
The VLDB Journal (2003) 12: 89–101 / Digital Object Identifier (DOI) 10.1007/s00778-003-0093-1

A case for fractured mirrors

Ravishankar Ramamurthy, David J. DeWitt, Qi Su

Department of Computer Sciences, University of Wisconsin-Madison, 1210 W. Dayton Street, Madison, WI 53706, USA;
e-mail: {ravi,dewitt,qi}@cs.wisc.edu

Edited by P. Bernstein. Received: September 3, 2002 / Accepted: February 15, 2003
Published online: July 10, 2003 – c© Springer-Verlag 2003

Abstract. The decomposition storage model (DSM) verti-
cally partitions all attributes of a table and has excellent I/O
behavior when the number of attributes accessed by a query is
small. It also has a better cache footprint than the standard stor-
age model (NSM) used by most database systems. However,
DSM incurs a high cost in reconstructing the original tuple
from its partitions. We first revisit some of the performance
problems associated with DSM and suggest a simple index-
ing strategy and compare different reconstruction algorithms.
Then we propose a new mirroring scheme, termed fractured
mirrors, using both NSM and DSM models. This scheme com-
bines the best aspects of both models, along with the added
benefit of mirroring to better serve an ad hoc query workload.
A prototype system has been built using the Shore storage
manager, and performance is evaluated using queries from the
TPC-H workload.

Keywords: Data placement – Disk mirroring – Vertical par-
titioning

1 Introduction

A number of the fundamental assumptions upon which the cur-
rent generation of database systems are based have changed
dramatically over the past decade. CPU speeds are improv-
ing rapidly (recently even faster than Moore’s law would have
predicted), and the amount of main memory that is affordable
is also increasing. While disk capacities have also shown sim-
ilar improvements, disk seek times and effective transfer rates
(transfer rate /capacity) have improved at a much slower rate
(almost by a factor of 10 slower). In addition, it appears that
disk capacities are growing faster than database sizes; even the
benefits of using parallelism are likely to diminish. Hence disk
I/O will certainly constitute the primary performance bottle-
neck. Moreover, in modern architectures, cache performance
has also been shown to be an important factor in the CPU time
of query execution [14]. Hence database storage architectures
that are more conscious of disk-arm optimizations and cache
effects during query processing are needed.

A B C ID A ID B ID C
A1 B1 C1 1 A1 1 B1 1 C1
A2 B2 C2 2 A2 2 B2 2 C2
A3 B3 C3 3 A3 3 B3 3 C3
A4 B4 C4 4 A4 4 B4 4 C4
A5 B5 C5 5 A5 5 B5 5 C5

Fig. 1. Alternate storage models

Database systems usually store all the attributes of a re-
lation together. This format is, however, not ideal for modern
database architectures given that cache misses form an im-
portant component of query execution time [5]. An alternate
storage model, the decomposition storage model (DSM), uses
vertically partitioned tables [11]. In this representation, each
attribute of a relation is stored as a separate relation along with
a surrogate that identifies the original tuple that the attribute
came from.

Figure 1 shows a sample relation in the NSM representa-
tion on the far left and the corresponding DSM representation
on the right. As described in [11], the DSM model maintains
two copies of each partition, one clustered on IDs as shown
above and the second clustered on the attribute value, which
serves as an index. DSM seems to have good I/O behavior
when the number of attributes touched by a query is low. Con-
sider a sample scenario in which a selection operation has
low projectivity and low selectivity, i.e., only a few attributes
are projected from a large percentage of the tuples. With the
DSM representation, only the partitions required by the query
would be scanned, minimizing the number of disk I/Os per-
formed while maximizing L1 and L2 data cache performance.
With the NSM representation, since the query predicate is not
very selective, an index would not be useful and the entire re-
lation would be scanned. In addition, NSM would have poor
cache performance [5]. PAX is a recently proposed alternative
implementation of the NSM representation that employs verti-
cal partitioning within each page [4]. For this example query,
PAX would have a much better cache footprint than NSM
while having the same I/O characteristics as NSM. Hence for
this query it seems that DSM is the best choice. However, it is
just as easy to come up with examples where the NSM repre-
sentation is better. While DSM seems to be ideal for selections

90 R. Ramamurthy et al: A case for fractured mirrors

with low projectivity and low selectivity, as the projectivity in-
creases, the cost of reconstructing the original tuple from the
partitions begins to dominate the execution time. On the other
hand, the NSM model is tuned for workloads that are highly
selective and uses most of the attributes. Hence, neither stor-
age format is optimal for all queries. The paper proposes a
storage architecture that is a variant of the existing mirroring
technique as a first step toward addressing this problem.

Mirroring [6,18] (RAID 1) is a technique for providing
fault tolerance that maintains two (or more) identical copies
of each disk. If one disk of the mirrored pair fails, the system
can continue operating while the failed disk is replaced and
then recovered from the mirror. Mirroring can be implemented
in either hardware or software. In addition to providing fault
tolerance, mirrors can also be used to improve performance by
partitioning random seeks across the mirrored pair [6]. This
can be critical since random seeks are very slow.

In this paper, we propose a new form of mirroring termed
fractured mirrors. With this scheme, instead of the two disks
in the mirrored pair being physically identical, they are logi-
cally identical. The naive implementation of fractured mirrors
would store the NSM copy of a table on one disk of the mir-
rored pair and the DSM copy on the second disk.1

This scheme retains the advantages of both the NSM and
DSM representations. Queries touching only a few attributes
of a large number of rows will use the DSM copy. Highly se-
lective queries or queries requiring a majority of the attributes
will use the NSM copy. This idea builds on the idea of disk
shadowing [6,18], which demonstrated that mirrors could be
used profitably during query processing and not only for the
purposes of fault tolerance. By storing the mirrors in differ-
ent storage formats, we can formulate query plans that can
truly maximize disk utilization while minimizing the number
of L1 and L2 cache misses. However, a naive implementa-
tion of DSM can lead to surprisingly bad performance, even
when only two or three attributes are accessed. The next sec-
tion details the performance limitations of the DSM represen-
tation and how simple storage schemes and scan algorithms
can improve its limitations. Section 3 describes our prototype,
strategies for structuring the fractured mirrors, and alternative
query execution plans that the use of fractured mirrors can
provide. An experimental evaluation of the prototype using
queries from the TPC-H benchmark suite follows. The paper
concludes with a presentation of related work and strategies
for handling updates.

2 Storing and scanning DSM partitions

2.1 The naive implementation

The straightforward way of implementing the vertical parti-
tions of the DSM model is to store each vertical partition as a
separate relation with two attributes – an integer that acts as
an identifier and the column’s value as illustrated previously.
When used to store the Line-item table from the 1-GB version
of the TPC-H benchmark (which has 16 attributes), this ap-
proach has very poor space utilization and performance. With

1 If a table is horizontally striped across multiple mirrored pairs, the
rows stored on a single disk will be stored in their NSM representation
on one disk and their DSM represenation on the second.

Table 1. Performance of DSM

Projectivity Scan time (s)

1 68.29
2 138.06
4 366.86
8 759.39

the NSM representation, this table occupies about 1.1 GB and
a full table scan takes 74.5 s.2 The DSM representation, on the
other hand, occupies 2.8 GB. For DSM, the attributes were
assembled one tuple at a time like a traditional scan. Table 1
illustrates how a naive implementation of DSM provides a
performance advantage only when a single attribute from the
table is touched.

Several factors contribute to the poor performance of this
implementation strategy. First, the naive DSM implementation
stores each (ID, AttrValue) pair as a standard database record
on a slotted page [19]. While the slot overhead is generally not
significant when a record is used to hold a tuple in the NSM
representation, it can become significant when the record is
used for a single (ID, AttrValue) pair. Furthermore, for fixed-
length attributes, whose position on the page can be computed
from the length of the attribute and the ID, the slotted page
representation is redundant. The second significant source of
wasted space is the ID itself. Storing a 32-bit or 64-bit identifier
with each attribute can easily double the space required to store
a table. It is very important to keep in mind that the important
issue is not the disk space consumed by the slot array entry or
the ID as disk space is essentially free these days. The issue is
that the extra space can significantly increase the number of
disk I/O operations that must be performed when the partition
is accessed.

Another drawback of the naive strategy is that it is not
possible to quickly reassemble a tuple from its vertical par-
titions given the tuple’s ID. Some form of index such as a
B-tree mapping ID to the attribute value is required to do this
efficiently. This leads to an alternative representation in which
each vertical partition is stored as a B-tree on ID with the leaf
pages containing (ID, AttrValue) pairs. While this approach
still wastes space storing a tuple’s ID once for each attribute
value plus incurs the cost of a slot array entry, it makes the
task of reassembling a tuple given its ID straightforward. More
importantly, it leads us to a refined representation that we de-
scribe below.

2.2 A sparse B-tree-based representation

Our refined design uses a modified B-tree design in which the
overhead of the redundant IDs is eliminated for both fixed-
length and variable-length attributes and the slot array over-
head is eliminated for fixed-length attributes.

Our approach is based on several simple observations.
First, IDs are system generated by incrementing a counter
and are never reused.3 Thus, new (ID, AttrValue) pairs are al-
ways appended to the rightmost leaf node of the B-tree. In

2 The NSM copy and DSM partitioned were stored as files in Shore
configured to have a 128-MB buffer pool and 32-KB page size.

3 The handling of deletes is discussed in a later section.

R. Ramamurthy et al: A case for fractured mirrors 91

addition, for fixed-length attributes, given the ID of the lowest
attribute value on a leaf page, there is no need to store the
IDs of the remaining attributes as they can be computed given
the attribute’s offset from the start of the page. This avoids
the need for either a slot array or IDs. For variable-length at-
tributes, a standard slot array is necessary, but the attribute’s
position in the slot array can be used to calculate the attribute’s
ID. Consequently, for fixed-length attributes, the B-tree leaf
pages contain only attribute values without IDs or slot arrays,
raising the effective space utilization to essentially 100%. The
upper levels of the B-tree are organized in a normal fashion
with the key entry for a leaf page containing the ID value
corresponding to the smallest tuple on the leaf page.

It is to be noted that this representation can be further op-
timized for fixed-length records. If storage extents are guar-
anteed to be contiguous, a DSM partition consisting of fixed-
length records can be stored as a sequential file and individual
records can be accessed using simple offset computation on
physical RIDs [17]. In this case, a B-tree index would not be
required. However, in this paper we use the sparse B-tree for
storing both fixed-length and variable-length records; this is
because Shore [9] (which is used as the storage manager for
the experiments) does not guarantee contiguous extents. In
any case, this would provide a lower bound on performance.
A storage scheme that avoids the overhead of the B-tree for
fixed-length records should provide better performance.

Processing the attribute values in a DSM partition happens
in one of two ways. For a sequential scan of all values, the index
is first traversed to the leftmost leaf and then the leaf pages
are scanned sequentially. To retrieve the attribute value for the
tuple with a particular ID, the B-tree is traversed to locate the
correct leaf page by searching for the index entry that covers
the ID. An index entry is said to cover a particular ID if the
ID lies between the index entry and its succeeding entry in the
index. Once the correct leaf page is located, the page is read
and the offset computation described above is used to locate
the desired attribute value.

2.3 Tuple reconstruction algorithms for DSM

Scan is a fundamental database operation that scans all tu-
ples in a table, possibly applying one or more predicates in
the process. When one or more of a table’s attributes are not
required by subsequent operators in the query, the scan is nor-
mally combined with a project operator to eliminate unwanted
attributes as output tuples are produced. In a database system
that uses the NSM (or PAX) storage representation, the scan
operation is trivial to implement; successive pages of a rela-
tion are read until the end of the file is reached. In the case
of the B-tree DSM representation described in Sect. 2.2, sev-
eral different scan algorithms are possible. In this section, we
describe and compare these algorithms for reconstructing a
tuple (or portions of a tuple) from the B-trees used to hold the
vertical partitions.

2.3.1 Page-at-a-time reconstruction

The simplest DSM reconstruction algorithm begins by open-
ing a sequential scan on the B-trees of each attribute required

to produce the output relation plus those attributes on which a
predicate is to be applied. The scans are processed in lock-step
one tuple at a time, any applicable predicates are applied, and
qualifying tuples are materialized in their NSM representation
on the reconstruction operator’s output stream. The primary
disadvantage of this approach is that it incurs a random seek
each time a new B-tree leaf page is read.

2.3.2 Chunk-based reconstruction

A scan of a relation stored in the DSM representation can also
be viewed as a multiway join of each of the table’s vertical
partitions. Since today’s database systems include very effi-
cient join algorithms, one might be tempted to simply use the
standard join code to reconstruct a table from its partitions.
However, reassembling a table of 20 attributes with a 19-way
join is likely to overwhelm any database system. The join of
the DSM partitions is actually a very special kind of merge-
join in which the input tables are already sorted on the join
attribute (i.e., the virtual ID value) and each attribute value
joins exactly one attribute from all the other partitions and
thus is handled exactly once.

If N pages of memory are available and K attributes are
accessed by the scan, the reconstruct-in-chunks algorithm be-
gins by dividing the memory into K chunks of size N/K
pages. Each chunk corresponds to one attribute. It then opens
scans on the B-trees of each of the K attributes, filling each of
the K chunks with N/K leaf pages from the corresponding
B-tree before proceeding to the next chunk. The value of this
simple tactic cannot be overemphasized. While disk capacity
increased by a factor of 1000 in the 20-year period from 1980
to 2000 (80 MB to 80 GB), the time for a random disk seek has
decreased by only a factor of 6 (from 30 ms to 4.9 ms) over the
same period. Filling each vertical partition a chunk at a time
reduces the number of random seeks performed by the join by
a factor of N/K. The other key technique the algorithm uses is
to process attribute values in a chunk in cache-line size units to
insure that the L1 and L2 data caches are used as effectively as
possible. Thus, with a 64-byte cache line and 4-byte attribute
values, the algorithm constructs 16 output tuples at a time.

2.3.3 Performance

This section evaluates the effectiveness of the suggested stor-
age schemes and scan algorithms. We first show how to select
an appropriate value for N/K – the number of pages to use
for each attribute with the chunk-based merge algorithm.

The graph shown in Fig. 2 illustrates how the reconstruc-
tion time using the chunk-based merge algorithm varies as a
function of the chunk size for scanning 5 and 10 attributes
from the 1-GB version of the TPC-H Line-item table. As the
graph illustrates, beyond about six pages no further improve-
ment occurs. For all subsequent experiments, a chunk size of
five pages is used.

The next graph (Fig. 3) shows the DSM scan times as
a function of the number of attributes being reassembled us-
ing the page-at-a-time and the chunk-based merge algorithms.
For reference, the NSM scan time for the table is also shown.
While the page-at-a-time algorithm can reassemble only four

92 R. Ramamurthy et al: A case for fractured mirrors

Estim a ting N/K va lue

0

20

40

60

80

100

1 2 4 6 10

Num be r o f page s

D
S

M
 S

ca
n

 T
im

e
(s

)

Sc anning 5
attr ibutes

Sc anning 10
attr ibutes

Fig. 2. Estimating N/K value

� � � � � �
 � � �
 � � � � � � � � � � � � �

!

$

%

&

& !

& #

& $

& %

& ! (# $ % & & ! & #
) * , . 0 2 3 3 5 6 7 * 3 9 :

; < =
> @ B C D @ F D @ D F G H C

I J K L M D = C N B C

Fig. 3. Reconstructing NSM from DSM

attributes in less time than the time required to sequentially
scan the entire NSM table, the chunk-based algorithm can
reassemble 12 out of 16 attributes before its performance be-
comes worse. The results for both algorithms are much better
than the results presented for the naive DSM implementation
in Sect. 2.1, which required 138 s to reassemble just two at-
tributes. Since the naive representation also used a page-at-a-
time algorithm, the primary difference is due to the improved
B-tree-based storage scheme described in Sect. 2.2.

2.4 DSM scan optimization techniques

The task of reconstructing NSM tuples from the DSM parti-
tions is essentially a join between the individual partitions. We
next examine how traditional optimization techniques for joins
such as pushing down selections and join ordering are applica-
ble to the chunk-merge algorithm. The naive implementation
of this algorithm reconstructs the NSM tuples before evaluat-
ing any of the scan’s predicates. It is in fact possible to push
down the selection predicates. The idea is to split any pred-
icates on the NSM view of the table into predicates on each
attribute being assembled. After an attribute chunk has been
read into memory, any applicable predicate on that attribute
is evaluated. This simple optimization has two side effects.
First, since predicates are evaluated attribute-wise, the selec-
tion operation has excellent cache performance. Moreover,
since predicates are evaluated in an eager fashion, those at-
tributes that do not qualify need not be merged. This leads to

savings in the “join-processing” overheads of the algorithm.
For highly selective predicates this savings can be substantial.
It follows from this optimization that “join-ordering” of the
partitions should be in descending order of the selectivities of
the predicates on the corresponding attributes (starting with
the most selective predicate first).

For example, consider TPC-H query 6. This query com-
putes a set of aggregates on the Line-item table (6 million
tuples), accessing only four of the table’s attributes. The
DSM plan for this query would assemble just the required
partitions using the chunk-merge algorithm and then apply
the required predicates and aggregate operations. The query
was evaluated with and without the push-down selection
optimization described above. The results are shown below:

DSMScan (naive evaluation):
55.03 s (CPU: 50.63 I/O: 7.82)

DSMScan (with predicate push-down):
18.07 s (CPU: 12.27 I/O: 8.54)

These results clearly indicate that, for certain predicates,
pushing down the selection predicates can dramatically
reduce overall query execution times by eliminating unneces-
sary CPU operations.

We think these results are very encouraging. By elimi-
nating the redundant storage of IDs and, by using better scan
algorithms, these results indicate that the DSM representation,
when implemented properly, can provide better performance
over a much wider range of situations than previously believed.
In the following section, we describe a new mirroring strategy
that incorporates both NSM and DSM copies of a table.

3 Mirroring using DSM

3.1 Introduction

Both the NSM and DSM storage models have inherent limita-
tions. Database systems, having to pick one, have traditionally
chosen NSM, as it is more suitable for OLTP-like applications.
Most database systems today employ some form of redundant
storage to provide tolerance to disk failures. While RAID-5
is frequently used today, the trend is toward increased use
of RAID-1 (mirroring). Even though mirroring incurs a 100%
storage penalty, write operations are more efficient than RAID-
5 since there is no check-sum block to be updated.

In this section, we describe a new form of mirroring that
we term fractured mirrors. The basic idea is simple: rather
than two disks in a mirror being identical physically, they are
instead logically identical. In particular, with fractured mirrors
one copy of each table is stored in an NSM representation and
one is stored in a DSM representation. This section outlines
how such a system can be constructed while retaining the
advantages of both formats without losing the advantages of
mirroring.

3.2 Data placement for fractured mirrors

The simplest way of implementing mirrors would be to put the
NSM copy on one disk of the mirrored pair and the DSM copy

R. Ramamurthy et al: A case for fractured mirrors 93

 NSM DSM

Fig. 4. Naive logical mirroring

on the other disk, as shown in Fig. 4. For each query, the opti-
mizer would decide which copy is best and the corresponding
representation would be used to execute the query. The main
disadvantage of this approach is that if the query workload is
skewed toward one of the two representations, the two disks
will not be utilized uniformly. Another problem is that random
seeks cannot be distributed between the mirrors. This is be-
cause NSM and DSM do not have similar performance when
it comes to index lookups. NSM can retrieve the entire tuple in
one access, while DSM must retrieve the additional attributes
by means of additional index lookups using the ID. Hence the
load on the two disks will not be symmetric. It is, however,
possible to place each storage model on hardware specifically
tuned for the model. This is an idea to explore in the future.

A solution to this problem is the notion of fractured mir-
rors, in which data is placed on the mirrors in the follow-
ing fashion. Consider a system with two disks. As shown in
Fig. 5, the NSM copy is declustered across the two disks using
a round-robin-based scheme into two equal-sized fragments
NSM0 and NSM1. On disk 1, along with NSM0 we store the
tuples of NSM1 in DSM format, and along with NSM1 on disk
2 we store the tuples of NSM0 in DSM format. Since both disks
have NSM0 and NSM1 in some data format, they both have a
complete copy of the data. Hence this constitutes a valid mir-
roring scheme. Even if the query workload is skewed toward
one representation, since both storage formats are represented
on each disk, accesses will be uniformly distributed across
both disks. More importantly, we can now partition random
seeks between disks in a symmetric fashion. Since the NSM
copy is declustered, on average one half of the random page
accesses will be handled by each disk, a key property that the
original mirroring scheme guarantees [6].

An important issue is the choice of an appropriate declus-
tering algorithm [16]. Any suitable partitioning algorithm can
be used as long as it produces a reasonably even distribu-
tion. In some ways, fractured mirrors are similar to RAID-10,
which first mirrors an entire file and then declusters blocks
between mirrors for higher bandwidth. The significant differ-
ence, of course, is the use of multiple storage representations
with fractured mirrors. Another fundamental difference is that
the various RAID schemes are usually implemented in the
disk controller. Fractured mirrors must be implemented in the
database system, which may introduce some degree of ineffi-
ciency.

 NSM0
 DSM1

 DSM0
 NSM1

Fig. 5. Fractured mirrors

The data placement strategy indicated in Fig. 5 deals only
with the replication of data on a single disk. If the original ta-
ble(s) have been declustered across multiple disks, fractured
mirrors can still be used as follows. Let swap define the proce-
dure by which a system of two disks using naive mirroring can
be converted into fractured mirrors. Consider a system of 2N
disks (N disks and their mirrors). Choose any suitable data
placement strategy to populate the first N disks. For every re-
lation on disk i, store the corresponding DSM representation
on disk N + i. This results in a mirrored system that uses the
naive strategy. Then, for every pair of disks (i, N + i), apply
the swap procedure to generate the fractured-mirrors version
of the N disk system.

Given a query, the database system can now select the stor-
age format most appropriate for evaluating the query. Issues in
generating query plans for the mirrors are discussed in Sect. 4.
In the following section, we present some experimental results
executing queries from the TPC-H suite on this system.

3.3 Experiments on the TPC-H suite

A prototype relational system was built using Shore[9] as the
underlying storage manager and included the normal relational
operators such as scan, join, split, merge, etc., along with oper-
ators to implement functionality for the chunk algorithm. The
experiments were run on a Pentium III dual-processor machine
(550 MHz) with 1 GB of main memory running Linux 7.1.
Three disks (sequential bandwidth 15–20 MB/s) were used
for storing data: two Shore volumes were stored on the first
two for the fractured mirrors, and the third disk was used to
hold the Shore log file. The Shore buffer pool size was set
to 128 MB. A page size of 32 KB was used. 1 GB of TPC-H
data was generated using the data generator. These data were
converted into a tuple representation and stored on the two
volumes, as shown in Fig. 5. The queries were run and their
results validated as indicated in the benchmark specification
[2]. All reported times are cold times and are the average of
three runs. The Shore buffer pool was flushed between queries
by dismounting and remounting the disks between runs. All
running times are reported in seconds. A brief description of

94 R. Ramamurthy et al: A case for fractured mirrors

Scan Line-item

Aggregation

DSMScan Line-item
(4 attributes)
Chunk Algorithm

Aggregation

Fig. 6. TPC-H query 6

each query along with its execution times is given. Query plans
are illustrated wherever appropriate.4

The initial queries demonstrate the advantage of maintain-
ing a copy of the database in the DSM form. In each of these
queries, the DSM plan assembles all the required partitions
of a relation in a leaf node of the query plan using the chunk
algorithm.
Query 6:

Query 6 computes an aggregate over selected rows of the
Line-item table. The DSM plan only scans the relevant at-
tributes. (Only four attributes are used by the query.)

Execution times (seconds):
DSM: 10.03
NSM: 75.41

Query 1: Query 1 is similar to query 6 except it contains more
complicated aggregate computations. The query touches seven
of the attributes from the Line-item table and has a predicate
on the l shipdate field that selects about 97% of the rows.

Execution times (seconds):
DSM:56.43
NSM:87.82

Query 12:
Query 12 is a join query between the Line-item and Orders

tables followed by an aggregation. The DSM plan consists of
two DSM Scan nodes feeding into the join operator. Four at-
tributes are used from Line-item and two are used from Orders.

Execution times (seconds):
DSM: 84.43
NSM: 240.46

Query 10:
Query 10 is a four-way join between the Line-item, Orders,

Customer, and Nation tables. The query includes an order-by
and a group-by clause and requires only the first 20 results.
Order-by was implemented using the sort routine of Shore.

The DSM plan is shown in Fig. 7 with the number of
attributes required from each relation. Again DSM has the
best performance even though the query touches most of the
attributes of the Customer table (seven out of nine).

4 For simplicity, sequential plans are shown. The actual versions
executed are the parallel versions taking into account the declustering
in the two-disk system.

DSM Scan Line-item
(4 attributes)

DSM Scan Orders
(3 attributes)

 Join
(Hybrid-Hash)

DSM Scan Customer
(7 attributes)

 Join on
Customer-Id

 Group By
 Customer-Id

 SORT
 (Top 20)

 Join
on Nation-Id

DSM Scan Nation
(2 attributes)

Fig. 7. TPC-H query 10

Execution times (seconds):
DSM: 257.08
NSM: 435.68

Query 1*:
This query demonstrates the advantage of having both

NSM and DSM representations in a mirrored system. This
query is a slightly modified version of a query in which the
predicate on l shipdate is reversed to make it highly selective.
An index was built on the l shipdate column to evaluate this
query efficiently. This query shows how DSM performance
deteriorates with highly selective queries with even moderate
degrees of projectivity since it must probe additional indices
to fetch the required attributes. In the DSM plan, the index on
l shipdate produces the IDs of the qualifying tuples and then
the required attributes are obtained by using the ID to probe
the corresponding sparse B-tree indices. The six attributes
probed are assembled using a DSMScan, and the aggregate
is evaluated. In this case, choosing the NSM plan would be
better and would be feasible in the mirrored architecture.
The query plans are illustrated in Fig. 8. Execution times
(seconds):
DSM: 14.21
NSM: 6.76

Query 19:
The DSM plans in the previous cases assembled all the

attributes of a particular relation in a leaf node. However, in
some cases, it may be more efficient to put together the at-
tributes in multiple stages based on the selectivity of each of
the attributes touched by the query. Query 19 is a join between
the Line-item table and the Parts table. The query computes
the revenue of parts by using the extended price and discount
attributes of the Line-item table for those tuples that qualify
the join. It turns out that the join is highly selective, producing

R. Ramamurthy et al: A case for fractured mirrors 95

 IndexScan
 (l_shipdate)

 Aggregation

IndexScan
(l_shipdate)

Aggregation

DSMScan Lineitem
 (6 attributes)

ID lookup
l_discount

ID lookup
l_quantity

Fig. 8. TPC-H query 1*

only 121 tuples. Moreover, the attributes required for comput-
ing the aggregate are not required anywhere else in the plan.
Hence with the DSM plan, instead of scanning all six required
attributes from Line-item in a leaf-level operator (DSM-1),
another plan would scan only four attributes at the leaf level
(DSM-2). The IDs of the tuples produced by the join would
then be used to probe the B-trees corresponding to the DSM
partitions of the remaining two attributes that are needed to
compute the aggregate. Since this algorithm will incur a large
number of random accesses to DSM tuples, it is viable only
for very highly selective predicates such as the one in this
query (in which only 121 tuples out of 6 million satisfy the
predicate). The DSMScan on line-item would produce the tu-
ple IDs along with the attributes. The join would project the
tuple IDs of the tuples that qualify the join, these IDs would
be used to probe the index on the partitions l extendedprice
and l discount, and the values will be used to compute the
aggregate. The two alternative DSM query plans are shown
in Fig. 9. The l shipinstruct attribute used by this query is a
fixed-length string type. Since the attribute contains only four
distinct values, the string values are encoded as an integer field
to exploit the fixed-length optimizations for DSM suggested
earlier.

Execution times (seconds):
NSM: 273.55
DSM-1: 205.88
DSM-2: 201.50

Hybrid Plan:
We use a simple query to demonstrate the notion of hy-

brid plans, plans in which both data representations are used
to evaluate the query plan. The query selected is a modified
version of query 12, which is a join between Line-item and
Orders. An additional predicate is added to the Order table to
restrict the number of order tuples, and all attributes from the
Orders table are projected for the tuples that qualify the join.
The best plan for this query is a hybrid plan in which the NSM
copy of the Orders table and the DSM copy of the Line-item
table are joined.

DSMScan
Line-item
(6 attrs)

 DSMScan
 Parts
 (4 atttrs)

 Join

 Aggregation

 DSMScan
 Parts
 (4 atttrs)

DSMScan
Line-item
(4 attrs)

 Join

ID lookup
l_extprice

ID lookup
l_discount

DSMScan
 (2 attrs)

 Aggregation

IDs

Fig. 9. Alternate DSM plans for TPC-H query 19

Table 2. Summary of results

TPC-H query NSM/DSM ratio

Query 6 7.51
Query 1 1.56
Query 1* 0.48
Query 10 1.69
Query 12 2.86
Query 19 1.36
Hybrid Plan 1.47

Execution times (seconds):
Pure DSM: 177.07
Pure NSM: 204.37
Hybrid: 139.06

As we can see, the hybrid plan is better than both the pure
NSM and pure DSM plans. Each of these plans has one leg
of the join that is not optimal in terms of disk I/O. The hybrid
plan uses the best means to scan each relation in the join and
hence is better than the other two plans.

The speed-up obtained by using DSM for the discussed
plans is summarized in Table 2. We can see that using DSM
yields speed-up factors ranging from 1.3 to 7.5. We have also
seen that, for some queries such as query 1*, DSM performs
poorly. Having both copies as part of a mirrored system is
likely to serve a wider range of query workloads. Another
advantage of maintaining both representations is that the best
plan for certain queries is one in which both representations are
employed. It is to be noted that these numbers do not necessar-
ily depict the best-case scenario for DSM. In an environment
having relations with large numbers of attributes the speed-up
factors could be much more substantial. For example, one of
the key tables used for the Sloan Digital Sky Survey has over
400 attributes [22].

96 R. Ramamurthy et al: A case for fractured mirrors

DSM Scan Line-Item
(5 attributes)

 Scan Orders

 Join
(Hybrid-Hash)

 Aggregation

Fig. 10. Hybrid plan

3.4 Synchronizing the mirrors

Once the mirrors have been created, they must be kept syn-
chronized through the course of database operations such as
inserts, updates, and deletes. In traditional mirroring, all such
operations are applied directly to both copies, which is not fea-
sible with fractured mirrors since the DSM and NSM copies
do not have identical performance characteristics under these
operations. For instance, an insert operation corresponding to
a tuple with n attributes would result in n insert operations on
the corresponding vertical partitions of the DSM copy. Hence,
given high update rates, the overhead of keeping the mirrors
up to date may result in a serious performance penaltly.

The solution we are considering uses an intermediate rep-
resentation of the relation to serve as a differential file to record
updates and inserts [20]. The differential file is implemented
as a relation with three attributes having the schema (Tuple-Id,
Attribute-Id, Value). A single entry represents a new attribute
value of the original tuple. An insert operation would now
result in the insert of n tuples to this relation, the main differ-
ence being that the inserts can be implemented as a sequence
of sequential writes since the differential file is clustered on
the Tuple-Id value. With main memories becoming larger and
larger, the differential file can be cached in memory until the
actual updates have been applied to the appropriate DSM par-
titions. Once we have recorded the inserts and updates in the
differential file, we must propagate these values to the original
partitions regularly to ensure that the differential file does not
grow too large. Eventually we hope to piggyback these writes
whenever there are reads to nearby cylinders, as discussed in
[21].

A side effect of these schemes is that the differential file
must be consulted during query processing. The chunk-based
reconstruction algorithm described in Sect. 2.3 can be ex-
tended in a simple fashion to consult the differential file and
the delete bitmap while assembling tuples. The original k-way
merge becomes a k + 2-way merge with the differential file
and the delete bitmap read in tandem with the vertical parti-
tions being assembled. Tuples from the differential file and the
delete bitmap corresponding to the tuple IDs currently being
reconstructed in memory are also read into main memory. We
essentially ensure that the tuple being assembled has not been

deleted and is also merged with the differential file updates
for it before sending it to the output stream. Any additionally
inserted tuples in the differential file must also be processed.
The differential file and the delete bitmap are clustered on
tuple ID for efficient merging during the chunk algorithm.

A disadvantage of caching the differential file in memory is
that the time to reconstruct a disk after a failure may be longer
than with traditional mirroring. If failure only involves a disk,
the failed disk can be reconstructed using its mirror and the
memory-resident differential file. If a failure involves a loss of
a disk as well as the loss of memory, then it will be necessary
to also use the transaction log to recovery the updates that had
not yet been applied to the DSM copy on disk. The proposed
scheme for handling updates should work well as long as it is
possible to keep the differential file small and propagate the
changes to the partitions on a regular basis.

Deletes are handled in a slightly different fashion. We
maintain a single column relation. Each page of the relation
contains a bitmap. For instance, a page 8 KB large would con-
tain a bitmap with about 64,000 entries. To delete a particular
tuple in the original relation, we need to find the page that
contains the bit entry corresponding to the given tuple ID. The
index structure described in Sect. 2.2 can provide this access
path. Once the corresponding bit has been located, it is set to
0 to indicate that the tuple has been deleted. This is similar to
the notion of an existential bitmap outlined in [17].

In mixed workloads, the DSM partitions will eventually
contain holes corresponding to tuples that have been deleted.
Unless each partition is compacted periodically, scan times
will continue to increase even if the total number of tuples
remains relatively constant. The obvious approach would be
to lock the partitions, drop all indices, compress the parti-
tions, and then rebuild the indices. This unfortunately would
preclude using the DSM copy until the process has been com-
pleted. The NSM copy could, howeve r, still be used for an-
swering queries. We briefly outline two techniques for reorga-
nizing the partitions in an online fashion.

Preserve Tuple ID Mappings: In this scheme, as each tuple
is written to a compacted partition, they are assigned a new tu-
ple ID value corresponding to the logical position of the tuple.
In addition, a table that relates old and new tuple ID values
is constructed. With this mapping table, existing indices can
continue to be used. While compaction is in progress, queries
that access compacted or uncompacted partitions exclusively
can be executed in the normal fashion. However, queries that
access both types of partitions will require an additional pro-
cesssing step in which the new tuple IDs in the compacted
partitions are replaced by the appropriate old tuple ID values
prior to merging the different types of partitions.

Retain Old Tuple Ids: This scheme retains the old tuple IDs
when compacting. For fixed-length attributes the DSM parti-
tion would simply be rewritten without the deleted records.
For variable-length attributes, the corresponding data entries
will be deleted from the index structure described in Sect. 2.2,
without reclaiming the slot entries (since tuple IDs are not
reclaimed). An advantage of this scheme is that existing in-
dex structures can be used without modification. Moreover,
queries can be answered using both compacted and uncom-
pacted partitions since the tuple IDs in each DSM tuple are
not changed. However, when a fixed-length attribute is ac-
cessed through an index, the deleted bitmap will still need to

R. Ramamurthy et al: A case for fractured mirrors 97

Platter 1

Platter 2

Platter N

.

.

.

Cylinder 1
Cylinder 2

Track 1

Track 2

Track N

Attribute #2

Attribute #1

Attribute #N

Fig. 11. Placing partitions on adjacent cylinders

be consulted. For example, if the k-th record is accessed, the
bitmap must be traversed to determine its actual position in
the compacted partition.

It would be an interesting study to compare these alterna-
tives in an update intensive environment like TPC-C. It is pos-
sible in such environments that traditional mirroring (NSM +
NSM) will likely perform better than fractured mirrors. How-
ever, it may be the case that, if the updates are mainly updates
to individual attributes and not inserts (as is the case with
TPC-C), fractured mirrors should actually perform similar to
traditional mirrors.

Fractured mirrors are suitable for systems that have com-
plex queries and a relatively small update-to-query ratio in
the workload. We are currently working on an intermediate
system that is likely to have update performance between the
two extremes discussed. Some of the main differences of this
system and the one we have discussed before are as follows.
Only fixed-length records are partitioned, and all variable-
length records are clustered as a single partition. By careful
data placement based on disk geometry we hope to reduce
seek times.

Traditional data clustering lays out data sequentially cylin-
der by cylinder. We modify this slightly for the partitions. The
first partition will be placed on track 1 of cylinder 1, 2, 3,
etc. The second partition will be placed on track 2 of cylinder
1, 2, 3, etc. Thus, when we seek to a particular cylinder, the
corresponding tracks will contain the vertical partitions of a
table. With a single seek operation about ten partitions can
be reached on a modern disk drive. Given that all these parti-
tions contain fixed-length attributes, the number of disk seeks
needed to propagate updates or inserts to these partitions will
be minimal. Clearly, the update performance in this approach
will be intermediate to normal mirroring and the fractured-
mirrors approach. The data placement strategy is illustrated in
Fig. 11. For this increase in performance, we need to invest
more effort in data placement. If the workload characteristics
are known in advance and if the update rates do not merit the
increased complexity of this approach, the original scheme of
fractured mirrors would be more suitable.

In the future, we intend to study compression techniques
for DSM in tandem with careful data placement techniques
for the partitions.

4 Issues in query processing

This section outlines how queries can be evaluated for frac-
tured mirrors. Traditionally query processing proceeds with-
out regard to whether or not the data are mirrored. The read
requests generated during query execution are appropriately
scheduled between mirrors based on expected seek times by
a low-level disk scheduler. In our architecture, there is an op-
portunity to push this decision up to the level of the query opti-
mizer, as it can choose a plan that better exploits the semantics
of the different data formats used in the mirrors. This section
explains how a traditional bottom-up search-based query op-
timizer can be extended to generate plans in this environment.

4.1 Optimize-twice approach

Since we have data stored in two different data models, a
simple way to look at query optimization is to determine
the best possible way to execute the plan using the NSM
and DSM representations and then pick the better of the two
plans. Consider two relations R (R1, R2, R3) and S (S1, S2)
and a simple join query between them (assume R1 and S1 are
the attributes on which the query is joined):

Query = πR2(R � S) projects all R2 attributes, which quali-
fies the join.

The corresponding DSM schema for R and S is:
R-1 (id, R1), R-2 (id, R2), R-3 (id, R3)
and S-1 (id, S1), S-2 (id, S2)

The equivalent query for the DSM relations would be
πR2(R − 1 � R − 2 � S − 1).

The DSM query has the original join between the R1 par-
tition and S1 partition and an additional join based on ID to
retrieve the R2 attributes that belong to this join result. The
chunk algorithm discussed would be implemented as a spe-
cialized join algorithm that can be used for joining partitions.
The query optimizer would use standard join ordering schemes
and decide the best plan for the above query using a suitable
cost model. Having obtained the best plans for each storage
model, we can look at the optimizer cost estimates for both
the plans, and we would pick the plan having the better cost.
Even though this approach is simple, each query is optimized
twice, which would add to the overhead of query execution.

4.2 Combined search of plan space

Ideally we would like to explore the search space of both stor-
age models in a combined fashion, thereby eliminating the
redundancy of the optimize-twice approach. This section out-
lines how a bottom-up search-based optimizer can be extended
to achieve this objective.A detailed overview of the bottom-up
search is available in the survey [13].

98 R. Ramamurthy et al: A case for fractured mirrors

We need a new logical operator Assemble that corresponds
to an operator that joins operator trees having partitions of the
same relation (based on the ID column). If we are assembling
leaf nodes that are scans on vertical partitions, the algorithms
discussed in Sect. 2.3 would be suitable for implementing this
operator. If two trees of operators having partitions of the same
original relation are being assembled, the IDs of the partitions
produced by the first tree would be used to probe the sparse
B-tree indices of the partitions in the second. This operator is
similar to the materialize operator proposed in [7] for evalu-
ating pointer joins in object-oriented database systems.

Consider the simple join query considered in the previ-
ous section. First consider how the search space of plans is
explored for the NSM model. For simplicity, assume that the
database has no indices to use for this query. The given query
is πR2(R � S). The base nodes for the search would be scan
nodes on relations R and S. Let these be denoted by {R} and
{S}. In the first phase of search-space exploration, all possi-
ble operators will be applied to the base set. For this example
we will have a join operator that will generate the nodes {R,
S} and {S, R}, corresponding to the two possible join orders.
Since both of these nodes have the same logical properties,
only the plan with the least cost will be retained. It happens
that the plan chosen will be complete since it can implement
the projection on R2, which is the only operation left. Thus, it
would be chosen as the optimal plan.

Let us consider combined optimization for both NSM and
DSM. When starting the search, all possible initial access
paths must be added as base nodes. Hence we need to include
the nodes in the previous case as well as scans on all parti-
tions touched by the query, i.e., {R}, {S}, {R1}, {R2}, {S1}.
Among the set of operators that would generate new operator
trees would be the join operator (as in the previous case) and
the Assemble operator, which would combine partitions.

The join operator would generate joins for nodes that
can satisfy the join predicate (between attributes R1 and S1).
It would generate the following nodes: {R, S}, {R1, S},
{R1, S1}, {R, S1} and the corresponding nodes with the
join orders reversed. The Assemble operator would generate
{R1, R2}. The Assemble operator is not sensitive to the
order in which the partitions are assembled. Hence {R2, R1}
will not be generated. These nodes will again be grouped
into equivalence classes and the minimal cost node will be
retained for each class. Here are the classes and the best plans
for those classes (we do not include the nodes generated due
to join commutativity for simplicity):

Class 1: {R, S} {R, S1} – best plan {R, S1}
Class 2: {R1, S} {R1, S1} – best plan {R1, S1}
Class 3: {R1,R2}

Among these classes, only Class 1 is complete since it
can project the attribute R2 (the class includes a scan on all
attributes of relation R).

In the next phase of optimization, the Assemble operator
will combine {R1, S1} and {R1, S} with {R2} to generate
{R1, S1, R2} and {R1, S, R2}. The join operator will combine
{R1, R2} with {S} and {S1} to generate {R1, R2, S} and {R1,
R2, S1}. Now, all the generated trees will belong to Class 1
and the best plan among {R,S1} (the current best plan) and
these plans would be picked as the optimal plan.

The Assemble operator would maintain logical properties
that combine the logical properties of the individual parti-
tions being scanned. Among the logical properties we need
to maintain is the notion of attributes that come into scope.
For example, the join operator can evaluate the join {R1, S}
because the attributes required for the join from R (just R1)
have already come into scope. By maintaining this property
we can ensure that vertical partitions are also considered in
the joins and the Assemble operator will ensure that larger
partitions are generated from smaller partitions. This ensures
that the combined space of plans for NSM and DSM will be
explored together.

An interesting benefit of this approach is that it is straight-
forward to generate hybrid plans in which the final query
plan has part of the query using NSM and another part us-
ing DSM. For our query example, {R, S1} is a hybrid plan. In
certain cases, such plans are better than fully DSM or NSM
plans, which would be the only type of plans, generated in the
optimize-twice approach. Thus, conventional query optimiza-
tion can be extended in a simple fashion to generate plans for
fractured mirrors. Such an optimizer is currently being devel-
oped, and we are in the process of investigating further details
including cost models, search space efficiency, and appropri-
ate heuristics for restricting search space.

5 DSM and index structures

The experiments in Sect. 3.3 demonstrated that the NSM stor-
age model is not optimal for those queries that access a small
number of attributes of a table. Since most commercial systems
today use the NSM model, to optimize OLAP-style queries
these systems resort to using index structures such as cover-
ing indices and projection indices. In this section, we briefly
examine how DSM compares to these alternatives.

5.1 Covering indices

An index is termed a covering index if the index’s key value
includes all the attributes required by the query.5 In this case,
the query can be answered by simply scanning the covering
index without accessing the base table. Thus, covering indices
facilitate “index-only” plans. If the covering index key consists
of exactly the attributes required by the query, no unnecessary
I/O operations are performed to read unused attributes, which
is exactly the advantage obtained through the use of the DSM.
Even though both techniques serve similar purposes, there are
subtle differences.

In general, a covering index is optimized for a particular
query. Given sufficient information about the query workload,
it is possible to build covering indices optimized for certain
queries, and a query plan that uses the appropriate covering
index is very likely to be the best plan. If no single covering
index is optimized for a query, it is still possible to use mul-
tiple covering indices to answer a query. For instance, if the
keys of two (or more) B-tree indices together cover the set of
attributes required by a query, the query can be evaluated by

5 In general, covering indices are implemented as multiattribute
B-tree indices.

R. Ramamurthy et al: A case for fractured mirrors 99

Table 3. Evaluating query 6

Alternative query evaluation plans

Plan I Scan (10,4,5,6)
Plan II (10,4) Join (5,6)
Plan III (10) Join (4,5,6)
Plan IV Scan (10,4,5,6,11)
Plan V (10,4,2) Join (5,6,3)

joining these indices using the RID values stored in the leaf
entries of the index. DSM partitions, on the other hand, are a
representation of the base data and are not optimized for any
particular query. Any query can use exactly the minimal num-
ber of partitions necessary, using the chunk-merge algorithm
to merge partitions at runtime.

The key difference between covering indices and DSM
partitions is the fact that they are clustered differently. Cover-
ing indices are clustered on the (multi) attribute key value and
thus can be used to efficiently evaluate range predicates. DSM
partitions, on the other hand, are clustered on the ID value and
hence can be efficiently merged using the chunk-merge algo-
rithm but are not useful for evaluating range predicates. An
important point to observe is that the chunk-merge algorithm
is a no-write algorithm. Regardless of the number of parti-
tions being merged or the size of the partitions, the algorithm
never produces any intermediate files because the partitions
are already clustered on the ID value. Merging multiple cov-
ering indices, on the other hand, is a join operation and will
generally involve writing hash partitions or sort runs to disk
unless the predicates are highly selective.

We next describe some preliminary experiments compar-
ing different evaluation strategies for query 6 of the TPC-H
benchmark. This query requires only four attributes from the
Line-item table (numbers 10,4,5,6). We compare the perfor-
mance obtainable with covering indices to the DSM.

Consider the different query plans listed in Table 3 for
evaluating query 6. A covering index is represented by the
list of attribute numbers that constitute its key. For instance,
Plan I evaluates query 6 by scanning a covering index that
includes all four of the attributes required by the query as part
of its key. Plan II joins two covering indices, each having two
of the attributes required by the query. The other plans use
other combinations of covering indices. Some of the covering
indices have additional attributes in order to simulate cases in
which the indices may not be exactly optimized for the query
at hand.

The experiments were performed using Shore as the stor-
age manager. Covering indices were first implemented using
Shore B-trees with multiattribute keys. However, since Shore
does not link the leaf pages of B-tree indices, the upper levels
of the index end up being traversed multiple times for range
predicates that span multiple leaf pages. Even though these
index pages are present in the buffer pool, the cost of locking
and latching every page leads to suboptimal performance. In
order to provide the fairest comparison, covering indices were
simulated by storing the key values and the RID as records in
a sequential file sorted on the key value. The execution times
for the plans listed in the table, as well as the NSM and DSM

� � � � �

�� � �� �� �� �� �� �� �� �� � �

� � �
� � " #

� �
� � " $

% " '
$

% " ' '
$

% " ' ' '
$

% " ')
$

% ")

+ - / 0 2 / 4 % - 5 7 8 "

: < 2 5 / > '
? @ A

< 2 5 / > '
?

Fig. 12. Comparing covering indices and DSM

plans, is shown in the graph below. The experiments were
repeated using both 8-byte and 16-byte RIDs.

The query plans that join multiple covering indices use a
hash-join algorithm in which the hash partitions fit entirely in
memory. Thus, the join algorithm does not perform any disk
I/O. This illustrates the best case for merging two covering
indices. As the experiments indicate, Plan I using 8-byte RIDs
is the best plan. The interesting point to note is that the DSM
plan is better than all the remaining plans; this is due to the
efficient chunk-merge algorithm for merging partitions. For
certain plans, DSM can provide a speed-up factor of nearly
2.5. These experiments are, however, not meant to represent
a definitive comparison between DSM and covering indices.
Instead, the results do, however, clearly indicate that there are
cases in which using DSM will have better performance. A
key point to keep in mind is that having DSM partitions does
not preclude having covering indices; DSM is a way of storing
data. Additional index structures as deemed appropriate can
still be built to further optimize queries.

5.2 Projection indices

A projection index is a materialization of a particular column
of a relation. Maintaining projection indices on all columns of
a relation is equivalent to the notion of storing the relation in
DSM format. Thus, one can consider using projection indices
on all columns along with the base table stored in NSM as
an alternative to using fractured mirrors. Even though the two
are logically equivalent, this scheme can have inferior perfor-
mance for a couple of reasons. First, the chunk-based merge
algorithm combined with the heuristic for pushing down pred-
icates can give dramatic performance benefits over algorithms
that do not use similar techniques while merging projection
indices. Second, the projection indices are stored as part of
the database; if the database is itself mirrored for fault toler-
ance purposes, we will end up with two copies of the tables
in their NSM representation and two copies of the projection
indices. This is likely to incur significant overhead on each
update. Fractured mirrors constitute a single mechanism for
both fault tolerance and improved I/O performance and are
likely to provide superior query and update performance.

6 Related work

Disk technology trends were discussed in [12]. The authors
point out that, while disk prices have dropped by a factor of

100 R. Ramamurthy et al: A case for fractured mirrors

10,000, accesses per second have grown by a factor of only
100. The importance of cache performance in query process-
ing was studied in [5,14], and PAX was proposed as a solution
[4]. Given that we have an additional copy in DSM, some of
the advantages of PAX can be bought by simply using the
DSM copy. The effectiveness of using PAX for the NSM copy
in fractured mirrors is to be studied as future work.

The notion of using DSM for good disk bandwidth and
cache performance is similar to the notion of building cov-
ering indices for the query at hand. But for query workloads
whose patterns are not known before hand, it may not be possi-
ble to build efficient covering indices. By using the individual
DSM partitions and the chunk algorithm, we can simulate the
functionality of covering indices. Covering indices have been
studied in detail and are available in products like Microsoft
SQL Server. The performance of the DSM model has been
studied in [11,15]. The conclusions were that DSM is better
when the projectivity is low and the selectivity is medium to
low, while NSM is better when both the projectivity and selec-
tivity are high. Performance of single attribute modification is
the same for DSM and NSM, while NSM provides much better
record insert/delete performance. The query-processing algo-
rithm presented in [15] used the notion of join indices, while
we have outlined how query optimization can be extended in a
general fashion to support DSM. A performance evaluation of
DSM using the TPC-D benchmark has also been carried out
in [8] using the Monet main memory database system.

Some of the very early prototype database systems
that hinted at using decomposed storage were [23,24]. The
BUBBA project was among the better-known projects that
advocated the use of DSM. The BUBBA system [10] pro-
posed a notion of using a set of inverted files and a remainder
relation as an online copy instead of mirroring. DSM has also
been used as a physical storage model to implement object-
oriented data models. Query-rewriting schemes for translating
queries on an object-based model into DSM is presented in [8]
using the Monet main memory database system. The notion
of projection indices [17] is an implementation of DSM used
in warehousing environments. Among today’s database prod-
ucts, Sybase-IQ [1], whose target market is data warehousing,
uses vertically partitioned attributes as its storage model. By
using efficient compression techniques and advanced bitmap
indexing, aggregate queries (which are typical in a warehous-
ing environment) can be answered very efficiently. We were
unable to obtain further details as to how the partitions were
indexed and how queries were optimized. The fact that DSM
is suitable for decision support workloads has already been
discussed [1,8,17]. As far as we can tell, this paper is the first
to propose the notion of mirroring using different data storage
formats.

Using mirrors to optimize reads by distributing random
seeks between the disks was first discussed in [6]. This
technique was extended to optimize write performance. The
scheme described in [18] used a notion of distorted mirrors,
which worked at the granularity of disk blocks and cleverly
managed the blocks in two partitions. The notion of the mir-
rors not being identical is similar to our general idea, though
their paper is not concerned with storage models. It would
be interesting to see if some of their optimizations for plac-
ing disk blocks would still be valid under the current scheme
of fractured mirrors. Our proposal of propagating updates to

the vertical partitions by using a differential file in memory is
similar to update piggybacking suggested in [21].

The three-column relation proposed for organizing the dif-
ferential file has been proposed in a different context. New
e-commerce applications require data schemas that are con-
stantly evolving and hence require table structures that are
more flexible than the standard NSM representation. Agrawal
et al. [3] proposed the three-column relation as the standard
storage format, whereas we use it only as a differential file to
record the updates.

7 Conclusions and future work

The decomposition storage model (DSM) has not found
widespread acceptance by database vendors. Given technol-
ogy trends and the need for storage architectures that are more
aware of disk-arm and cache effects during query processing,
we feel that DSM is likely to play a more significant role in
future database system products. This paper identified some
of the fundamental performance limitations of DSM. Contri-
butions of this paper include alternate storage schemes and
scan algorithms for DSM that provide a dramatic increase in
performance over the naive implementation.

A new mirroring technique was proposed as a storage ar-
chitecture that can best exploit the advantages of DSM. We
would like to think of our work as extending the current spec-
trum of mirroring techniques. Based on the workload mix
(queries and updates), the complexity of queries, and the up-
date frequency, one can pick the mirrored architecture that is
most suitable. As shown for complex queries such as those
in the TPC-H suite, there are obvious benefits in maintaining
a copy in DSM. For workloads that do not have high update
rates, the notion of fractured mirrors is likely to suffice. For
higher update rates and TPC-H-like queries, the optimized
version of fractured mirrors that pays more attention to data
placement is likely to be a better choice. For simple queries
with high update rates, the original mirroring scheme is the
best.

As part of our future work, we intend to examine a num-
ber of issues. Given a query workload, we need to decide
good data placement schemes for the partitions. The current
evaluation of the system has focused primarily on the TPC-
H query workload. Future work would include experimenting
with different transaction protocols to update the DSM copy
efficiently and an evaluation of the system using an OLTP
benchmark like TPC-C. Query optimization for the mirrors
offers many problems to be studied. We also need efficient
schemes to handle variable-length records and NULL values.
Currently the mirroring scheme is implemented in software; it
would be interesting to see if RAID hardware could be lever-
aged to any extent.

Acknowledgements. We would like to thank the referees for their de-
tailed comments, the Borg team and Anastassia Ailamaki for sharing
their code, and Joseph Burger for many clarifications on the efficient
use of Shore.

R. Ramamurthy et al: A case for fractured mirrors 101

References

1. SybaseIQ White Paper (2001) www.sybase.com
2. TPCH Benchmark Specification (2001) www.tpc.org
3. Agrawal R, Somani A, Xu Y (2001) Storage and querying of

e-commerce data. In: Apers PMJ, Atzeni P, Ceri S, Paraboschi
S, Ramamohanroa K, Snodgrass RT (eds) Proceedings of the
27th internal conference on very large databases, Rome 11–14
September 2001. Morgan Kaufmann, San Francisco, pp 149–
158

4. Ailamaki A, DeWitt DJ, Hill MD, Skounakis M (2001) Weav-
ing relations for cache performance. In: Apers PMJ, Atzeni P,
Ceri S, Paraboschi S, Ramamohanroa K, Snodgrass RT (eds)
Proceedings of the 27th international conference on very large
databases, Rome, 11–14 September 2001. Morgan Kaufmann,
San Francisco, pp 169–180

5. Ailamaki A, DeWitt DJ, Hill MD, Wood DA (1999) DBMSs on
a modern processor: where does time go? In: Atkinson MP, Or-
lowska ME, Valduriez P, Zdonik SB, Brodie ML (eds) Proceed-
ings of the 25th international conference on very large databases,
Edinburgh, 7–10 September 1999. Morgan Kaufmann, San Fran-
cisco, pp 266–277

6. Bitton D, Gray J (1988) Disk shadowing. In: Bancilhon F, De-
Witt DJ (eds) Proceedings of the 14th international conference
on very large data bases, Los Angeles, 29 August–1 September
1988. Morgan Kaufmann, San Francisco, pp 331–338

7. Blakeley JA, McKenna WJ, Graefe G (1993) Experiences build-
ing the open oodb query optimizer. In: Buneman P, Jajodia S
(eds) Proceedings of the 1993ACM SIGMOD international con-
ference on management of data, Washington, DC, 26–28 May
1993. ACM Press, New York, pp 287–296

8. Boncz PA,WilschutAN, Kersten ML (1998) Flattening an object
algebra to provide performance. In: Proceedings of the 14th
international conference on data engineering, 23–27 February
1998, Orlando. IEEE Computer Society, NewYork, pp 568–577

9. Carey MJ, DeWitt DJ, Franklin MJ, Hall NE, McAuliffe ML,
Naughton JF, Schuh DT, Solomon MH, Tan CK, Tsatalos OG,
White SJ, Zwilling MJ (1994) Shoring up persistent applica-
tions. In: Proceedings of the 1994 ACM SIGMOD international
conference on management of data, Minneapolis, 24–27 May
1994, pp 383–394

10. Copeland GP, Alexander W, Boughter EE, Keller TW (1988)
Data placement in bubba. In: Boral H, Larson P (eds) Proceed-
ings of the 1988 ACM SIGMOD international conference on
management of data, Chicago, 1–3 June 1988. ACM Press, New
York, pp 99–108

11. Copeland GP, Khoshafian S (1985) A decomposition storage
model. In: Navathe SB (ed) Proceedings of the 1985 ACM SIG-
MOD international conference on management of data, Austin,
TX, 28–31 May 1985. ACM Press, New York, pp 268–279

12. Gray J, Graefe G (1997) The 5-minute rule revisited and other
storage rules of thumb. ACM Sigmod Record 26(4):63–68

13. Ioannidis YE (1996) Query optimization. ACM Comput Surv
28(1):121–123

14. Keeton K, Patterson DA, HeYQ, Raphael RC, Baker WE (1998)
Performance characterization of a quad Pentium Pro SMP us-
ing OLTP workloads. In: Proceedings of the 25th annual in-
ternational symposium on computer architecture, Barcelona, 27
June–1 July 1998. ACM/IEEE Computer Society, New York, pp
15–26

15. Khoshafian S, Copeland GP, Jagodis T, Boral H, Valduriez P
(1987) A query processing strategy for the decomposed storage
model. In: Proceedings of the 3rd international conference on
data engineering, 3–5 February 1987, Los Angeles. IEEE Com-
puter Society, New York, pp 636–643

16. Livny M, Khoshafian S, Boral H (1987) Multi-disk management
algorithms. In: Proceedings of the 1987 ACM SIGMETRICS
conference on measurement and modeling of computer systems,
Alberta, Canada, 11–14 May 1987. ACM Press, New York, pp
69–77

17. O’Neil P, Quass D (1997) Improved query performance with
variant indexes. In: Proceedings of the 1997 ACM SIGMOD
international conference on management of data, Tucson, 13–
15 May 1997. ACM Press, New York, pp 38–49

18. Orji CU, Solworth JA (1993) Doubly distorted mirrors. In: Bune-
man P, Jajodia S (eds) Proceedings of the 1993 ACM SIGMOD
international conference on management of data, Washington,
DC, 26–28 May 1993. ACM Press, New York, pp 307–316

19. Ramakrishnan R (1997) Database management systems.
McGraw-Hill, New York

20. Severance DG, Lohman GM (1976) Differential files: their ap-
plication to the maintenance of large databases. TODS 1(3):256–
267

21. Solworth JA, Orji CU (1990) Write-only disk caches. In: Garcia-
Molina H, Jagadish HV (eds) Proceedings of the 1990ACM SIG-
MOD international conference on management of data, Atlantic
City, 23–25 May 1990. ACM Press, New York, pp 123–132

22. Szalay AS, Kunszt PZ, Thakar A, Gray J, Slutz DR (2000) De-
signing and mining multi-terabyte astronomy archives: the sloan
digital sky survey. In: Chen W, Naughton JF, Bernstein PA (eds)
Proceedings of the 2000 ACM SIGMOD international confer-
ence on management of data, 16–18 May 2000, Dallas. ACM
Press, New York, pp 451–462

23. Titman PJ (1974) An experimental database system using binary
relations. In: Proceedings of the IFIP working conference on data
base management, Corsica, France, 1–5 April 1974, pp 351–362

24. Todd S (1975) Prtv: an efficient implementation for large rela-
tional data bases. In: Proceedings of the international conference
on very large data bases, 22–24 September 1975, Framingham,
MA. ACM Press, New York, pp 554–556

