way.

Suppose Q′ is in B(Qi) for some i ∈ [1, l] and Sk(ȳk)
is a subgoal among the subgoals of C(Qi

0) where Qi
0 is

the representative query generated by Step 1 of the algo-
rithm Generate-Containment-Basis. (Recall that C(Q′) dif-
fers from C(Qi

0) in that it has an additional subgoal added
by Step 2 of the algorithm.) Since ȳk[i] = x̄[j] and Sk(ȳk) is
a subgoal among the subgoals of C(Qi

0), it must be that the
attribute at position i of Sk (call it B) is equal to the attribute
at position j in the selectlist of Q′ (call it A) or transitively
equal to A. Hence, there must be a clause “PROPAGATE

An annotation management system for relational databases 395

r1.B TO A” in the propagate clause of Qi
0 (and hence

Q′). Therefore under the valuation ϕ′, the annotations at
(s, i) are part of the annotations at (t, j) according to Q′
and D.

Suppose Sk(ȳk) is not a subgoal among the subgoals of
C(Qi

0). That is, Sk(ȳk) is the subgoal that corresponds to the
extra relation in the fromlist, added by Step 2 of algorithm
Generate-Containment-Basis. Let the attribute at the i th po-
sition of Sk be C . Since ȳk[i] = x̄[j] and by Step 2 of the
algorithm, it must be that the condition “r1.C = r2.A” is
the added condition in the wherelist for some tuple variable
r2 that ranges over a relation in Q′. The clause “r1.C TO
B” is the added propagate clause of Q′ for some output at-
tribute B in the selectlist. (Hence, “r2.A AS B” is among the
selectlist of Q′.) Let the attribute at the j th position of the
output be F . If B is the same as F , then the annotations at
(s, i) are part of the annotations at (t, j) according to Q′ and
D under the valuation ϕ′. Suppose B is not equal to F . Since
“r1.C = r2.A” and ȳk[i] = x̄[j] in C(Q′), it must be that
r2.A is equal or transitively equal to the output attribute F
(according to Qi

0). In other words, let “r3.E TO F” be the se-
lect clause for F (which is among the selectlist of Qi

0) where
r3 is a tuple variable in Qi

0 and E is an attribute. We have
r3.E is either equal or transitively equal to r2.A according
to the wherelist of Qi

0. Hence, the following query Q′′ from
Qi

0 will be generated: Q′′ has an extra relation “Sk r1” in the
fromlist, the added condition “r1.C = r3.E” in the wherelist
and the added propagate clause “r1.C TO F”. Since under
ϕ′, we have r1.C = r2.A and r2.A is equal or transitively
equal to r3.E , it follows that r1.C = r3.E . Therefore the
valuation ϕ′ is also a valuation for Q′′. Hence, the annota-
tions at (s, i) are part of the annotations at (t, j) according to
Q′′ and D. ��

Our proof for the following Lemma 2 uses a result
from [31].

Fact 2 ([31]) Let Q = ⋃
i∈[1,m] Qi and Q′ =

⋃
i∈[1,n] Q′

i be
unions of conjunctive queries. Then Q ⊆ Q′ if and only if
for every Qi , i ∈ [1, m], there exists Q′

j , j ∈ [1, n], such
that Qi ⊆ Q′

j .

Lemma 2 Let B(Q) denote the result produced by the algo-
rithm Generate-Containment-Basis(Q), where Q is a pSQL
query and let Q′ denote a pSQL query under the default
propagation scheme. If Q′ is equivalent to Q, then Q′ is
annotation-contained in

⋃
q∈B(Q) q.

Proof Let Q = Q1 ∪ ...∪ Ql ,
⋃

q∈B(Q) q = q1 ∪ ...∪qm and
let Q′ = Q′

1 ∪ ... ∪ Q′
n .

We shall show next that for every distinguished vari-
able x at the i th position in the head of C(Q′

f) where f
in [1, n] and its occurrence at the j th position of the kth
subgoal S(ū) (i.e., the j th variable for ū is x) of C(Q′

f),
there is a generated query qg ∈ B(Q) such that there
is a homomorphism h : C(qg) → C(Q′

f) that satisfies
conditions (1) and (2) of Fact 1. Then by the Fact 1, we

have C(Q′
1) ∪ ... ∪ C(Q′

n) ⊆a
⋃

q∈B(Q) C(q). For every
pSQL query fragment Q, it is the case that Q ⊆a C(Q).
So we have Q′ ⊆a C(Q′

1) ∪ ... ∪ C(Q′
n) and therefore

Q′ ⊆a
⋃

q∈B(Q) C(q). By Proposition 4,
⋃

q∈B(Q) C(q) ⊆a⋃
q∈B(Q) q . Hence, we have Q′ ⊆a

⋃
q∈B(Q) q , which was

to be shown.
Pick a distinguished variable x at the i th position in the

head of C(Q′
f) where f ∈ [1, n] and at the j th position of

the kth subgoal S(ū) of C(Q′
f). That is, x occurs at the i th

position in H(. . .), S is the kth subgoal and x occurs at the
j th position in S(. . .).

C(Q′
f) : H(. . . x . . .) :- . . . , S(z̄1, x, z̄2), . . .

By Fact 2, since C(Q) is equivalent to C(Q′), there ex-
ists a query C(Qg) for some g ∈ [1, l] such that C(Q′

f) ⊆
C(Qg). Consequently, there is a containment mapping h′ :
C(Qg) → C(Q′

f). Accordingly, we know that Generate-
Containment-Basis would generate a query qg according to
Qg such that C(qg) is identical to C(Qg) but has an addi-
tional subgoal S(w̄1, y, w̄2) where w̄1 and w̄2 are vectors of
fresh variables that do not occur elsewhere in C(qg). That
is, C(qg) has the form shown below where y is the distin-
guished variable that occurs in the i th position in the head of
C(Qg) and the j position in S(...).

C(qg) : H(. . . y . . .) :- body of C(Qg), S(w̄1, y, w̄2).

It is easy to see that there is a homomorphism h :
C(qg) → C(Q′

f) that satisfies conditions (1) and (2) of Fact
1. The homomorphism h is such that h(x) = h′(x) for ev-
ery x ∈ var(Qg), h(w̄1) = z̄1, and h(w̄2) = z̄2. Clearly, h
is consistent with h′ and is a homomorphism from C(qg) to
C(Q′

f). Hence, by Fact 1, C(Q′
f) ⊆a C(qg). ��

Theorem 2 Given a pSQL query Q, the algorithm
Generate-Containment-Basis(Q) generates a query basis of
Q.

Proof Let Q be a pSQL query Q1 ∪ ...∪ Ql . Let Q R denote
the union of all queries in B(Q). That is, Q R =

⋃
q∈B(Q) q .

Clearly, Q R is contained in Q since each Bi (Qi), i ∈ [1, l],
contains a representative query which is equivalent to Qi
and every other query in Bi (Qi) is contained in Qi . The
query Q is also contained in Q R since for every Qi , i ∈
[1, l], Qi is equivalent to the representative query of Qi in
Q R . Let E(Q) denote the set of all equivalent queries of
Q where each query in E(Q) propagates using the default
scheme. Since Q R is equivalent to Q, we have Q R ∈ E(Q).
Hence, Q R ⊆a

⋃
q∈E(Q) q . From Lemma 2, we know that

for every query q ∈ E(Q), we have q ⊆a Q R . Therefore⋃
q∈E(Q) q ⊆a Q R and hence Q R =a

⋃
q∈E(Q) q . ��

Acknowledgements We thank Xinyu Hua for her help during the ini-
tial implementation of this system and Ariel Fuxman for helpful sug-
gestions. We also thank the reviewers for their helpful suggestions.
Supported in part by NFS CAREER Award IIS-0347065 and NFS
grant IIS-0430994.

396 D. Bhagwat et al.

References

1. Apweiler, R., Bairoch, A., Wu, C., Barker, W., Boeckmann, B.,
Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M.,
Martin, M., Natale, D., O’Donovan, C., Redaschi, N., Yeh, L.:
Uniprot: the universal protein knowledgebase. Nucleic Acids Res.
32, D115–D119 (2004)

2. Bairoch, A., Apweiler, R.: The SWISS-PROT protein sequence
database and its supplement TrEMBL. Nucleic Acids Res. 28, 45–
48, 2000

3. DBCAT, The Public Catalog of Databases. http://www.
infobiogen.fr/services/dbcat/. Cited 5 June 2000

4. Denning, D.E., Lunt, T.F., Schell, R.R., Shockley, W.R., Heck-
man, M.: The seaview security model. In: Proceedings of the IEEE
Symposium on Security and Privacy, Washington, DC, pp. 218–
233, (1988)

5. Jajodia, S., Sandhu, R.S.: Polyinstantiation integrity in multilevel
relations. In: Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, California, pp. 104–115, (1990)

6. Myers, A.C., Liskov, B.: A decentralized model for information
control. In: Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), Saint-Malo, France, pp. 129–142,
(1997)

7. Tan, W.: Containment of relational queries with annotation propa-
gation. In: Proceedings of the International Workshop on Database
and Programming Languages (DBPL), Potsdam, Germany, pp.
3‘7–53, (2003)

8. Lee, T., Bressan, S., Madnick, S.: Source attribution for querying
against semi-structured documents. In: Workshop on Web Infor-
mation and Data Management (WIDM), Washington, DC (1998)

9. Wang, Y.R., Madnick, S.E.: A polygen model for heterogeneous
database systems: The source tagging perspective. In: Proceed-
ings of the International Conference on Very Large Data Bases
(VLDB), Brisbane, Queensland, Australia, pp. 519–538, (1990)

10. Cui, Y., Widom, J., Wiener, J.: Tracing the lineage of view data in
a warehousing environment. ACM Trans. Database Syst. (TODS)
25(2), 179–227 (2000)

11. Buneman, P., Khanna, S., Tan, W.: Why and where: A character-
ization of data provenance. In: Proceedings of the International
Conference on Database Theory (ICDT), London, United King-
dom, pp. 316–330, (2001)

12. Bernstein, P., Bergstraesser, T.: Meta-data support for data trans-
formations using microsoft repository. IEEE Data Eng. Bull.
22(1), 9–14 (1999)

13. Maier, D., Delcambre, L.: Superimposed information for the inter-
net. In: Proceedings of the International Workshop on the Web and
Databases (WebDB), Philadelphia, Pennsylvania, pp. 1–9, (1999)

14. Kahan, J., Koivunen, M., Prud’Hommeaux, E., Swick, R.: An-
notea: An open rdf infrastructure for shared web annotations.
In: Proceedings of the International World Wide Web Confer-
ence(WWW10), Hong Kong, China, pp. 623–632, (2001)

15. LaLiberte, D., Braverman, A.: A protocol for scalable group and
public annotations. In: Proceedings of the International World
Wide Web Conference(WWW3), Darmstadt, Germany (1995)

16. Phelps, T.A., Wilensky, R.: Multivalent documents. In: Proceed-
ings of the Communications of the Association for Computing
Machinery (CACM) 43(6), 82–90 (2000)

17. Schickler, M.A., Mazer, M.S., Brooks, C.: Pan-browser support
for annotations and other meta-information on the world wide
web. In: Proceedings of the International World Wide Web Con-
ference(WWW5), Paris, France (1996)

18. W3C. Annotea Project. http://www.w3.org/2001/Annotea
19. biodas.org. http://biodas.org.
20. Dowell, R.: A distributed annotation system. Technical report,

Department of Computer Science, Washington University in St.
Louis (2001)

21. Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H.,
Zahler, A.M., Haussler, D.: The human genome browser at UCSC.
Genome Res. 12(5), 996–1006 (2002)

22. Phelps, T.A., Wilensky, R.: Multivalent annotations. In: Proceed-
ings of the First European Conference on Research and Ad-
vanced Technology for Digital Libraries, Pisa, Italy, pp. 287–303,
(1997)

23. Phelps, T.A., Wilensky, R.: Robust intra-document locations.
In: Proceedings of the International World Wide Web Con-
ference(WWW9), Amsterdam, The Netherlands, pp. 105–118,
(2000)

24. Buneman, P., Khanna, S., Tan, W.: On propagation of deletions
and annotations through views. In: Proceedings of the ACM Sym-
posium on Principles of Database Systems (PODS), Wisconsin,
Madison, pp. 150–158, (2002)

25. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases.
Addison-Wesley Co., Reading, MA (1995)

26. Kementseitsidis, A., Arenas, M., Miller, R.J.: Mapping data in
peer-to-peer systems: Semantics and algorithmic issues. In: Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), San Diego, CA, pp. 325–336,
(2003)

27. Tan, W.: Containment of relational queries with annotation prop-
agation. Technical report, Department of Computer Science, UC
Santa Cruz (2003)

28. Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: DBNotes: A post-
it system for relational databases based on provenance. In: Pro-
ceedings of the 2005 ACM SIGMOD International Conference on
Management of Data (SIGMOD) ’05, pp. 942–944, (2005)

29. TPC Transaction Processing Performance Council. http://
www.tpc.org

30. Chaudhuri, S., Vardi, M.Y.: Optimization of real conjunctive
queries. In: Proceedings of the ACM Symposium on Principles of
Database Systems (PODS), Washington, DC, pp. 59–70, (1993)

31. Sagiv, Y., Yannakakis, M.: Equivalence among relational expres-
sions with union and difference operators. J. Assoc. Comput. Ma-
chine. (JACM) 27(4), 633–655 (1980)

