The VLDB Journal (2005) 14: 211-221 / Digital Object Identifier (DOI) 10.1007/s00778-004-0125-5

An effective and efficient algorithm for high-dimensional outlier detection

Charu C. Aggarwal, Philip S. Yu

IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA

Edited by R. Ng. Received: November 19, 2002 / Accepted: February 6, 2004

Published online: August 19, 2004 — (©) Springer-Verlag 2004

Abstract. The outlier detection problem has important ap-
plications in the field of fraud detection, network robustness
analysis, and intrusion detection. Most such applications are
most important for high-dimensional domains in which the
data can contain hundreds of dimensions. Many recent algo-
rithms have been proposed for outlier detection that use sev-
eral concepts of proximity in order to find the outliers based
on their relationship to the other points in the data. However,
in high-dimensional space, the data are sparse and concepts
using the notion of proximity fail to retain their effectiveness.
In fact, the sparsity of high-dimensional data can be under-
stood in a different way so as to imply that every point is an
equally good outlier from the perspective of distance-based
definitions. Consequently, for high-dimensional data, the no-
tion of finding meaningful outliers becomes substantially more
complex and nonobvious. In this paper, we discuss new tech-
niques for outlier detection that find the outliers by studying
the behavior of projections from the data set.

Keywords: Data mining — High-dimensional spaces — Outlier
detection

1 Introduction

An outlier is defined as a data point that is very different from
the rest of the data based on some measure. Such a data point
often contains useful information on abnormal behavior in
the system that is characterized by the data. The outlier de-
tection technique finds applications in credit card fraud, net-
work intrusion detection, financial applications, and market-
ing. This problem typically arises in the context of very high-
dimensional data sets. Much of the recent work on finding
outliers use methods that make implicit assumptions of rel-
atively low dimensionality of the data. These methods work
quite poorly when the dimensionality is high and the data be-
come sparse,

Many data-mining algorithms in the literature find out-
liers as a by-product of clustering algorithms [2,3,6,16,24].

Correspondence to: C.C. Aggarwal (e-mail: charu@us.ibm.com)

However, these techniques define outliers as points that do not
lie in clusters. Thus, the techniques implicitly define outliers
as the background noise in which the clusters are embedded.
Starting with the work in [8], recent literature [10,20,21,23]
defines outliers as points that are neither a part of a cluster
nor a part of the background noise; rather they are specifically
points that behave very differently from the norm. Outliers
are more useful based on their value for determining behav-
ior that deviates significantly from average behavior. In many
applications (e.g., network intrusion detection), such records
may provide guidance in discovering important anamolies in
the data. Such points are also referred to as strong outliers
in the work discussed in [21]. In this paper, we will develop
algorithms that generate only outliers that are based on their
deviation value.

Many algorithms have been proposed in recent years for
outlier detection [10,20,21,23], but they are mostly either dis-
tance based or density based; these are generally not methods
specifically designed to deal with the curse of high dimen-
sionality. Two interesting distance-based algorithms are dis-
cussed in [20,23], which define outliers by using the distri-
bution of (full-dimensional) distances of the other points to a
given point. This kind of measure is naturally susceptible to
the dimensionality curse. For example, consider the definition
by Knorr and Ng [20]: A point p in a data set is an outlier with
respect to the parameters k and)\, if no more than k points in
the data set are at a distance) or less from p.

As pointed out in [23], this method is sensitive to the use of
the parameter A that is hard to figure out a priori. In addition,
when the dimensionality increases, it becomes increasingly
difficult to pick A since most of the points are likely to lie in
a thin shell about any point [9]. Thus, if we pick too small a
A, then all points are outliers; whereas if we pick too large a
A, then no point is an outlier. This means that a user would
need to pick A to a very high degree of accuracy in order to
find a modest number of points that can then be defined as
outliers. Aside from this, the data in real applications are very
noisy, and the abnormal deviations may be embedded in some
lower-dimensional subspace that cannot be determined by the
spreading out behavior [9] of the data in full dimensionality.
The algorithm also does not scale well for high dimensions.
Consequently, the work in [23] discusses the following defi-

212 C.C. Aggarwal, P.S. Yu: An effective and efficient algorithm for high-dimensional outlier detection

nition for an outlier: Given a k and n, a point p is an outlier if
the distance to its k-th nearest neighbor of the point is smaller
than the corresponding value for no more than n — 1 other
points.

Although the definition in [23] has some advantages over
that provided in [20], it is again not specifically designed to
work for high-dimensional problems. In fact, it has been in-
dicated in [23] that by using fewer features for a given run,
more interesting outliers on the NBA98 basketball statistics
database were obtained. This was again because the data often
got spread out uniformly with increasing dimensionality. An-
other interesting recent technique finds outliers based on their
local density [10], particularly with respect to the densities
of local neighborhoods. This technique has some advantages
in accounting for local levels of skews and abnormalities in
data collections. To compute the outlier factor of a point, the
method in [10] computes the local reachability density of a
point o by using the average smoothed distances to a certain
number of points in the locality of o. Unfortunately, this is
again a problem in high dimensionality, where the concept of
locality becomes difficult to define because of the sparsity of
the data. In order to use the concept of local density, we need
a meaningful concept of distance for sparse high-dimensional
data; if this does not exist, then the outliers found are unlikely
to be very useful.

Thus the techniques proposed in [10,20,23] try to define
outliers based on the distances in full-dimensional space in one
way or another. The sparsity of the data in high dimensionality
[9] can be interpreted slightly differently to infer that each
point is as good as an outlier in high-dimensional space. This
is because if all pairs of points are almost equidistant [9], then
meaningful clusters cannot be found in the data [2,3,6,11];
similarly, it is difficult to detect abnormal deviations.

For problems such as clustering and similarity search, it
has been shown [1-4,6,11,17] that by examining the behavior
of the data in subspaces, it is possible to design more mean-
ingful clusters that are specific to the particular subspace in
question. This is because different localities of the data are
dense with respect to different subsets of attributes. By defin-
ing clusters that are specific to particular projections of the
data, it is possible to design more effective techniques for
finding clusters. The same insight is true for outliers, because
in typical applications such as credit card fraud, only the sub-
set of the attributes actually affected by the abnormality of the
activity is likely to be useful in detecting the behavior.

In order to explain our point a little bit better, let us con-
sider the example illustrated in Fig. 1. In the above example,
we have shown several two-dimensional cross sections of a
very high-dimensional data set. It is quite likely that for high-
dimensional data, many of the cross sections may be struc-
tured, whereas others may be more noisy. For example, the
points A and B show abnormal behavior in views 1 and 4 of the
data. In other views, the points show average behavior. In the
context of a credit card fraud application, both the points A and
B may correspond to different kinds of fraudulent behavior
yet may show average behavior when distances are measured
in all the dimensions. Thus, by using full-dimensional distance
measures, it would be more difficult to detect points that are
outliers because of the averaging behavior of the noisy and
irrelevant dimensions. Furthermore, it is impossible to prune
off specific features a priori since different points (such as A

X
B o, Xy X
x X X o B
% X X X X X
X # X oy X
X A
x *A The 2-dimensional views 1 and 4
expose outliers A and B, The views
View 1 View 2 2 and 3 do not. Full dimensional measures
< N become increasingly susceptible to the
X oB e . .
X x X x sparsity and noise effects in high
X X dimensionality
x A X XX x B
x A
x X
X oB * X
X
View 3 View 4

Fig. 1. Illustrations of outliers in various views of the data

and B) may show different kinds of abnormal patterns, each
of which uses different features or views.

Thus the problem of outlier detection becomes increas-
ingly difficult for very high-dimensional data sets, just as any
of the other problems in the literature such as clustering, in-
dexing, classification, or similarity search. Previous work on
outlier detection has not focused on the high-dimensionality
aspect of outlier detection and has used methods that are more
applicable for low-dimensional problems by using relatively
straightforward proximity measures [10,20,23]. On the other
hand, we note that most practical data-mining applications
are likely to arise in the context of a very large number of
features. In this paper, we focus on the effects of high dimen-
sionality on the problem of outlier detection. Recent work has
discussed some of the concepts of defining the intensional
knowledge that characterizes distance-based outliers in terms
of subsets of attributes. Unfortunately, this technique was not
intended for high-dimensional data, and the complexity in-
creases exponentially with dimensionality. As the empirical
results in [21] show, even for the relatively small dimension-
ality of 4, the technique is highly computation intensive. For
even slightly higher dimensionalities, the technique is infea-
sible from a computational standpoint.

In this paper, we discuss a new technique for outlier de-
tection that finds outliers by observing the density distribu-
tions of projections from the data. Intuitively speaking, this
new definition considers a point to be an outlier if in some
lower-dimensional projection it is present in a local region of
abnormally low density.

1.1 Defining outliers in lower-dimensional projections

The idea is to define outliers for data by looking at those pro-
jections of the data that have abnormally low density. Thus
our first step is to identify and mine those patterns that have
abnormally low presence that cannot be justified by random-
ness. This is important since we value outlier patterns not for
their noise value but for their deviation value. Once such pat-
terns have been identified, then the outliers are defined as those
records that have such patterns present in them. An interesting
observation is that such lower-dimensional projections can be
mined even in data sets that have missing attribute values [22].
This is quite useful for many real applications in which feature
extraction is a difficult process and full feature descriptions of-
ten do not exist. In such cases, the only difference is that for

C.C. Aggarwal, P.S. Yu: An effective and efficient algorithm for high-dimensional outlier detection 213

a given projection, only those points need to be used that are
fully specified in that projection.

1.2 Defining abnormal lower-dimensional projections

In order to find such abnormal lower-dimensional projec-
tions, we need to define and characterize what we mean by an
abnormal lower-dimensional projection. An abnormal lower-
dimensional projection is one in which the density of the data
is exceptionally lower than average.

In order to find such projections, we first perform a grid
discretization of the data. Each attribute of the data is divided
into ¢ ranges. These ranges are created on an equidepth basis;
thus each range contains a fraction f = 1/¢ of the records.
The reason for using equidepth ranges as opposed to equiwidth
ranges is that different localities of the data have different
densities; we would like to find outliers while normalizing
for this factor. These ranges form the units of locality that
we will use to define low-dimensional projections that have
unreasonably sparse regions.

Let us consider a k-dimensional cube that is created by
picking grid ranges from k different dimensions. The expected
fraction of the records in that region if the attributes were sta-
tistically independent would be equal to f*. Of course, the
data are far from statistically independent; therefore, the ac-
tual distribution of points in a cube would differ significantly
from average behavior; it is precisely those deviations that are
abnormally below the average that are useful for the purpose
of outlier detection.

Let us assume that there are a total of N points in the
database, and the dimensionality is d. If the data were uni-
formly distributed, then the presence or absence of any point
in a k-dimensional cube is a bernoulli random variable with
probability f*. Then the expected fraction and standard devi-
ation of the points in a a k-dimensional cube is given by N - f*
and \/N - f¥. (1 — f¥). Also, under the assumption of uni-
formly distributed data, the number of points in a cube can be
approximated by a normal distribution. Let (D) be the num-
ber of points in a k-dimensional cube D. Then we calculate
the sparsity coefficient S(D) of the cube D as follows:

n(D) — N - f*

Only sparsity coefficients that are negative indicate cubes in
which the presence of the points is significantly lower than
expected. Note that if n(D) is assumed to fit a normal distri-
bution, then the normal distribution tables can be used to quan-
tify the probabilistic level of significance for a point to deviate
significantly from average behavior for an a priori assump-
tion of uniformly distributed data. In general, the uniformly
distributed assumption is not true; however, the sparsity co-
efficient provides a reasonable approximation to the level of
significance for a given projection. We also note that we are
only searching for cubes that are nonempty in order to find
outliers. Therefore, cubes that are empty are considered infea-
sible. From an implementation perspective, this is achieved by
setting such sparsity coefficients to the very high value of 10°.

S(D) =

ey

1.3 A note on the nature of the problem

At this stage we would like to make a comment on the na-
ture of the problem of finding the most sparse k-dimensional
cubes in the data. The nature of this problem is such that there
are no upward- or downward-closed properties in the set of
dimensions (along with associated ranges) that are unusually
sparse.! This is not unexpected: unlike problems such as large
itemset detection [7] where one is looking for large aggregate
patterns, the problem of finding subsets of dimensions that
are sparsely populated is akin to finding a needle in a haystack
since one is looking for patterns that rarely exist. Furthermore,
it may often be the case that even though particular regions
may be well populated on certain sets of dimensions, they may
be very sparsely populated when such dimensions are com-
bined together. (For example, there may be a large number
of people below the age of 20, and a large number of people
with diabetes, but very few with both.) From the perspective
of an outlier detection technique a person below the age of 20
with diabetes is a very interesting record; however, it is very
difficult to find such a pattern using structured search meth-
ods. Therefore, the best projections are often created by an
a priori unknown combination of dimensions, which cannot
be determined by looking at any lower-dimensional projec-
tion. One solution is to change the measure in order to force
better closure or pruning properties; however, this can worsen
the quality of the solution substantially by forcing the choice
of the measure to be driven by algorithmic considerations.
In general, it is not possible to predict the behavior of the
data when two sets of dimensions are combined; therefore,
the best qualitative option is to develop search methods that
can identify such hidden combinations of dimensions. In order
to search the exponentially increasing space of possible pro-
jections, we borrow ideas from a class of evolutionary search
methods in order to create an efficient and effective algorithm
for the outlier detection problem.

2 Evolutionary algorithms for outlier detection

In this section, we will discuss the algorithms that are useful
for outlier detection in high-dimensional problems. A natural
class of methods for outlier detection are the naive brute-force
techniques in which all subsets of dimensions are examined
for possible patterns that are sparse. These patterns are then
used to determine the points that are possibly outliers. We dis-
cuss two algorithms for outlier detection: a naive brute-force
algorithm that is very slow at finding the best patterns be-
cause of its exhaustive search of the entire space and a much
faster evolutionary algorithm that is able to quickly find hid-
den combinations of dimensions in which the data are sparse.
We assume that one of the inputs to the algorithm is the di-
mensionality & of the projections that are used to determine
the outliers. Aside from this, the algorithm uses the number m
of projections to be determined as an input parameter.

The brute-force algorithm is illustrated in Fig. 2. The
algorithm works by examining all possible sets of k-

! An upward-closed pattern is one in which all supersets of the
pattern are also valid patterns. A downward-closed set of patterns is
one in which all subsets of the pattern are also members of the set.

214 C.C. Aggarwal, P.S. Yu: An effective and efficient algorithm for high-dimensional outlier detection

Algorithm BruteForce(Number: m, Dimensionality: k)
begin
R1 = Q1 = Setofall d - ¢ ranges;
fori =2tok+ 1do
begin
Ri =Ri—1 8 Qu;
end;
Determine sparsity coefficients of all
elements in Ry;
Ry = Set of m elements in Qy,
with most negative sparsity coefficients;
O = Set of points covered by Ry;
return(Ry, O);
end

Fig. 2. The brute-force technique

dimensional candidate projections (together with correspond-
ing grid ranges) and retaining the m projections that have the
most negative sparsity coefficients. In order to actually deter-
mine the candidate projections, the method uses a bottom-up
recursive algorithm in which (k + 1) candidate cubes are de-
termined by concatenating the candidate k projections with all
d- ¢ possible sets of one-dimensional projections and their grid
ranges (denoted by)1). The concatenation operation is illus-
trated in Fig. 2 by &. Note that, for a given cube, it only makes
sense to concatenate with grid ranges from dimensions not
included in the current projection in order to create a higher-
dimensional projection. The candidate set of dimensionality %
is denoted by R;. At termination, the set of projections with
most negative sparsity coefficients in Ry, are retained. The set
of points in the data that contain the corresponding ranges for
the projections is reported as the final set of outliers.

As we shall see in later sections, the algorithm discussed in
Fig. 2 is computationally untenable for problems of even mod-
est complexity. This is because of the exponentially increas-
ing search space of the outlier detection problem. To overcome
this, we will illustrate an innovative use of evolutionary search
techniques for the outlier detection problem.

2.1 An overview of evolutionary search techniques

Evolutionary algorithms [18] are methods that imitate the pro-
cess of organic evolution [12] in order to solve parameter opti-
mization problems. The fundamental idea underlying the Dar-
winian view of evolution is that, in nature resources are scarce,
and this leads to a competition among the various species. As a
result, all the species undergo a selection mechanism in which
only the fittest survive. Consequently, the fitter individuals
tend to mate each other more often, resulting in still better
individuals. At the same time, once in a while, nature also
throws in a variant by the process of mutation, so as to en-
sure a sufficient amount of diversity among the species, and
hence also a greater scope for improvement. The basic idea
behind an evolutionary search technique is similar; every so-
Iution to an optimization problem can be “disguised” as an
individual in an evolutionary system. The measure of fitness
of this “individual” is equal to the objective function value
of the corresponding solution, and the other species that this

individual has to compete with are a group of other solutions
to the problems; thus, unlike other optimization methods such
as hill climbing or simulated annealing [19], they work with
an entire population of current solutions rather than a single
solution. This is one of the reasons why evolutionary algo-
rithms are more effective as search methods than either hill-
climbing, random search, or simulated annealing techniques;
they use the essence of the techniques of all these methods
in conjunction with recombination of multiple solutions in a
population. Appropriate operations are defined in order to im-
itate the recombination and mutation processes as well, and
the simulation is complete.

Each feasible solution to the problem being solved by an
evolutionary technique is defined as an individual. This fea-
sible solution is in the form of a string and is the genetic
representation of the individual. The process of conversion of
feasible solutions of the problem into strings that the algorithm
can use is called coding. For example, a possible coding for
a feasible solution to the traveling salesman problem could
be a string containing a sequence of numbers representing the
order in which he visits the cities. The genetic material at each
locus on the string is referred to as a gene and the possible val-
ues that it could possibly take on are the alleles. The measure
of fitness of an individual is evaluated by the fitness function,
which has as its argument the string representation of the in-
dividual and returns a value indicating its fitness. The fitness
value of an individual is analogous to the objective function
value of the solution; the better the objective function value,
the better the fitness value.

As the process of evolution progresses, all the individu-
als in the population tend to become more and more similar
to each other genetically. This phenomenon is referred to as
convergence. Dejong [13] defined convergence of a gene as
the stage at which 95% of the population has the same value
for that gene. The population is said to have converged when
all genes have converged.

The application of such evolutionary search procedures
should be based on a good understanding of the problem at
hand. Typically black-box GA software on straightforward
string encodings does not work very well [5], and it is often
a nontrivial task to design the proper search methods such as
recombinations, selections, and mutations that work well for a
given problem. In the next section, we will discuss the details
of the evolutionary search procedures that work effectively for
the outlier detection problem.

2.2 A description of the outlier detection technique

In this section, we will discuss the application of the search
technique to the outlier detection problem. Let us assume that
the grid range for the i-th dimension is denoted by m;. Then
the value of m,; can take on any of the values 1 through ¢,
or it can take on the value *, which denotes a “don’t care”.
Thus, there are a total of ¢ + 1 values that the dimension m;
can take on. Thus, consider a four-dimensional problem with
¢ = 10. Then, one possible example of a solution to the prob-
lem s given by *3*9. In this case, the ranges for the second and
fourth dimensions are identified, whereas the first and third are
left as “don’t cares”. The fitness for the corresponding solu-
tion may be computed using the sparsity coefficient discussed

C.C. Aggarwal, P.S. Yu: An effective and efficient algorithm for high-dimensional outlier detection 215

Algorithm EvolutionaryOutlierSearch(Number: m, Dimensionality: k) Algorithm Selection(.S)

begin
S = Initial seed population of p strings;
BestSet = null;
while not(termination_criterion) do begin
S =Selection(S);
S =CrossOver(S);
S =Mutation(S, p1, p2);
Update BestSet to be the m solutions in
BestSet U S with most negative sparsity coefficients;
end;
O = Set of data points covered by BestSet;
return(BestSet, O);
end

Fig. 3. Evolutionary framework for outlier detection

earlier. The evolutionary search technique starts with a popu-
lation of p random solutions and iteratively used the processes
of selection, crossover, and mutation to perform a combination
of hill climbing, solution recombination, and random search
over the space of possible projections. The process was con-
tinued until the population converged to a global optimum. We
used the De Jong [13] convergence criterion to determine the
termination condition. At each stage of the algorithm, the m
best projection solutions (most negative sparsity coefficients)
were kept track of. At the end of the algorithm, these solutions
were reported as the best projections in the data. The over-
all procedure for the genetic algorithm is illustrated in Fig. 3.
The population of solutions in any given iteration is denoted
by S. This set .S is refined in subsequent iterations of the al-
gorithm, and the best set of projections found so far is always
maintained by the evolutionary algorithm.

e Selection: Several alternatives are possible [15] for se-
lection in an evolutionary algorithm; the most popularly
known ones are rank selection and fitness proportional se-
lection. The idea is to replicate copies of a solution by
ordering them by rank and biasing the population in favor
of the higher-ranked solutions. This is called rank selec-
tion and is often more stable than straightforward fitness
proportional methods that sample the set of solutions in
proportion to the actual value of the objective function.
This strategy of biasing the population in favor of fitter
strings in conjunction with effective solution recombina-
tion creates newer sets of children strings that are more
likely to be fit. This results in a global hill climbing of
an entire population of solutions. For the particular case
of our implementation, we used a roulette wheel mecha-
nism, where the probability of sampling a string from the
population was proportional to p — r(7), where p is the to-
tal number of strings and 7(2) is the rank of the i-th string.
Note that the strings are ordered in such a way that the
strings with the most negative sparsity coefficients occur
first. Thus, the selection mechanism ensures that the new
population is biased in such a way that the the most abnor-
mally sparse solutions are likely to have a greater number
of copies. The overall selection algorithm is illustrated in
Fig. 4.

e Crossover: Since the crossover technique is a key method
in evolutionary algorithms for finding optimum combina-

begin
Compute the sparsity coefficient of each solution
in the population .S;
Let r(7) be the rank of solution 4 in order
of sparsity coefficient (most negative occurs first);
S’ = null;
for:=1topdo
begin
Roll a die with the i-th side proportional to p — r(7);
Add the solution corresponding to the i-th side to S’;
end;
Replace S by S’;
return(.S);
end

Fig. 4. Selection criterion for genetic algorithm

tions of solutions, it is important to implement this opera-
tion effectively for making the overall method work effec-
tively. We will first discuss the natural two-point crossover
mechanism used in evolutionary algorithms and show how
to suitably modify it for the outlier detection problem.
Unbiased two-point crossover: The standard procedure
in evolutionary algorithms is to use uniform two-point
crossover in order to create the recombinant children
strings. The two-point crossover mechanism works by
determining a point in the string at random called the
crossover point and exchanging the segments to the right
of this point. For example, consider the strings 3*2*1
and 1#33*. If the crossover is performed after the third
position, then the two resulting strings are 3*23* and
1*3*1. Note that in this case, both the parent and chil-
dren strings correspond to three-dimensional projections
in five-dimensional data. However, if the crossover oc-
curred after the fourth position, then the two resulting
children strings would be 3*231 and 1*3**. These cor-
respond to two-dimensional and two-dimensional projec-
tions. In general, since the evolutionary algorithm only
finds projections of a given dimensionality in a run, this
kind of crossover mechanism often creates infeasible so-
lutions after the crossover process. Such solutions are dis-
carded in subsequent iterations since they are assigned
very low fitness values. In general, evolutionary algorithms
work very poorly when the recombination process cannot
create sets of solutions of high quality or that are viable
in terms of feasibility. To address this, we create an opti-
mized crossover process that takes both these factors into
account.

Since it is clear that the dimensionality of the projection
needs to be kept in mind while performing a crossover
operation, it is desirable that the two children obtained
after solution recombination also correspond to a k-
dimensional projection. In order to achieve this goal, we
need to classify the different positions in the string into
three types. This classification is specific to a given pair of
strings s1 and s».

Type I: Both strings have a “don’t care”.

Type II: Neither has a “don’t care”. Let us assume that
there are k' < k positions of this type.

216

C.C. Aggarwal, P.S. Yu: An effective and efficient algorithm for high-dimensional outlier detection

Type III: One has a “don’t care”, since each string has
exactly k — k' such positions in each string, and these po-
sitions are disjoint. Thus, there are a total of 2 - (k — k')
such positions.

For example, consider the strings 2*3* and 4**5. Then,
the second position is a Type I position, the third and fourth
positions are Type II positions, and the first is a Type III
position. The crossover is designed differently for each
segment of the string. The technique is obvious for the
Type I segment, where both strings have a “don’t care”. In
this case, both offspring strings have a * in a position.

To perform the crossover of the Type II and Type III po-
sitions on the children strings, we apply the optimized
crossover mechanism:

Optimized crossover: The optimized crossover [5] tech-
nique is a useful method for finding the best combinations
of the features present in the two solutions. The idea is to
create at least one child string from the two parent strings
that is a fitter solution recombination than either parent.
The nature of the children strings is biased in such a way
that at least one of the two strings is likely to be an ef-
fective solution recombination of the parent strings. An
ideal goal would be to find the best possible recombination
from the two parents; however, this is difficult to achieve

since there are a total of 2~ . ((2(::?,6)/)) possibilities for

the children. To implement the crossover operation effec-
tively, we make the observation that k' is typically quite
small when we are looking for low-dimensional projec-
tions of high-dimensional data. Therefore, we first search
the space of the ok’ possibilities for the Type II positions
for the best possible combination. After having found the
optimal combination for the Type II positions, we use a
greedy algorithm to find a solution recombinant for the
(k — k') Type III positions. To find the remaining posi-
tions, we always extend the string with the position that
results in the string with the most negative sparsity coef-
ficient. We keep extending the string for an extra (k — k')
positions until all k& positions have been set. This string s
is a recombinant of the parent strings. The idea of using
such a recombination procedure is to create a new solution
that combines the good aspects of both parent strings. The
crossover technique is a key method in evolutionary al-
gorithms that distinguishes it from hill climbing methods;
by devising new combinations of solutions it is possible
to create a new string in the search space that combines
aspects from both parents. It now remains to create the
second child s’ in order to replace both parent strings. The
second child is created by always picking the positions
from a different parent than the one from which the string
s derives its positions. The overall crossover algorithm is
illustrated in Fig. 5.

Mutation: We perform mutations of two types:

Type I: Let @) be the set of positions in the string that are
*. Then we pick a position in the string that is not in) and
change it to *. At the same time, we change a randomly
picked position in () to a number between 1 and ¢. Thus,
the total dimensionality of the projection represented by a
string remains unchanged by the process of mutation.
Type II: This kind of mutation only affects a position that is
not . The value of such a position is changed from a value

Algorithm Crossover(S)
begin
Match the solutions in the population pairwise;
for each pair of solutions s1, sz thus matched do
begin
(s,s") = Recombine(s1, $2);
Replace s1 and sz in the population by s and s’;
end;
return(S);
end

Algorithm Recombine(s1, s2)
begin

@ = Set of positions in which either s; or s2 is *;

R = Set of positions in which neither s; nor s2 is *;

Enumerate the 2% possibilities for recombining the

positions in R and pick the string s with most negative
sparsity coefficient;

Extend string s greedily from the positions in @) by always

picking the position with the most negative sparsity coefficient;

Let s’ be the complementary string to s;

{ A complementary string is defined as one in which a
given position in s’ is always derived from a different
parent than the one s derives it from; }

return(s, s’);

end

Fig. 5. The crossover algorithm

between 1 and ¢ to another value between 1 and ¢. For
this purpose, we have two sets of mutation probabilities
p1 and po. With a mutation probability of p;, we perform
an interchange of Type 1. The corresponding probability to
perform an interchange of Type I1 is ps. For the purpose of
our implementation, we used an equal number of Type I
and Type II mutations; therefore we have p; = po. The
overall mutation algorithm is illustrated in Fig. 6.

2.3 Postprocessing phase

‘We note that the genetic algorithm finds the regions and projec-
tions with the most negative sparsity coefficients as opposed to
the data points themselves. Therefore, a postprocessing phase
is required to map these projections into the data points. As
indicated earlier, a point is said to cover a projection when
it is drawn from the local projection found by the genetic al-
gorithm. (For example, a point covers the projection *3*6 if
the second and fourth coordinates correspond to grid ranges
3 and 6.) In the postprocessing phase, we find all the sets of
data points that contain the the abnormal projections reported
by the algorithm. These points are the outliers and are denoted
by O in the description of Fig. 3.

2.4 Choice of projection parameters

An important issue in the algorithm is to be able to choose the
projection parameters k and ¢. Note that one of the reasons
that we are finding outliers by the projections-based method is
the sparsity of the data. Thus, for a k-dimensional projection

C.C. Aggarwal, P.S. Yu: An effective and efficient algorithm for high-dimensional outlier detection 217

Algorithm Mutation(S, p1, p2)
begin
for each string s € S do begin
Let @ be the set of positions in s that are *;
Flip a coin with success probability p1;
if the flip is a success, then begin
convert a random position in @) to a random number
between 1 and ¢;
convert a random position not in @ to *;
end
Define R to be the set of positions in s that are not *;
Flip a coin with success probability pa;
if the flip is a success then begin
Pick a position in R and flip it to a random number
between 1 and ¢;
end;
return(S);
end

Fig. 6. The mutation algorithm

out of a d-dimensional data set, each subcube represented by a
k-dimensional projection contains an expected fraction 1/¢*
of the data. Thus, if we pick ¢ = 10, then even for a four-
dimensional projection the expected number of points in the
subcube would only be a fraction 10~* of the whole. Thus, if
the data set contains less than 10,000 points, the k-dimensional
cubes are expected to contain less than one point. This means
that it is not possible to find a cube that has a high sparsity
coefficient and covers at least one point. In general, the values
of ¢ and k should be picked small enough that the sparsity
coefficient of cube containing exactly one point is reasonably
negative. At the same time ¢ should be picked high enough that
there are sufficient numbers of intervals on each dimension that
corresponds to a reasonable notion of locality. Once ¢ has been
picked, we determine k by using the following method. We
calculate the sparsity coefficient of an empty cube. From Eq. 1,

this is given by —, / % The value of NV is predecided by the

choice of the data set. Now, it remains to pick k appropriately
so that it results in a high enough sparsity coefficient. If the
data set were uniformly distributed, then the distribution of
data points in each cube could be represented by a normal
distribution, and the above sparsity coefficient would be the
number of standard deviations by which the actual number of
points differed from the expected number of points. For such
a case, a choice of sparsity coefficient of —3 would result in
99.9% level of significance that the given data cube contains
less points than expected and is hence an abnormally sparse
projection. In general, the normal distribution assumption is
not true; however, a value of s = —3 is a good reference point
to decide the value of k. Therefore, we have:

N
o1

By expressing the entire equation in terms of k, we obtain
k* = Llog¢(N/32 + 1)|. For a real application, a user may
wish to test different values of this (intuitively interpretable)
parameter s to determine appropriate values of £ = k*. The
value of k = k* thus returned is the largest value of k at which
abnormally sparse projections may be found before the effects

=—s. 2)

of high dimensionality result in sparse projections by default.
The value of & = k* is also the most informative for the
purpose of outlier detection since it is the highest-dimensional
embedded space in which useful outliers may be found. We
also note that since the integral dimensionality of the space in
which outliers are found is lower than what is indicated in Eq.
2, the corresponding sparsity coefficients are also sometimes
more negative than the threshold chosen by the user.

We note that since an evolutionary approach was used for
outlier detection, the running time of the method is propor-
tional to the size of the data. The bottleneck operation is in the
computation of the fitness function. In each iteration, the num-
ber of fitness functions to be computed is proportional to data
set size. For this reason, the scalability of the algorithm is also
proportional to the data set size. At the same time, since the
evolutionary algorithm is essentially a generic search heuristic
over the data space, it is not possible to propose a reasonably
tight estimation of the complexity behavior in closed form.

3 Empirical results

The algorithm was implemented on a 233-MHz machine run-
ning AIX 4.1.1 with 100MB of main memory. We tested the
outlier detection on several real data sets obtained from the
UCI machine learning repository. These are data sets that are
naturally designed for classification and machine learning ap-
plications. The data sets were picked in a way so as to result
in considerable variability in terms of the the number of at-
tributes. In addition, the data sets were cleaned in order to take
care of categorical and missing attributes.

We tested the performance of the method using both the
brute-force and the evolutionary technique. As expected, the
brute-force technique required considerably more computa-
tional resources than the evolutionary search technique for
high-dimensional data sets. For one of the high-dimensional
data sets (musk data set), the brute-force algorithm was un-
able to terminate in a reasonable amount of time because of
the high dimensionality of the problem. For example, in order
to find k-dimensional projections of a d-dimensional problem,
there are a total of ({/) - ¢ possibilities. Even for a modestly
complex problem with d = 20, k = 4, ¢ = 10, this results in
7 % 107 possibilities. In the case of the musk data set (which
has 160 dimensions), the brute-force algorithm was unable
to find even three-dimensional projections. Clearly, as the di-
mensionality increases, the computational complexity of the
problem becomes untenable. The goal of the evolutionary al-
gorithm is to provide outliers that are reasonably comparable
with the brute-force algorithm but can be found much more
efficiently.

In Table 1, we have illustrated the results for five data sets
from the UCI machine learning repository. For all cases, we
picked ¢ = 7 for the different data sets. The values of k was
then determined using the relationship k = [log, (N/s* +
1)]. In each case we found the m = 20 best projections and
reported the outlier points corresponding to these projections.
The value of s picked for all cases was —3. It is evident from
these results that the performance of the brute-force technique
quickly becomes untenable for very high-dimensional data
sets. In fact, for the musk data set with 160 dimensions, the
outlier detection algorithm did not terminate in a reasonable

218

Table 1. Performance for different data sets

C.C. Aggarwal, P.S. Yu: An effective and efficient algorithm for high-dimensional outlier detection

Data set Brute Gen Gen® Brute Gen Gen®
(time) (time) (time) (quality) (quality) (quality)
Breast cancer (14) 1314 35 42 —3.57 —3.07 —3.54
Ionosphere (34) 13115 301 267 —3.12 —2.12 —3.12 (%)
Segmentation (19) 2112 71 43 —3.11 —2.76 —3.11 (%)
Musk (160) — 954 721 — —2.07 —2.81
Machine (8) 11 31 12 —3.31 -3.15 —-3.31 (%)

amount of time; therefore, we have been unable to report the
results for this particular case. This is an important observation
since the utility of this technique is primarily for the high-
dimensional case.

Asdiscussed earlier, we implemented two crossover mech-
anisms. The first was a simple two-point crossover mechanism
that performs the crossover by exchanging segments of the
two strings. We implemented a optimized crossover mecha-
nism that finds good recombinations of solutions in the search
space. The results with the optimized mechanism have been
superscripted with an ©. Clearly, the optimized mechanism per-
forms substantially better in terms of the quality of the final
solution found. This is because the two-point crossover mech-
anism often resulted in strings that were not in the feasible
search space of k-dimensional projections. On the other hand,
the optimized crossover solution identified combinations of
dimensions that were both feasible and of high quality. We
have also reported the average sparsity coefficients of the best
20 (nonempty) projections indicated under the column (qual-
ity). In three of the five data sets, the average quality of the best
20 best projections was the same using either the evolutionary
or the brute-force algorithm. We have marked these cases with
a “*”. We note that the brute-force method provides the op-
timum solution in terms of the sparsity coefficient. However,
in most cases, the evolutionary algorithm is almost equally
good in finding solutions of reasonable quality. Another in-
teresting observation was that the optimized mechanism was
significantly faster than the two-point crossover mechanism
for many data sets. Indeed effective solution recombination
that is tailored to each specific problem is important in pro-
viding high solution quality in a reasonable amount of running
time. The results show that the evolutionary algorithm works
qualitatively quite well for most of the data sets. The rela-
tively small level of qualitative sacrifice by the evolutionary
algorithm method is offset by the huge performance gain over
the brute-force method.

3.1 Results with synthetic data sets

We also tested the algorithm with a couple of synthetic data
sets. We generated the projected clusters as discussed in de-
tail in [3]. As in [3], we label these data sets synthetic 1 and
synthetic 2 respectively. In addition, we superimposed 0.1%
additional points onto the data set as outliers. We note that
these kinds of outliers are much weaker since they represent
the background noise inserted into the data as opposed to ac-
tual deviations from normal behavior. Therefore, such outliers
are often more difficult to detect in practice. We computed
the percentage of outliers that were detected by the algorithm
when running this procedure. We also computed the additional

1200~

[~&- SCALABILITY WITH DATA SIZE |

1000 -

800

600 -

RELATIVE RUNNING TIME

400 -

200

5
DATA SIZE x10°

Fig. 7. Scaling of running time with database size (Syn. 1)

1200

[-e— SCALABILITY WITH DATA SIZE |

1000 [

800

600

RELATIVE RUNNING TIME

200

5
DATA SIZE

Fig. 8. Scaling of running time with database size (Syn. 2)

percentage of points that had been falsely classified as outliers
by the algorithm. The results are illustrated in Table 2. We note
that the second percentage (false positives) illustrated in the
table is in terms of the number of outliers found by the al-
gorithm. An interesting observation is that, while most of the
true outliers were found by the algorithm, the percentage of
points that had been chosen falsely as outliers was somewhat
higher.

We also tested the scalability of the algorithm to increas-
ing database size and dimensionality. For testing scalability
with data set size, we generated synthetic data sets with the

C.C. Aggarwal, P.S. Yu: An effective and efficient algorithm for high-dimensional outlier detection 219

Table 2. Effectiveness with synthetic data

Data set Percent outliers found False positive percent
Synthetic 1~ 98.9% 9.5%
Synthetic2 99.3% 8.9%

‘ —©— SCALABILITY WITH DATA DIMENSIONALITY

25

RELATIVE RUNNING TIME
&> 8

=)

0 I I I I I I I I)
10 20 30 40 50 60 70 80 920 100

DATA DIMENSIONALITY

Fig. 9. Scaling of running time with database dimensionality (Syn. 1)

40

‘ —©— SCALABILITY WITH DATA DIMENSIONALITY ‘

RELATIVE RUNNING TIME

) I I I I I I I I)
10 20 30 40 50 60 70 80 20 100

DATA DIMENSIONALITY

Fig. 10. Scaling of running time with database dimensionality
(Syn. 2)

same parameters as the above two data sets discussed except
for the data set size parameter that was varied. A similar pro-
cess was used in order to test scalability with increasing data
dimensionality. As illustrated in Figs. 7 and 8, the algorithm
showed linear scalability with data set size. In Figs. 9 and 10,
we have illustrated the scalability with increasing data dimen-
sionality for the Syn. 1 and Syn. 2 data sets. While the search
space with increasing data dimensionality increases exponen-
tially, it is clear from the above charts that the computational
complexity increases only slightly worse than linearly. This
is because of the fact that the evolutionary algorithm prunes
away most of the search space during the exploration process.

Table 3. Arrythmia data set

Case Class codes Percent

Commonly occurring 01, 02, 06, 10, 16 85.4%

Classes (> 5%)

Rare classes (< 5%) 03, 04, 05, 07 14.6%
08,09, 14, 15

3.2 An intuitive evaluation of results

A qualitative evaluation of the outlier detection algorithm pro-
vides challenges because of the subjectivity in defining abnor-
mal behavior. An interesting way to test for qualitative behav-
ior was to look at the actual points found by the outlier detec-
tion algorithm and the reason that these points were picked as
outliers. One of the interesting data sets in the UCI machine
learning repository is the arrythmia data set, which has 279 at-
tributes corresponding to different measurements of physical
and heart-beat characteristics that are used to diagnose arry-
thmia. The data set contains a total of 13 (nonempty) classes.
Class 1 was the largest and corresponds to people who do not
have any kind of heart disease. The remaining classes corre-
spond to people with diseases of one form or another, some
less common than others. For example, class 2 corresponds
to isochemic changes in the coronary artery, a relatively com-
mon condition. We considered those kinds of class labels that
occurred in less than 5% of the data set as rare labels. One
way to test how well the outlier detection algorithm worked
was to run the method on the data set and test the percentage
of points that belonged to one of the rare classes. If the out-
lier detection works well, we expect such abnormal classes to
be overrepresented in the set of points found. These kinds of
classes are also interesting from a practical perspective.

We ran the evolutionary algorithm to find all the sparse pro-
jections in the data set that correspond to a sparsity coefficient
of —3 or less. A total of 85 points contained these projections.
When we examined these 85 points, we found that 43 of them
belonged to one of the rare classes. Furthermore, many of the
points that did not belong to these 43 instances also showed
interesting properties such as errors in recording the data (see
below). In contrast, when we ran the algorithm in [23] over the
data set, we found that only 28 of the 85 best outliers belonged
to arare class. These results were obtained using the 1-nearest
neighbor; the results did not change significantly (and in fact
worsened slightly) when the k-nearest neighbor was used. The
less effective performance of this technique was because of the
well-known effects of the data getting spread out sparsely in
high dimensionality. In such cases, the sparsity effects of the
different dimensions start dominating and it becomes diffi-
cult to meaningfully identify points as outliers since the small
number of dimensions that show abnormal behavior are often
masked by the noise effects of all the other dimensions.

We note that the algorithm in [20] defines outliers in a
somewhat similar way to [23] because it uses full-dimensional
nearest-neighbor distances; therefore, the noise effects in the
results obtained with the algorithm of [23] are also applicable
to the technique of [20]. Another alternative is the algorithm
discussed in [21], which cannot be implemented efficiently
for high-dimensional data; for a 279-dimensional data set this
algorithm is not practical.

220 C.C. Aggarwal, P.S. Yu: An effective and efficient algorithm for high-dimensional outlier detection

Even more interesting knowledge was obtained by exam-
ining the projections determined by the algorithm. Actually
looking at the projections made it possible to find the actual
patterns that correspond to abnormal behavior. In many cases,
we also found some interesting outliers that are created by
errors in recording the data; for example, on examining the
patterns we found one record for which the height was 780 cm
and the weight was 6 kg. This is obviously not compatible with
standard human measurements; therefore, it is clear that there
was some error in recording the data. The ability of the outlier
detection algorithm to mine the appropriate combination of
attributes (out of 279 attributes in this case) is important since
such local patterns were not discovered by distance-based al-
gorithms such as those discussed in [20,23].

Another interesting data set on which we tested the outlier
detection method was the housing data set, which had 14 at-
tributes concerning housing values in suburbs of Boston. The
feature values of this data set corresponded to various factors
that influenced housing prices such as crime rate, accessibility
to highways, nitric oxide concentrations, distances to centers
helping employment search, etc. We picked 13 of these 14
attributes (eliminating the single binary attribute) and then
ran the outlier detection algorithm to find interesting three-
and four-dimensional projections. An interesting example of
an outlier was a record that had a high crime rate (1.628) and
high pupil-teacher ratio (21.20) but had low distances (1.4394)
to employment centers. The reason that such a record would
be an outlier is that localities with high crime rates and high
pupil-teacher ratios were also typically far from the employ-
ment centers. Another interesting outlier point was a projection
that corresponded to low nitric oxide concentration (0.453),
high proportion of pre-1940 houses (93.40%), and high index
of accessibility to radial highways (8). This was again because
the latter two attributes usually corresponded to high nitric ox-
ide concentration. We also found some interesting points that
showed informative trends with respect to the housing price.
For example, it was usually the case that points with high index
of accessibility to radial highways also had high crime rates.
We found an interesting outlier point that had a low crime rate
(0.04741), modest number of business acres per town (11.93),
and also a low median home price (11,900). This was a rather
contrarian point since the first two features’ values are usually
indicative of high housing prices in the rest of the data. Such
data points are also useful for a classifier training algorithm
since such points that are contrarian to the overall trends can
confuse the training process. Thus these outlier detection tech-
niques can also be used to prescreen such points from the data
set before applying a classification algorithm.

4 Conclusions

In this paper, we discussed a new technique for outlier de-
tection that is especially suited to very high-dimensional data
sets. The method works by finding lower-dimensional projec-
tions that are locally sparse and cannot be discovered easily
by brute-force techniques because of the number of combi-
nations of possibilities. This technique for outlier detection
has advantages over simple distance-based outliers that can-
not overcome the effects of the dimensionality curse. We
also illustrated how to implement the technique effectively

for high-dimensional applications by using an evolutionary
search technique. This implementation works almost as well
as a brute-force implementation over the search space in terms
of finding projections with very negative sparsity coefficients,
but at a much lower cost. The techniques discussed in this
paper extend the applicability of outlier detection techniques
to high-dimensional problems; such cases are most valuable
from the perspective of data mining applications.

References

1. Aggarwal CC (2001) Re-designing distance functions and dis-
tance based applications for high dimensional data. ACM SIG-
MOD Rec 30(1):13-18

2. Aggarwal CC et al (1999) Fast algorithms for projected cluster-
ing. In: Proceedings of ACM SIGMOD, pp 61-72

3. Aggarwal CC, Yu P (2000) Finding generalized projected clus-
ters in high dimensional spaces. In: Proceedings of ACM SIG-
MOD, pp 70-81

4. Aggarwal CC, Hinneburg A, Keim DA (2001) On the surpris-
ing behavior of distance metrics in high dimensional space. In:
Proceedings of ICDT, pp 420-434

5. Aggarwal CC, Orlin JB, Tai RP (1997) Optimized crossover for
the independent set problem. Operat Res 45(2):226-234

6. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Au-
tomatic subspace clustering of high dimensional data for data
mining applications. In: Proceedings of ACM SIGMOD, pp 94—
105

7. Agrawal R, Imielinski T, Swami A (1993) Mining association
rules between sets of items in large databases. In: Proceedings
of ACM SIGMOD, pp 207-216

8. Arning A, Agrawal R, Raghavan P (1996) A linear method for
deviation detection in large databases. In: Proceedings of KDD,
pp 164-169

9. Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is
nearest neighbors meaningful? In: Proceedings of ICDT, pp 217—
235

10. Breunig MM, Kriegel H-P, Ng RT, Sander J (2000) LOF: identi-
fying density-based local outliers. In: Proceedings of ACM SIG-
MOD, pp 93-104

11. Chakrabarti K, Mehrotra S (2000) Local dimensionality reduc-
tion: a new approach to indexing high dimensional spaces. In:
Proceedings of the VLDB conference, pp 89-104

12. Darwin C (1859) The origin of species by natural se-
lection. Available at: http://www.literature.org/authors/darwin-
charles/the-origin-of-species/

13. DelJong KA (1975) Analysis of the behaviour of a class of genetic
adaptive systems. PhD dissertation, University of Michigan, Ann
Arbor, MI

14. Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based
algorithm for discovering clusters in large spatial databases with
noise. In: Proceedings of KDD, pp 226-231

15. Goldberg DE (1989) Genetic algorithms in search, optimization
and machine learning. Addison-Wesley, Reading, MA

16. Guha S, Rastogi R, Shim K (1998) CURE: an efficient clus-
tering algorithm for large databases. In: Proceedings of ACM
SIGMOD, pp 73-84

17. Hinneburg A, Aggarwal CC, Keim DA (2000) What is the nearest
neighbor in high dimensional spaces? In: Proceedings of the
VLDB conference, pp 506-515

18. Holland JH (1975) Adaptation in natural and artificial systems.
University of Michigan Press, Ann Arbor, MI

C.C. Aggarwal, P.S. Yu: An effective and efficient algorithm for high-dimensional outlier detection 221

19.

20.

21.

22.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by
simulated annealing. Science 220(4589):671-680

Knorr E, Ng R (1998) Algorithms for mining distance-based out-
liers in large data sets. In: Proceedings of the VLDB conference,
pp 392403

Knorr E, Ng R (1999) Finding intensional knowledge of
distance-based outliers. In: Proceedings of the VLDB confer-
ence, pp 211-222

Parthasarathy, S Aggarwal CC (2003) On the use of conceptual
reconstruction for mining massively incomplete data sets. [IEEE
Trans Knowl Data Eng 15(6):1512-1531

23. Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms

for mining outliers from large data sets. In: Proceedings of ACM
SIGMOD, pp 427438

24. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient

data clustering method for very large databases. In: Proceedings
of ACM SIGMOD, pp 103-114

