The VLDB Journal (2004) 13: 177-203 / Digital Object Identifier (DOI) 10.1007/s00778-003-0108-y

Amit — the situation manager

Asaf Adi, Opher Etzion

IBM Research Laboratory in Haifa
e-mail: {adi,opher}@il.ibm.com

Edited by K. Ramamritham. Received: February 6, 2002 / Accepted: May 20, 2003

Published online: September 30, 2003 — (©) Springer-Verlag 2003

Abstract. This paper presents the “situation manager”, a tool
that includes both a language and an efficient runtime execu-
tion mechanism aimed at reducing the complexity of active
applications. This tool follows the observation that in many
cases there is a gap between current tools that enable one to
react to a single event (following the ECA: event-condition-
action paradigm) and the reality in which a single event may
not require any reaction; however, the reaction should be given
to patterns over the event history.

The concept of situation presented in this paper extends
the concept of composite event in its expressive power, flex-
ibility, and usability. This paper motivates the work, surveys
other efforts in this area, and discusses both the language and
the execution model.

Keywords: Active technology — Active databases — High-
level languages — Composite events

1 Introduction

In recent years, a substantial amount of work has been done
on systems that either react automatically to actual changes
(reactive systems) or to predicted changes in their environ-
ment (proactive systems). These systems perform actions or
signal alerts in response to the occurrence of events that are
signaled when changes in the environment occur (or are in-
ferred). Such systems are used in a wide spectrum of areas
and include command and control systems, active databases,
system management tools, customer relationship management
systems, and e-commerce applications.

A central issue in reactive and proactive systems is the
ability to bridge the gap between events identified by the sys-
tem and situations to which the system is required to react.
Some examples from various types of situations that need to
be handled are given in Fig. 1.

There are a variety of tools that have been constructed
to provide a work environment for event-driven applications.
The work described in this paper has been motivated by the
observation that most contemporary tools can react to the oc-
currence of a single event. In many applications (including all

o A client wishes to activate an automatic “buy or sell” program
if a security that is traded in two stock markets has a difference
of more than 5% between its values in the markets such that
the time difference between the reported values is less than
5 min (“arbitrage”).

e A customer relationship manager wishes to receive an alert if
a customer’s request was reassigned at least three times.

e A groupware user wishes to start a session when there are ten
members of the group logged into the groupware server.

e A network manager wishes to receive an alert if the probability
that the network will be overloaded in the next hour is high.

Fig. 1. Example of possible situations

the examples given above), the customer wishes to react to
the occurrence of a situation that is a semantic concept in the
customer’s domain of discourse. The syntactic equivalent of a
situation is a (possibly complex) pattern over the event history.
Thus there is a gap between application requirements and the
capabilities of the supporting tools, which results in excessive
work. This paper aims at bridging this gap and obviating the
excessive work. It should be noted that the “pattern over the
event history” may in some cases be only an approximation
of the actual situation or express the situation with some level
of uncertainty. In this paper, we have made the simplified as-
sumption of equivalence between these two terms. Some tools
and some research prototypes approach this difficulty by pro-
viding a mechanism for the definition of composite events that
are detected when a predicate over the event history is satis-
fied. However, previous research focused on specific fields
such as active database [7,17,31] and network management
[26,30] and resulted in partial solutions that have limited ex-
pressive power and can be used only in these specific domains
by systems for which they were specially designed. More-
over, these prototypes are not able to fully express some of the
fundamental features of a situation definition:

1. The events that can participate in a situation detection
2. The context during which a situation detection is relevant

178

Event

Source

Event

Situation Manager

Source

Event

Source

3. The impact of semantic information reported with events
on situation detection (i.e., the semantic conditions that
must be satisfied to detect a situation)

4. The decision alternatives regarding the reuse of event in-
stances that participated in situation detection; the decision
is whether and under what conditions the event instance is
“consumed” and cannot be used for the detection of other
situations

In this paper, we present the situation manager, a part of the
Amit (active middleware technology) framework. Amit is both
an application development and runtime control tool intended
to enable fast and reliable development of reactive and proac-
tive applications. The situation manager is a runtime monitor
that receives information about the occurrence of events, de-
tects the situations to which applications are required to react,
and reports the detected situations to subscribers, typically
other applications. It transfers the responsibility of situation
detection from the application to a high-level tool and bridges
the gap between the application and the situations to which it
is required to react. It provides a general solution (i.e., a so-
lution that is practical in many domains) that can express the
fundamentals of a situation definition as described above.

The situation manager’s high-level architecture is de-
scribed in Fig. 2.

This paper reports on the situation concept and its imple-
mentation in the framework of the Amit project. In Sect. 2,
we present the situation definition language. In Sect. 3, we
describe algorithms and data structures used by the situation
manager during the detection process. In Sect. 4, we present
Amit’s performance measurements, and in Sect. 5 we review
some previous work aimed at defining the semantics of com-
posite events and comparing it to Amit. Section 6 concludes
the paper.

2 The situation definition language

This section describes the features of the situation definition
language and is followed by examples from the domain of
e-commerce applications (stock market). The language is im-
plemented using XML (Extensible Markup Language); its
DTD (document type definition), which describes definition
metadata, is specified in the appendix.

Section 2.1 describes the concept of event, the basic build-
ing block of the situation language. Section 2.2 describes

Situations

A. Adi, O. Etzion: Amit — the situation manager

Application

Application

Application

Fig. 2. The situation manager’s high-level
architecture

the concept of lifespan, which is the temporal context during
which situation detection is relevant. Section 2.3 describes the
concept of situation and how events, keys, and lifespans are
used during situation composition. Section 2.4 describes the
concept of key, a semantic equivalence among events.

2.1 Event definition

An event is a significant (in some domains), instantaneous
(happens in a specific point in time), atomic (happens com-
pletely or not at all) occurrence. We distinguish between con-
crete events and inferred events. Concrete events are those
that happen in reality, usually as a result of a change in an
object’s state. Examples include a person entering a meeting
room or a light on the third floor of a building being turned on.
Inferred events do not happen in physical reality but can be
logically concluded by viewing the world’s state (context) and
the history of concrete event occurrences. An inferred event
represents the occurrence of a significant situation in physi-
cal reality. Examples are: all the invitees to a meeting have
already arrived at the meeting room (the meeting can start),
or the electricity load on the third floor is too high (electric
outage may occur).
We define two classes of events accordingly:

e External events are those (usually concrete events) that
are pushed into the situation manager by external sources
in runtime. These include sensors, other applications, and
human sources.

o [nternal events are inferred events signaled by the situation
manager when it detects the occurrence of a situation.

An event, either external or internal, is represented by an event
instance that contains the necessary information about the
event. This information includes the occurrence time of the
event, data relevant to applications that react to the event, and
additional data needed to decide if a situation (inferred event)
has occurred.

An event type [4] describes the common properties of a
similar set of event instances on an abstract level. It defines
a schema of attributes that are instantiated in runtime when
an event actually occurs and describes the information that is
associated with the event. This information is pushed into the
situation manager if the event is external and calculated by it
if the event is internal.

A. Adi, O. Etzion: Amit — the situation manager 179

To illustrate parameter contexts, consider the composite events A = any(2, E1, E2); E3, where E1, Eo, E3 are primitive events. Also,
consider the following sequence of event occurrences: ez21, €12, €13, €24, €15, €36, €38, €29, Where e;; 18 an occurrence of event ¢ at time j.
In the recent context, A occurs at time 6 and includes the parameters of event instances eis, €24, and esg. In the chronicle context, A occurs
twice — at time 6 with the parameters of event instances e12, e21, and e3¢ and at time 8 with the parameters of event instances e13, €24, and
€38. In the continuous context, A occurs four times, all at time 6. The first occurrence of A has the parameters of event instances ez, €21,
and ese; the second occurrence has the parameters of e12, €24, and es3¢; the third one has the parameters of e13, e24, and esg; and the last

one includes the parameters of e15, €24, and es.

Fig. 3. Example of Snoop’s parameter contexts

these events has one attribute: stock-exchange.

A trade-start event and a trade-end event occur when a trading day at a specific stock exchange starts or ends, respectively. The schema of

A stock-quote event, a bond-quote event, and an option-quote event occur when a specified stock/bond/option is quoted on a specific stock
exchange. The schema of these events has four attributes: stock-exchange, symbol, value, and change (in value since the last quote).

An example of a stock-quote event instance is a tuple (NasdagNM, TEVA, $65.75, +4.89%) quoted on 7 November 2000 at 3:25 pm. Another
example is a tuple (Berlin, TEVA, $62.85, +5.04%) quoted on 7 November 2000 at 8:31 am

Fig. 4. Example of event definition

The set of event types Y . is a finite set) _ , = {E1, Eo, .

.., En},n > 0. Anevent type E is a tuple E = (id, atts), where id is a unique
identifier (event name) such that VE;, F; € ZE, i # j: Es.id # Ej.id. and aits = {att1, att, ..
An attribute art is a tuple att = (id, type), where id is a unique identifier (attribute name) such that VE € >~ ;, Vatt;, att; € E.atts, i # j:
att;.id # att;.id and type is an attribute type, rype € {number, boolean, string}.

., atty }, n >0, is a finite set of attributes.

Fig. 5. Formal definition of event type

There is a distinction between the time in which the event
happens in reality (event time) and the time it is detected by
the system (detection time). This phenomenon may be the re-
sult of delays in event reporting inflicted by synchronization
problems in a distributed environment (network overload) and
inaccuracies in sensor readings. This phenomenon and the sit-
uations in which the situation manager, a sensor, or a network
line is down may result in the detection of situations that have
not occurred in reality or in missing the detection of situations
that occurred in reality [6,14]. The consequences of this issue
are beyond the scope of this paper.

2.2 Lifespan definition

A lifespan is the temporal context during which situation de-
tection is relevant. The lifespan is an interval bounded by two
events called initiator and terminator. The occurrence of an
initiator event initiates the lifespan, and the occurrence of a
terminator event terminates it. The initiator and terminator can
be external, internal, or system events such as system startup
and system shutdown.

A lifespan type describes the common properties of a sim-
ilar set of lifespans on an abstract level. It defines the set of
events that can initiate the lifespan, the set of events that can
terminate it, and the conditions for lifespan initiation and ter-
mination. Note that more than one lifespan of the same type
may be open simultaneously if two initiator events have oc-
curred before a terminator event, depending on the conditions
for initiation.

A lifespan has its own semantics, which may be indepen-
dent of the semantics of a specific situation. In fact, a single
lifespan can be a relevant context for the detection of multi-
ple situations. An example is the lifespan trading-day, which
starts when the event trade-start occurs and ends when the

event trade-end occurs. This lifespan is a relevant time win-
dow for numerous situations. Moreover, the conditions for
lifespan initiation and termination are not influenced by the
specific situations that are relevant during the lifespan.

The notion of lifespan was not formally defined in previous
work. It was usually simulated by the operator sequence with
three operands whose first and last operands could be seen
as an initiator and terminator of the time interval in which
the second operand, usually a complex event, could occur.
Note that a lifespan simulation using the sequence operator
covers a single lifespan’s initiation and termination policy.
Snoop [7] defines the special operators A, A*, P, and P* to
emulate the semantics of lifespans. However, this emulation
is only partially analogous to the notation of lifespan and has
different semantics. It strongly couples the lifespan with a
specific composite event and the decision on whether to initiate
or terminate the lifespan with a parameter context. Note that
a parameter context covers a single lifespan’s initiation and
termination policy. However, in many cases such emulations
cannot represent the notion of lifespan at all.

2.2.1 Lifespan initiation

A lifespan is initiated by an occurrence of an initiator when
an event (either external or internal) occurs or (if defined in
this way) when the situation manager starts to run (i.e., system
startup). The lifespan type defines whether lifespan instances
are initiated by system startup, by event occurrences, or by
both and under which conditions (i.e., the lifespan’s initiators).
The conditions that an event instance must satisfy to initiate
a lifespan include threshold conditions on the event instance
itself and a correlation code that determines the lifespan du-
plication policy. There are two possible correlation codes: add
and ignore. If the correlation code is ignore, a new lifespan

180 A. Adi, O. Etzion: Amit — the situation manager

A broker wants to run an automatic buy and sell on the New York Stock Exchange only. He wants to detect situations during the NYSE
trading day that requires the activation of such a program.

e Models that emulate the notion of lifespan using the sequence operator can only detect the required situations at the end of the trading
day. However, at the end of the trading day, the knowledge that the situations represent is no longer relevant.

e Models that emulate the notion of lifespan using special operators like Snoop’s [7] A, A*, P, and P* can detect the required situations.
However, they also detect composite events that represent situations that did not occur in reality because events signaling the starting
and ending of trading days in different stock markets interleave. In this case, all possible combinations of composite events must be
detected and filtered in the condition part of the ECA rule. This results in a substantial superfluous computation.

Fig. 6. Example of lifespan management

A broker wishes to identify situations regarding IBM stock and options traded on the New York Stock Exchange. These situations are relevant
in time intervals that start when an IBM option is quoted or when IBM’s stock is quoted if no situation is already being evaluated in such a
time interval. All open lifespans are discarded if a situation is detected or 60 min after their initiation.

lifespan = “example 7"

initiator = event: “option-quote”
where: “symbol = IBM and stock exchange = NYSE”
correlate: “add”

initiator = event: “stock-quote”
where: “symbol = IBM and stock exchange = NYSE”
correlate: “ignore”

terminator = event: “detected situation”
where: “symbol = IBM and stock exchange = NYSE”
termination type: “discard”
quantifier: “each”

terminator = expiration interval: “60 min”
termination type: “discard”

Below is a scenario of event occurrences and their influence on lifespan initiation:

1. An IBM stock-quote event from New York initiates a new lifespan.
2. An IBM option-quote event from Berlin is ignored.

3. An IBM stock-quote event from New York is ignored.

4. An IBM option-quote event from New York initiates a new lifespan.

Two instances of this lifespan, initiated by events one and four, are open simultaneously. The situation is detected in each one of these
time intervals separately. When a situation is detected, with no importance for the lifespan in which it was detected, all open lifespans are

discarded.

Fig. 7. Example of lifespan initiation

is initiated only if a lifespan of the same type is not already
open. If the correlation code is add, a new lifespan is opened
while any existing lifespans remain open. Multiple values of
the tuple that consists of event type, threshold conditions, and
correlation code may be defined for the same lifespan. This
allows a lifespan to be initiated by different events and un-
der different conditions and enables the definition of lifespans
that represent time intervals in which situations are relevant
in reality. Note that an event occurrence can initiate only a
single lifespan of the same type, although it may satisfy the
conditions of more than one initiation tuple defined by that

type.

2.2.2 Lifespan termination

A lifespan remains open since its initiation time until it is ei-
ther terminated by an occurrence of a ferminator or it expires.
The lifespan type defines whether lifespan instances are termi-

nated after a period of time, by event occurrences, or both, un-
der which conditions, and, in the case of multiple lifespan in-
stances, which lifespans are terminated. The termination type
also determines the conditions that an event instance must sat-
isfy to terminate a lifespan. The conditions include threshold
conditions on the event instance itself, a quantifier that deter-
mines which open lifespans are terminated, and a termination
type that specifies whether situations that are detected during
the lifespan are discarded. There are three possible quantifier
values: first, last, and each. If the quantifier is first, the old-
est lifespan is terminated; if the quantifier is last, the newest
lifespan is terminated; and if the quantifier is each, all the open
lifespans are terminated.

The termination type specifies if a situation that is detected
during (or at the end of) the lifespan and was not reported
should be discarded (discard termination type) or not (termi-
nate termination type).

Multiple instances of the tuple that consists of event type,
threshold conditions, termination type, and quantifier can be

A. Adi, O. Etzion: Amit — the situation manager 181

The set of lifespan types » ; is a finite set >, = {L1, L2, ..., Ln}, n > 0. A lifespan type L is a tuple L = (id, inits, terms), where id
is a unique identifier (lifespan name) such that VL;, L € >, ,4 # j: Li.id # Lj.id; inits = {init1, init2, ..., init, }, n > 0 is a finite set
of initiators; and terms = {term1, terma, ..., termy }, n > 0 is a finite set of terminators. An initiator init is a tuple init = (id, correlation,
cond), where id is the identifier of the initiating event or the symbol startup (if the lifespan is initiated at startup) such that VL € >, Vinit
€ L.inits, 3E € Yt init.id = E.id or init.id = startup; correlation € {add, ignore} is a correlation code and cond is a predicate over the
initiating event attributes.

A terminator term is a tuple term = (id, quantifier, termType, cond) where id is the identifier of the terminating event or an expiration interval
(if the lifespan is terminated after a specific period of time) such that VL € >, Vierm € L.terms, 3E €) 5: term.id = E.id or term.id is
an expiration interval; quantifier € {first, last, each}, termType € {terminate, discard }is a termination type; and cond is a predicate over

the terminating event attributes.

Fig. 8. Formal definition of lifespan

defined for the same lifespan. This allows a lifespan to be
terminated by different events and under different conditions
and makes it possible to define lifespans that represent time
intervals in which situations are relevant in reality.

2.3 Situation definition

We have defined the inferred event (situation) as the occur-
rence of a significant situation that does not happen explicitly
in physical reality but can be logically inferred by viewing the
world’s state and the history of concrete event occurrences. A
situation accordingly defines the set of events, both internal
and external, that need to be evaluated and the conditions they
must satisfy to determine if a significant situation (inferred
event) occurred in reality and an internal event must be sig-
naled. A situation also defines the information associated with
an internal event based on the information associated with the
specific event instances that triggered it.

Formally, a situation .S is a function from a set of event
types »_ ; to an event type E, where the domain is the set
of events that need to be evaluated to decide if a situation
occurred and the range is the internal event that is triggered
when the situation is detected.

We use the term sifuation to refer to both an inferred event
and its definition. However, the intent is usually clear from the
context.

The decision process regarding whether or not a situation
occurred is divided into three phases. Each phase is based on
one dimension of the situation definition.

1. The collection phase — event instances that play any role
in the situation are collected.

2. The detection phase — event instances whose occurrence
entails detection of the situation are selected.

3. The consumption phase — event instances that participate
in the situation are removed from the collection.

Below is a short description of the decision process.

While the lifespan is open, instances of events that participate
in the situation are collected (1). If the conditions for situation
occurrence have been met, then a subset of the event instances in
the collection from those that caused the detection of the situation
is selected (2). These instances are consumed and removed from
the collection (3).

Fig. 9. Decision process for situation detection

2.3.1 Collection phase

A candidate is an event instance that has an impact on the
situation detection. To decide if a situation occurred in reality,
all candidates must be monitored. Moreover, it is sufficient to
base this decision on these event instances only. The defini-
tion of this candidate’s collection should include the following
information:

1. The time interval during which the situation detection is
relevant. A lifespan is the time interval during which a situ-
ation detection is relevant; thus every situation is bounded
to a lifespan type and only event instances that occur while
the lifespan is open are considered for the situation. Note
that if multiple lifespans of the same type are open simul-
taneously, the situation is evaluated in each one separately;
thus the detection of a situation in one lifespan does not
influence the detection of a situation in other lifespans.
Accordingly, the decision about whether an event instance
is a candidate of the situation is made in each lifespan
separately.

2. The types of events that can participate in the situation.
We defined a situation S as a function from a set of event
types) to an event type £. We call an event that occurs
in the domain of a situation function (i.e., an event that
must be evaluated to decide if a situation has occurred) an
operand of the situation.

3. The conditions that event instances must satisfy to par-
ticipate in the collection. An event instance that occurs
while the lifespan is open must satisfy some conditions to
be considered as a candidate. These conditions are de-
fined for each operand of the situation and may differ
among operands. They include threshold conditions on
the event instance itself and override conditions that de-
termine the influence of the new candidate on other candi-
dates of the operand. This means that existing candidates
of the operand are removed from the collection if the new
candidate satisfies the override conditions.

The candidates in the collection are associated with the
operand they belong to and form a separate candidate list for
each operand. Note that a situation can have more than one
operand of the same type. In this case, the decision about
whether an event instance belongs to the candidate list of an
operand is done separately for each operand; thus an event
instance can be a candidate of one operand only, of some
operands, or of all operands.

182 A. Adi, O. Etzion: Amit — the situation manager

The situation portal-collapse is influenced by the quotes of Yahoo and Lycos. It is detected if within a 5-min time window the value of one
of these companies increases, the value of Yahoo decreases by more than 1% in a single quote, and the value of Lycos decreases by more
than 2% in a single quote (i.e., high tendency to decrease).

A new lifespan is opened for this situation whenever Yahoo or Lycos stock increases; thus multiple lifespans of this situation can be open
simultaneously and in each one the situation is detected separately.

This situation has two operands, both with the same event type — stock-quote. The first operand has a threshold condition that allows as
candidates only quotes of Yahoo that decrease by more than 1%. The second operand has a threshold condition that allows as candidates

only quotes of Lycos that decrease by more than 2%.

[O B N

is detected only in the first one.

Below is a scenario of event occurrences and their influence on the situation:

. A Yahoo stock is quoted with an increase in value. A new lifespan is opened.

. A Lycos stock is quoted with a 3% decrease in value. The instance is a candidate of the second operand.

. A Lycos stock is quoted with an increase in value. A second lifespan is opened.

. A Yahoo stock is quoted with a 1/2% decrease in value and ignored.

. A Yahoo stock is quoted with a 2% decrease in value. The instance is a candidate of the first operand in both lifespans, but the situation

Fig. 10. Example of collection phase

2.3.2 Detection phase

The decision process about whether or not a situation occurred
can be performed immediately when an event that is a candi-
date of the situation occurs or when the lifespan of the situ-
ation is terminated. Similarly, the report on the situation can
be delayed until the lifespan terminates. These possibilities
are captured by a detection mode that can have one of these
values:

1. Immediate —the conditions for situation detection are eval-
uated immediately when a new event occurs. The situation
is reported immediately upon detection.

2. Delayed — the conditions for situation detection are eval-
uated immediately when a new event occurs. If detected,
the situation is reported at the end of the lifespan.

3. Deferred — the conditions for situation detection are eval-
uated at the end of the lifespan. If detected, the situation
is reported immediately.

The decisions about whether a situation occurred and which
event instance actually triggered it are based on a combination
of operator, condition, and set of quantifiers. The quantifiers
designate a selection strategy when multiple occurrences of
event instances of the same type that satisfy the conditions
are possible. A quantifier is applied to every operand and has
six possible values: first, strict first, last, strict last, each, and
strict each.

1. First —selects the first instance of the operand that satisfies
the conditions.

2. Strict first — selects the first instance of the operand if it
satisfies the conditions.

3. Last — selects the last instance of the operand that satisfies
the conditions.

4. Strict last — selects the last instance of the operand if it
satisfies the conditions.

5. Each - selects all the instances of the operand that satisfy
the conditions.

6. Strict each — selects all instances of the operand if all of
them satisfy the conditions.

Note thatif eventinstances that satisfy the conditions cannot be
selected for every operand, the situation may not be detected,
depending on the situation’s operator.

Our model supports numerous operators classified into
several groups.

1. Joining operators: all and sequence
e The operator all(Ey, Es, ..., E}) designates a con-
junction of events E} ... E, with no order importance.
e The operator sequence(E1, Es, ..., E}) designates an
ordered conjunction of events Fj... Ej where event
E; precedes event E; | 1.
2. Counting operators: atlesat, atmost, and nth
Counting operators designate a conjunction of n weighted
events. A weight that can have a negative value is associ-
ated with each event operand. A situation with a counting
operator is triggered when the total weight of collected
events satisfies the operator.

e The operator atleast(n, E1, Es, ..., Ej) designates a
minimal conjunction of m events out of E;. .. Ej, with
no order importance such that the total weight of the
m events is more than n.

e The operator atmost(n, E1, Es, ..., Ey) designates a
maximal conjunction of m events out of F. .. Ej with
no order importance such that the total weight of the
m events is less than n within the lifespan. A situation
with this operator is always detected at the end of the
lifespan (i.e., deferred detection mode).

e The operator nth(n, E1, Es, ..., E};) designates a con-
junction of m events out of Fj... E) with no order
importance such that the total weight of the m events
is exactly n.

An operand’s default weight is one; thus in the default case
the operator atleast designates a minimal conjunction of
n events, the operator atmost designates a maximal con-
junction of n events, and the operator nth designates a
conjunction of exactly n events.

The decision about whether more than a single candi-
date thatis bounded to an operand is counted is made by the
operand’s quantifier. The quantifiers each and strict each
allow more than one candidate to be counted, while other
quantifiers allow only a single candidate to be counted.
Note that there is no restriction on the value of the enu-
merator n; it can be greater than the number of operands
k, equal to k, or less than k.

A. Adi, O. Etzion: Amit — the situation manager

183

operator = “all”

detection mode = “immediate”

first operand = event: “stock-quote”
quantifier: “first”
quantifier: “first”

Its lifespan is
initiator = event: “option-quote”

correlate: “add”

requires that the two quotes that trigger it have the same symbol.

operator = “sequence”
detection mode = “deferred”

quantifier: “last”

quantifier: “first”

The situation portal-collapse described in the previous example is defined using the operator all.

threshold: “symbol = YHOO and change = —1”

second operand = event: “stock-quote”
threshold: “symbol = LCOS and change = —2”

where: “symbol = YHOO or symbol = LCOS and change > 0”

terminator = expirationlnterval: “5 min”

The situation last-increase occurs if a stock increases at least two times within a lifespan. It is reported only once at the end of the lifespan
with information based on the last two increases in the stock. This situation is defined using the sequence operator and a condition that

first operand = event: “stock-quote" as: “first-quote”
threshold: “change > 0”

second operand = event: “stock-quote" as: “second-quote”
threshold: “change > 0”

condition = “first-quote.symbol = second-quote.symbol”

Fig. 11. Example of joining operators

3. Absence operators: not and unless

e The operator not(E1, Es, . .., Ey) designates that none
oftheevents F;. .. Fj, has occurred within the lifespan.
o The operator unless(F1, F) designates the occurrence
of the first operand and the nonoccurrence of the sec-
ond within the lifespan.
Situations with an absence operator are always detected at
the end of the lifespan (i.e., deferred detection mode).
4. Temporal operators: every, after, and unless

e The operator every(t) designates a period of i*¢ time
units since the initiation of the situation’s lifespan,
where 7 > 0.

o The operator after(F.t, ¢) designates a period of ¢ time
units since the occurrence of E, where the correla-
tion code c determines the correlation between two in-
stances of E in which the time distance between their
occurrences is less than ¢. There are three possible cor-
relation codes: add, ignore, and replace.

— Add - both occurrences of E are considered.

— Ignore — the first occurrence of E is considered
and the second occurrence is ignored.

— Replace — the first occurrence of E is ignored and
the second occurrence is considered.

e The operator at(tp) designates time points that match
the time pattern #p. A time pattern is a timestamp for-
matted dd/mm/yyyy hh:mm:ss.mmm that can contain a
wildcard, denoted “*”, in its fields and matches time
points that have any value in these fields. For example,
the time pattern **/11/2000 00:00:00.000 matches the
beginning of every day in November 2000.

Situations with an absence operator are always triggered
when they occur (i.e., immediate detection mode).

2.3.3 Consumption phase

A situation is usually repetitive (i.e., may occur more than once
during its lifespan). However, a singular situation (i.e., may
occur only once during its lifespan), denoted by repeat mode =
once, can be defined. Note that a repetitive situation detected in
the deferred detection mode can be detected more than once at
the end of its lifespan. In this case, the decision process about
whether or not a situation occurred is performed repetitively
at the end of the lifespan until no more new situations are
detected.

If the situation is repetitive, the decision about whether the
event instances that triggered it can be considered again as can-
didates for the same situation should be applied. This decision
is determined by the situation’s consumption policy. The con-
sumption policy is defined by a condition that event instances
that triggered the situation must satisfy to be considered again
as a candidate of the situation. This condition, which is called
the consumption condition, can be defined for every operand.
An event instance that triggered the situation and satisfies the
consumption condition associated with its operand is removed
from the candidate list of that operand. If a consumption con-
dition is not defined for an operand, event instances of this
operand are always consumed (i.e., the default consumption
condition is true).

Consumption modes defined in some composite event lan-
guages (e.g., Snoop [7]) denote a predefined set of simple

184 A. Adi, O. Etzion: Amit — the situation manager

That situation decrease-tendency occurs if the number of quotes that report a decrease in a stock value is higher by more than 10 than the
number of quotes that report an increase in value. A quote with an increase in stock value has a default weight of one, and a quote with a
decrease in stock value has a weight of minus one. If each operand has more than one candidate, the additional candidates arecounted as

determined by the quantifier each.
operator = “atleast 10”

operands’ quantifier is set to last.

operator = “atmost 3”
detection mode = “deferred”

detection mode = “immediate”

first operand = event: “stock-quote”
threshold: “change < 0”
quantifier: “each”

second operand = event: “stock-quote”
threshold: “change >0"
weight: “—1"
quantifier: “each”

The situation low-tradability occurs if not all of a company’s securities are traded. In order to count only one candidate of each operand, the

first operand = event: “stock-quote”
quantifier: “last”
second operand = event: “option-quote”
quantifier: “last”
third operand = event: “bond-quote”
quantifier: “last”
condition = “stock-quote.symbol = option-quote.symbol and
stock-quote.symbole = bond-quote.symbole”

Fig. 12. Example of counting operators

operator and is not triggered if the stock price decreases.

The situation strong-buy occurs if a stock price only increases during a trading day (lifespan). This situation is defined using the unless

operator = “unless”

detection mode = “deferred”

lifespan = “trading.day”

first operand = event: “stock-quote” as: “quote-inc”
threshold: “change > 0”
quantifier: “first”

second operand = event: “stock-quote” as: “quote-dec”
threshold: “change < 0”
quantifier: “first”

condition = “quote-inc.symbol = quote-dec.symbol”

Fig. 13. Example of absence operators

consumption conditions. These consumption modes can be
defined in our model using a combination of a quantifier and
consumption condition for each operand. An example is a sit-
uation that corresponds to a Snoop [7] composite event in the
recent parameter context that consumes the last instance of ev-
ery operand when it occurs. This situation has a last quantifier
and a true consumption condition for each operand.

Our model supports consumption policies that cannot be
defined in existing composite event languages. These con-
sumption policies take place when different operands have
different consumption conditions or when the consumption
conditions are not true or false.

2.3.4 Nested situations

The situation manager triggers an inferred event when it de-
tects a situation. Like any other event, an inferred event can

be used as an operand in other situations. This capability en-
ables the definition of nested situations — situations that are
based on concrete and inferred (other situations’) events. The
inferred event is denoted an inner situation. Nested situations
are roughly equivalent to operator composition [7,17] in the
sense that a nested situation has an inferred event triggered
as a result of event composition as one of its operands. How-
ever, nested situations do not require that the same lifespan
and operand (event) selection and consumption policies be
applied to the nested and inner situations. An example of sit-
uation nesting is presented Fig. 16.

2.4 Key definition

Keys are used to perform semantic matching of different events
by an attribute’s value. This is similar (semantically) to equi-
join in relational databases.

A. Adi, O. Etzion: Amit — the situation manager 185

The situation increase-decrease is detected for every pair of stock quotes where the first quote increases and the second quote decreases
during a trading day (lifespan). This situation is defined using the sequence operator. The first operand (stock quote increases) has a quantifier
each and a false consumption condition in order to “remember” all the increases in the stock. The second operand (stock quote decreases)
has a quantifier last and a true consumption condition in order to consider only the last decrease and to avoid multiple detection of the same
pair. All pairs are reported at the end of the lifespan.

operator = ‘“sequence”

detection mode = “differed”

lifespan = “trading_day”

first operand = event: “stock-quote” as: “first-quote”
threshold: “change > 0”
quantifier: “each”
consumption condition: “false”

second operand = event: “stock-quote” as: “second-quote”
threshold: “change > 0”
quantifier: “last”
consumption condition: “true”

Fig. 14. Example of consumption phase

The situation high-increase occurs if a stock increases and has a volume that is higher in at least 20 points than the volume it had at the
beginning of the trading day. This situation is defined using the sequence operator and a condition that requires that the two quotes that trigger
it have the same symbol and that the second quote is higher in more than 20 points than the first. The first operand has a quantifier strict
first and a consumption condition false that require that only the first quote in the lifespan be considered for situation detection. The second
operand has a threshold condition that requires that it increase, a quantifier last, an override condition true, and consumption condition true
that require that only the (currently) last quote be considered for situation detection and that each quote be considered only once.

operator = “sequence”

detection mode = “immediate”

lifespan = “trading.day”

first operand = event: “stock-quote" as: “first-quote”
quantifier: “strict-first”
consumption condition: “false”

second operand = event: “stock-quote" as: “second-quote”
threshold: “change > 0"
quantifier: “last”
consumption condition: “true”
override condition: “true”

condition = “first-quote.symbol = second-quote.symbol and
first-quote.volume > second-quote.volume + 20"

Fig. 15. Example of consumption phase

A broker wishes to sell a stock if it has a decrease tendency and low tradability in a trading day. Situations that detected both cases are defined
in Fig. 12. The sell-stock situation is a nested situation based on the situations defined in Fig. 12. It correlates inferred events detected by the
inner situations and checks if they both occurred on the same trading day.

operator = “all”
detection mode = “immediate”
lifespan = “trading_day”
repeatMode = “once”
first operand = event: “low-tradability”
quantifier: “first”
second operand = event: “decrease-tendency”
quantifier: “first”
condition = “low-tradability.symbol = decrease-tendency.symbol”

Fig. 16. Example of a nested situation

186 A. Adi, O. Etzion: Amit — the situation manager

The symbol key defines a semantic equivalence among stock-quote, bond-quote, and option-quote events using the symbol attribute. The
stock-exchange key defines a semantic equivalence among stock-quote, bond-quote, option-quote, trade-start, and trade-end events using
the stock-exchange attribute. The stock-collapse situation occurs if there are less than three decreases in a trading day. The stock-exchange
key globally partitions this situation; thus a different lifespan is opened for every trading day in a different stock exchange. The symbol key
locally partitions this situation; thus a different detection process is performed for every symbol (company) and for every trading day.

operator = “atmost 3”

detection mode = “deferred”

lifespan = “trading day”

global key = “stock-exchange”

local key = “symbol”

operand = event: “stock-quote”
threshold: “change > 0”
quantifier: “each”

Fig. 17. Example of key definition

The set of keys >, is a finite set > - = {K1, K2, ..., Kn}, n > 0. A key K is a finite set of pairs consisting of an event and one of
its attributes. K = {eventAtt1, eventAtt, ..., eventAtt, }, n > 2. A pair consisting of an event and one of its attributes eventAtt is a tuple
eventAtt = (eventld, attld), where eventld is an event identifier and attld is an attribute identifier such that

1. VK € 3, VeventArr € K,3E € Y .t E.id = eventAtt.eventld N3att € E.atts: att.id = eventAtt.attrld,

2. VK €) ., VeventAtt;, eventAtt; € K, i # j: eventAtt;.eventld # eventAtt;.eventld; and

3. VK €), VeventAtt;, eventAtt; € K, i # j: typeOf (eventAtt;.attld) = typeOf (eventAtt; .artld) where typeOf is a function that returns
the type of the specified attribute.

Fig. 18. Formal definition of key

The set of situation definitions) ¢ is a finite set) 5 = {51, Sz, ..
cond, detectionMode, globalKeys, localKeys) where

.»Sn},n > 0. A situation S is a tuple S = (eventld, operands, lifespanld,

1. eventld is the internal event triggered by S such that VS € "o, 3E € Yt E.id = S.eventld

2. operands = {operandy, operands, ..., operandy,}, n > 0 is a finite bag of operands. An operand operand is a tuple, operand =
(eventld, threshold, quantifier, override, consumption) where eventld is an event identifier such that VS € >~ o,V operand € S.operands
dE €), E.id = operand.eventld; threshold is a predicate over the operand’s event attributes; quantifier € {first, last, each, strict
Sfirst, strict last, strict each}; override is a predicate over the operand’s event attributes; and consumption is a predicate over the operand’s
event attributes.

. lifespanld is a lifespan identifier such that V.S € 3, 3L € >, : L.id = S lifespanld

. cond is a predicate over the event attributes of the situation’s operands (includes the event algebra operator)

. detectionMode € {immediate, differed, delayed}

. globalKeys = {keyldy, keylds, ..., keyld,}, n > 0 is a finite set of key identifiers such that V'S € >, Vkeyld € S. globalKeys,
dK € }°,.,3L € >, : (K.id = keyld NL.id = S lifespanld A (Vinit € L.inits, JeventAtt € K .eventAttr: init.id = eventAtt.eventld) N
(Vterm € L.terms, JeventAtt € K .eventAttr: term.id = eventAtt.eventld or term.id is an expiration interval) A (VYoperand € S.operands,
JeventAtt € K .eventAttr: operand.eventld = eventAtt.eventld))

7. localKeys = {keyld:, keylds, ..., keyld, },n > 0is afinite set of key identifiers such thatV.S € >" o, Vkeyld € S. globalKeys,3K € 3, :

(K.id = keyld N\Yoperand € S.operands, JeventAtt € K .eventAttr: operand.eventld = eventAtt.eventld)

AN N W

Fig. 19. Formal definition of situation

A key denotes a semantic equivalence among attributes
that belong to different events. For example, the stock-
exchange attribute in the stock-quote event, the stock-exchange
attribute in the trade-start event, and the stock-exchange at-
tribute in the trade-end event are semantically equivalent in
the sense that they refer to a stock exchange symbol.

Keys are used to match different event instances that refer
to the same entity (New York Stock Exchange is an exam-
ple of an entity referred to by the stock-exchange attribute).
A key divides a situation’s detection process into numerous
separate independent detection processes (denoted partitions),
one partition for every group of semantically equivalent event

instances. The partitioning can be performed at the lifespan
level, denoted global partitioning, at the situation level, de-
noted local partitioning, or at both levels.

Global partitioning designates the partitioning of a situa-
tion’s lifespan according to the values of the attributes defined
by the dividing key, called a global key. If global partitioning is
applied, a new lifespan is opened for every group of semanti-
cally equivalent event instances according to the lifespan defi-
nition; thus initiator and terminator events of one partition are
not influenced by the existence of open lifespans in other par-
titions. Moreover, an event instance associated with a situation
operand is considered a candidate of the situation (provided it

A. Adi, O. Etzion: Amit — the situation manager 187
n
global il key 1
key
m .
- ; . intemal
_ lifespan 1 lifespan i sityation O etectmode
attribute of condition
in key n | n n | B
aliss alias R
quantfier correlation oode threshnld
termmnatom type g A comdition quantifiar
- termmnate mitiate e operand
vetaim
waizht
m m m m |
- 1 n
attribute event
name name |
type
[54
external event mternal event trigeer

184

systetn event mferred event

Fig. 20. Entity relationship diagram of the main elements of the situation definition language

satisfies the operand’s threshold conditions) only in open lifes-
pans initiated by an initiator that is semantically equivalent to
the new event instance. Note that a global key must define a
semantic equivalence among all the events that participate in
the situation (i.e., initiators, terminators, and operands).

Local partitioning designates the partitioning of a situation
within a lifespan according to the values of the attributes de-
fined by the dividing key, called a local key. If local partitioning
is applied, a separate detection process is performed for every
group of semantically equivalent event instances according
to the situation selection strategy (selection phase), compo-
sition strategy (detection phase), and consumption strategy
(consumption phase). The decisions made in each phase of
the situation composition in one partition (i.e., which candi-
date to select, whether a situation has been detected, and which
candidates to consume) are not influenced by the existence of
candidates in other partitions. Note that local partitioning is
different from equality conditions on the situation operands in
the sense that it applies the consumption and selection poli-
cies to each partition separately. A local key defines a semantic
equivalence among all the situation’s operands.

3 Data structures and algorithms

Situation composition is the process applied to detect the oc-
currence of a situation inreality. It is performed in three phases:
the collection phase, the detection phase, and the consumption
phase, as described in Sect. 2.3. Each phase of the composi-
tion process performs different tasks; however, all phases use
the same data structure.

Section 3.1 describes the data structures used during the
composition process. Section 3.2 describes the algorithms
used in each phase of the composition process. Section 3.3
describes the best-case and worst-case performance of the al-
gorithms.

3.1 Data structures

The data structure specific to a single situation is classified as a
static and dynamic data structure. The static part maintains the
situation’s metadata (definition), while the dynamic part repre-
sents knowledge about events that occur in runtime and affect
the composition process. The dynamic part of the data struc-
ture consists of global and local partition tables that separate
into partitions the event instances that affect the composition
process, as defined by the station’s global and local keys. The
event instances in each partition are stored in candidate lists.
The data structure of a situation is described in Fig. 21.

e Global partition table — a mapping between global key
values and global partitions. A global key value is the in-
formation associated with event instances in semantically
equivalent attributes as defined by the situation’s global
key. A global partition contains open lifespans that have
been initiated by events with a global key value associated
with the global partition. If global partitioning (i.e., global
key) is not defined, then there is a single global partition
that holds all the open lifespans of the situation.

e Local partition table — a mapping between local key val-
ues and local partitions in a specific lifespan. A local key
value is the information associated with event instances in

188

A. Adi, O. Etzion: Amit — the situation manager

static part meta-data

[global partition table

global partition

global partition

lifespan lifespan

lifespan

dynamic par

local partition table local partition table

local partition table

candidate lists

candidate lists

candidate lists

candidate lists

Fig. 21. Situation data structure

semantically equivalent attributes as defined by the situa-
tion’s local key. A local partition contains a set of candi-
date lists of event instances that match the local key value
and are associated with the situation’s operands. In a local
partition, each candidate list is associated with a single
operand of the situation and each operand is associated
with a single candidate list. A candidate list contains event
instances that satisfy the operand’s threshold condition and
where not consumed, sorted by the event’s detection time.
If local partitioning (i.e., local key) is not defined, then
there is a single local partition that holds the candidate
lists of the situation.

3.2 Algorithms

The composition process makes changes in the dynamic data
structures according to event occurrences and a situation’s
metadata. New event instances may initiate and terminate
lifespans (lifespan management algorithms) and be added to
the situation’s candidate lists (collection phase algorithms).
When the dynamic data structure is updated, the situation de-
tection process (detection phase algorithms) can be applied.
The detection process does not change the dynamic data struc-
ture; however, if a situation is detected, candidates may be con-
sumed (consumption phase algorithms). When the dynamic
data structure is updated again (after the consumption phase),
a new event instance can be processed.

A single event instance cannot take part in a situation in
different roles (i.e., it cannot initiate and terminate the same
lifespan or participate in the situation and terminate or initiate
the situation’s lifespan); thus the evaluation order of the in-

process event (event: e)

for each situation s that e might terminate
call terminate lifespan (s, e)

for each situation s that e is associated with one of its operands
call collect instance (s, €)

for each situation s that e might initiate
call initiate lifespan (s, €)

Fig. 22. Algorithm for process event

stance’s possible roles (initiation, termination, and collection)
is irrelevant. The evaluation order performed in the process
event algorithm satisfies this requirement by giving priority to
lifespan termination over instance collection.

3.2.1 Lifespan management algorithms

An event occurrence can result in the initiation of new lifes-
pans and in the termination of existing ones. The initiation
and termination of a lifespan change the dynamic part of the
data structure. They can add or remove global partitions to the
global partition table of numerous situations, if such tables
exist, and otherwise change the number of open lifespans for
each situation.

When an event instance that serves as a possible termina-
tor occurs, the terminate lifespan procedure is evaluated. It is
called for each situation associated with a lifespan that this
event instance might terminate. This procedure removes open
lifespans, and all data associated with them, from the dynamic
part of the situation’s data structure and initiates the situation’s
detection process if the situation’s detection mode is deferred

A. Adi, O. Etzion: Amit — the situation manager

terminate lifespan (situation: s, event: e)
gv < global key value of e as defined by s global key
gp < global partition mapped to gv in the global partition table
of s
for each lifespan [in gp
if e satisfies the conditions for [termination

remove [from gp

if s detection mode is deferred

call detect situation (s, [)

Fig. 23. Algorithm for lifespan termination

initiate lifespan (situation: s, event: e)
gv < global key value of e as defined by s global key
gp < global partition mapped to gv in the global partition table
of s
if e satisfies the conditions for lifespan initiation
l < new lifespan
add [to gp

Fig. 24. Algorithm for lifespan initiation

(i.e., the situation is detected at the end of its lifespan). It tests
the conditions for lifespan termination in all of the situation’s
open lifespans if the situation does not have a global key and
open lifespans that belong to the global partition associated
with the global key value if the situation defines a global key.
An open lifespan is terminated if the event instance satisfies the
conditions for its termination (i.e., the event instance satisfies
the lifespan terminator’s threshold condition and the lifespan
matches the terminator’s quantifier).

When an event instance that serves as a possible initiator
occurs, the initiate lifespan procedure is evaluated. It is called
for each situation associated with a lifespan that this event
instance might initiate. This procedure adds new lifespans to
the dynamic part of the situation’s data structure. It tests the
conditions for lifespan initiation in the global partition associ-
ated with the event instance’s global key value if the situation
defines a global key or in the single global partition that exists
if the situation does not define a global key. A new lifespan is
initiated if the event instance satisfies the conditions for its ini-
tiation (i.e., the event instance satisfies the lifespan initiator’s
threshold condition and the lifespan’s correlation is satisfied).

3.2.2 Collection phase algorithms

An event instance may be a candidate (i.e., influence the sit-
uation detection) in numerous situations, and for every sit-
uation it may be a candidate in each of its lifespans. When
an event instance occurs, the add instance procedure deter-
mines in which situations, in which global partitions (i.e., in
which lifespans), and in which local partitions an event in-
stance is considered as a candidate. This procedure is called
for each situation in which the event is associated with one of
its operands. It checks if the event instance is a candidate in
every lifespan that belongs to the global partition associated
with the event instance’s global key value if the situation has
a global key. If the situation does not define a global key, it
checks if the event instance is a candidate in all the lifespans of
the situation. For each lifespan, the event instance is added to

189

the candidate list of the operand associated with its event class
if it satisfies the operand’s threshold conditions. Note that if a
local key is defined, the event instance is added (i.e., is a can-
didate) only to candidate lists in the local partition associated
with the instance’s local key value in the local partition table
of each lifespan. A situation detection process is performed if
the situation’s detection mode is immediate or delayed (i.e.,
situation occurrence is detected immediately) and the event in-
stance is added to at least one candidate list in the situation’s
lifespan.

3.2.3 Detection phase algorithms

The detection process is performed when a lifespan is termi-
nated, if the situation detection mode is deferred, or when a
candidate event occurs if the situation detection mode is im-
mediate or delayed. In the first case, the detection process is
applied to all local partitions that exist in the terminated lifes-
pan. In the second case, the detection process is applied only
to the local partitions in which the event becomes a candidate.

The detection process depends on the situation’s operator.
It applies different methods to detect situations with different
operators.

e Joining operators (all, sequence): If the detection mode
is immediate or delayed, then a backtracking algorithm
is applied on local partitions in which an event becomes
a candidate; otherwise (detection mode is deferred) it is
applied on all local partitions. If the operator is satisfied,
the backtracking algorithm checks if the conditions ap-
plied by the operator, the where clause, and the operands’
quantifiers are satisfied, selects the candidates that sat-
isfy these conditions, and triggers the situation. This al-
gorithm is based on the fact that the condition defined in
the where clause can be converted to CNF (clause nor-
mal form). The CNF condition can further be converted
to another form such that a clause C ,0< ¢ < k, k is the
number of operands, is a conjunction of all the clauses in
the CNF condition that reference operands defined before
the ¢-th operand in the situation and include a reference
to the i-th operand. Note that if a CNF clause C; refer-
ences only a single operand, this clause can be removed
from the condition and be added to the operand’s thresh-
old condition if the operand’s quantifier is relative. This
algorithm considers the conditions in their final form. It
selects the first, last, or each candidate of every operand as
defined by the operand’s quantifier (Sect. 2.3.2). It selects
a candidate from the first operand and then continues and
selects a candidate from each of the ascending operands. A
candidate selected for an operand k& must satisfy the sub-
condition for this operand Cj (also written sub-condj;p,

where op is the k-th operand). If there are no candidates

of the operand that satisfy the subcondition, then the al-
gorithm backtracks to the previous operand and selects
another candidate associated with it. When a candidate is
selected for every operand, an internal event representing
the situation is triggered using the values of the selected
candidates. This algorithm considers only a few combina-
tions of candidates that may cause a situation and saves
a lot of computation effort. It eliminates combinations of

190

A. Adi, O. Etzion: Amit — the situation manager

add instance (sitaution: s, event: e)

gv < global key value of e as defined by s global key

lv < local key value of e as defined by s local key

gp + global partition mapped to gv in the global partition table of s
for each lifespan [in gp

for each operand op in s
if e is associated with op in s
if e satisfies the threshold conditions of op
add e at the beginning of op candidate list in Ip

call detect situation (s, [, e)

Ip < local partition that is mapped to [v in the local partition table of [

if s detection mode is immediate or delayed and e was added to a candidate list

Fig. 25. Algorithm for collection phase

detect situation (situation: s, lifespan: [[,event: e])
v < local key value of e as defined by s local key or null if e is
not specified
Ip < local partition mapped to [v in the local partition table of [
if lv is not null
for each local partition Ip in [, if Ip is not null, or for Ip

call detect [operator] situation (s, Ip)

Fig. 26. Algorithm for detection phase

events that do not satisfy the conditions for situation com-
position. It does so by eliminating a combination if a prefix
of k events in the combination does not satisfy the subcon-
dition C%.

e Counting operators (atmost, atleast, nth): If the total
weight of candidates satisfies the conditions applied by the
operator (Sect. 2.3.2), a situation is triggered. A numerator
totals the weight of candidates in each local partition. It
increases when a new candidate is detected and decreases
when an existing candidate is consumed. When the detec-
tion process is applied, the enumerator is compared to the
required number as defined by the situation and an internal
event is triggered if the conditions are satisfied. If the con-
ditions for situation composition are defined in the where
clause of the situation, the backtracking algorithm that
was described for joining operators is performed. How-
ever, internal events are not triggered when the algorithm
handles the last operand, but the candidates in the selection
are accumulated. An internal event is triggered if the total
number of accumulated candidates satisfies the counting
operator.

e Absence operators (not, unless): If there are no candi-
dates associated with the situation’s absence operands,
then a situation is triggered. A flag is raised if a candi-
date associated with an absence operand is detected. After
the flag is raised, event instances are ignored by this sit-
uation and thus no new candidates are considered. At the
end of the lifespan (recall that absence situation are always
detected in the deferred detection mode), an internal event
is detected if the flag is not raised.

e Temporal operators (at, every, after): A timer is used
for the detection of temporal situations. The timer triggers
an internal event that represents the situation after the re-
quired time interval has passed. The request for the time
notification is performed when the situation’s lifespan ini-
tiates for the ar and every operators, when a candidate ar-

rives for the after operator, and when the timer notification
occurs for the every operator.

3.2.4 Consumption phase algorithms

The consumption process is performed when the detection
phase is finished if the situation’s detection mode is immediate
or delayed. This process determines if candidates that actually
caused the situation detection can be considered again in fu-
ture detection processes. Since only a single detection process
is applied if the situation’s detection mode is deferred (i.e., at
the end of the lifespan), the consumption process is applied
only if the situation’s detection mode is immediate or delayed.
Candidates that caused the situation are accumulated during
the detection process (i.e., when an internal event that repre-
sents the situation is triggered by a selection of candidate s,
the candidates in s are accumulated). When the detection pro-
cess is finished, the accumulated candidates are consumed if
they satisfy the consumption conditions of the operand with
which they are associated. Note that candidates, and not event
instances, are consumed and that an event instance that is a
candidate in multiple global and local partitions can be con-
sumed in some partitions and not in others.

3.3 Best-case and worst-case scenarios

Situation definitions and reported event instances impact the
performance (performance measurements are discussed in
Sect. 4) of the situation manager and the execution of the
algorithms introduced in the previous section.

e A scenario in which all reported event instances are not
defined in Amit results in all the event instances being dis-
carded before they are considered for situation detection.
The events are evaluated against a list of all event types and
then discarded. The complexity in this case is O(log E,,),
where E), is the number of event types to evaluate a single
event instance.

e A scenario in which a situation has several operands with
a quantifier each and candidates that are never consumed
(consumption condition is false) or overridden (override
condition is false), is detected at the immediate detection
mode, is relevant during a lifespan that is never terminated,
has a where condition, and is affected by all event instances
results in exponential computation in the number of events.
A new event instance always triggers evaluation of the

A. Adi, O. Etzion: Amit — the situation manager

191

The condition in its original form is

The condition in a CNF form is

(Elx > E2xorE3.x > 5)

where

Cl =(El.x > E2.x or E1.x = E2.x)

C2=(Elx > E2xorE2.x < E3.x)
C3=(Elx>E2xorE3.x>)5)

The condition in its final form is

where

C*1 = true
C*¥2=Cl=El.x>E2xorEl.x=E2x

= (El.x > E2.x or (E2.x < E3.x and E3.x > 5))

A situation S is triggered when a sequence of three events E'1, 2, and E3 occur. Each event has a single attribute named x. E'1 is the first
operand of S, E2 is the second, and E'3 is the third. The situation .S is triggered only if the condition specified in the where clause is satisfied.

El.x > E2xor (El.x=E2.x and E2.x < E3.x and E3.x > 5)

(El.x > E2.xor E1.x =E2.x) and (E1.x > E2.x or E2.x < E3.x) and

(El.x >E2.x or E1.x = E2.x) and (E1.x > E2.x or (E2.x < E3.x and E3.x > 5))

C*¥3=C2ANC3=(Elx>E2xorE2.x <E3.x)and (El.x > E2.x or E3.x > 5)

Fig. 27. Example of condition resolution

situations that compares it against all existing candidates
(to evaluate the where condition). Since candidates are
not consumed, a new event instance is checked against all
previous events. The complexity in this case is O(n:l),
where n is the number of event instances, op is the number
of operands in the situation, and [is the number of open
lifespans where the situation is relevant.

4 Performance measurements

The performance measurement goal is to estimate the incom-
ing event rate that the situation manager can handle and com-
pare it with other event management tools. A previous work
that defines benchmarks of rules in active databases [18] does
not cover the functionality of our language. The incoming
event rate required by an application varies among different
applications. We have identified several factors [21] that in-
fluence the performance of the situation manager.

1. The number of parallel open lifespans in a computation

2. The number of candidates (i.e., partially processed event
instances in the situation manager that passed the threshold
conditions and were not consumed)

3. The number of detected situations; situation detection trig-
gers an internal inferred event that is processed by the sit-
uation manager

These factors differ from one application to the other. We de-
fined several scenarios that describe typical applications. The
results of these scenarios provide an estimation of the situation
manager’s performance in real-life applications.

Table 1. Event distribution

Eventtype Distribution
Ey 0.2

Es 0.2

E3 0.1

Ey 0.1

Es 0.1

Eg 0.1

Er 0.1

Es 0.05
Ey 0.02
Eio 0.02
En 0.0025
Ei 0.0025
Ei3 0.0025
Eia 0.0025

Section 4.1 describes four scenarios. Section 4.2 describes
the results of these four scenarios.

4.1 Scenarios

We define a set of 14 event types, {E1, E2, ..., F14}, each
event having a single attribute X that has a discrete value dis-
tributed evenly between 1 and 10. These events are used to
define the situations in the scenarios. We defined ten sets of
100,000 event instances that are used to evaluate the perfor-
mance of the situation manager.

192

A. Adi, O. Etzion: Amit — the situation manager

if op is last operand
s satisfies operator and conditions
trigger internal event using s
return true
else
return false
else
op < next operand or first operand in Ip if op is null
relative:
if op quantifier is relative first, relative last, or relative each

if not ¢
if situation was triggered
return true
else
return false
if call detect joining situation (s U ¢, Ip, op,)
quantifier is first or last
return true
else
goto relative
absolute:
if op quantifier is strict first, strict last, or strict each
¢ <+ first/last unselected candidate of op
if s U c satisfied sub-cond;,
if call detect joining situation (s U ¢, Ip, op, s)
quantifier is first or last
return true
else
goto absolute
else
return false
else

return false

detect joining situation (situation: s local partition: Ip [,operand op] [,selection s])

¢ + first/last unselected candidate of op thus sub-condy,, is satisfied by s U ¢

Fig. 28. Algorithm for detection of situa-
tion with joining operator

Situation s1
operator = “sequence”
detection mode = “immediate”
first operand = event: “F2”
second operand = event: “E13”
lifespan = initiator: “FE11” correlation: “ignore”
terminator: “FE14” quantifier: “each”
Situation s2
operator = “after 1000”"
detection mode = “immediate”
first operand = event: “Fn3”
lifespan = initiator: “startup”
no terminator
Situation s3
operator = “all”
detection mode = “deferred”
first operand = event: “F13”
second operand = event: “E14”
local key: attribute: X
lifespan = initiator: “FE11” correlation: “add"
terminator: “E12” quantifier: “each”

Fig. 29. Noisy world scenario

The sets of these event instances are generated randomly
using the distribution detailed in the table above.

4.1.1 Standby world

This is an empty scenario that does not define any situations.
It gives an upper bound on the performance of the situation
manager (i.e., the event rate that the situation manager can
handle).

4.1.2 Noisy world

This is a light scenario that uses only a low percentage (1%)
of the event instances to decide if a situation occurs. The sit-
uations are not complex (i.e., no conditions, small number
of lifespans open simultaneously) and are constructed from a
small number of events.

4.1.3 Filtered world

This is a filtering scenario that uses a high percentage (80%)
of the event instances to decide if a situation occurs. However,
high percentages of these instances (80%) are not relevant

A. Adi, O. Etzion: Amit — the situation manager

193

Situation s1
operator = “‘sequence”
detection mode = “immediate”

second operand = event: “E5” threshold: “X > 7"

condition =“F1 4. X = E15.X”

Situation s2
operator = “atleast 5”
detection mode = “immediate”
first operand = event: “FE>”
global key: attribute: X

Situation s3
operator = “all”
detection mode = “immediate”
first operand = event: “S1”
second operand = event: “E3” threshold: “X > 7"
third operand = event: “E,” threshold: “X > 7"
condition = “FE3.X = E4.X”

Situation s4
operator = “not”
detection mode = “deferred”
first operand = event: “S>”
lifespan = initiator: “E3” correlation: “add”
terminator: “E4” quantifier: “first”

first operand = event: “E1” threshold: “X > 7" alias: “F14”
third operand = event: “E\” threshold: “X > 7" alias “E1p”
lifespan = initiator: “Es” correlation: “ignore” threshold: “X = 3”

initiator: “Fg” correlation: “ignore” threshold: “X < 27
terminator: “Er” quantifier: “first” threshold: “X = 7"

lifespan = initiator: “Eg” quantifier: “add” threshold: “X = 4”
terminator: “Eg” quantifier: “each” threshold: “X = 9”

lifespan = initiator: “E5” correlation: “add” threshold: “X = 17
terminator: “Eg” quantifier: “last” threshold: “X = 27

Fig. 30. Filtered world scenario

(i.e., do not satisfy the threshold conditions). The situations
are complex (i.e., conditions are applied, many lifespans are
open simultaneously), and some are based on other situations
(i.e., on internal events).

4.1.4 Complex world

This is a heavy scenario that uses a high percentage (80%) of
the event instances to decide if a situation occurs. The situa-
tions are complex (i.e., conditions are applied, many lifespans
are open simultaneously), and some are based on other situa-
tions (i.e., internal events).

4.2 Scenario results

Measurements were performed on a Pentium IV 1.4-GHz ma-
chine running Windows 2000. The measurements started after
the situation manager loaded the definitions and the set of event
instances was generated (in memory). In runtime, the “client”
thread (a Java program that uses the situation manager) sent
event instances (one by one) to the situation manager by calling
the situation manager’s APIL. The “client” thread yielded (the
CPU) every 1000 sent events. Three parameters were moni-
tored:

1. Number of incoming events and detected situations (i.e.,
number of processed events)

2. Execution time
3. Internal execution statistics

Table 2 presents the average results of performance measure-
ments of ten executions, each with 100,000 events. The high
number of processed events eliminates the effect of the se-
quence in which the events occurred (which is random in our
case) on the measured results. The results are detailed in the
table below.

The performance measurement results show the following:

a. The situation manager’s upper limit is about 70,000 events
per second. This event rate is achieved if none of the in-
coming event instances is classified as an event that takes
part in situation composition.

b. The lower bound is about 2,000 events per second. This is
considered high performance relative to other solutions in
the event composition/correlation/management spaces.

c. The factors that significantly affect performance are:

1. The average number of parallel open lifespans (the sit-
uation manager’s detection process is performed sep-
arately for each lifespan).

2. The number of relevant event instances (i.e., partially
processed event instances that passed the threshold
conditions and were not consumed). A candidate rep-
resents a relevant event instance within a lifespan. A
large number of candidates results from a high number
of relevant event instances, a large number of parallel
open lifespans, or both.

194

Table 2. Performance measurement results

A. Adi, O. Etzion: Amit — the situation manager

Standby world Noisy world Filtered world ~ Complex world
External events 100,000 100,000 100,000 10,000
Detected situations 0 112 30,435 139,111
Events + situations 100,000 100,112 130,435 239,111
Performance time (ms) 1,372 1,742 16,503 124,319
External events / s 72,887 57,406 6,060 804
Detected situations /s 0 64 1,844 1,118
Events / s 72,887 57,470 7,903 1,923
Candidates 0 1,077 120,662 2,350,754
Access to event information 0 992 1,289,131 11,302,695
Condition performed 0 0 833,487 15,299,472
Initiated lifespans 0 389 12,543 36,423
Terminated lifespans 0 387 11,524 36,280

d. There is no decisive association between, on the one hand,
the number of candidates, the number of open lifespans,
and the number of relevant events and, on the other, the
number of detected situations. The number of detected sit-
uations is also influenced by the situation’s operator and
where condition.

5 Related work

We review prototypes and systems that support the defini-
tion of composite events. These include prototypes from the
active database domain, systems from the network manage-
ment (i.e., event correlation) domain, and workflow manage-
ment domain. We compare the situation manager definition
language to the related work and show how it extends their
semantics.

5.1 Active database

Contemporary commercial systems do not support compos-
ite events. However, they support triggers as specified in the
SQL3 standard [23]. A trigger in SQL3 is an ECA rule that is
activated by a database state transition and has an SQL3 pred-
icate as a condition and a list of SQL3 statements as an action.
Commercial databases that support triggers include DBMS
products such as DB2, Oracle, Sybase, and Informix.

5.1.1 ODE

ODE [17] is an active-object-oriented database developed at
Bell Labs and supports the specification and detection of com-
posite events. Primitive events in ODE are triggered by the
database and include object state events, method execution
events, time events, and transaction events. Composite events
are specified as event expressions. An event expression is a
mapping from a history h (sequence of primitive events) to
another history, a subset of i, comprised of the points at which
the event expression is satisfied. An event expression can be
NULL, any primitive event a, or an expression formed using
the operators A, !, (not), relative, and relative+. The seman-
tics of ODE event expressions is defined as follows (£ and F’
denote event expressions):

Situation s1

operator = “sequence”

detection mode = “immediate”

first operand = event: “F1” alias: “Fr14”

second operand = event: “E3”

third operand = event: “FE1” alias “Fhg”

condition = “F14.X = E1. X"

lifespan = initiator: “Es” correlation: “ignore’
initiator: “Eg” correlation: “‘ignore”
terminator: “E7” quantifier: “first”

1

Situation s2

operator = “atleast 5”

detection mode = “‘immediate”

first operand = event: “Fy”

global key: attribute: X

lifespan = initiator: “Es” quantifier: “add”

terminator: “Eg” quantifier: “each”

Situation s3

operator = “all”

detection mode = “‘immediate”

first operand = event: “S1”

second operand = event: “E3”

third operand = event: “F4”

condition = “FE3. X = F4.X”

lifespan = initiator: “Es” correlation: “add”

terminator: “Eg” quantifier: “last”

Situation s4

operator = “not”

detection mode = “deferred”

first operand = event: “Sy”

lifespan = initiator: “E3” correlation: “add”

terminator: “E4” quantifier: “first”

Fig. 31. Complex world scenario

1. El[null] = null for any event E, where null is the empty
history.

2. NULL[h] = null.

3. a[h], where a is a primitive event, is the maximal subset
of h composed of all the occurrences of event a.

4. (E N F)[h] = E[R] NF[A].

5. (\E)[h] = (h — E[R]).

6. relative(E, F)[h] are the event occurrences in h at which F
is satisfied, assuming that the history started immediately
following some event occurrence in h at which E takes

A. Adi, O. Etzion: Amit — the situation manager

Table 3. ODE operators expressed in Amit

195

ODE

Amit

E andsign F

relative (E, F)

relative + (E, F)

Operator = conjunction
First operand event: “E”
Second operand event: “F”

Lifespan initiator = event: “F” correlation: “ignore”

Operator = nth 1
Detection mode = immediate
First operand = event: “E”

Lifespan initiator = event: “F” correlation: “add”

Operator = nth 1
Detection mode = immediate
First operand = event: “E”

E orsign F Operator = nth 1
First operand = event: “E”
Second operand = event: “F”
prior (E, F) Operator = sequence

prior (E1, E2, ... En)

sequence
(E1,E2, ... En)

first

E|F
<n>E

every <n> E

F/E

First operand = event: “E1”
Second operand = event: “E2”
Operator = sequence

First operand = event: “E1”
Second operand = event: “E2”

nth operand = event: “En”
Operator = sequence

First operand = event: “E1”
Second operand = situation
Lifespan initiator = event: “E1”
Lifespan terminator = event: “E2”
Operator = not

Third operand = situation
Lifespan initiator = event: “E2”
Lifespan terminator = event: “E3”
Operator = not

nth operand = situation

Lifespan initiator = event: “En-1”

Lifespan terminator = event: “En”
Operator = not

Operator = nth 1

Repeat mode = once

Nested situations F' where E is an operand
Operator = nth n

First operand = event: “E” quantifier: “each”

Operator = nth n

First operand = event: “E” quantifier: “each” retain: “false”

Operator = sequence
First operand = event: “E” quantifier: “first”

Second operand = event: “F” quantifier: “first”

Repeat mode = once

place. Formally, relative(E, F')[h] is defined as follows.
Let E*[h] be the i-th event occurrence in E[h]; let h; be
obtained from h by deleting all events that occurred before
E‘[h). Then relative(E, F)[h] =], F[h;], where i ranges
from 1 to the cardinality of E[h].

. relative + (E) = | J;_° relative' (E)

Wherere_lativel(E) = Fand 4
relative' (E) = relative(relative’ ' (E), E).

ODE implements composite event detection using finite
state automata. This is because composite events can be ex-
pressed as regular expressions.

Amit extends the semantics of ODE in several aspects:

1. ODE does not support the operators atleast, atmost, nth,
at, after, and every.

2. ODE cannot express the information reported with de-
tected composite events, which limits the expressiveness
of nested situations.

196

3. ODE has limited expressive capabilities for the definition
of time intervals during which event composition is rele-
vant using the operator relative(E, F), which designates
the occurrence of F' after an occurrence of F (initiator),
and before(E), which designates any event before E (ter-
minator).

4. ODE does not support the selection of event instances
(quantifiers).

5. ODE does not support reuse policies of event instances
(i.e., events are always consumed).

6. ODE makes limited usage of the semantic information
reported with events during event composition. It allows
some filtering conditions (masks) and equality conditions
(parameters) on events that participate in an event expres-
sion (composite event).

Table 3 shows how ODE operators can be expressed in Amit.

5.1.2 Snoop

Snoop [7] was developed at the University of Florida. It is an
expressive event specification language for active databases
implemented in the Sentinel object-oriented database [5].
Events in Snoop are atomic occurrences and include database
events, explicit (also called external or abstract) events, and
temporal events. Events in Snoop, both primitive and compos-
ite, have a schema of parameters (attributes) associated with
them. This schema describes additional information on the
event that can be used only during the condition part of the
ECA rule. A composite event in Snoop is defined by applying
an event operator to component events that are either primitive
or composite events. Consequently, an event is a function from
the time domain onto the boolean values. Snoop supports the
disjunction, conjunction, and sequence operators in addition
to the following operators.

1. Any(m, E4, Es, ... E,), where m < n, occurs when
m distinct events out of the n events occur. Any(m, E*)
specifies m distinct occurrences of an event E.

2. The aperiodic event A(Ey, Fs, E3) is signaled each time
FE)5 occurs during the closed interval defined by the occur-
rence of F'; and E5. The eventA*(F1, Es, E3) occurs only
once when Fs occurs and accumulates the parameters for
each occurrence of Fs.

3. The periodic event P(Fy, t[:parameters], Fs3), where
t[:parameters] is a constant time increment with an op-
tional parameter list. It occurs every ¢ time units, starting
when F/; occurs and ending after '3, and collects the spec-
ified parameters. The commutative version of P, P*(L,
t[:parameters], E3) occurs only once when E3 occurs.
The specified parameters are collected and accumulated
at the end of each period and made available when P*
occurs.

Snoop introduces the notation of parameter contexts (anal-
ogous to the notation of consumption modes introduced in
HiPAC [11]) for the purpose of capturing application seman-
tics for computing the parameters (of composite events) when
they are not unique. Four contexts are introduced.

1. Recent: In this context, only the most recent occurrences
of each F; that started the parameter computation are taken

A. Adi, O. Etzion: Amit — the situation manager

into account for computing the parameters of . When E
occurs, the composite event is signaled and all occurrences
used in the parameter relation are deleted.

2. Chronicle: In this context, instances of component events
are taken into account in the chronological order in which
they occur. When F is signaled, its parameters are com-
puted using the oldest instance of each component event,
and the parameters of these instances are deleted.

3. Continuous: In this context, each occurrence of an event
that marks the beginning of the interval of an event ex-
pression is considered a potential candidate for stating a
parameter set computation.

4. Cumulative: In this context, parameters of E include the
parameters of all occurrences of each component event.
Whenever F is signaled, all the entries in the parameter
relation associated with each component event are deleted.

Snoop uses event trees and event graphs to detect composite
events. For each composite event, an event tree is defined and
these trees are merged to form an event graph.

Amit extends the semantics of Snoop in several aspects:

1. Snoop does not support the operators atleast, atmost, nth,
and unless.

2. Snoop has limited expressive capabilities for the definition
of time intervals during which event composition is rele-
vant using the operators A, A*, P,and P* in association with
a parameter context. The lifespan element of the situation
manager’s definition language covers all these possibili-
ties and enables the definition of time intervals (e.g., the
lifespan presented in Fig. 7) that cannot be expressed in
Snoop.

3. Snoop’s parameter contexts describe some decision pos-
sibilities for event selection (of candidate events able to
trigger the situation that actually triggered it) and reuse
(consumption). However, Snoop cannot express all possi-
bilities of event selection and reuse policies expressed in
Amit using a combination of a quantifier and a consump-
tion condition. The ability to define different quantifiers
and consumption conditions for each operand (in contrast
to Snoop in which the parameter context is defined globally
for the composed event) and the ability to evaluate event
information to decide on the consumption policy (unlike
Snoop) enables the expression of Snoop’s recent, chroni-
cle, and continuous parameter contexts in Amit along with
additional reuse and consumption policies (e.g., the reuse
and consumption policies of the situations presented in
Figs. 14 and 15).

4. Snoop cannot use the semantic information reported with
events during event composition. This information is
widely used in Amit to impose event filtering (an operand’s
threshold conditions), impose reuse policies (override and
consumption conditions), semantically partition situation
detection (keys), decide on a lifespan’s initiation and ter-
mination (initiator and terminator threshold conditions),
and impose additional conditions on the situation level (a
situation’s where condition). Like other tools, Snoop as-
sumes that filtering (conditions) will be performed later
(i.e., in the condition phase of the ECA rule). In addition
to the inadequacy of this assumption, it should be noted
that the only way to achieve the equivalent of simultaneous
composition and content filtering in current tools is a two-

A. Adi, O. Etzion: Amit — the situation manager

Table 4. Snoop operators in recent parameter contexts expressed in Amit>

Snoop

Amit

Disjunction
E1VE2V... En

Conjunction
E1NE2A ... En

Sequence
E1;E2;... En

Any(m, E1, E2, ... En)

Any(m, E*)

A(EL, E2, E3)

+A*(El, E2, E3)

P(E1, t, E3)

P*(El, t, E3)

Operator = nth 1
First operand event: “E1”
Second operand event: “E2”

nth operand event: “En”

Operator = all

First operand = event: “E1” quantifier: “last”
Second operand = event: “E2” quantifier: “last”
nth operand = event: “En” quantifier: “last”
Operator = sequence

First operand = event: “E1” quantifier: “last”
Second operand = event: “E2” quantifier: “last”

nth operand = event: “En” quantifier: “last”
Operator = atleast m

First operand = event: “E1” quantifier: “last”
Second operand = event: “E2” quantifier: “last”

nth operand = event: “En” quantifier: “last”
Operator = atleast m

First operand = event: “E” quantifier: “each”
Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E1” type: “discard”
Lifespan terminator = event: “E3” type: “terminate”
Operator = nth 1

First operand = event: “E2”

Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E1” type: “discard”
Lifespan terminator = event: “E3” type: “terminate”
Operator = nth 1

Detection mode = delayed

First operand = event: “E2”

Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E1” type: “discard”
Lifespan terminator = event: “E3” type: “terminate”
Operator = every t

Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E1” type: “discard”
Lifespan terminator = event: “E3” type: “terminate”
Operator = every t

Detection mode = delayed

197

2An Amit template can be created to explicitly express a disjunction operator. The Amit template
is a generic situation used to defined explicit situations based on parameters. A template for
the disjunction operator where the specific events in the disjunction are given as parameters
simplifies the definition of disjunction. A full discussion of templates in Amit is beyond the

scope of the paper.

phased process: phase 1 — composition that generates all
the combinations; phase 2 —filtering on the results of phase
one. The two-phased approach may be inefficient when the
number of detected situations is much smaller relative to
the number of combinations produced in phase 1. Further-
more, the number of combinations produced in phase 1
can be exponential. The ability to combine composition
and filtering is a property that allows it to improve the per-
formance in the general case and enables the detection of
situations not practically feasible in other solutions, e.g.,
in extreme cases.

Tables 4, 5, and 6 show how Snoop’s operators in the re-
cent, chronicle, and continuous parameter contexts can be ex-
pressed in Amit. The cumulative parameter context cannot be
expressed in Amit using primitive operators. However, Amit
has means to extend the language by using external functions;
Snoop’s cumulative parameter context functionality can be
achieved by using a function that accumulates situations de-
fined with an each quantifier. Full discussion of this extension
is beyond the scope of the paper.

198

Table 5. Snoop’s operators in chronicle parameter contexts expressed in Amit

A. Adi, O. Etzion: Amit — the situation manager

Snoop

Amit

Disjunction
E1VE2V... En

Conjunction
E1NE2A ... En

Sequence
E1;E2;... En

Any(m, E1, E2, ... En)

Any(m, E*)

A(EL, E2, E3)

A*(E1, E2, E3)

P(E1, t, E3)

P*(El, t, E3)

Operator = nth 1
First operand event: “E1”
Second operand event: “E2”

nth operand event: “En”

Operator = all

First operand = event: “E1” quantifier: “first”
Second operand = event: “E2” quantifier: “first”

nth operand = event: “En” quantifier: “first”
Operator = sequence

First operand = event: “E1” quantifier: “first”
Second operand = event: “E2” quantifier: “first”

nth operand = event: “En” quantifier: “first”
Operator = atleast m

First operand = event: “E1” quantifier: “first”
Second operand = event: “E2” quantifier: “first”

nth operand = event: “En” quantifier: “first”
Operator = atleast m
First operand = event: “E” quantifier = “each”

Lifespan initiator = event: “E1” correlation: “ignore’

1

Lifespan terminator = event: “E3” type: “terminate”

Operator = nth 1
First operand = event: “E2”

Lifespan initiator = event: “E1” correlation: “ignore’

1

Lifespan terminator = event: “E3” type: “terminate”

Operator = nth 1
Detection mode = delayed
First operand = event: “E2”

1

Lifespan initiator = event: “E1” correlation: “ignore’
Lifespan terminator = event: “E3” type: “terminate”
Operator = every t

Lifespan initiator = event: “E1” correlation: “ignore”
Lifespan terminator = event: “E3” type: “terminate”

Operator = every t
Detection mode = delayed

5.1.3 General model for the specification of the semantics

of complex events

Zimmer and Unland suggest a metamodel for specification
of the semantics of complex events in active databases [31].
Events in this model are instantaneous, atomic occurrences
and include database events, external events, and temporal 1.2

events.

The metamodel is based on three independent dimensions:
event instance pattern, event instance selection, and event in- 1.3
stance consumption. These dimensions are further refined into
subdimensions. The following paragraphs describe these di-

mensions in further detail.

1. Event instance pattern of a complex event type F; de-
scribes at an abstract level the event instance sequences

that will trigger event instances of F;. It considers five

aspects.

1.4

1.1 The event types whose instances must (or must not)
occur in an event instance sequence and the restric-

tions concerning their order are defined by an event
operator and its component event types. The model
provides the sequence, conjunction, disjunction, nega-
tion, and simultaneous operator. The simultaneous op-
erator requires that instances of the component event
types occur simultaneously.

A delimiter that restricts the number of event instances
of a component event type that must occur to satisfy
the event instance pattern can be specified.

Operator modes are used to define coupling and con-
currency. Coupling mode defines whether event in-
stance patterns may be interrupted by event instances
not relevant to event detection. Concurrency mode
defines whether the time interval associated with the
event instances that cause a complex event to occur
may overlap.

Context conditions define whether the values of a pa-
rameter of different instances must be the same, dif-
ferent, or without any restrictions. Note that context

A. Adi, O. Etzion: Amit — the situation manager 199

Table 6. Snoop’s operators in continuous parameter contexts expressed in Amit

Snoop Amit
Disjunction Operator = nth 1
El1VE2V... En First operand event: “E1”

Second operand event: “E2”

nth operand event: “En”

Conjunction Operator = all

E1ANE2A ... En First operand = event: “E1” quantifier: “each”
Second operand = event: “E2” quantifier: “each”

nth operand = event: “En” quantifier: “each”
Sequence Operator = sequence
El1;E2;... En First operand = event: “E1” quantifier: “each”
Second operand = event: “E2” quantifier: “each”

nth operand = event: “En” quantifier: “each”
Any(m, E1, E2, ... En) Operator = atleast m

First operand = event: “E1” quantifier: “first”

Second operand = event: “E2” quantifier: “first”

nth operand = event: “En” quantifier: “first”

Any(m, E*) Operator = atleast m
First operand = event: “E” quantifier = “each”
A(El, E2, E3) Lifespan initiator = event: “E1” correlation: “add”

Lifespan terminator = event: “E3” type: “terminate” quantifier: “first”
Operator = nth 1
First operand = event: “E2”

A*(El, E2, E3) Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E3” type: “terminate” quantifier: “first”
Operator = nth 1
Detection mode = delayed
First operand = event: “E2”

P(El, t, E3) Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E3” type: “terminate” quantifier: “first”
Operator = every t

P*(El, t, E3) Lifespan initiator = event: “E1” correlation: “add”
Lifespan terminator = event: “E3” type: “terminate” quantifier: “first”
Operator = every t
Detection mode = delayed

conditions can be imposed only on context parameters 3. Event instance consumption determines the points in time

(transaction, process, user, application, etc.)

2. Eventinstance selection defines which events are bounded

to a complex event. This selection is performed individ-
ually for each component event and selects the first, last,
or every (commutative) instance of the component that
satisfies the event operator. If the strong keyword is spec-
ified, the first (last) instance of the component event is
selected before the system checks if it satisfies the event
operator. Several composite events can be triggered at once
if more than one instance of an event component is se-
lected by specifying the combinations minimum or combi-
nation keywords. The mode combinations minimum stip-
ulates that only the minimum number of event instances
required by the delimiter of the event component are taken
into account. The combination mode does not impose this
constraint, and larger sets of event instances can be con-
sidered.

at which events become invalid, i.e., they cannot be con-
sidered for the detection of further complex events. Three
different consumption modes can be specified individually
for each component event type.

e The shared mode does not delete any instance of the
component event.

e The exclusive mode deletes all instances of the com-
ponent event selected for the composition of the com-
posite event.

e The ext.exclusive mode deletes all instances of the
component event that occurred before instances of the
component events selected for the composition of the
composite event.

The inside or outside keyword can be specified in conjunction
with the consumption mode to define the availability of event
instance only inside or outside a group of composite events
triggered together.

200

Amit extends the semantics of the metamodel in several
aspects:

1. The metamodel does not support the operators atleast, at-
most, nth, unless, at, after, and every.

2. The metamodel cannot express the information reported
with detected composite events, thus limiting the expres-
siveness of nested situations.

3. The metamodel cannot express time intervals during which
event composition is relevant. The terms initiator and ter-
minator presented in the model refer, respectively, to the
first and last events in an event instance sequence; these
events are not used to temporally bound the event instance
sequence.

4. The metamodel makes limited use of the semantic infor-
mation reported with events during event composition.
It is limited to information reported by database events
and only allows some equality conditions (parameters) on
component events (operands).

5. The metamodel supports three predetermined event in-
stance reuse policies: reuse all events, delete all events,
and delete events that did not trigger a composite event.

5.1.4 Additional research prototypes

Research on complex events for active databases is quite
comprehensive, and additional research prototypes have been
proposed. Most of these prototypes, including EXACT [12],
REACH [32], ACOOD [3], ROCK & ROLL [13], Chimera
[24], and REFLEX [25], do not offer new functionality. Other
prototypes offer new functionality by introducing new opera-
tors. These include HiPAC [11], which introduces the closure
operators, denoted E*, that are signaled when F has been sig-
naled one or more times within a transaction; SAMOS [16],
which deals with the detection of complex events using col-
ored Petri Nets and introduces the history operator TIMES(n,
E), which is signaled after each n occurrences of F/; and NAOS
[9], which introduces the strict disjunction operator that trig-
gers a composite event if the component events occur exclu-
sively. It also introduces some special operators for cases in
which the events are themselves composite events. Additional
prototypes that are not based on event algebra but on functional
programming and real-time logic include PFL [28], which is
based on functional programming; JEM [1,19,22] and FTL
[27], which are based on temporal logic; and ADL [2].

5.2 Event correlation

Network management tools identify network faults and send
some types of alerts to an event console. These tools often flood
the event console with large quantities of alerts. The system
operator, who watches the event console, must sift through an
overabundance of data before he can identify the real problem
and take corrective action.

Event correlation systems filter network messages and cor-
relate network data to determine if a network problem has oc-
curred. Commercial event correlation solutions include VER-
ITAS NerveCenter [33], HP OpenView [26], SMARTS In-
Charge [30], and Lucent NetworkFaultManagement.

A. Adi, O. Etzion: Amit — the situation manager

Event correlation (network management) systems are de-
signed mainly to handle network events. Their expressive
power is limited to the required functionality in the network
management domain, and they do not aim at providing a gen-
eral (domain-independent) solution that supports the funda-
mentals of the situation definition we described earlier.

1. HP OpenView Event Correlation Services (ECS) [26] is
designed to deal with problems associated with event
storms in the telecommunications environment. Events
have a transit delay, which is the delay imposed by the
management network and used to reorder incorrectly or-
dered events. OpenView uses correlation circuits for the
definition of event correlation. A correlation circuit is a
set of interconnected and appropriately configured nodes
that define a logical function that represents an operator
in event algebra. OpenView supports nodes that represent
the conjunction, counting, and unless operators. It also
supports nodes for event filtering and for holding and ex-
tracting event data.

2. SMARTS InCharge [30] correlates events by employing a
coding technique that matches alarms with signatures of
known problems in real time. A set of events that represent
symptoms of problems is treated as a code that identifies
the problem. A codebook is an optimal subset of events
that must be monitored to distinguish the problems of in-
terest from each other while ensuring the desired level of
noise tolerance. Consequently, a codebook is a correlation
matrix of problems and events. The events in the code-
book are monitored and analyzed in real time. Distinction
between problems is measured by the Hamming distance
between their codes; thus a decrease in the set of mon-
itored events will cause a decrease in the tolerance for
observation errors. The supported pattern on event history
is a conjunction of events within a time window.

3. VERITAS NerveCenter [33] correlates network events.
When a predefined network condition is detected, Nerve-
Center stores the event information in a finite state machine
called an alarm. The alarm continues to track the status of
the object being monitored. The alarm waits for subse-
quent event or issue polls to determine if the condition
warrants further action. To correlate and filter these data,
NerveCenter relies on configurable models of network and
system behavior, called behavior models, for each type of
managed resource. A behavior model is a group of Nerve-
Center objects that detect and handle a particular network
or system behavior. A typical behavior model consists of
an alarm with all its supporting polls and masks, though
behavior models can have multiple alarms. Any managed
device can be associated with one or more behavior mod-
els.

5.3 Workflow management

Workflow management systems (WfMS) [20] are cooperative
environments in which multiple distributed processing enti-
ties cooperate to accomplish tasks; processing entities enact
workflows by reacting to and generating new events.

Several researchers [8,15,29] have proposed the use of
event-condition-action rules as provided by active database

A. Adi, O. Etzion: Amit — the situation manager

management systems for workflow execution; some of these
rules use composite events to detect complex workflow situa-
tions.

Commercial WfMS [35] and standard proposals [34] do
not support event composition. Although event services (as
specified, for example, in CORBA Services [10]) support the
notion of event, these services are restricted to primitive events
and typically are hybrid in the sense that they rely on both
messages and events as coordination paradigms.

6 Conclusion

This paper has presented the situation manager component of
Amit. Amit has been implemented in Java and is being used
as the core technology behind the E-business Management
Service of IBM Global Services. Itis also being integrated with
various IBM products and services. The situation manager
was designed to achieve both high usability level and high
performance (lower bound of about 2000 events per second).

There is a substantial amount of further research currently
being conducted in areas such as extending Amit operators
from temporal to spatiotemporal, adding uncertainty consid-
eration, a visualization and analysis tool around Amit, an infer-
ence mechanism to derive rules outside the model, and “deep”
temporal issues.

Acknowledgements. Many Amit ideas have been contributed by the
wonderful Amit team whose members include David Botzer, Koby
Chadash, Oren Kerem, Gil Nechushtai, Royi Ronen, Tali Yatzkar-
Haham, and Ziva Sommer.

References

1. Beck M, Konana P, Liu G, Liu Y, Mok A (1999) Active and real-
time functionalities for electronic brokerage design. In: Pro-
ceedings of the international conference on advance issues of
e-commerce and Web-based information systems, 1999

2. Behrends H (1994) Simulation-based debugging of active
databases. In: Proceedings of the IEEE international workshop
onresearch issues in data engineering: active databases systems,
Houston, February 1994. IEEE Press, New York, pp 172-180

3. Berndtsson M (1991) ACOOD: an approach to an active ob-
ject oriented DBMS. Master’s thesis, Department of Computer
Science, University of Skovde, Sweden

4. Botzer D, Etzion O, Adi A (2000) Semantic event model and
its implication on situation detection. In: Proceedings of the
8th European conference on information systems. Vienna, July
2000

5. Chakravarthy S (1997) Sentinel: an object-oriented DBMS with
event-based rules. In: Proceedings of the ACM SIGMOD inter-
national conference on management of data. Tucson, AZ, May
1997, pp 572-575

6. Chakravarthy S, Kim SK (1994) Resolution of time concepts in
temporal databases. Inform Sci 80(1-2):43—-89

7. Chakravarthy S, Mishra D (1994) Snoop: an expressive event
specification language for active databases. Data Knowl Eng
14.1:1-26

8. Cicekli NK, Yildirim Y (2000) Formalizing workflows using the
event calculus. DEXA 2000:222-231

10.
11.

12.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

201

. Collet C, Coupaye T (1996) Composite events in NAOS. In:

Proceedings of the 7th international conference on database and
expert systems applications, DEXA, Zurich, September 1996.
Springer, Berlin Heidelberg New York, pp 244-253

Corba. http://www.corba.org

Dayal U, Buchmann A, Chakravarthy U (1996) The HiPAC
project. Active database systems: triggers and rules for ad-
vanced database processing. Morgan Kaufmann, San Francisco,
pp 177-206

Diaz O, Jaime A (1997) EXACT: an extensible approach to
active object-oriented databases. J Very Large Databases J
6.4:282-295

. Dinn A, Paton NW, Williams MH, Fernandes AAA (1996) An

active rule language for ROCK & ROLL. In: Proceedings of the
14th British national conferenc on databases. Edinburgh, UK,
July 1996. Springer, Berlin Heidelberg New York, pp 36-55
Etzion O, Gal A, Segev A (1992) Temporal support in active
databases. In: Proceedings of the workshop on information tech-
nologies and systems, 1992, pp 245-254

. Etzion O (1998) Kerem —Reasoning about the design of partially

cooperative systems. In: Dogac A, Leonid K, Ozsu MT, Sheth
AP (eds) Workflow management systems and interoperability.
Springer, Berlin Heidelberg New York, pp410-422

Gatziu S, Dittrich KR (1994) Events in an active object-oriented
database system. In: Proceedings of the 1st international work-
shop on rules in database systems. Edinburgh, UK, September
1993. Springer, Berlin Heidelberg New York, pp 23-29
Gehani NH, Jagadish HV, Shmueli O (1992) Composite event
specification in active databases: model and implementation.
In: Proceedings of the 18th international conference on very
large data bases. Vancouver, BC, Canada, August 1992. Morgan
Kaufmann, San Francisco, pp 23-27

Geppert A, Gatziu S, Dittrich KR (1995) A designer’s bench-
mark for active database management systems: 007 meets the
BEAST. RIDS, Athens, Greece, 1995. Rules Database Sys
volume:309-326

Guangtian L, Mok AK, Konana P (1998) A unified approach
for specifying timing constraints and composite events in active
real-time database systems. In: Proceedings of the 4th IEEE
real-time technology and applications symposium. Denver, June
1998. IEEE Press, New York, pp 199-208

Jablonski S, Bussler C (1996) Workflow management: modeling
concepts, architecture, and implementation. Thomson, London
Jain R (1991) The art of computer systems performance analy-
sis. In: Jain RK (ed) Techniques for experimental design, mea-
surement, simulation, and modeling. Wiley, New York

Konana P, Mok AK, Chan Gun L, Honguk W, Guangtian L
(2000) Implementation and performance evaluation of a real-
time e-brokerage system. In: Proceedings of the real-time sys-
tems symposium, Orlando, FL, USA, November 2000
Kulkarni K, Mattos NM, Cochrane R (1999) Active database
features in SQL3. In: Paton NW, Gries D, Schneider F (eds)
Active rules in database systems. Monographs in computer sci-
ence. Springer, Berlin Heidelberg New York, pp 197-219

Meo R, Psaila G, Ceri S (1996) Composite events in Chimera. In:
Proceedings of the 5th conference on extended database tech-
nology (EDBT‘96). Avignon, France, March 1996. Springer,
Berlin Heidelberg New York, pp 56-78

Naqvi W, Ibrahim MT (1994) EECA: an active knowl-
edge model. In: Proceedings of the 5th international confer-
ence on database and expert systems applications. Athens,
Greece, September 1994. Springer, Berlin Heidelberg New
York, pp 380-389

Sheers KR (1996) HP OpenView event correlation services.
Hewlett Packard J 47.5:31-42

202

27. Sistla AP, Wolfson O (1995) Temporal triggers in active
databases. IEEE Trans Knowl Data Eng 7.3:471-486

28. Swaup R, Alexandra P, Carol S (1999) PFL: an active functional
DBPL. In: Paton NW, Gries D, Schneider F (eds) Active rules in
database systems. Monographs in computer science. Springer,
Berlin Heidelberg New York, pp 297-308

29. Tombros D, Geppert A, Dittrich KR (1997) Semantics of re-
active components in event-driven workflow execution. CAiSE
1997:409-422

30. Yemini SA, Kliger S, Mozes E, Yemini Y, Ohsie D (1996)
High speed and robust event correlation. IEEE Commun Mag
34.5:82-90

31. Zimmer D, Unland R (1998) On the semantics of complex
events in active database management systems. In: Proceedings
of ICDE, Sydney, Australia, March 1999, pp 392-399C

32. Zimmermann J, Buchmann A (1999) REACH. In: Paton NW,
Gries D, Schneider F (eds) Active rules in database systems.
Monographs in computer science. Springer, Berlin Heidelberg
New York, pp 263-277

33. VERITAS NerveCentertm VERITAS Software.
http://eval.veritas.com/webfiles/docs/NCOverview.pdf

34. White Paper — Events Workflow Management coalition.
http://www.wfmc.org/standards/docs/Workflow_events_paper.-
doc

35. Workflow Vendors Database. Workflow and Reengineering In-
ternational Association.
http://www.waria.com/databases/wfvendors-A-L.htm

Appendix - Situation language DTD

<IELEMENT amit (event | situation | lifespan | key)>

<!ELEMENT event (eventAttribute+)>
<IATTLIST event
name NMTOKEN #REQUIRED >

<!ELEMENT eventAttribute EMPTY >
<!ATTLIST eventAttribute
name NMTOKEN #REQUIRED
type (string | number | boolean) #REQUIRED >

<!ELEMENT situation (operator, situationAttribute+)>
<!ATTLIST situation
name NMTOKEN #REQUIRED
lifespan NMTOKEN #REQUIRED
internal (true | false) ‘false’>

<!ELEMENT operator (all | sequence | atleast | atmost | nth | not |
unless | every | at | after)>

<IELEMENT all (operandAll+ ,keyBy*) >

<!ATTLIST all
detectionMode (immediate | deferred | delayed) ‘immediate’
where CDATA #IMPLIED
repeatMode (once | always) ‘always’ >

<!ELEMENT operandAll EMPTY >
<IATTLIST operandAll
event NMTOKEN #REQUIRED

as NMTOKEN #IMPLIED
threshold CDATA #IMPLIED
quantifier (first | last | each) ‘first’
quantifierType (absolute | relative) ‘relative’
override CDATA ‘false’
retain CDATA ‘false’ >

A. Adi, O. Etzion: Amit — the situation manager

<IELEMENT sequence (operandSequence, operandSequence+,
keyBy*) >
<IATTLIST sequence
detectionMode (immediate | deferred | delayed) ‘immediate’
where CDATA #IMPLIED
repeatMode (once | always) ‘always’ >

<!ELEMENT operandSequence EMPTY >
<IATTLIST operandSequence
event NMTOKEN #REQUIRED
as NMTOKEN #IMPLIED
threshold CDATA #IMPLIED
quantifier (first | last | each) “first’
quantifierType (absolute | relative) ‘relative’
override CDATA ‘false’
retain CDATA ‘false’ >

<!ELEMENT atleast (operandAtleast+, keyBy*) >
<!ATTLIST atleast
quantity NMTOKEN #REQUIRED
detectionMode (immediate | deferred | delayed) ‘immediate’
where CDATA #IMPLIED
repeatMode (once | always) ‘once’ >

<!ELEMENT operandAtleast EMPTY >
<IATTLIST operandAtleast
event NMTOKEN #REQUIRED
as NMTOKEN #IMPLIED
threshold CDATA #IMPLIED
quantifier (first | last | each) ‘each’
quantifierType (absolute | relative) ‘relative’
override CDATA ‘false’
retain CDATA ‘false’
weight NMTOKEN ‘1°
counted (true | false) ‘true’ >

<!ELEMENT atmost (operandAtmost+, keyBy*) >
<IATTLIST atmost

quantity NMTOKEN #REQUIRED

detectionMode (immediate | deferred | delayed) #FIXED ‘de-
ferred’

where CDATA #IMPLIED >

<!ELEMENT operandAtmost EMPTY >
<IATTLIST operandAtmost
event NMTOKEN #REQUIRED
as NMTOKEN #IMPLIED
threshold CDATA #IMPLIED
quantifier (first | last | each) ‘each’
quantifierType (absolute | relative) ‘relative’
override CDATA ‘false’
weight NMTOKEN ‘1’
counted (true | false) ‘true’ >

<!ELEMENT nth (operandNth+, keyBy*) >
<!ATTLIST nth
quantity NMTOKEN #IMPLIED
detectionMode (immediate | deferred | delayed) ‘deferred’
where CDATA #IMPLIED
repeatMode (once | always) ‘once’ >

<!ELEMENT operandNth EMPTY >
<IATTLIST operandNth
event NMTOKEN #REQUIRED
as NMTOKEN #IMPLIED
threshold CDATA #IMPLIED
quantifier (first | last | each) ‘each’

A. Adi, O. Etzion: Amit — the situation manager

quantifierType (absolute | relative) ‘relative’
override CDATA ‘false’

retain CDATA ‘false’

weight NMTOKEN ‘1’

counted (true | false) ‘true’ >

<!ELEMENT not (operandNot+) >

<IELEMENT operandNot EMPTY >
<!ATTLIST operandNot
event NMTOKEN #REQUIRED
as NMTOKEN #IMPLIED
threshold CDATA #IMPLIED >

<!ELEMENT unless (operandUnless, operandNot, keyBy*) >
<!ATTLIST unless
where CDATA #IMPLIED>

<IELEMENT operandUnless EMPTY >
<!ATTLIST operandUnless
event NMTOKEN #REQUIRED
as NMTOKEN #IMPLIED
threshold CDATA #IMPLIED
quantifier (first | last | each) ‘first’
quantifierType (absolute | relative) ‘relative’
override CDATA ‘false’>

<!ELEMENT every EMPTY >
<IATTLIST every
interval NMTOKEN #REQUIRED >

<!ELEMENT at EMPTY >
<!ATTLIST at
timePattern CDATA #IMPLIED >

<IELEMENT after (operandAfter+, keyBy*) >
<IATTLIST after
correlate (add | ignore | replace) ‘ignore’
interval NMTOKEN #REQUIRED >

<!ELEMENT operandAfter EMPTY >
<IATTLIST operandAfter
event NMTOKEN #REQUIRED
as NMTOKEN #IMPLIED
threshold CDATA #IMPLIED >

<!ELEMENT situationAttribute EMPTY >
<IATTLIST situationAttribute
name NMTOKEN #REQUIRED
type (string | number | boolean) #REQUIRED
expression CDATA #IMPLIED >

203

<!ELEMENT lifespan (initiator, terminator, keyBy*)>
<IATTLIST lifespan
name NMTOKEN #REQUIRED >

<!ELEMENT initiator ((startup, eventInitiator*) | eventInitiator+)>
<!ELEMENT startup EMPTY >

<!ELEMENT eventlnitiator EMPTY >
<!ATTLIST eventInitiator
event NMTOKEN #REQUIRED
as NMTOKEN #IMPLIED
correlate (add | ignore) ‘ignore’
where CDATA #IMPLIED>

<!ELEMENT terminator ((eventTerminator+, expirationlnterval?) |
expirationInterval | noTerminator)>

<!ELEMENT eventTerminator EMPTY >

<IATTLIST eventTerminator
event NMTOKEN #REQUIRED
as NMTOKEN #IMPLIED
quantifier (first | last | each) ‘each’
terminationType (terminate | discard) ‘terminate’
where CDATA #IMPLIED >

<IELEMENT expirationInterval EMPTY >

<!ATTLIST expirationInterval
timeInterval NMTOKEN #REQUIRED
terminationType (terminate | discard) ‘terminate’ >

<!ELEMENT noTerminator EMPTY >

<IELEMENT key (eventKey+) >
<!ATTLIST key
name NMTOKEN #REQUIRED
type (string | number | boolean) #IMPLIED >

<!ELEMENT eventKey EMPTY >
<IATTLIST eventKey
event NMTOKEN #REQUIRED
attribute NMTOKEN #REQUIRED >

<!ELEMENT keyBy EMPTY >
<!ATTLIST keyBy
name NMTOKEN #REQUIRED >

