
The VLDB Journal (2006) 15(2): 165–190
DOI 10.1007/s00778-005-0152-x

REGULAR PAPER

Ralf Hartmut Güting · Victor Teixeira de Almeida ·
Zhiming Ding

Modeling and querying moving objects in networks

Published online: 20 December 2005
c© Springer-Verlag 2005

Abstract Moving objects databases have become an impor-
tant research issue in recent years. For modeling and query-
ing moving objects, there exists a comprehensive framework
of abstract data types to describe objects moving freely in
the 2D plane, providing data types such as moving point
or moving region. However, in many applications people
or vehicles move along transportation networks. It makes
a lot of sense to model the network explicitly and to de-
scribe movements relative to the network rather than uncon-
strained space, because then it is much easier to formulate in
queries relationships between moving objects and the net-
work. Moreover, such models can be better supported in in-
dexing and query processing. In this paper, we extend the
ADT approach by modeling networks explicitly and provid-
ing data types for static and moving network positions and
regions. In a highway network, example entities correspond-
ing to these data types are motels, construction areas, cars,
and traffic jams. The network model is not too simplistic; it
allows one to distinguish simple roads and divided highways
and to describe the possible traversals of junctions precisely.
The new types and operations are integrated seamlessly into
the ADT framework to achieve a relatively simple, consis-
tent and powerful overall model and query language for con-
strained and unconstrained movement.

Keywords Moving object · Network · Spatio-temporal ·
Data type · ADT

1 Introduction

The field of moving objects databases has received a lot
of research interest in recent years. This technology allows
one to model in a database the movements of entities and
to ask queries about such movements. In some cases only
time-dependent locations need to be managed, leading to the

R. H. Güting (B) · V. T. de Almeida · Z. Ding
LG Datenbanksysteme für neue Anwendungen, FernUniversität
Hagen, D-58084 Hagen, Germany
E-mail: rhg@fernuni-hagen.de

moving point abstraction, in other cases also the time-
dependent shape or extent is of interest and we speak of
moving regions. Examples of moving points are cars, air-
craft, ships, mobile phone users, terrorists, or polar bears.
Examples of moving regions are hurricanes, oil spills, for-
est fires, armies, tribes of people in history, or the spread of
vegetation or of an illness.

Some of the interest is spurred by current trends in
consumer electronics. Wireless networking enabled and
position-aware (i.e. GPS equipped) devices such as PDAs,
on-board units in vehicles, or even mobile phones have be-
come relatively cheap and are predicted to be in widespread
use in the near future. This will lead to many new kinds of
applications such as location-based services. At the same
time a huge volume of movement information (sometimes
called trajectories) will become available and need to be
managed and analyzed in database systems.

The field of moving objects databases came into being
in the late nineties by two parallel developments which also
had different perspectives of the field. These can be charac-
terized as the location management and the spatio-temporal
database perspective. First, the group around Wolfson in a
series of papers [1–4] developed a model that allows one
to keep track in a database of a set of time-dependent loca-
tions, e.g. of vehicles. A fundamental observation was that
one should store in the database not the positions directly,
leading to a very high volume of updates, but rather a motion
vector. Only when the object’s position as predicted by the
motion vector deviates from the real position by more than a
threshold, an update needs to be transmitted and executed on
the database. They developed an interesting concept of dy-
namic attributes within a data model called MOST which
are attributes of normal data types which change implic-
itly over time; hence the results of queries will change im-
plicitly as time proceeds, leading to a notion of continuous
queries. The related query language, FTL (future temporal
logic), allows one to specify temporal relationships between
objects in queries. This approach is restricted to moving
point objects and it treats current and expected near future
movement.

166 R. H. Güting et al.

Second, in the European project CHOROCHRONOS
[5] the spatio-temporal database perspective was explored,
which means one tries to manage in a database time-
dependent geometries. Earlier work in that area had gen-
erally admitted only discrete changes. This restriction was
dropped and continuously moving points, lines, or regions
were considered. A data model capturing complete histo-
ries of movement with a related query language was de-
veloped by Güting and colleagues [6–9]. They provided an
algebra with data types such as moving point, moving line,
and moving region together with a comprehensive set of op-
erations. Such an algebra can be embedded into any DBMS
data model and be implemented as a DBMS extension such
as a data blade, cartridge, etc.

A second approach to data modeling was pursued in
CHOROCHRONOS by Grumbach and colleagues [10, 11]
who developed constraint-based models for handling ge-
ometries in general which includes spatio-temporal appli-
cations [12], since these can be viewed as existing in a
3D (2D + time) space. They also implemented a proto-
type system, called DEDALE. Some researchers outside
CHOROCHRONOS have also contributed to constraint-
based modeling of moving objects [13, 14]. Later Refs.
[15, 16] have continued this approach to modeling focusing
especially on moving points.

Since then, the field has flourished and a lot of work has
been done especially on implementation issues, for example,
on developing index structures [17–19], processing contin-
uous queries of various types [20, 21], studying similarity
of trajectories [22], developing test data generators [23], to
name only some of the areas.

An important observation that has not been addressed in
the research mentioned above is that in many cases objects
do not move freely in the 2D space but rather within spa-
tially embedded networks (roads, highways, even airlines
have fixed routes). It would make a lot of sense to include
spatial networks into a data model and query language for
moving objects. One could then describe movement relative
to the network rather than 2D space which would enable eas-
ier formulation of queries, more efficient representations and
indexing of moving objects and so forth. This is discussed in
more detail later.

It is interesting to observe that recent research has started
to address the implementation-oriented aspects and devel-
oped specialized index structures for objects moving in net-
works [24, 25], or specialized query processing algorithms
[26, 27]. There has also been work studying query process-
ing for spatial networks, restricted to static objects [28]. A
nice generator for test data, creating network-based mov-
ing objects, is available [29]. However, there is a big gap
at the level of data modeling and querying. Only very few
papers have touched modeling issues for moving objects in
networks; these are discussed in Sect. 7. A comprehensive
data model and query language for objects moving in net-
works does not yet exist. As long as this is so, it is not clear
how the proposals for efficient indexing and query process-
ing can be integrated and used in a DBMS. The purpose of
this paper is to close that gap.

Hence the goal of this paper is to provide a comprehen-
sive data model and query language for moving objects in
networks, supporting the description and querying of com-
plete histories of movement.1 The design should fulfill the
following requirements:

1. The model should contain an explicit concept of a net-
work embedded in space, such as a transportation net-
work. This is in contrast to modeling the network by
standard facilities of a DBMS data model, e.g. an object-
relational model. Fulfilling this requirement leads to eas-
ier and more powerful formulation of queries and to
more efficient execution, as the system is able to create
appropriate data structures to represent the network.

2. Positions of moving objects should be described rela-
tive to the network rather than the embedding space.
In this way, the descriptions of moving objects become
much more compact, since no geometric information
needs to be stored. Geometry is stored once and for
all with the network. Besides, discovering relationships
between moving objects and parts of the network be-
comes much simpler and more efficient. For example,
to find out whether an object is moving along some road
one can check whether an identifier for the road occurs
in the description of the movement. Otherwise a com-
plicated and expensive geometric check would have to
be used which might not even succeed due to numeric
inaccuracies.

3. The information kept about the network must be extensi-
ble using the standard facilities of the DBMS data model
rather than fixed. In a relational environment we should
be able to create relations to add information relative to
a network. For example, one could add or remove rela-
tions describing motels or speed limits along a highway
network.

4. The model should allow us to describe static or mov-
ing objects relative to the network, such as static posi-
tions (motel, gas station, etc.), static regions (speed limit,
construction area, etc.), moving positions (vehicles), and
moving regions (traffic jam, part of network affected by
snow storm, etc.).

5. Conceptually, there are now three different kinds of in-
formation present in the model, that is, the network,
static or moving network positions or regions (network
space), and spatial objects, e.g. the area of a suburb, a
natural park, a river, or a fog area (space). The model
should allow us to handle interactions or relationships
between any two of them. For example:

– network–network space: On which highway is this
car? What is the next exit after a motel? Which part
of the network can be reached within 50 km distance
from a given network position? Find a shortest path
between two network positions.

– network space–space: At what times is the vehicle
within the fog area? How many cars have left suburb

1 Note that a “movement history” is not necessarily restricted to the
past; it may include the current state and expected future behaviour.

Modeling and querying moving objects in networks 167

X between 9 and 10 am? Are there any speed limits
within natural parks?

– network–space: Which highways pass rivers? Return
the part of the network that lies within forest X.

6. There exists a sophisticated framework to represent and
query objects moving freely in space, developed in [7].
The framework offers many concepts and facilities that
are also needed here. Hence the new model should be
consistent with the one of [7] and be integrated as seam-
lessly as possible with it.

7. The modeling of networks should not be too simplistic.
In a simple graph model we have just nodes and edges.
However, paths over graphs are often the conceptual en-
tities of interest. For example, in a road network nodes
would be junctions of roads, edges correspond to pieces
of roads between junctions, and roads are paths over this
graph. It is fairly obvious that city maps are organized
primarily by roads (e.g. they are the named entities), not
by their junctions or edges. Hence such paths should play
a prominent role also in the model. Besides, the model
should accommodate the fact that sometimes we have
divided roads (e.g. highways) and a position on one side
of the road may be far away from the corresponding po-
sition on the other side of the road.

Our proposed model will fulfill all these requirements.
We proceed as follows:

• We provide a formal definition of a spatially embedded
network and of network locations and network regions.
The model offers paths over the network graph as a ba-
sic concept, called route, it allows one to distinguish be-
tween simple and dual routes (“divided” roads), and to
describe the possible transitions for moving objects, e.g.
vehicles, at junctions.

• Networks are made available through a data type
network.2 An interface to a relational environment is of-
fered that allows one to create a network value from re-
lations of a certain form, and to export network informa-
tion into relations.

• Two data types gpoint and gline are defined. A value of
type gpoint is a position in a given network. A value
of type gline is a region within a given network. These
data types are integrated into the type system of [7] in
such a way that the moving type constructor is applica-
ble to them, so we also have the time-dependent types
moving(gpoint) and moving(gline) These four data types
form the core of our approach.

• Static operations are defined to treat the interaction of
gpoint and gline values with (i) the network, and (ii) spa-
tial data types. These new operations are included into
the scope of lifting so that they are also available for
moving(gpoint) and moving(gline). Some special oper-
ations for networks are defined, e.g. shortest_path and
trip.

2 We write data types in italics underlined, and operations in bold
face.

The paper is organized as follows. Section 2 develops a
formal model of a transportation network and of network po-
sitions and regions. Section 3 formally defines the data types
and their relational embedding, Sect. 4 presents the opera-
tions, and Sect. 5 shows some query examples. Section 6
addresses implementation concepts. Section 7 discusses re-
lated work, and finally Sect. 8 concludes the paper.

2 Modeling networks

A first idea, which may seem obvious at least to a computer
scientist, is to model a transportation network as a directed
graph G = (V, E), with set of nodes V and set of edges
E ⊆ V ×V . The set of possible positions within the network
could then be defined as

Pos(G) = V ∪ (E × (0, 1))

That is, an object is either in a node or on an edge; a value
from the open interval (0, 1) indicates a relative position on
the edge. This view of a network is used for example, in
[24, 29].

However, there are some indications that this model is
not the best one. In the literature, Jensen et al. [30] empha-
size that real world networks are quite complex and that a re-
alistic modeling needs in fact multiple representations. One
of the important views is the kilometer-post representation
which describes positions in the network relative to distance
markers on the roads. This is closely related to the concept
of linear referencing widely used in the GIS-T literature (ge-
ographic information systems in transportation), see for ex-
ample [31], where again positions are described relative to
the length of a road. Linear referencing is also already avail-
able in commercial database products such as Oracle Spatial
[32].

We will define networks in terms of routes (correspond-
ing to roads or highways in real life and to paths over a
graph) and positions on routes for the following reasons:

• Routes are the relevant conceptual entities in real life.
We have names for roads, not for crossings or pieces of
road between crossings. Also addresses are given rela-
tive to roads. The model should reflect this. It is then
easy to relate network positions to these conceptual en-
tities.

• Linear referencing is an important and widely used con-
cept in GIS-T, which also indicates that positions should
be described relative to routes rather than edges of a
graph.

• The perhaps most practical reason is that the represen-
tation of a moving object becomes much smaller in this
way. If positions are given relative to edges, then for ex-
ample a car going along a highway at constant speed
needs a change of description at every exit/junction be-
cause the edge identifier changes. If positions are given
relative to routes, then the description needs to change
only when the car changes the highway.

168 R. H. Güting et al.

Hence a network will be defined as a set of routes and a set
of junctions between these routes.

We wish to accomodate in the model the fact that routes
can be bi-directional, i.e., admit movement in two directions,
and that it may be necessary to distinguish positions on the
two sides of a route, e.g. on a highway. On the other hand,
there are also applications where one does not want to distin-
guish between positions on two sides of a road. One example
are people moving around in a pedestrian zone.

We will offer two kinds of routes called simple and dual
routes. There are also two concepts for positions on roads
called route measure and route location. The route measure
is independent from the kind of route (simple or dual), it is
just a distance from the origin of the route. Junctions be-
tween two routes are positioned at two distinct route mea-
sures. The route location depends on the route type. For
a simple route it is the same as the route measure; for a
dual route it is a route measure plus a flag from the set {up,
down}. Similarly, on a simple route, a route interval is given
by two measures; on a dual route by two measures plus an
up-down flag. The precise meaning of up and down is de-
fined below.

Let the domain of routes be defined as

Route = {(id, l, c, kind, start)|id ∈ int,

l ∈ real, c ∈ line, kind ∈ {simple, dual},
start ∈ {smaller, larger}}

Hence a route description consists of an identifier id, a
length l, a curve c describing its geometry in the plane, a
route type kind, and a flag start indicating how route lo-
cations are to be embedded into space (explained below).
The geometry c is a simple, non self-intersecting curve in
the plane which may be open or closed (a cycle). It is rep-
resented by a polyline. In spatial databases and also in our
framework a data type line is available that can represent
such values [7].

Let R be a finite set of distinct routes (i.e. identifiers are
pairwise distinct). A route measure in R consists of an iden-
tifier and a real number giving a position on that route.

A

B

Au Ad Bu Bd

Au

Ad

Bu

Bd

1 0

1

1

1

0

0

0

1 1

1

0 0

0 0

0

(a)
(c)

(b)

Aup

Adown
Bup

Bdown

B

A

Fig. 1 a A physical highway junction, b its diagramatical representation, and c the transition matrix

RMeas(R) = {(rid, d)|rid ∈ int, d ∈ real,

∃(rid, l, c, k, s) ∈ R such that{
0 ≤ d ≤ l if c is not a closed curve

0 ≤ d < l if c is a closed curve

On a closed curve, d = 0 and d = l denote the same
position. Since we are interested in a unique representation,
we require d < l for a closed curve.

There exists an obvious order on route measures for a
given route, namely (rid, d) < (rid, d ′) :⇔ d < d ′.

A junction in R is a triple consisting of two route mea-
sures in R with distinct route identifiers and a connectivity
code, an integer value encoding which movements through
the junction are possible.

Junction(R) = {(rm1, rm2, cc)|rm1, rm2 ∈ RMeas(R),

rm1 = (r1, d1), rm2 = (r2, d2), r1 	= r2, cc ∈ int}
Representing the connectivity at junctions is essential for

computing shortest paths which in turn are the basis for a
concept of directed distance in the network. Connectivity
codes work as follows. For each route we distiguish the up
direction of movement where route measures are increasing,
and the down direction where route measures are decreasing
with movement, respectively. At a junction between routes A
and B various transitions may be possible or not for a mov-
ing object, for example a transition Aup → Bup. This is il-
lustrated in Fig. 1b.

In most cases junctions are built to allow for all 8 pos-
sible transitions from one route to the other. However, this
is not always possible. Figure 1a shows an example of a
physical highway junction where in fact only the transitions
Aup → Bup, Aup → Bdown, and Adown → Bdown are pos-
sible. We can represent the possible transitions in a 4 × 4
matrix as shown in Fig. 1c. The 1’s in the diagonal repre-
sent the fact that it is possible to stay on a route in the same
direction. A transition such as for example Aup → Adown
would be set to 1 if a U-turn were possible. In general, for
the definition of the transition matrix, A and B are chosen
such that the route identifier of A is smaller than that of B.

Modeling and querying moving objects in networks 169

A

B

Au Ad Bu Bd

Au

Ad

Bu

Bd

1 0

1

0

0

0

0

0

0 0

0

1 1

1 1

0

A

B

Au Ad Bu Bd

Au

Ad

Bu

Bd

1 0

1

0

0

0

0

0

0 1

1

1 1

0 0

0

(a) (b)

Fig. 2 Transition matrices for a a junction involving two one-way parts of route B, b a T-junction

As a transition matrix has 16 bits, it can easily be repre-
sented in a (16 or more bit) integer value, and this is what
the connectivity code means.

This concept is quite general. For example, it allows the
representation of junctions involving one-way roads or of
T-junctions, see Fig. 2. Here the arrows in the roads indicate
the allowed direction of driving whereas arrows with route
identifiers indicate up-directions of routes. Note that in the
model oneway (parts of) roads are expressed by transition
matrices.

If there is a junction between more than two routes in
one location, we represent it as one junction for each pair of
routes involved (e.g. AB, BC, and AC for three routes A, B,
and C).

We provide a predicate to evaluate the connectivity code.
Let r1 and r2 be two routes participating in a junction with
connectivity code cc, and let s1 and s2 be values from the set
Side = {up, down, none}. Then the predicate

connects((r1, s1), (r2, s2), cc)

holds if a transition from route r1, side s1 to route r2, side
s2 is possible according to the matrix stored in cc. The side
value none is associated with simple roads.

A network is a pair N = (R, J) where R is a finite set
of distinct routes and J is a finite set of junctions in R. Let
Network denote the set of all such pairs.

A route location in R is either a route measure for a sim-
ple route, or a route measure augmented by a side value for
a dual route. To have a uniform format we always add a side
value which is none for simple routes.

RLoc(R) = {(rid, d, side)|(rid, d)

∈ RMeas(R), side ∈ Side,

for (rid, l, c, kind, start) ∈ R :
kind = simple ⇔ side = none}

We then also speak of network locations. For a network N =
(R, J), the set of network locations is

Loc(N) = RLoc(R)

Equality on network locations is defined as follows.
Let (r1, d1, s1) and (r2, d2, s2) be network locations

in N = (R, J).

(r1, d1, s1) = (r2, d2, s2) :⇔
(r1 = r2 ∧ d1 = d2 ∧ s1 = s2) ∨
(∃((r1, d1), (r2, d2), cc) ∈ J ∧ connects((r1, s1),

(r2, s2), cc) ∧ connects((r2, s2), (r1, s1), cc))

Hence in addition to being equal in the usual sense, two net-
work positions can be equal if they are both on a junction
and it is possible to get from each of them to the other at this
junction. This definition is the basis for operations such as
forming the intersection of two network regions.

Using the underlying curve, a route location or a route
measure can be mapped to a point in the 2D plane. Let
r = (rid, I, c, k, s) be a route with l = length(c) and
rl = (rid, d, side) be a location on this route. The position
of rl denoted pos(rl) is defined as shown in Fig. 3.

In Fig. 3, the definition of a “smaller” end point assumes
the usual xy-lexicographic order of points in the 2D plane
and the term origin refers to the smallest point on a closed
curve (cycle) with respect to that order. Hence the flag s al-
lows one to define an “orientation” of the curve.

The position of a route measure rm = (rid, d) is defined
in the same way.

Not all networks according to this definition make sense,
i.e., can exist as real networks in the 2D space. A network is
called consistent, if

• the length of a route corresponds to the geometrical
length of its curve, and

• the geometric position of a junction corresponds to the
intersection of the two involved curves.

Observe that we do not require that each intersection of the
curves is reflected in a junction, hence bridges, tunnels, etc.
can be represented.

Fig. 3 Definition of pos

170 R. H. Güting et al.

Fig. 4 A simple network example

Formally, we have: A network N = (R, J) is called con-
sistent, if

• for every route (rid, l, c, k, s) ∈ R, l = length(c);
• for every junction (rm, rm′, cc), pos(rm) = pos(rm′)

In the sequel we assume that all networks we deal with are
consistent.

A route interval in the network N is basically a pair of
route locations on the same route. It can be represented as
a quadruple (rid, d1, d2, side) where (rid, d1, side) and (rid,
d2, side) are route locations and d1 ≤ d2. It is allowed that
the interval degenerates into a single location. Semantically,
a route interval ri = (rid, d1, d2, side) comprises the set of
all route locations (rid, d, side) with d1 ≤ d ≤ d2; this set is
denoted as locs(ri).

Two route intervals ri1, ri2 are quasi-disjoint iff they
are either on different routes, or they are on the same route
and their sets of route locations are disjoint, i.e., locs(ri1)∩
locs(ri2) = Ø. Note that two route intervals on different
routes covering the same junction are quasi-disjoint.

Let N be a network. A region of N is a finite set of quasi-
disjoint route intervals in N. The set of all possible regions
of network N is denoted as Reg(N).

The concepts of networks and their locations and regions
are illustrated in Fig. 4. Dual routes are drawn doubled, junc-
tions are represented by squares and network locations by
filled circles. A network region, consisting of four route in-
tervals is represented by dashed curves. One should note in
this figure how locations and intervals on dual routes are as-
sociated with sides of the route.

Discussion of applications and limitations
of the network model

In this subsection, we discuss how the model can be used to
represent various features of real road networks. First, one
needs to keep in mind that any model is an abstraction and
simplification of reality, designed to fit a particular purpose.
For example, one abstraction is that roads are modeled as
linear rather than areal features. Another is that on a highway
we do not model different lanes, so we cannot describe how
a car switches lanes.

The basic properties of our model are that there exist
routes with an associated linear geometry and junctions
corresponding to intersection points of such geometries.
Furthermore for a route one can define whether it is simple
or dual. The concept of routes is also intended to correspond

as much as possible to real life entities such as roads or
highways. However, whether a highway or road can be mod-
eled directly as a single route depends on various factors
one of which is scale. In the following we discuss modelling
options in the form of various questions coming up.

How can we model roundabouts? It is a matter of scale
whether a roundabout is modeled explicitly. Basically it is
a junction of several roads or highways. At a large scale,
roads can be represented as routes and the roundabout as
a collection of junctions, one for each pair of routes. The
geometry of the roundabout is not represented (a point). At
a small scale the roundabout may be modeled as a cyclic
route and the roads crossing it have to be represented by
several routes. In this case the geometry of the roundabout
is represented in the model. Similar considerations hold for
highway junctions which at a large scale are represented as
points geometrically, and at a small scale by collections of
routes in which case the geometry is visible.

How do we describe distinct highways sharing the same
piece of road? Overlapping highways need to be decom-
posed into distinct routes, see Fig. 5.

How do we model a road having different stretches of
one-way or two-way traffic? It is no problem to represent this
in a single route, as such stretches are defined by transition
matrices, see Fig. 2a.

How do we model a road that is divided only in certain
stretches? Since a route can have only one status of single or
dual, the road needs to be decomposed into several routes.

The way a junction can be traversed may depend on
the type of moving entity. For example, for trucks, buses, or
pedestrians there may be different rules than for cars. Fur-
thermore, rules for traversing a junction may also change
during the day. This cannot be expressed by the current
model. However, an extension to define junctions with a
set of transition matrices instead of a single one appears
straightforward. In this case, distance and shortest path oper-
ations defined in the following sections would need an addi-
tional parameter identifying the transition matrix to be used.
Similarly, an extension for time dependent transition matri-
ces appears possible.

3 Data types and their relational embedding

In this section, we provide data types network, gpoint, and
gline to represent the network, a position within the network,
and a region within the network, respectively, based on
the concepts defined in Sect. 2. We also provide an inter-
face to exchange information between values of such types
and a relational environment. The interface consists of a
set of operations that allow one, for example, to create

Highway 1

Highway 1
Highway 2

Highway 2R1

R2

R3

R4

R5

Fig. 5 Decomposing overlapping highways into distinct routes

Modeling and querying moving objects in networks 171

relations representing parts of the network, or to make avail-
able components of gpoint values as values of standard data
types.

3.1 Data types

Defining a data type means to introduce a name for it and to
define the set of possible values, i.e., the domain or the car-
rier set. We use the algebraic terminology and define carrier
sets; for a type t its carrier set is denoted as Dt . For the type
network, the carrier set is:

Dnetwork = Network

The data types gpoint and gline obviously depend on exist-
ing networks. Let N = {N1, . . . , Nk} be the set of networks
present in the database. We define types gpoint and gline
with carrier sets:

Dgpoint = {(i, gp)|1 ≤ i ≤ k ∧ gp ∈ (Loc(Ni) ∪ {⊥})}
Dgline = {(i, gl)|1 ≤ i ≤ k ∧ gl ∈ Reg(Ni)}
So a value of such a type consists of a network number to-
gether with a position or region within that network. The
network position may be undefined, which is represented by
⊥ A network region is a set (of route intervals) which may
be empty anyway.

3.2 Interface to relations and standard data types

We first provide a set of operations that allow us to convert
between values of the abstract data types network, gpoint,
and gline on the one hand, and relations and values of stan-
dard types on the other hand.

3.2.1 Relational views of a network

We can get routes, junctions (nodes) and sections (edges) of
a network by the operations:

network → rel routes, junctions, sections

They return the information contained in a network ac-
cording to the definition of Sect. 2 in relations with the re-
spective schemas:

(route: int, length: real, curve: line,
dual: bool, startsSmaller: bool)

(route1: int, meas1: real, route2: int,
meas2: real, cc: int, pos: point)

(route: int, meas1: real, meas2: real,
dual: bool, curve: line)

The last two components in the definition of a route
are represented by booleans here. For a junction, the spa-
tial position of the intersection of the two underlying curves
is provided for convenience in the pos attribute. Also, for
convenient querying each junction is returned twice so that
each participating route occurs once in each of the attributes

route1 and route2. A section is a junction-free piece of a
route between two junctions; here the geometry is provided
in the curve attribute.

Observe that the names of roads are not part of a net-
work definition; like other information they can be attached
externally in relations. For example, let us assume a network
value called Hagen has been created for the city network of
Hagen, and road names are stored in a relation

road(name: string, route: int,
roadLevel: int)

The value of the route attribute corresponds to the route
identifier in the network. The roadLevel is an example of
further information; here it distinguishes major and minor
roads.

Examples We can connect the routes of the Hagen network
with the street names by the join

SELECT *
FROM routes(Hagen) AS h, road AS r

where h.route = r.route

We get the positions of all junctions on Bahnhofstrasse
ordered by distance from the start by

SELECT j.meas1
FROM junctions(Hagen) as j, road as r
WHERE r.name = ‘Bahnhofstrasse’

AND j.route1 = r.route
ORDER BY j.meas1

“Find all sections of Bahnhofstrasse longer than
500 meters!” (assuming that distances are given in
kilometers)

SELECT *
FROM sections(Hagen) AS s, road AS r
WHERE r.name = ‘Bahnhofstrasse’

AND s.route = r.route AND
(s.meas2 - s.meas1) > 0.5

3.2.2 Constructing a network from relations

To construct a network, we need to supply two relations
containing the relevant information for routes and junc-
tions. The first relation must have a schema compatible
to the one returned by the routes operation, i.e., with at-
tribute types (int, real, line, bool, bool). The sec-
ond must describe junctions 3 and have a schema like that
returned by the junctions operation except for the last point
attribute, that is (int, real, int, real, int). The op-
eration for constructing a network is:

rel × rel → network network

Suppose we have relations

3 Here a junction may be represented by either one or two tuples.

172 R. H. Güting et al.

HagenRoads (name: string, road: int,
length: real, geometry: line,
dual: bool, startsSmaller: bool,
roadLevel: int)

HagenJunctions(road1: int, pos1: real,
road2: int, pos2: real,
junctionType: int)

The command

LET Hagen = network(
SELECT road, length, geometry, dual,

startsSmaller
FROM HagenRoads, HagenJunctions)

will create the Hagen network as used in the examples
above. If one desires to create a network containing just the
major roads (say, of categories 1 and 2), this can be done by

LET HagenMajor = network(
SELECT road, length, geometry, dual,

startsSmaller
FROM HagenRoads
WHERE roadLevel <= 2,
SELECT road1, pos1, road2, pos2,

junctionType
FROM HagenJunctions, HagenRoads

AS h1, HagenRoads AS h2
WHERE road1 = h1.road AND

h1.roadLevel <= 2 AND
road2 = h2.road AND
h2.roadLevel <= 2)

Executing such a command creates an internal data structure
for the network that enables efficient access and traversal.

3.2.3 Accessing gpoint and gline Values

A gpoint contains a position on a given route, possibly on
one of its sides. We can access these components. Side val-
ues are represented by integers: up = 1, down = −1, none =
0.
gpoint → int route
gpoint → real pos
gpoint → int side

A gline value describes a region of the network. Any com-
putation to derive parts of the network, for example, to
get the part of the network within a fog area, or for com-
puting a shortest path, is done via gline values, whereas
a network value, after creation, is static. Therefore the in-
terface to export gline values into relations is quite impor-
tant. Similarly as for networks, we can create relations by
operations

gline → rel routes, junctions, sections

The operation routes returns a relation with the follow-
ing schema:

(route: int, meas1: real, meas2: real,
curve: line)

This relation will have one tuple for each route interval
in the gline value; the curve is the piece of the route cor-
responding to that route interval. The operation junctions
returns a relation with schema

(route1: int, meas1: real, route2: int,
meas2: real, pos: point)

Operation sections returns a relation with schema:
(route: int, meas1: real, meas2: real,

sectionMeas1: real,
sectionMeas2: real, curve: line)

In this case each tuple represents a subinterval of a
section with the associated piece of curve. The section it-
self is defined by the distances sectionMeas1, sectionMeas2.
Hence it holds sectionMeas1 ≤ meas1 ≤ meas2 ≤ section-
Meas2.

Finally, there is a special form of the routes operator
called path_routes with signature

gline × gpoint → rel path_routes

which is suitable to transform gline values resulting from
shortest path computations into relations. In this case, the
gline value represents an ordered sequence of pieces of
routes leading from a start point to a destination. It is re-
turned as a relation with schema
(route: int, meas1: real, meas2: real,

curve: line, no: int)

The second argument gives the start point; in the result re-
lation pieces of routes are numbered in increasing distance
from the start point within the no attribute.

3.2.4 Constructing gpoint and gline values

We offer the following operations:

network × int[routeId] × real × int → gpoint gpoint

The second argument is the route identifier,4 the third the
route measure, and the fourth the side value. The network
argument is needed as otherwise it would not be clear which
of the networks in the database is meant.
network × int[routeld] → gline gline
network × int[routeld]

× real × real × int → gline gline

These operations allows us to get gline values for a
whole route or a route interval. Furthermore, we can con-
struct a gline value corresponding to a set of routes and set of
route intervals by supplying a relation for the remaining ar-
guments after the first one. Hence for relations with schemas
(int)
(int, real, real, int)

we can apply the operation

network × rel → gline gline

We can also get the whole network as a gline value:

network → gline gline

4 It would be nice to have a special data type routeld for route iden-
tifiers as this would make signatures more readable. On the other hand,
this would make the type system more complex. As a compromise, we
use the notation shown to indicate that semantically the second argu-
ment is a route identifier rather than an integer.

Modeling and querying moving objects in networks 173

Examples

The part of the Hagen network for the road “Bahnhof-
strasse.”

gline(Hagen,
SELECT route
FROM road
WHERE name = ‘Bahnhofstrasse’)

The last kilometer of “Bahnhofstrasse.” (The length
operation is defined below).

gline(Hagen,
SELECT route, length(Hagen, route) - 1,

length(Hagen, route), 0
FROM road WHERE name =‘Bahnhofstrasse’)

3.2.5 Accessing route information

Given a route identifier, we can access the information
belonging to that route:

network × int[routeId] → real length
network × int[routeId] → line curve
network × int[routeId] → bool dual
network × int[routeId] → bool startsSmaller

3.2.6 Comparing gpoint and gline with a route identifier

Here we have operations:

gpoint × int[routeId] → bool inside
gline × int[routeId] → bool intersects
gline × int[routeId] → bool inside
int[routeId] × gline → bool inside

A gpoint can belong to a route. A gline value can overlap
a route (intersects), be contained in it, or contain the route.
Here we don’t need to provide the network as an explicit
argument as it is contained in the gpoint or gline value.

4 Operations

In this section we provide the bulk of operations on gpoint
and gline as well as on the derived types moving(gpoint) and
moving(gline) in a way that is consistent with the framework
of [7].

4.1 Integrating gpoint and gline into the type system

The framework of [7] provides a collection of data types, or
a type system, specified as a signature as shown in Table 1.
This specification technique is taken from [33].

A signature in general consists of sorts and operations;
in this signature the sorts are kinds and represent sets of data
types, and the operations are type constructors. Type con-
structors may take arguments or not, in the latter case they
are constant types. The available types of the type system

are the terms generated by this signature. For example, the
kind BASE contains the types int, real, string, and bool; the
range type constructor is applicable to those types as well as
to the type instant in kind TIME; therefore the types in the
kind RANGE are range(int), . . . , range(instant).

The meanings of the spatial types are as follows: A
points value is a finite set of points in the plane; a line value
is basically a finite set of curves, and a region value a finite
set of disjoint faces (closed subsets of the plane) which may
have holes. Note that a position in a network corresponds
spatially to a point value, and a part of a network to a line
value; this is why the types are called gpoint and gline.

The range type constructor represents finite sets
of disjoint intervals over the base types and instant:
range(int), . . . , range(instant). The type range(instant) rep-
resenting sets of time intervals is also called periods.

The moving constructor, applied to a type α, yields a
type moving(α) whose values are partial functions from time
into values of type α, e.g. moving(int), moving(real), and
moving(region). The intime type constructor is very simple:
for an argument type α a value of intime(α) is a pair consist-
ing of an instant and an α value.

The type system is now extended by the types gpoint
and gline as shown in Table 1. This means that the new
types gpoint and gline and also the types moving(gpoint),
moving(gline), intime(gpoint), and intime(gline) are
available.

The reader may wonder how such values are represented.
The model in [7] is an abstract model as discussed in [6, 7]
which means that it defines the domains or carrier sets of
its data types in general in terms of infinite sets. To be
able to implement an abstract model, one must provide a
corresponding discrete model, that is, define finite repre-
sentations for all the data types of the abstract model. For
[7] this has been done in [8]. For all the moving types,
the so-called sliced representation is proposed which repre-
sents a time dependent value as a sequence of slices such
that within each slice the development of the value can
be represented by some “simple” function. Figure 6 illus-
trates this for a moving(real) and a moving(points) value.
The simple functions within a slice are for a moving(real)
quadratic polynomials or square roots of such, and for
moving(points) just linear movement of each component
point. For more details and a justification see [8]. It is
not difficult to extend this for moving(gpoint) values to a
sliced representation providing linear functions for the time-
dependent location, and for moving(gline) providing a linear

Table 1 The type system of [7] (without bold parts) and the extended
type system

→ BASE int, real, string, bool
→ SPATIAL point, points, line, region
→ GRAPH gpoint, gline
→ TIME instant

BASE ∪ SPATIAL
∪ GRAPH → TEMPORAL moving, intime

BASE ∪ TIME → RANGE range

174 R. H. Güting et al.

t

v

x

y

t

Fig. 6 Sliced representation of a moving(real) and a moving(points)
value

function for each route interval boundary. This is shown in
Sect. 6.

4.2 Defining operations

For defining operations, [7] proceeds in three steps:

1. A comprehensive set of operations on non-temporal
types is defined.

2. By a process called lifting, all operations in that set
are made uniformly available to temporal types as well.
This ensures consistency between operations on non-
temporal and temporal types.

3. Specific operations are added to deal with temporal
types.

Most of the operations are defined in a generic way and
range over as many types as possible. To define generic op-
erations, [7] introduces a concept of so-called spaces and
distinguishes data types representing single values and sets
of values in a given space. These are called point types
and point set types, respectively. For example, there is a
space Integer having a point type int. representing a sin-
gle value in that space, and a point set type range(int).
representing sets of integers. Another space is 2D hav-
ing a point type point, representing a single value from
the 2D plane, and three point set types points, line, and
region, representing finite or infinite sets of points in the
2D plane. The classification of types into spaces is shown in
Table 2.

Generic operations are defined in [7] based on these no-
tions using type variables π and σ , ranging over the point
and point set types in the respective space. For example,
the predicates inside and intersects are defined as shown
in Table 3. Hence, the operation inside is defined e.g. for
the type combinations int × range(int) → bool or point ×
region → bool.

Table 2 Classification of Non-Temporal Types

Point type Point set types

ID Spaces Discrete Integer int range(int)
Boolean bool range(bool)
String string range(string)

Continuous Real real range(real)
Time instant periods

2D Space 2D point points, line, region

Graph gpoint gline

Table 3 Definition of generic operations

π × σ → bool inside
σ 1 × σ 2 → bool intersects

A second, more simple technique for defining generic
operations uses type variables as arguments to type construc-
tors. For example, the operation

moving(α) → periods deftime

is defined for all types to which the moving constructor is ap-
plicable and returns the set of time intervals when the func-
tion is defined.

In Table 2, we have already added a new space Graph
with the point type gpoint and the point set type gline. By
integrating the types gpoint and gline into the type system of
[7], a large number of generic operations are already defined
for them. For example, inside and deftime are defined with
signatures:

gpoint × gline → bool inside
moving(gpoint} → periods deftime
moving(gline) → periods deftime

4.3 Operations on non-temporal types

In this section we first check which of the non-temporal op-
erations from [7] apply to the new data types gpoint and
gline. In the second subsection we consider the interaction
between network space and space, that is between types
gpoint and gline on the one hand, and point, points, line,
and region on the other hand. All operations defined in this
section will later be lifted to temporal types.

4.3.1 Generic operations

The generic operations applicable to types gpoint and gline
are collected in Table 4. In some cases the semantics has to
be slightly adapted. Some brief comments:

For the predicates, the meaning should be obvious. For
the set operations, note that operations on single values
are included, as this is later interesting for the lifted case.
For example, the intersection between two gpoint values is
the gpoint if they are equal, or undefined otherwise. This
is not very interesting. However, in the lifted version we
have, for example, the signature moving(gpoint) × gpoint
→ moving(gpoint) which allows us to find the part of the
moving(gpoint) when it was at a particular network position,
a quite useful operation.

The elements of gline values are always closed inter-
vals. This means that if we subtract a gpoint from a gline.
the result is in any case the original gline value, as closure
is applied after the operation (similar as for spatial values
in [7]).

Modeling and querying moving objects in networks 175

Table 4 Non-temporal operations (implied by [7]); subject to lifting

Predicates, unary gpoint → bool isempty[undefined]
gline → bool isempty[undefined]

Predicates, binary gpoint × gpoint → bool =, 	=
gpoint × gline → bool inside
gline × gline → bool inside, intersects

Set operations, point/point gpoint × gpoint → gpoint intersection, minus
Set operations, point/point set gpoint × gline → gpoint intersection

gpoint × gline → gline union
gpoint × gline → gpoint minus
gline × gpoint → gline minus

Set operations, point set/point set gline × gline → gline union, intersection, minus

Aggregation gline → gpoint min, max
gline → gpoint avg[center]
gline → gpoint single

Numeric gline → int no_components
gline → real size[length]

Distance and direction gpoint × gpoint → real distance
gpoint × gline → real distance
gline × gline → real distance
gpoint × gpoint → real direction

The min, and max operations are defined in [7] only
for ID spaces as they need a total order. The avg operation
(with alias name center) is defined in 2D, but it does not
make sense for a general gline value as the resulting point
according to the semantics defined there does not need to
lie on the network. However, center, min and max would
be quite useful to get the center, start or end of a traffic
jam, respectively, on a single route. We define these three
operations to yield the “natural” result if the gline value is
restricted to a single route, and otherwise to be undefined
(i.e., return ⊥).

The single operation, as defined in [7], returns a (proper)
gpoint value if the argument gline does in fact consist only
of a single network location, otherwise ⊥.

Components of a gline value are the connected compo-
nents in the usual sense. This is used in the no_components
and later the decompose operation.

The distance is now the directed distance along the
shortest path through the network. It is possible to also get
the Euclidean distance by first converting to spatial val-
ues, explained below. The direction operation is defined
in [7] to return the angle (in degrees) between the x-axis
and a line from the first to the second point. It has the
same meaning here (for the spatial positions of the gpoint
values).

4.3.2 Interaction between network space and space

We now consider operations like forming the intersection
between a gline value and a region value, for example, to
find a part of the network lying within a fog area. Obviously,
such operations do not yet exist in [7]. First of all, it should
be possible to convert between network and spatial values.

We provide operations:

gpoint → point in_space
gline → line in_space
network × point → gpoint in_network
network × points → gline in_network
network × line → gline in_network
network × region → gline in_network

The first direction of conversion, by in_space, always
works. In the other direction, a point is converted to a gpoint
if it lies on the network; otherwise ⊥ is returned. For points,
line, and region, the intersection of their underlying point
sets in the plane with (the underlying point set of the line
value of) the network is formed and returned as a gline
value.

Second, the type gpoint is defined to be a subtype of
point, and gline a subtype of line. This induces a set of sig-
natures including, for example, the following:

gpoint × region → bool inside
gline × line → bool intersects
gpoint × region → real distance

The semantics is the one obtained by substituting for the
gpoint or gline argument its associated point or line value,
respectively. This is for convenience mainly as we could
achieve the same effect by explicitly converting first, i.e., us-
ing in_space(x) instead of argument x. In addition, it allows
for a more efficient implementation.

Third, we would like to be able to get the results of set
operations in network space rather than in space. By the
subtyping rule just introduced, the result type of intersec-
tion(gl, r) of a gline value gl and a region value r is line. We

176 R. H. Güting et al.

Table 5 Operations from Sect. 3.2 subject to lifting

Accessing a gpoint gpoint → int route
gpoint → real pos
gpoint → int side

Comparing gpoint and gline with a route identifier gpoint × int [routeId] → bool inside
gline × int [routeId] → bool intersects
gline × int [routeId] → bool inside
int [routeId] × gline → bool inside

Table 6 Temporal Operations (implied by [7])

Projection to domain and range For α in {gpoint, gline}
moving(α) → periods deftime
moving(gpoint) → gline trajectory
moving(gline) → gline traversed
intime(α) → instant inst
intime(α) → α val

Interaction with Domain and Range For α in {gpoint, gline}
moving(α) × instant → intime(α) atinstant
moving(α) × periods → moving(α) atperiods
moving(α) → intime(α) initial, final
moving(α) × instant → bool present
moving(α) × periods → bool
For α, β in {gpoint, gline}
moving(α) × β → moving(min(α, β)) at
moving(α) × β → bool passes

When operation For α in {gpoint, gline}
moving(α) × (α → bool) → moving(α) when

Lifting Lifting

Rate of change moving(gpoint) → moving(real) speed, mdirection

introduce variants g_intersection, g_union, and g_minus
to get the result in network space. Hence the result type
of g_intersection(gl, r) is gline. Again, we might explicitly
convert using in_network(n, intersection(gl, r)) instead of
g_intersection(gl, r), but this is less convenient to use and
much less efficient to implement.

4.4 Operations on temporal types

4.4.1 Lifting

All operations defined in Sect. 4.3 are now subject to tempo-
ral lifting. Lifting means that if we have an operation with
signature α1 ×α2 ×· · ·×αn → β, then the operation is also
available for signatures

α′
1 × α′

2 × · · · × α′
n → moving(β)

where αi
′ ∈ {αi , moving(αi)}. Hence, each of the argu-

ment types may become time-dependent which makes the
result type time-dependent as well. In addition to the opera-
tions of Sect. 4.3 we include some operations from Sect. 3.2
into the scope of lifting, namely the operations shown in
Table 5.

Some example signatures that we get by lifting are the
following:

moving(gpoint)
× gline → moving(bool) inside

moving(gline) → moving(real) size[length]
moving(gpoint)

× gpoint → moving(real) distance
moving(gpoint) → moving(point) in_space

4.4.2 Generic operations

Values of temporal types are functions from time into some
domain, and there is a set of generic operations defined in [7]
to deal with such functions. In Table 6 it is shown how these
operations apply to the new data types moving(gpoint) and
moving(gline). The semantics of these operations is defined
in [7].5 We briefly recall the meaning or adapt it to the net-
work environment: Deftime yields the time intervals when
the function is defined. Trajectory and traversed project a
moving gpoint or gline into the network space, i.e., yield the
traversed part of the network. Inst and val just return the

5 The mdirection operation was added later in [9].

Modeling and querying moving objects in networks 177

two components of an intime value. A function can be re-
stricted to an instant or to a set of time intervals by atinstant
and atperiods, respectively. Initial and final yield the first
and last (instant, α) pair of the function. The present pred-
icate allows one to check whether the function is defined at
an instant or at some time during a given set of time inter-
vals. At restricts a function to the times when its value lies
within the second argument. In this case the result type is
the minimum in an assumed order gpoint < gline. For ex-
ample, if we restrict a moving(gline) to a gpoint value, the
result is a moving(gpoint). The passes predicate, analogous
to present, allows one to check whether the function ever
assumes one of the values of the second argument. Some of
these operations can be derived, i.e., expressed in terms of
others as discussed in [7].

The when operation allows one to restrict a function to
the times when its function value fulfills the predicate given
as a second argument. For example, we might restrict a ve-
hicle v (a moving(gpoint)) to the times when it was inside a
park Park by

v when[fun (g: gpoint) g inside Park]

In this paper we introduce an additional abbreviation
for the parameter function: The type of the argument is
clear anyway, and we allow to refer to the argument by a
“.” symbol. Hence this can be written as

v when[. inside Park]

One might think that it is impossible to implement the
when operation, since the first argument is a continuous
function. But it is in fact implementable by a rewriting
technique as long as all operators used within the predicate
are within the scope of lifting [7].

The meaning of speed is clear; mdirection returns the
time-dependent direction of movement (a number as de-
scribed above for direction).

4.5 Operations on sets of objects

There is only one such operation in the design of [7] which,
however, plays an important role. The decompose operation
returns for a multi-component value its components as sepa-
rate values. For example, for a set of intervals (e.g. periods)
each interval is a component; for a region a face, for a line or
gline value a connected component of the underlying graph.
Furthermore, for functions, i.e. values of type moving(α)
components are defined to be maximal continuous compo-
nents. Hence such a value is split at discontinuities. In this
paper it is necessary to define continuity for moving(gpoint)
and moving(gline) values. This is done in Appendix A.

4.6 Network-specific operations

In the previous subsections of Sect. 4 we have studied how
the new data types gpoint and gline can be integrated into

the type system and the framework of operations of [7].
In this section we consider some further operations spe-
cific for networks. Admittedly the design in this section is
a bit less systematic and complete than that of the previous
sections.

We would like to be able to get the part of the network
within a given distance from a network position, to deter-
mine the connected component containing a given position,
to compute shortest paths, and to compute trips. This is pro-
vided by the operations shown.

gpoint × real → gline circle, out_circle,
in_circle

gpoint → gline component
gpoint × gpoint → gline shortest_path
gpoint × gpoint × instant → moving(gpoint) trip

Circle returns the part of the network within distance
v of u (u being the first and v the second argument) using
an undirected distance measure along routes and ignoring
connectivity in junctions. Directed versions are the two other
operations; out_circle returns only the part reachable within
distance v when starting from u; in_circle returns the part
of the network from which u can be reached within distance
v. Component returns the connected component of the net-
work containing the argument position u. Shortest_path re-
turns the shortest path from u to v.

The operation trip allows one to construct a time-
dependent (traversal of a) shortest parth, as follows. Suppose
we have a relation with schema of type (gline, mreal),
for example

speeds (route_interval: gline, speed:
mreal)

which associates with each route interval the time depen-
dent speed one can drive here. This information can be fed
into the internal data structures representing the network by
a command

update(Highways, speeds)

After that, trip computes a description of a trip in the
form of a moving(point) that moves from u to v starting at
instant w. In the computation it is assumed that the vehicle
traverses each route interval at the admissible speed of the
respective time. Algorithms related to such an operator are
discussed in [34].

4.7 Auxiliary operations

To complete our query language, we introduce a few aux-
iliary operations, mainly for dealing with time (Table 7).
The first group of operations constructs time intervals, for
example, year(2003), or day(2003, 8, 11). The bounding
time interval for two given intervals can be formed by the
period operator; e.g. period(month(2003, 7), month(2003,
12)) returns the second half of the year 2003. Operations
start and end are defined as aliases for min and max on

178 R. H. Güting et al.

Table 7 Auxiliary operations

Constructing time intervals int → periods year
int × int → periods month
int × int × int → periods day
int × int × int × int → periods hour
int × int × int × int × int → periods minute
int × int × int × int × int × int → periods second

Bounding time interval periods × periods → periods period
Aliases periods → instant min[start], max[end]
Current movement moving(α) → α current

→ instant now
Accessing instants instant → int year, month, day, hour, minute, second
Manipulating instants instant × real → instant +, −
Generic intervals α × α → range(α) range

range(α) → range(α) open, closed, leftclosed, rightclosed
→ int minint, maxint
→ real minreal, maxreal
→ instant mininstant, maxinstant

Geocoding string × string × int → point address2point

period values. Now returns the current instant of time and
current the value of a moving object at the current instant.
Given an instant, one can extract its year, month, etc. by
the respective operations. One can add and subtract a real
number that is the duration of a time interval, to an instant
to obtain the corresponding earlier or later instant. The next
group has operations for constructing generic intervals, e.g.
open(range(0, maxreal)) constructs the interval of positive
real numbers. Finally, address2point is an interface to an
external geocoding service which for a given street address
returns a point value. The first two arguments are the name
of a city and a street, and the third is a house number. Using
the in_network operation we can map the resulting point
into a gpoint.

5 Example applications and queries

In this section and Appendix B, we perform an “experimen-
tal evaluation” of our design by trying to formulate a large
number of queries that had been written down in natural
language before. Queries were written just with the appli-
cation in mind without consideration how they could be ex-
pressed in the new query language. One of the queries in
fact, we were not able to formulate. We consider three differ-
ent applications, an express parcel delivery service, vehicles
in a highway network, and an application analyzing traffic
jams.

Some of these queries are easy to formulate, others are
complex. Showing query formulations for all queries gets
a bit too long. We might select some queries from each of
the three applications, but such a selection might be biased.
To provide an unbiased impression of how easy or diffi-
cult it is to formulate the queries, in the sequel we show
the complete set of queries for the first application. Query
formulations for the other two applications are given in
Appendix B.

5.1 Express package delivery application

This application models a company offering express deliv-
ery of packages as they exist in many big cities. We consider
analysis of past movements as well as questions coming up
in real time. The people moving around are called “post-
men” even if they are female. For concreteness, this com-
pany is assumed to deliver within the city network of Hagen,
Germany.

We assume that we have the road network of the city
of Hagen called Hagen, a relation road giving road names,
a relation postman describing post workers’ trips, and a
relation city_area describing regions of Hagen as shown as
follows:

road(name: string, route: int)
postman(name: string, trip: mgpoint)
city_area(name: string, reg: region)

5.1.1 Queries on historical information

Query P1: Where was postman Bob at 10 am of last
Saturday? There are two possible interpretations:

(i) return a network location (i.e., a gpoint)

LET Saturday10am = start
(hour(2003,8,9,10));

SELECT val(atinstant(trip,
Saturday10am))

FROM postman
WHERE name = ‘Bob’

(ii) Return a road name.

SELECT r.name
FROM postman, road AS r
WHERE name = ‘Bob’ AND

route(val(atinstant(trip,
Saturday10am))) = r.route

Query P2: Which places did Bob visit between 9:00 am
and 11:00 am of last Saturday?

Modeling and querying moving objects in networks 179

(i) as part of the network (result is a gline value)

LET Saturday9to11 = period(hour(2003,
8,9,9), hour(2003, 8, 9, 10));

SELECT trajectory(atperiods(trip,
Saturday9to11))

FROM postman
WHERE name = ‘Bob’

(ii) as a set of road names
LET Bob_roads = routes(
ELEMENT(

SELECT trajectory(atperiods(trip,
Saturday9to11))

FROM postman
WHERE name = ‘Bob’));

SELECT name
FROM Bob_roads AS b, road AS r
WHERE b.route = r.route

The routes operation used here transforms the gline
value returned by trajectory into a relation.

Query P3: Find all post workers who visited
Rathausstrasse in the afternoon (2:00 pm through 6:00 pm)
of last Friday.

LET FridayAfternoon =
period(hour(2003, 8, 8, 14),
hour(2003, 8, 8, 17));

LET Rathausstrasse = ELEMENT(
SELECT route FROM road WHERE name =
‘Rathausstrasse’);

SELECT name
FROM postman
WHERE Rathausstrasse inside

trajectory(atperiods(trip,
FridayAfternoon))

The inside operation used here has signature int[routeId]
× gline → bool.

Query P4: Find all post workers who stayed in Hagener
Strasse for more than one hour yesterday.

LET yesterday = day(2003,8,11);
LET one_hour = duration
(hour(2003,1,1,0));

LET HagenerStrasse =
ELEMENT(SELECT route FROM road
WHERE name = ‘Hagener Strasse’);

SELECT name
FROM postman
WHERE duration(deftime(at(atperiods
(trip, yesterday), HagenerStrasse)))

> one_hour

Query P5: Find all post workers who stayed within 1 km
to each other for more than two hours last Saturday.

LET Saturday = day(2003, 8, 9);
SELECT p1.name, p2.name
FROM postman AS p1, postman AS p2
WHERE EXISTS
SELECT *
FROM SET(distfunc,

atperiods(distance(p1.trip,
p2.trip), Saturday)

when[fun(d: real) d < 1])
decompose[distfunc,
distfunc_component]

WHERE duration(deftime
(distfunc_component)) > 2 * one_hour

This is a fairly complicated query. For each pair of post-
men we compute the real function describing their distance
(by the lifted distance operator) and reduce it to Saturday
and also (by when) to the parts when the distance is less than
1 km. By the SET construct (notation from [7]) we trans-
form this into a relation with a single tuple and attribute
called dist-func. Then the decompose operator transforms
this into a relation with several distinct tuples, one for each
continuous component of the distance function (see [7] for
a more detailed explanation of decompose). We select such
tuples for which the duration of the function is more than
two hours. If the result is not empty, then the pair of post-
men’s names is returned.

Observe that for this query it is crucial that we have the
advanced operations of [7] like when or decompose at our
disposal.

Query P6: For the last week, who visited the Marktring
area most often?

LET LastWeek = period(day(2003, 8, 4),
day(2003, 8, 9));

LET Marktring = ELEMENT(
SELECT reg FROM city_area
WHERE name = ‘Marktring’);

SELECT name, no_components(
at(atperiods(trip inside Marktring,
LastWeek), true)) AS no_times

FROM postman
ORDER BY no_times
FIRST 1

Here for each postman we reduce its trip to last week,
then check whether it was inside Marktring which yields a
moving boolean. We reduce this to the times when it was
true and count the number of continuous components. This
is the number of times the postman was inside the Marktring
area last week. We then sort the resulting relation by this
number and return the top-ranked postman.6

This query demonstrates interaction between network
and spatial values, since Marktring is purely geometric
information.

Query P7: In the last week, which streets were visited
most often?

LET frequencies =
SELECT r.name AS name,

no_components(at(atperiods(p.trip,
LastWeek) inside r.route, true))
AS no_times

FROM postman as p, road as r
WHERE trajectory(atperiods(p.trip,

LastWeek)) intersects r.route;
SELECT name, SUM(no_times) AS visited
FROM frequencies
GROUP BY name
ORDER BY visited

Here the first query computes for each street and each
postman how often he/she visited that street last week. The
second query groups by street and returns the sum of visits
for each street.

6 The construct FIRST n is a small extension of SQL proposed in
[35] that allows one to retrieve only some specified number of resulting
tuples.

180 R. H. Güting et al.

5.1.2 Queries on current information

For this section we assume that postmen are currently mov-
ing and the relation postman2 stores their trips up to now.

postman2(name: string, trip: mgpoint,
dest: gpoint)

Trip descriptions are “continuously” updated (extended)
according to some location update policy. In addition to the
trips, the relation stores the current destination (i.e. the loca-
tion where the current parcel is to be delivered).

Query P8: Who is currently closest to Boeler Strasse
122 and moving towards that direction?

When a postman is moving in the direction of a given
network position, it means, that his/her distance to that posi-
tion is decreasing. We can determine that via the derivative
of the distance.

LET Boeler122 =
in_network(address2point(‘Hagen’,
‘Boeler Strasse’, 122));

SELECT name, distance(current(trip),
Boeler122) AS dist

FROM postman
WHERE current(derivative(distance(trip,
Boeler122))) < 0

ORDER BY dist
FIRST 1

In this query we use operator address2point (Sect. 4.7).
We take the derivative of the mreal returned by the lifted
distance operation.

Query P9: Who is closest to Bob and the desired desti-
nations of their current packages are within 2 km? (Suppose
that Bob has a problem with his motorcycle and needs an-
other postman to help him with his package.)

This means: Among those postmen for which the desti-
nation is within 2 km of Bob’s destination, who is closest to
Bob? For this query, it is not clear whether the distance from
Bob’s destination to the other one or vice-versa is meant. We
just take one of the cases.

SELECT p.name, distance(current(p.trip),
current(bob.trip)) AS dist

FROM postman2 AS bob, postman2 AS p
WHERE bob.name = ‘Bob’ AND distance
(bob.dest, p.dest) < 2

ORDER BY dist
FIRST 1

Query P10: Who is now moving eastwards in the
Hagener Strasse?

(i) Let us assume that the Hagener Strasse is a dual road
and we know that “eastwards” is the up direction of the
Hagener Strasse.

SELECT p.name
FROM postman2 as p, road as r
WHERE r.name = ‘Hagener Strasse’

AND current(p.trip) inside r.route
AND side(current(p.trip)) = 1

(ii) The second method uses the current direction of move-
ment in space. It is determined to be “eastward” if it

is within an angular range from 300 degrees through
60 degrees (chosen somewhat arbitrarily). This method
is only valid if the road does not have parts going in an-
other direction.

SELECT p.name
FROM postman2 as p, road as r
WHERE r.name = ‘Hagener Strasse’ AND

current(p.trip) inside r.route
AND NOT(current
(mdirection(p.trip)) > 60

AND current
(mdirection(p.trip)) < 300)

(iii) A third method determines the relative position of the
origin and the end point of Hagener Strasse to decide
whether “eastward” is the direction of increasing or de-
creasing positions on the route.

SELECT p.name
FROM postman2 as p, road as r
WHERE r.name = ‘Hagener Strasse’

AND current(p.trip) inside r.route
AND (
(startsSmaller(Hagen, r.route)

AND current (derivative(pos(p.trip))) > 0)
OR

(NOT startsSmaller(Hagen, r.route) AND
current(derivative(pos(p.trip))) < 0)

)

Query P11: Which street has more than ten postmen
currently?

SELECT r.name
FROM road AS r, postman2 AS p
WHERE current(p.trip) inside r.route
GROUP BY r.name, r.route
HAVING COUNT(*) > 10

Query P12: Find all postmen who have stayed in the
same street for more than 1 h up to now.

LET one_hour = ...//defined in query P4
SELECT p.name
FROM postman2 AS p
WHERE EXISTS

SELECT *
FROM SET(rno, route(p.trip)) decompose

[rno, rno_intvl]
WHERE now inside deftime(rno_intvl)

AND duration(range(start(deftime
(rno_intvl)), now) > one_hour

This is a bit complicated. For each postman, we ap-
ply the route operation to its trip attribute which yields
a moving(int) value. We transform this into a relation to
be able to apply the decompose operator. So SET(rno,
route(p.trip)) is a relation with one tuple and one at-
tribute rno of type moving(int). Decompose decomposes
the moving(int) into continuous components, that is, one
moving(int) value for each integer value assumed; these are
stored in the new rno_intvl attribute. We then select from
that relation intervals overlapping the current time and start-
ing more than an hour ago. If the result relation is not empty,
then this postman qualifies for the result.

Query P13: Who will pass Hagener Strasse before
he/she can deliver his/her current package?

Modeling and querying moving objects in networks 181

We need to compute a shortest path from the postman’s
current position to the destination and see whether it inter-
sects Hagener Strasse.

LET HagenerStrasse = ...//defined in
query P4

SELECT p.name
FROM postman2 AS p
WHERE shortest_path(current(p.trip),
p.dest) intersects HagenerStrasse

Query P14: Find all postworkers currently in the
Hagener Strasse and report their location.

SELECT current(p.trip)
FROM postman2 AS p
WHERE current (p.trip) inside
HagenerStrasse

6 Implementation

In this section we address some of the implementation is-
sues of the proposed framework. The data types and opera-
tions are currently being implemented as two new algebras
in the SECONDO extensible DBMS [36, 37]. SECONDO does
not have a fixed data model but allows one to implement
DBMS data models as a set of algebra modules; each pro-
viding some types (type constructors, to be precise) and op-
erations. For example, there exist algebras to represent stan-
dard data types, spatial data types, relations, B-tree indexes,
R-tree indexes, or midi files, each with appropriate oper-
ations. We will add one algebra to represent the network
with operations, and another algebra for the types gpoint,
gline, mgpoint, and mgline. For an up-to-date overview of
SECONDO see [37].

SECONDO is implemented on top of BerkeleyDB as a
storage manager and provides an interface offering concepts
for persistent storage such as files and records, with ser-
vices such as concurrency control, recovery, and transaction
management.

SECONDO offers a specific concept for the implementa-
tion of attribute data types. Such a type has to be represented
by a record, called root record, which may have one or more
components that are (references to) so-called database ar-
rays. Database arrays are essentially arrays with any desired
field size and number of fields; additionally they are auto-
matically either represented inline in a tuple representation,
or outside in a separate list of pages, depending on their size
[38]. The root record is always represented within the tu-
ple. Hence, in the following, our data types (except network)
are represented by a root record and possibly some database
arrays.

6.1 Data structures

In this section we present data structures for the data types
network, gpoint, gline, mgpoint and mgline.

6.1.1 Type network

Type network is an abstract data type and we are free to rep-
resent it in any way we see fit. The main requirements are:

• The representation should support the export of relations
from the network through operations routes, junctions,
sections.

• Direct access to routes, given a route identifier, should
be possible, e.g. to support construction or access opera-
tions of Sect. 3.2.4 or 3.2.5.

• The graph structure of the network should be repre-
sented explicitly to support network-specific operations
like shortest_path.

We decided to represent a network by

(i) three relations called routes, junctions, and sections, and
(ii) a persistent adjacency list data structure

Note that in SECONDO it is possible that a value of a
data type is represented in terms of other types of SECONDO,
hence we can build a data structure having relations as com-
ponents, which are not visible or directly accessible to the
user. So the three relations representing the network are hid-
den from the user. Furthermore, it is possible to implement
an operator using SECONDO queries. Therefore an operator
like routes can be implemented by a query on an internal re-
lation which may perform some projections, selections, even
joins, if needed.

As stated in Sect. 2, a network N is a pair N = (R, J)
where R is a finite set of distinct routes and J is a finite set
of junctions in R. Sets R and J are represented by relations
with the following schemas:

routes(id: int; length: real; curve:
line; kind: bool; start: bool)

junctions(rlid: int; rlrc: int; posl: real;
r2id: int, r2rc: int; pos2: real; cc:

int; pos: point)

The tuple of the routes relation is equivalent to the do-
main of routes Route (see Sect. 2). The tuple of the junctions
relation is somewhat different from the domain of junctions
Junction(R). Together with the route identifier, we keep an-
other kind of pointer for direct access in the routes relation.
It is the record identifier allowing for direct access to the
stored tuple. With this pointer we can avoid a search in the
routes relation if we want to find the routes pointed to by
the route identification r1id and/or r2id. We then have the
two new attributes r1rc and r2rc for this purpose.

Road sections corresponding to edges of the network
graph can be derived from routes and junctions. They are
needed for export by the sections operation, but also inter-
nally to support operations like shortest_path. We store all
sections in a third relation called sections with the following
schema:

sections(rid: int; rrc: int; posl: real;
pos2: real; dual: bool; length: real;
curve: line)

182 R. H. Güting et al.

A

B

J

1

2

3

45

6

7

8

1

3

5

7

2

4

6

8

2 4 6

6

6 8

2

(a) (b) (c)

Fig. 7 Adjacency list structure for a junction: a the junction, b the node
with incident edges, c the adjacency list structure

The schema is similar to the one exported by sections
(Sect. 3.2.1).

To support shortest_path and similar operations we also
need to be able to find outgoing edges from a node effi-
ciently. This is the purpose of the adjacency list data struc-
ture. Recall that the standard adjacency list structure (in
main memory) is an array indexed by node numbers; each
array entry contains a pointer to a list of successors of
this node. This standard structure does not allow us to ex-
press the information in a transition matrix, since, when a
node has been reached, it is not known, how it has been
reached, and a restriction among its successors based on
that is not possible. We here invent a slightly modified ver-
sion of the adjacency list structure which consists of an ar-
ray indexed by edge numbers; each array entry contains a
list of successor edge numbers at the target junction of the
edge, to which a transition is possible. The data structure
is illustrated in Fig. 7 for the junction of Fig. 1. Note that
the space requirements are proportional to the number of
junctions.

The array for the edges (sections) is represented by a
database array; each entry is a pointer (identifier) to another
DBArray containing outgoing edges for the corresponding
end node of the section. Observe that several edges with
different associated curves may connect the same nodes.
Because a DBArray is stored in one record of the under-
lying storage system, each box in Fig. 7c corresponds to one
record. The array for edges will be kept entirely in memory
whenever possible.7

Hence finding successors of an edge will cost one disk
read operation (for the record with successor edge numbers)
plus one read operation for each successor edge (to access
the record of the section relation). Further improvements like
clustering of successor records with section records, or mov-
ing some information from section records into successor
records (so that one can avoid reading section records) are
possible but beyond the scope of this paper.

Algorithms for computing shortest paths like Dijkstra’s
algorithm or A∗ [39, 40] can be adapted in a straightforward
way to use the modified adjacency list structure; they need to
keep directed edges ordered by distance of their target nodes
in the priority queue instead of nodes.

7 For extremely large network databases one might have a problem
here and need to invent further strategies; however, with today’s mem-
ory sizes this will normally not be a problem.

6.1.2 Types gpoint and gline

For representing the gpoint type constructor, a simple data
type is required. It is represented as a root record with the
following format:8

gpoint: record {
nid: int;
rid: int;
pos: real;
side: {up, down, none}

}

The first value nid corresponds to a network identifier,
rid and pos represent a route measure (RMeas), and side con-
tains the side information.

The gline data structure is slightly more complex, since
it contains a finite set of quasi-disjoint route intervals (see
Sect. 2). We represent this set of route intervals as an (or-
dered) database array:

gline: record {
nid: int
rints: DBArray of record

{
rid: int;
side: {up, down, none}
pos1: real;
pos2: real; }

}

As for the gpoint data type, the gline needs a network
identifier nid. The set of route intervals is represented by
rints. Every interval contains the route identification rid, the
interval position (pos1, pos2), and the side of the route rep-
resented by side.

6.1.3 Types mgpoint and mgline

For representing data types moving(gpoint) and
moving(gline) (mgpoint and mgline for short) we use
the same strategy as in [8, 9] outlined already in Sect. 4.1,
namely to use the sliced representation. Each slice is
represented by a so-called temporal unit consisting of a
time interval and a description of the temporal development
during this time interval via some unit function. The data
type for a unit is called the unit type. The overall data
structure for a value of type moving(α) is then a database
array containing the corresponding α-units ordered by
time interval. A total order exists since all unit time intervals
are disjoint. Hence in the sequel we only need to describe
the unit types for gpoint and gline called ugpoint and ugline.
respectively.

For the gpoint temporal unit we need to store the network
identification nid, the route identification rid, a time interval
(t1, t2), two graph positions pos1 and pos2 representing the
positions at the beginning and the end of the time interval,
and the side of the route side.

8 The structures are described in pseudo-code; the actual implemen-
tation is in C++.

Modeling and querying moving objects in networks 183

ugpoint: record {
nid: int;
rid: int;
side: {up, down, none}
t1: Instant;
t2: Instant;
pos1: real;
pos2: real;

}

The unit function evaluates a position inside the unit time
interval assuming a linear movement from pos1 to pos2 in
the time interval (t1, t2). It is important to note that we store
the route identification inside the data structure because the
movement in the time interval must be on the same route. If
the point changes the route, then a new temporal unit must
be created (as well as for any change of speed).

Using the same approach, the temporal unit of the gline
data type contains a set of moving intervals. The data type is
then
ugline: record {
nid: int;
rtints: DBArray of record

{
rid: int;
side: {up, down, none}
t1: Instant;
t2: Instant;
pos11: real;
pos12: real;
pos21: real;
pos22: real; }

}

where posi j represents posi at time instant t j . The positions
inside the temporal unit are also calculated assuming linear
movements.

It is important to note that for every time t inside the
temporal unit time interval, the resulting gline value from
the temporal function should be valid, i.e., its route inter-
vals must be quasi-disjoint (see Sect. 2). When this con-
straint does not apply, then a new gline temporal unit must be
created.

We have required at the start of Sect. 6 that every at-
tribute type must be represented by a root record plus possi-
bly some database arrays. This is violated by the definition
of ugline as this record would be an element of a DBArray
for mgline so that we get a two-level tree of database arrays.
This problem is solved by a technique described in [8] to
actually represent the DBArray of each unit not separately,
but as a subarray of a global array for all units of this mgline
value.

6.2 Query execution

In this section we try to give an idea of query processing in
the proposed framework. We discuss two example queries
from Sect. 5.1.

Query P2. Which places did Bob visit between 9:00 am
and 11:00 am of last Saturday?

LET Saturday9to11 = period
(hour(2003,8,9,9), hour(2003,8,9,10));

This part of the query requires O(l) time, only operators
to construct a time interval are called.

SELECT trajectory(atperiods(trip,
Saturday9to11))

FROM postman
WHERE name = ‘Bob’

An index on the name attribute of the postman rela-
tion can permit (almost) direct access to the postman whose
name is Bob. The database array representing Bob’s trip
(mgpoint) is searched with the atperiods operator to return
the parts of the movement that belong to last Saturday from
9:00 to 11:00 am. This is done using a binary search for
the first unit in the trip overlapping the time interval and
then a sequential scan reading the units belonging to the
search interval. Assuming that the r units contained in the
time interval fit into R disk pages, this algorithm will take
O(log n + R) disk accesses, where n is the number of com-
ponents of the mgpoint for Bob’s trip. The result is processed
further in memory by the trajectory operator.

Query P4. Find all post workers who stayed in Hagener
Strasse for more than one hour yesterday.

LET yesterday = day(2003,8,11);
LET one_hour = duration(hour(2003,1,1,0));

These parts of the query are instantaneous again, only
operators to construct time intervals are called.

LET HagenerStrasse =
ELEMENT(SELECT route FROM road

WHERE name = ‘Hagener Strasse’);

An index on the name attribute of the road relation can
permit direct access to the Hagener Strasse.

SELECT name
FROM postman
WHERE duration(deftime(at(atperiods(

trip, yesterday), HagenerStrasse)))
> one_hour

This query is more complex: for each tuple in the post-
man relation, first the operation atperiods reduces the trip
to yesterday; then the at operation returns the part of yes-
terday’s trip that were in Hagener Strasse; then the deftime
operation takes only the temporal dimension of the trip, and
finally the duration operation is called to sum the intervals
of the trip and this value is compared to see if it is greater
than one hour (one_hour variable).

A first, straightforward way to execute the query is the
following: All tuples of the postman relation are read. For
each tuple, the atperiods operator selects only the parts of
the trip that were realized yesterday. This is done using a
binary search and then a sequential scan of units, as for the
previous query. After this, the at operator will run through
all the units that are returned by the atperiods operator and
reduce to the units with the route HagenerStrasse. Then def-
time and duration are computed as in [9].

Of course, it may be costly to read all tuples of the post-
man relation. An index could support the processing of this
most expensive part of the query:

184 R. H. Güting et al.

at(atperiods(trip, yesterday),
HagenerStrasse)

A spatio-temporal index postman_trip with key
<time_interval, route_id> with a pointer to the tuple record
could support this part of the query. An example of such
an index is [41]. Every unit of every trip in the postman
relation produces an entry in the index. Furthermore, we
hope that the query optimizer can be made smart enough to
add further conditions to the query as in

SELECT name
FROM postman
WHERE duration(deftime(at(atperiods
(trip, yesterday), HagenerStrasse)))

> one_hour
AND present (trip, yesterday)
AND passes(trip, HagenerStrasse)

and to map the latter two conditions to a search on the in-
dex postman_trip. This is a kind of window query with time
interval equal to yesterday and route identifier taken from
HagenerStrasse. Using this index, we can avoid reading tu-
ples in the postman relation that do not have trips that yes-
terday passed through HagenerStrasse.

The purpose of this section was only to give some idea
about query processing issues and strategies in this frame-
work. A detailed study of query processing, implementation
of all operators, and optimization rules needed is left to fu-
ture work.

7 Related Work

Related work in general was described in the introduction.
In this section, we first give some background on earlier ap-
proaches dealing with graphs in databases and spatially em-
bedded networks. We then discuss the most closely related
work, especially addressing issues of modeling and querying
moving objects in networks, in some detail.

Graph models in databases were studied around 1990 by
several groups, in particular by Cruz, Mendelzon, and Wood
(e.g. [42]) and by Gyssens, Paredaens, and van Gucht (e.g.
[43]), see also [44]. These works did not consider spatially
embedded networks, one of their main goals was a new ap-
proach to recursive query processing.

The modeling of spatially embedded networks was
addressed by Erwig and Güting [45] and Güting [46].
Reference [45] integrates object-oriented modeling, spatial
data types, graphs and sequences in a rich data model that
also employs concepts from functional programming. The
approach in [46] is perhaps a bit simpler and more stream-
lined. Here an emphasis is on integrating graph modeling
into an object-oriented modeling environment seamlessly.
The model offers object classes of three kinds called sim-
ple classes, link classes, and path classes, which can be used
for general data modeling, but also to model nodes, edges,
and path objects, respectively, of a graph or network. To ob-
tain spatial networks, one associates a node with a point in
the plane and an edge with a polyline. Both [45, 46] already

emphasize the importance of path objects, which correspond
to routes in our current model. Güting [46] further develops
an extension of SQL to deal with general querying and graph
and spatial network querying in a smoothly integrated way.
Compared to this paper, in these works the network mod-
eling is a bit less precise (e.g. there are no dual roads or
transition matrices), and of course, there is no modeling or
querying of moving objects.

Network query processing, in particular shortest path
computation, has been considered by the groups around
Shekhar (e.g. [47, 48]) and Rundensteiner (e.g. [49, 50]).
In [48] an adjacency list data structure clustered into pages
is developed. Clustering is based on z-order of the node
positions.

A recent paper [28] has studied data structures for spatial
networks and evaluation of several types of queries (nearest
neighbors, range query, closest pairs, distance join). They
compare Euclidean and network-based evaluation of such
queries. The data structure employed is similar to the one
we use in Sect. 6 if we add clustering of nodes and a spatial
index on geometries in the sections relation. Their represen-
tation of junctions is different, however: To represent possi-
ble transitions at a junction a graph with 8 nodes is needed
(see [28], Fig. 3.2). Our adjacency list scheme appears sim-
pler and more efficient. This work deals with static networks
only; there are no moving objects considered.

We now pass on to moving objects.
The work of the Wolfson group cited in the introduction

does, in fact, assume that objects move in networks. How-
ever, the network is not modeled in any way. A dynamic
location attribute is given by a polyline (in 2D space) plus
some additional information like start time, start position,
and speed. It is assumed that the polyline (trajectory) has
been derived from the network initially; thereafter the move-
ment is described in purely geometric terms. There is no (ex-
plicit) relationship to the network any more. The problem of
discovering relationships between moving objects and the
network later in queries is not addressed anywhere. Since
trajectories are represented geometrically, not in terms of
network elements, this would require expensive geometric
computations.

A paper by Vazirgiannis and Wolfson [51] considers
modeling and querying moving objects in road networks.
The network model is a relation representing “blocks” which
means edges of the network graph. Each tuple contains a
polyline describing the geometry of the edge. It also contains
very application-specific information such as the ranges of
street numbers on the left and right side of the road, or the
left side and right side Zip codes. The model is in fact taken
directly from a company providing geographic data.

The network model basically corresponds to an undi-
rected graph, where nodes are street crossings and edges are
city road blocks. The model is not defined formally, and it is
not a generic but rather an application-specific model.

Moving objects are described by geometric polylines,
as in the earlier work mentioned above. The approach is
to compute a shortest path on the network, then to assign

Modeling and querying moving objects in networks 185

traveling times (using length of the block and speed limit)
and so to arrive at a trajectory. After this process, again the
trajectory does not contain any references to network com-
ponents.

Comparing to our work, it is the usual graph model, in
contrast to our route-oriented model. It does not model ob-
jects moving in networks, only derives 2D moving objects
initially. This fact leads them also to use 3D indices (2D +
time) instead of network-space indices.

Regarding the query language, a few ad-hoc extensions
of SQL are proposed, using modifiers in the WHERE clause

WITHIN (DISTANCE s | TRAVELTIME t) FROM R
[ALONG EXISTING PATH | ALONG SHORTEST PATH]
[(ALWAYS BETWEEN) | (SOMETIMES BETWEEN)
starttime AND endtime]

What can be expressed in this language is extremely lim-
ited when compared to our proposal.

Two papers by Jensen et al. [30, 52] have looked at data
modeling issues for spatial networks with respect to possi-
ble uses for location-based services. They describe as a case
study the data model used by the Danish road directory and
a Danish company. The emphasis here is to explain that real
road networks are quite complex, and that just simple di-
rected graph models are not sufficient. The case study sug-
gests a model that uses several interrelated representations,
called (i) the kilometer post representation, (ii) the link-node
representation, (iii) the geographical representation, and (iv)
the segment representation. The kilometer post representa-
tion corresponds roughly to our route-oriented model, the
link-node representation is related to directed and undirected
graphs. The geographical representation is given by geomet-
ric position of certain points on a road. The segment repre-
sentation is hidden from a user and is basically a higher-level
graph than the link-node representation. All these represen-
tations are expressed in terms of relational tables.

This is an interesting application study, and we have
drawn some of our motivation to use a route-oriented model
from the first of these papers [30]. This is not a formalized
database model, and it is too complex to be a good basis for
a query language. Moving objects are not modeled.

The same group has described a more formalized model
incorporating some of these ideas [53]. They propose to use
two different models of a network together, called (i) the 2D
representation and (ii) the graph representation. The first is
geared to describing a network at very high detail, the sec-
ond should support efficient computations. The 2D model
is essentially a graph whose edges (called road segment)
are pieces of road that can be represented by a straight line
segment, and whose nodes are connections between such
segments. A road segment has some associated information,
beyond the line segment in particular a code for an allowed
movement direction. A node (called connection) is a 2D
point with an associated set of incident road segments. In-
terestingly, they have independently from us also discovered
the idea of a transition matrix called a connection matrix
here. Hence a connection (node) also has a connection ma-

trix; if there are m incident segments the connection matrix
is an m × m matrix.

Beyond the network, the 2D representation has data
points and query points. A data point is a set of triples (point,
segment, accessibility code) plus a list of properties (which
are just keywords). It models a facility and how it is accessi-
ble from one or more road segments. The accessibility code
tells whether one can enter from one or both directions of
the road segment. A query point is given by a triple (point,
segment, direction) and models a moving object or vehicle
at one instant of time when a query is issued. Direction is
the current direction of movement.

The graph representation (ii) is a directed graph with an
additional relationship on edges called co-edges. Two edges
are co-edges if they belong to the same road segment and one
can switch from one to the other by a U-turn. Data points are
now represented relative to edges. Hence a facility having
n access points must now be represented n times. A query
point is given by an edge plus position9 plus speed and time
of last update. Hence one can compute a movement function
as long as the object is on this edge. When it would leave the
edge, it stays at its end. This is like the dynamic attributes of
Wolfson. The paper further describes how the graph repre-
sentation can be derived from the 2D representation.

This model is the closest there is to our network model.
Nevertheless there are still big differences.

• Both the 2D and the graph representation are graph-
oriented, i.e., they do not offer a route-oriented model
as we do. For the reasons described in the introduction it
is important to use a route-oriented model.

• They do not offer a model for moving objects in net-
works. Trajectories of moving points relative to the net-
work are not available. Obviously, there is also no mod-
eling of either static or moving network regions.

• There is no associated query language for this model.

We feel the dual model described here is too complicated
to be a suitable basis for representing moving objects in net-
works and for defining queries relative to the model. The
model is geared towards location management applications;
this is why only query points, instead of moving objects, are
modeled. The very detailed modeling of facility access in the
2D representation is interesting. However, facility access can
be modeled well enough by our concept of graph positions
(gpoint). On a dual road, if it needs to be accessible from
both directions, we have to store two entities, one for each
side of the road, as they do for the graph model, too.

It is interesting that the concept of a transition or connec-
tivity matrix also occurs in their work. Using two-way con-
nectivity that can be encoded into an integer may be more
practical than storing matrices of varying size.

Recent related work by our own group is [54–56].
Reference [54] develops a model for dynamic networks. It
describes how availability of nodes or edges can change over

9 In fact, the model generally uses two positions, one in terms of
length of the edge, another in terms of weight which roughly corre-
sponds to estimated travel time.

186 R. H. Güting et al.

time. In particular, edges may be partially blocked and later
reopened. A query language is defined that allows one to for-
mulate questions about past states of the network. The un-
derlying network model is still graph-oriented (rather than
route-oriented), and this paper does not consider moving
objects.

The work in [55] builds upon the model defined in this
paper, providing several extensions. It integrates the model
with the concepts developed in [54] for dynamic networks.
It further introduces transitions between several such net-
works and considers location update strategies, querying
with uncertainty, and prediction of future locations. Finally,
paper [56] defines the MON-tree, a route-oriented index for
network-constrained moving objects.

8 Conclusions

The contribution of this paper is a precise and comprehen-
sive data model and query language for moving objects in
networks. Whereas there exists some work on modeling
networks, and some work on querying mobile objects is
network-related, to our knowledge there is nowhere in the
literature an integrated approach to modeling and querying
with comparable expressive power to the model and lan-
guage of this paper. In more detail, the contributions are the
following:

• We provide a precise formal model of a spatially embed-
ded network in terms of routes and junctions, which is a
better basis for representing moving objects than nodes
and edges. The model is detailed enough to distinguish
simple and divided roads and describe connectivity at
junctions.

• We offer abstract data types for a network and for static
and moving network positions and regions. We are not
aware of any other model providing moving object tra-
jectories relative to networks, neither of any work defin-
ing static or moving network regions. The new data types
are integrated into a relational environment with suitable
interface functions.

• We offer a rich and systematically designed algebra to
work with the new data types. The expressive power of
the resulting query language is demonstrated by a large
number of queries for three example applications.

• An implementation strategy is outlined in the paper, and
a prototype implementation is underway.

The part of the model dealing with moving entities is
designed as a careful extension of the earlier model of [7].
Some may feel that this limits the novelty of this approach.
Indeed, it is more difficult to describe an extension to an
existing framework (we have done our best in Sect. 4) than
to invent everything from scratch. Possibly it is also less fun
to read. Nevertheless, we are deeply convinced that this is
the right approach, for the following reasons.

• The model of [7] is a comprehensive model of abstract
data types for moving entities in an unconstrained en-
vironment. It is obvious that constrained movement (in

networks) is a special case of that. Therefore it is clear
that lots of concepts from the unconstrained environment
apply and can and should be reused. If one looks care-
fully at the example queries, then it is obvious that the
expressive power of the overall approach is achieved by
the combination of new types and operations of this pa-
per with the generic operations and facilities (e.g. lifting)
of [7].

• It is possible to use data types for unconstrained and con-
strained movement together in a single seamless, consis-
tent framework.

• Beyond just the model of [7], a lot of further work has
been invested into implementation issues [8, 9], parts of
which can be reused (see Sect. 6).

• Regardless of how it was achieved, this is simply the
most comprehensive model for moving objects in net-
works and the most expressive query language that has
been proposed so far, which proves the success of this
approach.

Future work will address implementation issues such as
algorithms for the operations and query processing and op-
timization strategies, including indexing. Furthermore, ex-
tensions for traffic jam discovery and prediction are an
interesting research issue. Note that it would be easy in our
framework to add an operator that computes a set of moving
traffic jams from a set of moving objects, as all needed data
types are available. The question is what exactly defines a
traffic jam, what parameters such an operator should have,
and by which algorithm it could be evaluated.

Acknowledgements The first author thanks Ouri Wolfson for inter-
esting discussions on moving objects in networks during a visit in
Chicago in April 2002, and for his great hospitality on that occa-
sion. We also thank the referees for their helpful comments. This work
was partially supported by a grant Gu 293/8-1 from the Deutsche
Forschungsgemeinschaft (DFG), project “Datenbanken fur bewegte
Objekte” (Databases for Moving Objects).

Appendix A: Definition of continuity for moving(gpoint)
and moving(gline)

Whereas it is obvious what continuity means for a moving(real),
this is not so clear for other types moving(α), e.g. moving(region).
[7] provides an extended definition of continuity based on a func-
tion ψ which defines a measure of dissimilarity between two α val-
ues, hence is defined as ψ : Aα × Aα → IR . The ψ function is
then defined for each data type α to be 0 when the two α values
are equal, and to approach 0 when the values get more and more
similar.

What we need to do here is to define continuity for moving(gpoint)
and moving(gline) values. We decide that a discontinuity occurs when a
moving(gpoint) changes the route, and of course also, when it changes
the location on a route without traversing the intermediate locations.
Hence we define for two gpoint values:

ψ((i1, (r1, d1, s1)), (i2, (r2, d2, s2)))

=
{ |d1 − d2| if i1 = i2 ∧ r1 = r2 ∧ s1 = s2

1 otherwise

Recall that a gpoint value consists of a network number and a triple
which in turn consists of a route identifier, a route measure, and a side

Modeling and querying moving objects in networks 187

value. For a moving(gline) we employ the symmetric difference (as for
region values in [7]) and define for two gline values

ψ(GL1, GL2) = size(g_minus(GL1, GL2))

+ size(g_minus(GL2, GL1))

using the operations defined above.

Appendix B: Further query formulations

Vehicles on Highway Networks

For this application we will assume that we have a network called
GermanHighways and the following relations:

highway(no: int, route: int)
vehicle(licence: string, trip: mgpoint)
gas_station(company: string, id: int,
loc: gpoint)

motel(name: string, chain: string, min_rate:
int, max_rate: int, pool: bool, loc: gpoint)

speed_limit(limit: int, stretch: gline)

For the vehicles we assume that their locations are updated regu-
larly according to a location update policy. Regarding their future tra-
jectories, there are some vehicles that have informed the server about
their destination, so that their trip attribute includes the estimated fu-
ture movement up to the destination. For the other vehicles the trip is
maintained under updates assuming that the car will continue on this
highway at the speed of the speed limit +15 km/h or at 160 km/h if
there is no speed limit, up to the end of this highway.10 The estimated
trip ends there.

Queries on past and static information

The first two queries just demonstrate that we can get information
about facilities on the network.

Query H1: Order highways by their average distance between gas
stations.

SELECT h.no, length(h.route)/(COUNT(*) + 1)
AS dist

FROM highway AS h, gas_station AS g
WHERE g.loc inside h.route
GROUP BY h.no
ORDER BY dist

We assume a highway with n gas stations is divided by them into
n + 1 parts. Highways are dual routes, but a gas station usually occurs
on both sides of the highway, therefore we can ignore this.

Query H2: Which percentage of the German highway network
does have a speed limit?

ELEMENT(SELECT SUM(length(route)) FROM highway)/
ELEMENT(SELECT SUM(length(stretch))
FROM speed_limit)

Query H3: How many cars passed gas station X today?

SELECT COUNT(*)
FROM vehicle AS v, gas_station AS g
WHERE g.id = X AND v.trip passes g.loc

10 These assumptions are not unrealistic for Germany.

Query H4: How does traffic density at km 140 of highway 45 of
the network change through the day?

One needs to decide for one side of the highway; let us assume the
up direction is asked for. We assume constants up = 1, down = −1
have been defined in the database.

We will evaluate the query on a specific day (yesterday) and pro-
duce a table that lists for each hour of the day the number of cars that
passed. To keep it simple we assume each car passes this location only
once on the day and use for evaluation only the first instant when it
passes.

LET yesterday = ...;
LET highway45 = ELEMENT(SELECT route

FROM highway WHERE no = 45);
LET location = gpoint (GermanHighways,

highway45, 140, up);
LET passing_times =

SELECT hour(inst(initial(at(atperiods
(v.trip, yesterday), location))))

AS hour
FROM vehicle AS v
WHERE atperiods(v.trip, yesterday)

passes location;
SELECT hour, COUNT(*) AS no_vehicles
FROM passing_times
GROUP_BY hour

Query H5: Find vehicles that exceeded the speed limit by more
than 20%; when and where did that occur?

SELECT v.licence,
deftime(speed(at(v.trip, s.stretch)) when[.

> s.limit * 1.2])
AS time
trajectory(atperiods(v.trip,

deftime(speed(at(v.trip, s.stretch))when
[. > s.limit * 1.2]))

AS place
FROM vehicle AS v, speed_limit AS s
WHERE v. trip passes s.stretch

AND max(rangevalues(speed(at(v.trip, s.
stretch)))) > s.limit * 1.2

Query H6: Which fraction of vehicles passes from highway 45 to
highway 1 at their junction?

We retrieve vehicles that passed the junction between highways
45 and 1 and that one minute earlier have been on highway 45. We
then compare among such vehicles how many are 1 min later still on
highway 45 or on highway 1, respectively.

LET one_minute = duration
(minute(2003, 1, 1, 0, 0));

LET Junction = ELEMENT(
SELECT single(intersection(gline(h1.route),

gline(h2.route)))
FROM highway AS h1, highway AS h2
WHERE hl.no = 45 AND h2.no = 1);

LET cars =
SELECT inst(initial(at(v.trip, Junction)) AS

junction_time, route(val(atinstant(v.trip,
junction_time - oneminute)))

AS route1,
route(val(atinstant(v.trip, junction_time +
one_minute)))

AS route2,
FROM vehicle AS v
WHERE v.trip passes Junction;

LET total = ELEMENT(
SELECT COUNT(*)
FROM cars AS c, highway AS h1
WHERE hl.no = 45

AND c.routel = h1.route);

188 R. H. Güting et al.

LET switch = ELEMENT(SELECT COUNT(*)
FROM cars AS c, highway AS h1, highway AS h2
WHERE h1.no = 45 AND h2.no = 1

AND c.routel = h1.route AND c.route2 =
h2.s route);

switch / total

This final expression is the result of the query.

Queries on future information

Query H7: Which vehicles will reach gas station X within the next
30 min?

LET one_minute = ...//Query H6
SELECT v.licence
FROM vehicle AS v, gas_station AS g
WHERE g.id = X AND
atperiods(v.trip, range(now, now + 30 *
one_minute)) passes g.loc

Query H8: Keep me informed about the 5 closest motels along the
highway.

We see no way to formulate this query.
Query H9: Keep me informed about motels within 5 kms distance

along the highway.
We wish to see the result as a list of motel names together with time

periods indicating when the respective motel belongs to the result set.
Furthermore, we wish to get a relation containing those time instants
when the result set changes. A similar result is obtained in evaluating
such continuous queries in Wolfson’s approach [1].

LET mytrip = ...// an mgpoint describing my
estimated trip

LET CloseMotels =
SELECT m.name AS name,

deftime(distance(atperiods(mytrip, range
(now, maxinstant)), m.loc)
when[. < 5]) AS time_period

FROM motel AS m
WHERE atperiods(mytrip, range(now,

maxinstant)) passes m.loc;
(SELECT start(time_period) AS time FROM
CloseMotels)
UNION

(SELECT end(time_period) AS time FROM
CloseMotels)

ORDER BY time

Traffic jams

For this application we will use the German highways network and a
relation containing the traffic jams as a mgline attribute. We will as-
sume that the traffic jams were calculated and stored in this relation.
We further assume that traffic jams are restricted to single routes, as is
usually the case. A traffic jam spilling over into another route would be
represented by two distinct traffic jams. Finally, a traffic jam consists
of a single continuous piece of route, hence a gline value with a single
component.

highway(no: int, route: int)
vehicle(licence: string, trip: mgpoint)
traffic_jam(no: int, area: mgline)

Query T1: Which traffic jams exist now?
Current traffic jams might be returned in different ways. We first

construct a table that has rows with the highway number and the start
and end position of each traffic jam.

SELECT h.no, pos(min(current(j.area)))
AS startpos, pos(max(current(j.area)))
AS endpos

FROM traffic_jam AS j, highway AS h
WHERE current(j.area) intersects h.route

Second, we can assume that a graphical user interface can display
gline values (say, against the background of the entire highway net-
work). In this case, the query can simply be:

SELECT current(area) AS current_jam
FROM traffic_jam

Query T2: When and where did traffic jam X appear and disap-
pear, respectively?

SELECT inst(initial(j.area)) AS starttime,
inst(final(j.area)) AS endtime,
val(initial(j.area)) AS startarea,
val(final(j.area)) AS endarea

FROM traffic_jam AS j
WHERE j.id = X

We assume the user interface allows one to display instant and
gline values.

Query T3: During which times did X grow and shrink, respec-
tively?

If a traffic jam grows (shrinks), the length of its associated mgline
also grows (shrinks). We can then use the derivative of this length to
see whether it is growing or shrinking. We will construct a table that
has one column change with entries either “grow” or “shrink”, and as
a second column periods a set of time intervals (a periods value) when
this was happening.

LET changes =
SELECT ‘‘grow’’ AS change,

deftime(derivative(length(j.area))
when[. > 0]) AS periods

FROM traffic_jam AS j
WHERE j.id = X
UNION
SELECT ‘‘shrink’’ AS movement,

deftime(derivative(length(j.area))
when[. < 0]) AS periods

FROM traffic_jam AS j
WHERE j.id = X

If the user interface can display periods values (as it already can
in our SECONDO implementation), we can display the changes relation
directly and are done. Otherwise, let us assume we wish to construct
a table that has one row for each time interval. This can be done as
follows:

LET changes2 = changes decompose[periods,
period];

SELECT change, start(period) AS starttime,
end(period) as endtime

FROM changes2

Here we assume that start and end are available as alias names [7]
for the operations min and max, when applied to periods values.

Query T4: At what time did it grow most?
The query may in general return a set of time intervals, rather than

a single instant.

SELECT deftime(atmax(derivative(length
(j.area)) when[. > 0])) AS periods
FROM traffic_jam AS j
WHERE j.id = X

Again we assume the GUI can display periods values; otherwise
the query needs to be extended like the previous one, using decom-
pose.

Query T5: What time did vehicle X spend within traffic jam Y?
This query can also return more than one time interval, i.e., vehicle

X can enter and leave traffic jam Y more than once.

Modeling and querying moving objects in networks 189

SELECT deftime(at((v.trip inside j.area),
TRUE)) AS periods

FROM traffic_jam AS j, vehicle AS v
WHERE v.license = X AND j.no = Y

First, we take the vehicle X and traffic jam Y, and get a moving
boolean describing when the first was inside the second. Then, we take
the periods when this was true.

Query T6: At what speed did traffic jam X move?

SELECT speed(center(area))
FROM traffic_jam
WHERE no = X

Result is a moving real which must be shown at the user interface.
Query T7: Show the part of the highway network that was affected

by traffic jams yesterday.
Obviously, the result should be a gline value. We take each traffic

jam that existed yesterday, reduce it to yesterday, compute its projec-
tion, and then form the union of all such projections.

We need an aggregate function that forms the union of a set of
gline values. A general technique to define such functions was intro-
duced in [7]. We can write:

LET gl_union = AGGREGATE(union, TheEmptyGLine);

To define an aggregate function, one needs to specify a binary op-
erator and a neutral element. The latter is returned if the aggregation
is applied to an empty relation. Here we assume that TheEmptyGLine
is a constant in the database of type gline containing an empty value.
Then the query is:

LET yesterday = day(2003, 8, 11);
SELECT gl_union(traversed(atperiods(j.area,
yesterday))) AS yesterday_jams

FROM traffic_jam AS j
WHERE present(j.area, yesterday)

Query T8: Did any two traffic jams merge into one?
This raises the question how identities of traffic jams are managed

in data capture. Let us assume that a merge can happen in either of
three ways: (i) the first traffic jam continues to exist and absorbs the
second, (ii) the second absorbs the first, and (iii) both former traffic
jams cease to exist and a new one is established.

We can discover all these cases by the fact that a discontinuity
in the movement occurs (see the definition in Sect. 4.5). Hence in a
first step, we decompose traffic jams into continuous pieces. Then, we
search for three instances j1, j2, and j3 of (continuous pieces of) traffic
jams with these two properties:

• The end times of j1 and j2 are equal and the same as the starting
time of j3.

• At that time, the union of the areas of j1 and j2 must be equal to
the area of j3.

As a result, we return the time that the merge occurred, the iden-
tifiers and areas of the two merged traffic jams, and the identifier and
area of the traffic jam after the merge. The query can then be formu-
lated as follows:

LET cont_jam = traffic_jam decompose[area,
cont_area];

SELECT inst(initial(j3.cont_area)) AS time,
jl.no AS tjam1, val(final(j1.cont_area))

AS tjamarea1,
j2.no AS tjam2, val(final(j2.cont_area))

AS tjamarea2,
j3.no AS newtjam, val(initial(j3.cont_area))

AS newtjamarea
FROM cont_jam AS j1, cont_jam AS j2,
cont_jam AS j3,

WHERE inst(final(j1.cont_area)) = inst(initial
(j3.cont_area))

AND inst(final(j2.cont_area)) = inst(initial
(j3.cont_area))

AND val(initial(j3.cont_area)) = union(final
(j1.cont_area), final(j 2.cont_area))

References

1. Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and
querying moving objects. In: Proceedings of the 13th International
Conference on Data Engineering (ICDE), pp. 422–432 (1997)

2. Wolfson, O., Chamberlain, S., Dao, S., Jiang, L., Mendez, G.: Cost
and imprecision in modeling the position of moving objects. In:
Proceedings of the 14th International Conference on Data Engi-
neering (ICDE), pp. 588–596 (1998)

3. Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving object
databases: Issues and solutions. In: Proceedings of the 10th Inter-
national Conference on Scientific and Statistical Database Man-
agement (SSDBM), pp. 111–122 (1998)

4. Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating
and querying databases that track mobile units. Distributed and
Parallel Databases 7(3), 257–387 (1999)

5. Koubarakis, M., Pernici, B., Schek, H.J., Scholl, M.,
Theodoulidis, B., Tryfona, N., Sellis, T., Frank, A.U.,
Grumbach, S., Güting, R.H., Jensen, C.S., Lorentzos, N.,
Manolopoulos, Y., Nardelli, E. (eds.): Spatio-temporal databases:
The CHOROCHRONOS approach. Springer-Verlag, Lecture
Notes in Computer Science 2520 (2003)

6. Erwig, M., Güting, R.H., Schneider, M., Varzigiannis, M.: Spatio-
temporal data types: An approach to modeling and querying mov-
ing objects in databases. Geolnformatica 3(3), 265–291 (1999)

7. Güting, R.H., Bohlen, M.H., Erwig, M., Jensen, C.S., Lorentzos,
N.A., Schneider, M., Vazirgiannis, M.: A foundation for represent-
ing and querying moving objects. ACM Transactions on Database
Systems 25(1), 1–42 (2000)

8. Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: A data
model and data structures for moving objects databases. In: Pro-
ceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pp. 319–330 (2000)

9. Cotelo Lema, J.A., Forlizzi, L., Güting, R.H., Nardelli, E.,
Schneider, M.: Algorithms for moving objects databases. The
Computer Journal 46(6), 680–712 (2003)

10. Grumbach, S., Rigaux, P., Segoufin, L.: The DEDALE system for
complex spatial queries. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 213–224
(1998)

11. Rigaux, P., Scholl, M., Segoufin, L., Grumbach, S.: Building a
constraint-based spatial database system: Model, languages, and
implementation. Information Systems 28(6), 563–595 (2003)

12. Grumbach, S., Rigaux, P., Segoufin, L.: Spatio-temporal data han-
dling with constraints. Geolnformatica 5(1), 95–115 (2001)

13. Chomicki, J., Revesz, P.: Constraint-based interoperability of
spatio-temporal databases. In: Proceedings of the 5th Interna-
tional Symposium on Large Spatial Databases (SSD), pp. 142–161
(1997)

14. Chomicki, J., Revesz, P.: A geometric framework for specifying
spatiotemporal objects. In: Proceedings of the 6th International
Workshop on Temporal Representation and Reasoning (TIME),
pp. 41–46 (1999)

15. Su, J., Xu, H., Ibarra, O.H.: Moving objects: Logical relationships
and queries. In: Proceedings of the 7th International Symposium
on Spatial and Temporal Databases (SSTD), pp. 3–19 (2001)

16. Mokhtar, H., Su, J., Ibarra, O.H.: On moving object queries. In:
Proceedings of the ACM Symposium on Principles of Database
Systems (PODS), pp. 188–198 (2002)

17. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. In:
Proceedings of the 19th Symposium on Principles of Database
Systems, Dallas, Texas, pp. 175–186 (2000)

190 R. H. Güting et al.

18. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in
query processing for moving object trajectories. In: Proceedings of
the 26th Int. Conference on Very Large Data Bases (Cairo, Egypt),
pp. 395–406 (2000)

19. Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Ef-
ficient indexing of spatiotemporal objects. In: Proceedings of the
8th International Conference on Extending Database Technology
(EDBT, Prague, Czech Republic), pp. 251–268 (2002)

20. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving
query point. In: Proceedings of the 7th International Symposium
on Spatial and Temporal Databases (SSTD), pp. 79–96 (2001)

21. Tao, Y., Papadias, D.: Spatial queries in dynamic environments.
ACM Transactions on Database Systems 28(2), 101–139 (2003)

22. Yanagisawa, Y., Akahani, J., Satoh, T.: Shape-based similarity
query for trajectory of mobile objects. In: Proceedings of the 4th
International Conference on Mobile Data Management (MDM,
Melbourne, Australia), pp. 63–77 (2003)

23. Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the gener-
ation of spatiotemporal datasets. In: Proceedings of the 6th Int.
Symposium on Spatial Databases (Hong Kong, China), pp. 147–
164 (1999)

24. Frentzos, R.: Indexing moving objects on fixed networks. In: Pro-
ceedings of the 8th International Symposium on Spatial and Tem-
poral Databases (SSTD), pp. 289–305 (2003)

25. Pfoser, D., Jensen, C.S.: Indexing of network constrained mov-
ing objects. In: Proceedings of the 11th International Symposium
on Advances in Geographic Information Systems (ACM-GIS),
pp. 25–32 (2003)

26. Shababi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road network
embedding technique for K-nearest neighbor search in moving ob-
jects databases. Geolnformatica 7(3), 255–273 (2003)

27. Jensen, C.S., Kolavr, J., Pedersen, T.B., Timko, I.: Nearest neigh-
bor queries in road networks. In: Proceedings of the llth ACM
Symposium on Advances in Geographic Information Systems
(ACM-GIS, New Orleans, Louisiana), pp. 1–8 (2003)

28. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing
in spatial network databases. In: Proceedings of the 29th Confer-
ence on Very Large Databases (VLDB), pp. 790–801 (2003)

29. Brinkhoff, T.: A framework for generating network-based moving
objects. Geolnformatica 6(2), 153–180 (2002)

30. Jensen, C.S., Pedersen, T.B., Speicys, L., Timko, I.: Data model-
ing for mobile services in the real world. In: Proceedings of the
8th International Symposium on Spatial and Temporal Databases
(SSTD), pp. 1–9 (2003)

31. Scarponcini, P.: Generalized model for linear referencing in trans-
portation. Geolnformatica 6(1), 35–55 (2002)

32. Oracle Spatial Linear Referencing System User’s Guide: Release
8.1.6., Oracle Press (2000)

33. Güting, R.H.: Second-order signature: A tool for specifying data
models, query processing, and optimization. In: Proceedings of
the ACM SIGMOD International Conference on Management of
Data, pp. 277–286 (1993)

34. Chon, H.D., Agrawal, D., El Abbadi, A.: FATES: Finding a time
dependent shortest path. In: Proceedings of the 4th International
Conference on Mobile Data Management (MDM), pp. 165–180
(2003)

35. Carey, M.J., Kossmann, D.: On saying “enough already!” in SQL.
In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 219–230 (1997)

36. Dieker, S., Güting, R.H.: Plug and play with query algebras: Sec-
ondo. A generic DBMS development environment. In: Proceed-
ings of the International Database Engineering and Applications
Symposium (IDEAS), pp. 380–390 (2000)

37. Güting, R.H., Behr, T., de Almeida, V.T., Ding, Z., Hoffmann,
F., Spiekermann, M.: SECONDO: An extensible DBMS architec-
ture and prototype. Fernuniversität Hagen, Informatik-Report 313,
(2004)

38. Dieker, S., Güting, R.H.: Efficient handling of tuples with embed-
ded large objects. Data & Knowledge Engineering 32(3), 247–269
(2000)

39. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the de-
termination of minimum cost paths. IEEE Transactions on System
Science and Cybernetics, SSC-4(2), 100–107 (1968)

40. Nilsson, N.J.: Principles of Artificial Intelligence. Springer-Verlag
(1982)

41. Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An
asymptotically optimal multiversion B-Tree. VLDB Journal 5(4),
264–275 (1996)

42. Cruz, I.F., Mendelzon, A.O., Wood, P.T.: A graphical query lan-
guage supporting recursion. In: Proceedings ACM SIGMOD,
pp. 323–330 (1987)

43. Gyssens, M., Paredaens, J., van Gucht, D.: A graph-oriented ob-
ject database model. In: Proceedings ACM Conference on Princi-
ples of Database Systems (PODS), pp. 417–424 (1990)

44. Mannino, M., Shapiro, L.: Extensions to query languages for
graph traversal problems. IEEE Transactions on Knowledge and
Data Engineering 2, 353–363 (1990)

45. Erwig, M., Güting, R.H.: Explicit graphs in a functional model
for spatial databases. IEEE Transactions on Knowledge and Data
Engineering 6(5), 787–804 (1994)

46. Güting, R.H.: Modeling and querying graphs in databases. In:
Proceedings of the 20th International Conference on Very Large
Databases, pp. 297–308 (1994)

47. Shekhar, S., Kohli, A., Coyle, M.: Path computation algorithms
for advanced traveller information systems. In: Proceedings of the
9th International Conference on Data Engineering (ICDE, Vienna,
Austria), pp. 31–39 (1993)

48. Shekhar, S., Liu, D.R.: CCAM: A connectivity-clustered access
method for networks and network computations. IEEE Trans-
actions on Knowledge and Data Engineering 9(1), 102–119
(1997)

49. Huang, Y.W., Jing, N., Rundensteiner, E.A.: Path queries for trans-
portation networks: Dynamic reordering and sliding window pag-
ing techniques. In: Proceedings of the 4th ACM-GIS Conference,
pp. 9–16 (1996)

50. Huang, Y.W., Jing, N., Rundensteiner, E.A.: Integrated query pro-
cessing strategies for spatial path queries. In: Proceedings of
the 13th International Conference on Data Engineering (ICDE,
Birmingham, U.K.), pp. 477–486 (1997)

51. Vazirgiannis, M., Wolfson, O.: A spatiotemporal query language
for moving objects on road networks. In: Proceedings of the
7th International Symposium on Spatial and Temporal Databases
(SSTD), pp. 20–35 (2001)

52. Hage, C., Jensen, C.S., Pedersen, T.B., Speicys, L., Timko,
I.: Integrated data management for mobile services in the real
world. In: Proceedings of the 29th International Conference on
Very Large Databases (VLDB, Berlin, Germany), pp. 1019–1030
(2003)

53. Speicys, L., Jensen, C.S., Kligys, A.: Computational data mod-
eling for network-constrained moving objects. In: Proceedings of
the llth ACM Symposium on Advances in Geographic Informa-
tion Systems (ACM-GIS, New Orleans, Louisiana), pp. 118–125
(2003)

54. Ding, Z., Güting, R.H.: Modeling temporally variable transporta-
tion networks. In: Proceedings of the 9th Int. Conference on
Database Systems for Advanced Applications (DASFAA, Jeju
Island, Korea), pp. 154–168 (2004)

55. Ding, Z., Güting, R.H.: Managing moving objects on dynamic
transportation networks. In: Proceedings of the 16th International
Conference on Scientific and Statistical Database Management
(SSDBM, Santorini Island, Greece), pp. 287–296 (2004)

56. Almeida, V., Güting, R.H.: Indexing the trajectories of moving
objects in networks. Geolnformatica 9(1), 33–60 (2005)

