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Abstract. With the recent and continuing advances in areas
such as wireless communications and positioning technolo-
gies, mobile, location-based services are becoming possible.

Such services deliver location-dependent content to their
users. More specifically, these services may capture the move-
ments and requests of their users in multidimensional data-
bases, i.e., data warehouses, and content delivery may be based
on the results of complex queries on these data warehouses.
Such queries aggregate detailed data in order to find useful
patterns, e.g., in the interaction of a particular user with the
services.

The application of multidimensional technology in this
context poses a range of new challenges. The specific chal-
lenge addressed here concerns the provision of an appropriate
multidimensional data model. In particular, the paper extends
an existing multidimensional data model and algebraic query
language to accommodate spatial values that exhibit partial
containment relationships instead of the total containment re-
lationships normally assumed in multidimensional data mod-
els. Partial containment introduces imprecision in aggregation
paths. The paper proposes a method for evaluating the impre-
cision of such paths. The paper also offers transformations of
dimension hierarchies with partial containment relationships
to simple hierarchies, to which existing precomputation tech-
niques are applicable.

Keywords: Location-based services – Multidimensional data
– Data modeling – Partial containment

1 Introduction

Several trends in hardware technologies combine to enable the
deployment of mobile, location-based e-services. These trends
include continued advances in the miniaturization of electron-
ics technologies, in display devices, and in wireless commu-
nications. Other trends include the improved performance of
general computing technologies and the general improvement
in the performance/price ratio of electronics. Perhaps most im-
portantly, geopositioning is becoming increasingly available
and accurate.
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It is expected that the coming years will witness very
large quantities of wirelessly Internet-worked objects that are
location-enabled and capable of movement to varying degrees.
Examples of objects of interest here include consumers using
Internet-enabled mobile-phone terminals and personal digital
assistants, tourists carrying online and position-aware “cam-
eras” and “wrist watches,” vehicles with computing and nav-
igation equipment, etc.

These developments pave the way to a range of qualita-
tively new types of Internet-based services [12]. These types
of services—which either make little sense or are of limited
interest in the traditional context of fixed-location, desktop
computing—include the following: traffic coordination, man-
agement, and way-finding, location-aware advertising, inte-
grated information services, e.g., tourist services, safety-re-
lated services, and location-based games that merge virtual
and physical spaces.

A single generic scenario may be envisioned for these
location-based services. Moving service users disclose their
positional information to services, which in turn use this and
other information to provide specific content and functionality.
The services capture the requests they receive, including their
geographical origins, in a multidimensional database, i.e., a
data warehouse. We note that the privacy of service users is
a concern and that legislation is available that regulates this
aspect (e.g., [8]). We are aware that some service providers
require each customer to enter into an explicit agreement with
the provider that covers the provider’s possible use of the cus-
tomer’s location data.

Querying the resulting data warehouse enables the ser-
vices to analyze their interactions with the users, thus allowing
the services to customize their interactions with the users. As
a result, each user receives a service customized to the user’s
specific preferences and needs and current situation. For ex-
ample, the query “show the number of requests per district for
user X” provides valuable information about the geographical
behavior of user X. In addition, the accumulated data are
used by the service providers for delayed modification of the
services provided and for longer-term strategic decision mak-
ing. For example, the query “show the number of requests per
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city per quarter for the last year" gives information about the
changes in service use for different cities over time.

A data warehouse [1,15,25] is a large repository that orga-
nizes data specifically for analytical purposes by employing
a multidimensional view of data. Multidimensional models
view a central data element for the given domain, e.g., a ser-
vice request, as a fact (also termed a cell), which is uniquely
defined by a combination of dimension values, each of which
stems from one of a number of hierarchically organized di-
mensions. Typical dimensions are the location from which the
request originates, the profile of the user that has issued the
request, and the time of the request. Dimensions are organized
as hierarchies of levels, also termed categories. For example,
the time dimension may have Day, Week, Month, Quarter, and
Year levels.

The multidimensional view is particularly well suited for
complex data analyses, which include data aggregation [25],
i.e., the counting of facts that are characterized by specific
values from the dimensions. Typical operations on multidi-
mensional data warehouses use the dimension hierarchies to
dynamically change the level of detail in order to gain an un-
derstanding of a particular phenomenon.

If more detail is desired, e.g., to understand why the num-
ber of requests dropped sharply in Q4 2002, a “drill down” is
performed, where numbers of requests per month are used in
place of numbers of requests per quarter. If the opposite is true,
i.e., less detail is desired in order to get a better overview, a
“roll up” is performed. This means that it is crucial for multidi-
mensional data warehouses to have well-designed dimension
hierarchies that capture the useful levels of detail. We assume
this kind of data analysis in our scenario.

The scenario is realistic. For example, the Danish com-
pany Euman A/S [7] has developed and deployed a service
delivery system capable of providing location-based services.
Although the current object-relational database underlying
the system is not optimized for complex data analyses, the
database contains data, e.g., data on geo-referenced transporta-
tion infrastructure, that can be used to implement a multidi-
mensional data warehouse. This in turn enables complex mul-
tidimensional analyses of the interactions among the services
delivered by the system and the users.

The scenario entails the capture of spatial data in a multi-
dimensional data warehouse. This poses new challenges. For
example, an appropriate data model should support irregular,
so-called nonnormalized, dimension hierarchies [26] where
the hierarchies are not balanced trees. Next, while dimension
values in conventional multidimensional data models either
are disjoint or exhibit total containment relationships, partial
containment is prevalent in spatial data. For example, a road-
way that extends from a city into a rural area is only partially
contained in the city. Thus, partial containments between di-
mension values, i.e., location values such as roadways and
cities, must be supported by the data model. The inclusion
of advanced modeling facilities in a data model should not
preclude the provision of an efficient implementation of the
data model. In a multidimensional context, this implies that
conventional preaggregation techniques [32] should remain
applicable.

This paper first analyzes the mobile e-service application
domain, formulating requirements to a data model. It then
presents a new multidimensional data model with an accom-

panying algebraic query language that arguably meets the re-
quirements. Notably, the model supports nonnormalized hier-
archies and partial containment. Partial containment, together
with its transitivity property, is the key new aspect of the
model, and the paper treats this topic in detail.

Partial containment introduces additional imprecision in
aggregation paths. Because it is important to be able to eval-
uate the imprecision of a path (e.g., for choosing the most
precise one), the paper offers a path imprecision evaluation
method. Practical preaggregation, i.e., precomputation of se-
lect aggregate results that can be reused to obtain other ag-
gregates, is a technique that is essential for efficiently im-
plementing any multidimensional data model, including the
one proposed here. We thus propose algorithms for making its
dimension hierarchies onto, covering, and aggregation strict.
This enables the application of standard preaggregation tech-
niques in an implementation of the model.

This paper is a revised and substantially extended version
of an earlier conference paper [13]. In particular, the contents
of Sects. 4.7, 5, 6, 7, and the appendix are entirely new.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 describes key require-
ments of a multidimensional data model for location-based
services, and Sect. 4 then presents a data model that aims to
satisfy those requirements. Section 5 completes the descrip-
tion of the model by defining its algebraic query language.
Section 6 presents the method for evaluating the imprecision
of an aggregation path. Section 7 provides an overview of the
algorithms for normalizing dimension hierarchies. Section 8
concludes and points to future work. The appendix provides
the details of the normalization algorithms. The paper can be
read and understood without reading the appendix.

2 Related work

In the domain of spatial data modeling, most related scientific
and industrial work is dedicated to object-relational exten-
sions of SQL. In particular, Egenhofer [6] proposed a spatial
model and query language that compared favorably to several
related languages. A spatiotemporal model and a query lan-
guage were formally defined by Güting et al. [10]. Dedicated
designs of spatial relational algebras with formal semantics
were also proposed by Scholl and Voisard [31] and Gorgano
et al. [2]. As for industrial standards, the Open GIS Consor-
tium [20] adopted a specification [19] for implementation of
a spatial SQL extension, and Oracle Spatial [17] conforms to
this specification.

In essence, these works develop means of analyzing spatial
data, given, among other things, varying relationships between
spatial objects, e.g., overlapping, containment, etc. However,
we believe that the object-relational view of data does not
fully support complex data aggregation. In part, this is due to
the lack of hierarchies. We therefore develop a multidimen-
sional data model and algebra that are capable of capturing
an advanced kind of relationship between spatial objects, i.e.,
partial containment relationships.

Multidimensional data warehouses [1,15,25] are generally
accepted as the most powerful platform for data analysis in
terms of expressive power and performance. Expressive power
is achieved mainly by using the multidimensional concepts of
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dimensions and hierarchies. Good performance is achieved
primarily by using preaggregation, i.e., storing precomputed
results of aggregate queries and using these to answer new
queries more efficiently. However, current multidimensional
database technology does not support the complex structures
needed to handle complex spatial information.

To the authors’ knowledge, no other existing multidimen-
sional data model offers built-in support for partial contain-
ment hierarchies. This deficiency is also suggested by surveys
of multidimensional data models [26, 33]. However, rather
than proposing an entirely new multidimensional data model
and query language, the proposed model and query language
extend a previously proposed multidimensional model and al-
gebra [23,26]. The model that we extend was chosen because
it is formally defined and because it compares favorably to
14 related data models [26]. The paper’s algorithms for the
normalization of partial containment dimension hierarchies
extend algorithms presented by Pedersen et al. [22,24] for use
with the model being extended.

Pedersen and Tryfona [27] propose a slightly different ap-
proach to the multidimensional modeling of spatial data. They
ignore partial containment relationships among hierarchy val-
ues and instead consider spatial facts, i.e., values character-
ized by hierarchy values, that are two-dimensional regions.
Their focus is on how to support practical preaggregation with
such overlapping facts. The conceptual model underlying their
work is the model being extended here.

Ferri et al. [9] propose a method to couple a multidimen-
sional data model with a Geographical Information System
(GIS) to combine the strengths of these technologies. Mod-
ern GISs such as ArcInfo [14] and MapInfo [3] provide some
support for complex geostatistical and spatial analysis. Cur-
rently, the systems neither directly support multidimensional
data modeling nor use preaggregation. Incorporation of these
features into the systems would enable complex data aggrega-
tion queries and consequently enhance analytical capabilities
of the systems. As a result, it would be possible to use the sys-
tems in our scenario of customizing location-based services
to users’ needs.

The area of “imperfect” data has received a great deal of at-
tention in general as well as specialized database contexts [5].
Within multidimensional databases, work has been done on ir-
regular multidimensional data [4,15,26,29] and the associated
summarizability problems [16,26,28]. However, none of these
works consider partial containment dimension hierarchies.

In the industrial domain, linear referencing [30] has been
used quite widely for the positioning of business data, e.g.,
user locations and other points of interest, located along lin-
ear elements (e.g., roadways) in transportation infrastructures.
For example, Oracle Spatial [17] offers support for linear refer-
encing. In addition, a generic data model [18] has been recom-
mended for the capture of different aspects of entire transporta-
tion infrastructures and related business data. By applying the
multidimensional view on linearly referenced data, we would
enable complex aggregation queries on this kind of business
data. In order to achieve this, it is necessary that a multidi-
mensional model provide support for nonnormalized partial
containment hierarchies. For this reason, we believe that our
model, which supports hierarchies of this type, could serve as
a basis for complex analysis of linearly referenced data.

Finally, the World Wide Web Consortium [35] has recently
published a draft specification [34] of an XML-based language
for describing location information. In our scenario, that lan-
guage could facilitate data exchange.

3 Usage scenario and requirements

We introduce a prototypical usage scenario for a multidimen-
sional database in the context of location-based services, and
we use this scenario to illustrate important requirements to a
multidimensional data model. The scenario is also used for
exemplification throughout the paper.

3.1 Usage scenario

In our prototypical usage scenario, a user issues a service re-
quest that is characterized by a combination of values includ-
ing values that capture the time and date of the request, the
profile of the user, and the location from which the request
originates.

The ER diagram in Fig. 1 describes location values that
may be used for capturing the origins of service requests as
well as location values that may prove useful in analyses of
service requests that involve the origins of the requests. The
meanings of most of the entity types found in the diagram
follow from the names of the types, though there are some ex-
ceptions, namely, the entity type IP Address represents fixed
IP addresses, e.g., those of office or home desktop computers,
the type Cell represents wireless network cells, the type Dis-
trict represents city districts, and the type Roadway represents
all types of roads.

The schema is meant to illustrate certain problematic prop-
erties of locations, such as partial containment hierarchies,
while still maintaining simplicity. The schema is not meant
to capture all aspects of locations. For example, generic inter-
national locations or locations in oceans are not handled. For
information on how to model international locations, we refer
to the literature [15].

The diagram uses its naming convention to distinguish be-
tween two different types of binary relationships between enti-
ties, namely, full and partial containment relationships among
the spatial extents of the related entities. In the diagram, an
“F” in a relationship name indicates a total, or full, contain-
ment relationship type, and a “P” indicates that only partial
containment may be assumed.

For example, consider the relationship type co-F-ro be-
tween entity types Coordinate and Roadway, and consider ro-
P-di, which relates Roadway and District. The meaning is that
a coordinate is either fully contained or not contained in a road-
way, which, in turn, may be fully or (only) partially contained
in a district.

Note that all the relationship types in the diagram are stored
relationship types. For example, with the relationship types co-
F-ro and ro-P-di present in the diagram, the relationship type
co-F-di may seem redundant. However, this third relationship
type captures nonredundant information. For example, some
coordinates are not contained in any roadways, but are still
contained in districts.
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Fig. 1. Location ER diagram

The existence of a partial containment relationship type
between two entity types in the case study also implies the ex-
istence of a full containment relationship type between these
two entity types, as full containment is a special case of partial
containment. The intuition is that if objects of one type may
be partially contained in objects of another type, then some
objects of the former type may also be fully contained in ob-
jects of the latter type, although fewer objects will satisfy this
relationship.

In a multidimensional schema, user requests will be mod-
eled as facts and the values that characterize the user requests
are organized into dimensions. For our scenario, we will have
three dimensions. The TIME dimension captures the time of
the user requests and has categories (levels) such as Second,
Minute, and Hour. The USER dimension captures aspects of
the users issuing the requests. It has categories such as Spo-
ken Language, Personal Interest, Actual Age, and Main Oc-
cupation. The LOCATION dimension captures the (possibly
changing) locations of the users when the users issue requests.
Entity types in the Location ER diagram are then represented
as categories in the hierarchy of categories that makes up the
LOCATION dimension, and relationship types in the Loca-
tion ER diagram may be represented as relationships among
categories in the LOCATION dimension. It is normal prac-
tice in multidimensional modeling to include only some of

the relationships found in the source data, the primary driver
being to obtain hierarchies useful for roll-up/drill-down oper-
ations [15].

In Sect. 4, we illustrate how the Location ER diagram is
mapped to the LOCATION dimension. In particular, the issues
involved in deciding how the LOCATION dimension should
be modeled are discussed in detail in Sect. 4.7.

As noted above, the presented usage scenario is based on
a real-world location-based service delivery system [7]. The
database of this system contains the data necessary for imple-
menting a multidimensional data warehouse. For example, the
available data on geo-referenced transportation infrastructure
can be used to build a LOCATION dimension. Although the
available data do not directly capture containment relation-
ships between spatial entities, they can be inferred from the
data.

3.2 Data model requirements

Next we discuss the requirements for a multidimensional data
model that contends with our usage scenario. While the re-
quirements are all highly relevant to our context, most of them
are more general and were formulated earlier. We describe the
requirements only briefly and refer to the literature for further
detail [26]. Other requirements are given elsewhere [11].
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1. Explicit and multiple hierarchies in dimensions Dimen-
sion values are partitioned into categories of values, and
categories are related via containment relationships. For
example, coordinates belong to a Coordinate category, and
Coordinate is contained in Country, meaning that coordi-
nates are contained in countries. Explicit hierarchies are
highly useful in data analysis as they are used for aggre-
gating data to the right level of detail in exploratory analy-
ses that use roll-up/drill-down operations [25]. Support for
multiple hierarchies means that multiple aggregation paths
are possible. These are important for a number of reasons.
The key reason is that multiple hierarchies exist naturally
in much data. Another reason is that these enable better
handling of the imprecision in queries caused by partial
containment in dimension structures. For example, in the
LOCATION dimension, we obtain a more precise result if
roadways are rolled up to countries directly than if road-
ways are rolled up to countries through districts, cities, and
provinces.

2. Partial containment We have seen that two spatial values
may be not only either disjoint or have one contained in the
other; they may overlap. A multidimensional data model
should provide built-in support for dimensions with partial
containment relationships. This will increase the model-
ing power of the model and enable new kinds of queries.
Specifically, we will be able to perform aggregation of data
along hierarchies with partial containment (e.g., districts
would, though approximately, roll up to cities).

3. Nonnormalized hierarchies Situations occur naturally
where a hierarchy value has more than one parent, a value
has no relationship to any value in the category immedi-
ately above it in the dimension hierarchy, or a value has
no relationship to any value in any category below it. For
example, a roadway value may be related to several dis-
trict parent values, and a city value may have no cell child
values.

4. Different levels of granularity In our scenario, user re-
quests are characterized by values drawn from the dimen-
sions. Support for different levels of granularity enables a
request to refer to other values than those in the category
at the lowest level of a dimension hierarchy. For example,
the position of the user may be known at the level of a
coordinate (precise) or at the level of a mobile phone cell
(imprecise).

5. Many-to-many relationships between facts and dimen-
sions This requirement implies that a fact may be related
to more than one value in a dimension. For example, this
is useful in a situation where a request is related to more
than one service user.

6. Handling of imprecision When facts are characterized
by dimension values from different levels, imprecision in
the data occurs. In addition, partial containment introduces
imprecision. Both types of imprecision may lead to impre-
cise aggregate query results. In the first case, a result may
be imprecise because data for a query is missing. In the
second case, the transitive relationships between members
of aggregation paths may become imprecise (see Sect. 6
for details), rendering the results of queries imprecise. This
calls for means of handling imprecision.

We base our proposal for a new model on an existing data
model that satisfies Requirements 1, 3, 4, and 5. Moreover,
Requirement 6 is partially satisfied by the algebra associated
with the preexisting model. However, Requirement 2 (partial
containment) is not met by this or any other existing model.

4 Data model

This section extends the existing multidimensional data model
[26] to support partial containment. The section also presents
properties of the new model, considers its fulfillment of the
requirements, and discusses how to use it when designing di-
mensions.

4.1 Data model definition: dimension schemas

An n-dimensional fact schema is a two-tuple S = (F ,D),
where F is a fact type and D = {Ti, i = 1, . . . , n} is a
set of dimension types. A dimension type T is a four-tuple
(CT ,�T ,�T ,⊥T ), where CT = {Cj , j = 1, . . . , k} are cate-
gory types of the dimension type T , and �T is a partial order
on the set CT . Next, �T is the top element of the order, mean-
ing that ∀C ∈ CT \ {�T } (C �T �T ). Symbol ⊥T is the
bottom element; the precise meaning of this will be described
shortly. A function Anc : CT � 2CT is defined that returns
the set of immediate ancestors of a category type Cj . Function
Desc : CT � 2CT returns the set of immediate descendants
of Cj . The relation�T captures the full containment relation-
ships between category types.

We extend the definition of a dimension type by introduc-
ing an additional relation �P

T ⊆ CT × CT . This new relation
captures the partial containment relationships between cat-
egory types. The properties of the new relation, which are
properties of a partial order, are as follows:

1. ∀C ∈ CT (C ��P
T C) (antireflexivity)

2. ∀(Ci, Cj) ∈ CT × CT
((Ci �P

T Cj) ⇒ (Cj ��P
T Ci)) (antisymmetry)

3. ∀(Ci, Cj , Ck) ∈ CT × CT × CT
(((Ci �P

T Cj) ∧ (Cj �P
T Ck)) ⇒ (Ci �P

T Ck)) (P-to-P
transitivity)

Relations �T and �P
T are related as follows:

∀(Ci, Cj , Ck) ∈ CT × CT × CT
1. ((Ci �P

T Cj) ∧ (Cj �T Ck)) ⇒ (Ci �P
T Ck)) (P-to-F

transitivity)
2. ((Ci �T Cj) ∧ (Cj �P

T Ck)) ⇒ (Ci �P
T Ck)) (F-to-P

transitivity)

After the extension, a dimension type T is a five-tuple:

(CT ,�T ,�P
T ,�T ,⊥T )

We use the notation �(P )
T to indicate the union of the

two orders �T and �P
T . With this notation in place we

can define the meaning of ⊥T being the bottom element:
∀C ∈ CT \ {⊥T } (⊥T �(P )

T C). The functions AncP and
DescP provide ancestors and descendants based on the �P

T
relation, and functions Anc(P ) and Desc(P ) provide ancestors
and descendants based on both relations.
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We use a fact schema to define the structure of a multidi-
mensional data warehouse. The schema is generally capable
of capturing some subset of the structure of some domain (in
our scenario, the domain of a mobile e-service) at some level
of abstraction. The fact schema defines facts as entities of a
particular type (in our scenario, all the facts are service re-
quests). Heterogeneous entities that characterize facts (cities,
age groups, roadways, years, IP addresses, personal interests,
coordinates, minutes, job categories, etc.) are organized into
multiple dimensions, e.g., LOCATION and TIME dimensions.
In a dimension, each type of entity has a corresponding cate-
gory type (e.g., Coordinate, City, etc.). The types are organized
into multiple partial and full containment hierarchies, along
which the facts will be aggregated.

While these hierarchies reflect some containment hierar-
chies of the domain (e.g., Coordinate < Cell < Province <
Country < � and Coordinate < IP address < Province <
Country < �), application requirements also impact the de-
sign of dimensions.With the new model fully defined, Sect. 4.7
covers dimensional database design based on the model. In
essence, if we eventually wish to aggregate facts character-
ized by entities of type Ci (in our model, by dimension values,
as defined later) with respect to entities of type Ck, then we re-
late these two types. Specifically, if entities of types Ci and Ck

exhibit full (partial) containment relationships, we introduce
the relationship Ci �T Ck (Ci �P

T Ck).
The use of relations �P

T and �T for building hierarchies
of category types is the motivation behind defining them as
partial orders. This ensures that the resulting data warehouse
schema supports data aggregation. First, for a pair of category
types (Ci, Cj), the antisymmetry properties ensure that either
Ci is placed higher in the hierarchy than Cj , or vice versa—
both variants are not allowed at the same time. This uniquely
indicates the direction of aggregation from bottom (category
type ⊥T ) to top (category type �T ). Second, the transitivity
enables “comparison” of category types, i.e., if Ci is lower
than Cj and Cj is lower than Ck, then Ci is lower than Ck. This
defines possible aggregation paths.

Example 1. In Figs. 2 and 3, we present the result of applying
the model to our domain. The figures depict the USER, TIME,

All

Country

Province

City

District

Coordinate

CellIP address

Full containment only

Partial and full
containment

Roadway

Fig. 3. LOCATION dimension

and LOCATION dimensions. Nodes denote category types
and links between nodes imply relationships between category
types.

Since Sect. 3 identifies three dimensions, we have a
three-dimensional fact schema Scase = (Fcase,Dcase),
where Fcase = Request and the set of dimension types
is Dcase = {Tloc, Tuser, Ttime}. The dimension type
of the LOCATION dimension is Tloc = {Cloc, �Tloc,

�P
Tloc

,Call, Ccoordinate}. As a rule, the relations on set Cloc =
{Ccoordinate , Croadway ,Cdistrict , Ccity , Cprovince , Ccountry ,
Cipaddress , Ccell , Call} are given as follows: if there exists
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a relationship type of the full (partial) containment variety
between entity types, the corresponding category types are
related by �Tloc (�P

Tloc
) (e.g., Croadway �P

Tloc
Cdistrict and

Ccoordinate �Tloc Cprovince ). However, as noted, application
requirements, e.g., support for certain roll-up and drill-down
operations, also influence the design of dimensions. Thus, the
LOCATION dimension models only selected aspects of the
miniworld captured in the ER diagram in Fig. 1 (see Sect. 4.7
for details).

We term a relationship between category types Ci �(P)
T Cj

direct if it is given directly in the relation�(P )
T (without using

transitivity); otherwise, the relationship is indirect. For exam-
ple, the relationship Roadway �(P )

T District is direct, and

if also District �(P )
T City then Roadway �(P )

T City is an
indirect relationship.

4.2 Data model definition: dimension instances

After defining the schema level for dimensions in the data
model, we proceed to define dimension instances, starting
again from the prototypical data model.

Given a fact schema S, a dimension of type T ∈ D is a two-
tuple D = (CD,�), where CD = {Cj , j = 1, . . . , k} is a set
of categories. Each category Cj has a unique corresponding
type Cj (a function Type : CD �

⋃
i CTi

is defined and we
write Type(Cj) = Cj). A category Cj is a set of dimension
values of type Cj .

The relation � is a partial order on
⋃

jCj (we henceforth
simply write Dim instead of

⋃
jCj). The definition of the par-

tial order is as follows. Given a pair of values (ei, ej) ∈ Ci×Cj

such that Type(Ci) �T Type(Cj), ei � ej means that ei is
fully contained in ej . Dimension values of the category of
type ⊥T , i.e., the “lowest” dimension values, are contained in
values of other categories but do not contain anything them-
selves. The category of type �T has exactly one value, i.e.,
the “highest” value, denoted �, containing all values in the
dimension. Note that the partial order on category types and
the functions Anc and Desc imply a corresponding order and
corresponding functions on categories.

We extend the definition of a dimension by generalizing the
existing partial order� on dimension values, which is capable
only of expressing full containment hierarchies. Specifically,
we replace � by a relation P ⊆ Dim × Dim × [0; 1]. In a
triple (ei, ej , d) ∈ P , we refer to the value d as the degree of
containment. With this extension, a dimension is a two-tuple
D = (CD, P ).

Example 2. Our LOCATION dimension is given by
Dloc = (Cloc, Ploc), where Cloc = {Coordinate,Roadway ,
District ,City ,Province,Country , IPAddress,Cell ,�}
(one category for each node in Fig. 3).

As reflected in the name of the new relation (P stands for
“partial”), triples in the relation P define partial containment
relationships between dimension values. The definition of the
relation is as follows. Given a pair of values (ei, ej) ∈ Ci×Cj

such that Type(Ci) �(P )
T Type(Cj), we define (ei, ej , d) ∈

P , or simply ei �d ej , to mean that dimension value ei is

contained in dimension value ej so that the size of the part of
ei contained in ej is larger than or equal to d times the size of
ei.

Intuitively, we expect that in most cases when we record
a relationship in our warehouse, 0 < d < 1. To record this,
it is required that Type(Ci) �P

T Type(Cj). In the special
case where d = 1, which is defined only if Type(Ci) �T
Type(Cj), we say that dimension value ei is fully contained
in dimension value ej . When d = 0, which requires that
Type(Ci) �P

T Type(Cj), ei may be contained in ej .

Finally, if Type(Ci) �(P )
T Type(Cj), we also define

ei �� ej to mean that dimension value ei is not contained
in dimension value ej .

In the following, we assume that ei ∈ Ci, ej ∈ Cj and
ek ∈ Ck. We also assume that Type(Ci) = Ci, Type(Cj) =
Cj , Type(Ck) = Ck and that (Ci �T Cj �T Ck). The basic
properties of the new relation are as follows.

1. Containment in all:
∀e ∈ Dim \ {�}(e �1 �)
Naturally, each dimension value e is fully contained in the
“highest” dimension value.

2. Transitivity of full containment (f-to-f transitivity):
∀(ei, ej , ek) ∈ Ci × Cj × Ck

(((ei �1 ej) ∧ (ej �1 ek)) ⇒ (ei �1 ek))
If ei is fully contained in ej and ej is fully contained in
ek, it is natural to infer that ei is fully contained in ek.

In defining the transitivity of partial containment, we em-
ploy a “safe” approach, where the idea is that we infer the
relationships between dimension values with the maximum
degrees of containment that hold.

3. Transitivity of partial containment:
Assume that (Ci �(P )

T Cj �(P )
T Ck). Then the following

hold.
∀(ei, ej , ek) ∈ Ci × Cj × Ck :
(a) p-to-f transitivity:

∀d ∈ [0; 1)((ei �d ej) ∧ (ej �1 ek) ⇒ (ei �d ek))
While ek may contain the part of ei that is not in ej , the
conditions of the property do not give us information
on this. We infer only what we can guarantee: what is
contained in ej is also contained in ek.

(b) f-to-p transitivity:
∀d ∈ [0; 1)((ei �1 ej) ∧ (ej �d ek) ⇒ (ei �0 ek))
If ei is fully contained in ej and ej is partially contained
in ek then we can only infer that at least no part of ei

is contained in ek. In other words, we infer that ei may
be contained in ek.

(c) p-to-p transitivity:
∀(di, dj) ∈ [0; 1) × [0; 1)
((ei �di ej) ∧ (ej �dj ek) ⇒ (ei �0 ek))
The reasoning follows the pattern from above: if ei is
partially contained in ej and ej is also partially con-
tained in ek, then we can only infer that ei may be
contained in ek.

4.3 Building a dimension hierarchy

To convey the intuition behind the definition of a dimension,
we consider the construction of the hierarchy in a dimension
instance, the focus being on the relation P .
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Fig. 4a,b. Schema a and instance b of a simplified LOCATION di-
mension

In the explanation of how we construct a dimension hi-
erarchy, we term a relationship between dimension values
ei �d ej direct if it is given explicitly in the relation P (with-
out using transitivity); otherwise, the relationship is indirect.
In short, direct relationships are used to support data aggrega-
tion from one category to any category immediately above it.
In turn, indirect relationships support data aggregation from
one category to any higher category.

In order to exemplify the process of building dimension
hierarchies, we introduce a dimension D′

loc = (CD′
loc

, P ′
loc),

which is a simplified version of the LOCATION dimension
Dloc. Figure 4a depicts the schema of this dimension.

Based on our scenario, we assume that we have the fol-
lowing dimension values: coordinates Coord1 and Coord2,
roadways Roadway1 and Roadway2, cities City1 and City2,
district District1, province Province1, etc. Each of the values
belongs to precisely one category (e.g., Roadway1 belongs to
the Roadway category), and they are related to other values
via a dimension hierarchy given by partial order P ′

loc.
Figure 4b then depicts an (incomplete) instance that cor-

responds to this schema. More specifically, the solid links be-
tween dimension values represent relationships that would be
captured explicitly in relation P ′

loc, i.e., direct relationships.
The numbers next to the links denote containment degrees.
The dotted and dashed links represent indirect, inferred rela-
tionships between dimension values.

We now explain how to build a relation P while exempli-
fying the process by building relation P ′

loc. First, we populate
P ′

loc with special direct relationships between dimension val-
ues that hold for every domain. Specifically, for each dimen-
sion value, e.g., Roadway1, we add Roadway1 �1 � to the
relation.

Second, we add other direct relationships, but now
domain-specific. For example, if we know that District1 lies
fully within City1 and that 50% of Roadway1 is in District1,
then we add District1 �1 City1 and Roadway1 �0.5
Disctrict1 to the relation. We do not introduce zero-degree
containments in this step because we assume that all relation-
ships that exist are known to us. If we were uncertain about

some relationships, direct zero-degree containment relation-
ships could result.

Third, by applying transitivity to the relationships that we
have so far, we infer new, indirect relationships. While transi-
tivity is initially applied to the direct relationships, it is applied
repeatedly until no new relationships may be inferred. We pro-
ceed to consider some examples.

Using f-to-f transitivity, if Roadway2 �1 District1 and
District1 �1 City1, we infer Roadway2 �1 City1. Thus, if
we know that Roadway2 is fully contained in District1 and
that District1 is fully contained in City1, then we infer that
Roadway2 is fully contained in City1.

If Roadway1 �0.5 District1 and District1 �1 City1,
we may use p-to-f transitivity to infer Roadway1 �0.5 City1.
So if we know that 50% of Roadway1 is in District1 and that
District1 lies fully within City1, we infer that 50% of the
roadway Roadway1 is in City1. The result can be imprecise,
but we acknowledge that some part of Roadway1 lies in City1
and indicate the guaranteed percentage.

As an example of using f-to-p transitivity, if Roadway3 �1
District2 and District2 �0.7 City2, we infer Roadway3 �0
City2. This means that if we know that the roadway
Roadway3 is in District2 and also that 70% of District2
is contained in City2, we can only infer that Roadway3 may
be contained in City2.

We may also use p-to-p transitivity: if Roadway2 �0.6
District2 and District2 �0.3 City1, we infer Roadway2 �0
City1. In other words, we can only infer that Roadway2 may
be contained in City1.

To summarize, in our model, we relate two values accord-
ing to full, or partial with nonzero-degree, containment if it is
given that the domain entities they represent exhibit the spe-
cific relationship. We relate two values according to partial
containment with zero degree if we can infer that the entities
they represent may be related according to partial containment.
If it is given that two entities are unrelated or if we cannot infer
their relation, we do not relate the corresponding values.

We note that if there are no partial containment relation-
ships in a domain, we could still use the extended model.
For category types, we then just use notation Ci �T Cj and
Ci ��T Cj (full and no containment, respectively) and never
use notation Ci �P

T Cj (partial containment). For dimension
values, we just use notation ei �1 ej and ei �� ej (full and no
containment, respectively) and do not use notation ei �d ej ,
where d ∈ [0; 1) (partial containment).

4.4 Data model definition: facts

For the formal definition of facts, we define ei 	1 ej ≡ (ei �1
ej) ∨ (ei = ej) and Ci 	T Cj ≡ (Ci �T Cj) ∨ (Ci = Cj).

Consider a set of facts F of type F and a dimension D =
(CD, P ). A fact-dimension relation R is defined as R ⊆ F ×
Dim . In the prototypical model, a fact f ∈ F is said to be
characterized by dimension value ek, written f � ek, if ∃ei ∈
Dim ((f, ei) ∈ R∧ei 	 ek). It is required that ∀f ∈ F (∃e ∈
Dim ((f, e) ∈ R)).

We extend this definition in only one respect: as a conse-
quence of introducing partial containment, we need to use p-
characterization. We say that a fact f ∈ F is 0-characterized
by dimension value ek, written f �0 ek, if ∃ei ∈ Dim
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Fig. 5a,b. Relationships between facts and a simplified LOCATION
dimension

(((f, ei) ∈ R) ∧ (ei �d ek) ∧ (d < 1)). In addition, we will
refer to the characterization from the prototypical model as 1-
characterization, written f �1 ek, if ∃ei ∈ Dim (((f, ei) ∈
R) ∧ (ei 	1 ek)).

Example 3. In our case study, the set of facts of type Frequest
is Frequest = {A, B, C, . . .}. The fact-dimension relation be-
tween Dloc and Frequest could be denoted as Rloc.

A fact-dimension relation links facts and corresponding
dimension values. Each fact is related to at least one dimension
value in each dimension. Characterization is propagated up
along a hierarchy of dimension values. We use 1-characteri-
zation to mean that a fact is known for sure to be characterized
by a dimension value, and we use 0-characterization to mean
that a fact may be characterized by a dimension value.

Example 4. Figure 5 illustrates characterization of facts from
Frequest by values from the simplified LOCATION dimen-
sion D′

loc in Fig. 4. Unnumbered, solid arrows denote fact-
dimension relationships. Numbered, dotted arrows denote
propagated characterizations of facts.

We link a fact to a dimension value if the domain object
represented by that fact is characterized by the object repre-
sented by the dimension value. For example, if we know that
request A has been issued from Roadway1, then we add the
pair (A,Roadway1) to the relation R′

loc.
We also infer characterizations of facts. This is analo-

gous to inferring indirect relationships between dimension
values using f-to-f and f-to-p transitivity. Specifically, we 1-
characterize a fact by a dimension value if the dimension value
that it is linked to is fully contained in that dimension value.
So, if (G,Roadway2) ∈ R′

loc and Roadway2 � City1, then
G �1 City1. In this case, it is natural to say that fact G is
surely characterized by City1. Next, we 0-characterize a fact
by a dimension value if the dimension value that it is linked
to is only partially contained in that dimension value. For ex-
ample, if (A,Roadway1) ∈ R′

loc and Roadway1 �0 City1,
then A�0 City1. In this case, it is natural to say that fact A
may be characterized by City1.

Finally, a multidimensional object (MO) is a four-tuple
M = (S, F, DM , RM ), where S = (F ,D = {Ti, i = 1, . . . ,
n}) is a fact schema, F is a set of facts of type F , DM =
{Di, i = 1, . . . , n} is a set of dimensions, where dimension
Di is of type Ti, and where RM = {Ri, i = 1, . . . , n} is a
set of fact-dimension relations such that ∀i ((f, e) ∈ Ri ⇒
((f ∈ F ) ∧ ∃C ∈ CDi(e ∈ C))). A multidimensional object
brings the different parts of the domain model together and
completes the definition of the model.

Example 5. In our case, we can define the multidimensional
object Mcase = (Scase, Frequest , Dcase , Rcase).

4.5 Model properties

We proceed to define important properties of the data model.
The definitions extend the ones given in the prototypical model
with support for partial containment. In the definitions, we
assume a multidimensional object M = (S, F, DM , RM ) and
a dimension D ∈ DM . We also assume that Type(Ci) = Ci,
Type(Cj) = Cj , and Type(Ck) = Ck.

Definition 1. Given two distinct categories Ci and Cj , where
Cj ∈ Anc(P )(Ci), we say that the mapping from Ci to Cj

is onto if ∀ej ∈ Cj (∃(ei, d) ∈ Ci × [0; 1] (ei �d ej));
otherwise, it is non-onto. If all the mappings in a dimension are
onto, we say that the dimension hierarchy is onto; otherwise,
it is non-onto.

Example 6. The mapping from Province to Country is onto
because each country is partitioned into provinces. However,
the mapping from IPAddress to City is non-onto because
some cities have no computers (IP addresses). Thus, the hier-
archy of the dimension Dloc is non-onto. The hierarchy of the
Dtime dimension is onto.

Definition 2. Given three distinct categories Ci, Cj , and

Ck, where Ci �(P )
T Cj �(P )

T Ck, we say that the mapping
from Cj to Ck is covering with respect to Ci if ∀(ei, d) ∈
Ci × [0; 1] (∀ek ∈ Ck ((ei �d ek) ⇒ ∃(ej , di, dj) ∈
Cj × [0; 1] × [0; 1] ((ei �di

ej) ∧ (ej �dj
ek)))); other-

wise, it is noncovering. If in a dimension all the mappings
with respect to all the categories are covering, we say that the
dimension hierarchy is covering, otherwise, it is noncovering.

Example 7. Consider the categories Roadway , Province , and
Country in Dloc . Each roadway going through some country
also goes through a province. So the mapping from Province
to Country is covering with respect to Roadway . Consider the
categories Coordinate, Roadway , and District . Some coor-
dinates do not lie on any roadway, so we map them directly
to districts. This means that the mapping from Roadway to
District is noncovering with respect to Coordinate. Thus,
the hierarchy of the dimension Dloc is noncovering. In con-
trast, the hierarchy of the dimension Dtime is covering.

Definition 3. Given two distinct categories Ci and Cj , where
Cj ∈ Anc(P )(Ci), we say that the mapping from Ci to Cj

is strict if ∀(ei, di1 , di2) ∈ Ci × [0; 1] × [0; 1] (∀(ej1 , ej2) ∈
Cj × Cj ((ei �di1

ej1) ∧ (ei �di2
ej2) ⇒ ((ej1 = ej2) ∧

(di1 = di2)))); otherwise, it is nonstrict. If in a dimension all
the mappings are strict, we say that the dimension hierarchy
is strict; otherwise, it is nonstrict.
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Example 8. The mapping from IP Address to Province is strict
because an address uniquely identifies a province. But the
mapping from Cell to Province is nonstrict because a cell may
be shared by provinces. Thus, the hierarchy of the dimension
Dloc is nonstrict. The hierarchy of the dimension Dtime is
strict.

Definition 4. We say that a dimension hierarchy is aggre-
gation strict if it is strict or the following holds: if Cj ∈
Anc(P )(Ci) and a mapping from Ci to Cj exists that is non-
strict then Anc(P )(Cj) = ∅; otherwise, it is aggregation non-
strict.

Example 9. Consider the categories Cell and Province.
As the mapping from Cell to Province is nonstrict and
Anc(P )(Province) �= ∅, the hierarchy of the dimension Dloc
is aggregation nonstrict. The hierarchy of dimension Dtime is
aggregation strict because it is strict.

Definition 5. We say that a dimension hierarchy is normal-
ized if it is onto, covering, and aggregation strict; otherwise,
it is nonnormalized. We say that a multidimensional object
is normalized if all its dimensions Di are normalized and
∀Ri ∈ RM (((f, e) ∈ Ri) ⇒ (e ∈ ⊥Di)); otherwise, it is
nonnormalized.

Example 10. The hierarchy of the dimension Dtime is nor-
malized because it is onto, covering, and strict. But the hier-
archy of the dimension Dloc is nonnormalized because it is
non-onto, noncovering, and aggregation nonstrict. Therefore,
the multidimensional object Mcase is nonnormalized.

4.6 Meeting the requirements

We now examine whether the requirements stated in Sect. 3.2
have been met. Explicit and multiple hierarchies are supported
with the help of the partially ordered dimension types. Partial
containment is supported with the help of special relations
on category types and dimension values. The relation on di-
mension values supports nonnormalized hierarchies. Nonstrict
hierarchies are captured by allowing a dimension value in a
category to be related to several values in an ancestor cate-
gory. Non-onto hierarchies may be built: a dimension value
in a category is allowed to have no children in a descendant
category. Noncovering hierarchies are also supported because
a value is not required to be related to another value in an im-
mediate parent category, i.e., a link between dimension values
may “skip” one or more levels.

Many-to-many relationships between facts and dimen-
sions can be implemented by relating a fact to several dimen-
sion values in a dimension and relating a dimension value
to several facts. This is allowed by the definition of fact-
dimensional relationships. Different levels of granularity are
handled: facts may map to dimension values from different
categories. The combination of support in the data model for
different levels of granularity of facts and partial containment
of dimension values provides a basis for supporting impreci-
sion in the data [26].

4.7 Designing dimension schemas

We turn our attention to the design decisions that go into the
creation of multidimensional dimension schemas. We initially
consider the design context, then offer five guidelines for di-
mension schema design.

4.7.1 Design context

The design of a multidimensional schema typically begins
with the analysis of a single business process, e.g., users re-
questing services, and then determines the relevant facts and
dimensions for this process.

It is important that the dimensions be rich on contextual
information that can be used for characterizing the facts. Rich
dimensions enable multiple aggregations of facts and enable
roll-up and drill-down operations. Supplying this rich context
typically requires data from several data sources.

Only information relevant to the analysis of the particular
business process is captured in the multidimensional schema;
much other information is omitted. For example, a multidi-
mensional schema based on our scenario will leave out some
of the relationships present in Fig. 1. We do not try to cap-
ture every aspect of the miniworld in one-multidimensional
schema. A multidimensional model is not a replacement for
the ER model or UML.

It is beyond the scope of this paper to describe a full data
warehouse design process in detail; for this, we refer to the
literature [15]. Rather, we consider the design issues that are
particular to the data occuring in location-based services, most
notably spatial data hierarchies with partial containment rela-
tionships. We summarize the discussions into a set of general
guidelines for the design of dimension schemas with such
data. The insights and guidelines presented here are thus part
of some complete methodology for multidimensional database
design, e.g., the one described by Kimball et al. [15].

4.7.2 Dimension design guidelines

Because the data model presented here allows partial con-
tainment relationships in dimensions, it generalizes existing
models and offers new means of modeling dimensions. Be-
low we explore pertinent implications of using the model for
the design of dimensions.

Section 3.1 describes a prototypical usage scenario for
a multidimensional database in the context of a location-
based service. In particular, Fig. 1 depicts an ER diagram that
presents various location values of relevance to location-based
services. We proceed to consider the process of mapping the
ER diagram to the LOCATION dimension shown in Fig. 3.

The ER diagram captures information about containment
relationships among various location entity types. Transitive
relationships are not shown, and there are no explicit descrip-
tions of hierarchies. We must build explicit hierarchies based
on this diagram that enable the capture of data and the relevant
analyses.

For example, as a reflection of the relationship types ro-P-
di and di-P-ci in the ER diagram—and because a roadway is
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typically contained in one city, so that we find it most informa-
tive to aggregate requests per roadway into requests per city—
we will have a category Roadway that is below a category City
in our dimension hierarchy. We identify the Coordinate cate-
gory as the lowest category because its corresponding entity
type is only contained in other types.

The highest category has a single value, denoted �, that
contains all other values. This value is very useful in analyses
as we can easily express aggregation over a whole dimension.
In our case, the ER diagram happens to have a corresponding
entity type, but in many cases the � category is implicit and
must be created specially for the multidimensional schema.
We summarize this into the guideline “(1) build explicit hier-
archies with top and bottom categories.”

When building the LOCATION dimension, we obtain mul-
tiple hierarchies. The use of these is caused in part by the sup-
port for partial containment, so we explore this aspect in some
detail. An obvious reason for introducing multiple hierarchies
is that mutually exclusive hierarchies exist in the scenario. For
example, the groupings of the coordinates of service requests
by mobile cells and by an administrative unit such as road-
ways are exclusive, as one category cannot meaningfully be
said to be contained in another. Therefore, the Cell category
does not fit anywhere in the (main) hierarchy, Coordinate <
Roadway < District < City < Province < Country < �. It is
instead part of separate hierarchies, e.g., Coordinate < Cell
< Province < Country < �, which skip the Roadway cate-
gory. In general, building these kinds of hierarchies translates
into inserting categories and corresponding relationships in the
LOCATION dimension. We summarize this into the guideline
“(2) introduce an additional hierarchy if a category does not
fit into the existing hierarchies.” The other cases where it is
necessary to build additional hierarchies are discussed next.

An additional relationship may be inserted to “mend” a
noncovering hierarchy. To illustrate, recall from Example 7
that it is possible for a coordinate to not lie on any roadway,
while it does lie in some district. The consequence is that we
cannot map all coordinates to their corresponding districts via
the Roadway entity type in Fig. 1 or the Roadway category
in Fig. 3. As we consider this mapping important for data
analyses, we include a direct relationship from Coordinate to
District in the LOCATION dimension. This relationship then
creates a new path, or hierarchy, from Coordinate to �. We
summarize this as follows: “(3) insert direct relationships to
capture noncovering hierarchies.”

Next, note that there are some relationship types from the
ER diagram that do not have corresponding relationships in the
dimension. For example, the ro-P-co relationship type would
yield a direct relationship between the Roadway and Country
categories, which is absent from the dimension. The following
reasoning went into this design decision.

First, in the real world, each roadway goes through a pro-
vince that is part of some country, meaning that the relation-
ship between Province and Country is covering with respect to
Roadway. We are thus able to relate roadways to correspond-
ing countries through values from the Province category – we
do not depend on a direct relationship between the Roadway
and the Country categories. Second, transitive partial contain-
ment relationships between dimension values are generally
less precise than direct ones. However, in some situations,
such as the one we are considering, maintaining a high pre-

cision of the degrees of containment in relationships between
values of two categories may not be important. For example,
a single roadway typically contributes only very little to the
aggregate for a whole country, so the imprecision caused by
rolling up through provinces is negligible and is preferred over
creating a more complex schema.

If high-precision partial containment relationships are im-
portant, we insert direct relationships. For example, had it been
important that roadways roll up to countries as precisely as
possible, we would add a direct relationship between Road-
way and Country. This illustrates a trade-off: if one wants high
precision, this comes at the cost of increasing the size and
complexity of a dimension. The higher precision we want,
the more direct relationships are needed. We summarize as
follows: “(4) start with the relevant immediate parent-child
relationships and insert direct, nonimmediate relationships if
and only if high precision is desired.”

Another aspect of dimension design is how to determine
which category should be below which other category. While
this may not be obvious in the general case, it is most often easy
to decide how to relate two dimension categories. This is the
case when values from one category are inherently “smaller”
than those of another category. For example, since provinces
are parts of countries, there is a full containment relationship
from Province to Country, not the other way around.

To illustrate that relationships between categories are not
always obvious, consider the relationship between the District
and City categories. In reality, districts exist that are contained
in cities – they are termed city districts. The LOCATION di-
mension assumes this district type. However, there are also
districts that contain cities, e.g., church districts may include
several small “cities.” In addition, dimension values from two
different categories can be of the same size, e.g., cities and dis-
tricts are not related by containment relationships but simply
overlap.

One approach to addressing this problem is to divide the
common District category into several categories, one for each
district type, thus introducing, e.g., Church District and City
District categories. The category City District is then placed
below the City category, and Church District is placed above
City. This approach does not contend well with large cities
and city districts that contain church districts.

Another approach is to allow districts of all types to belong
to the unique District category, with a pair of symmetric di-
rect relationships between the City and District categories, i.e.,
City �(P )

Tloc
District and District �(P )

Tloc
City . These relation-

ships enable us to capture the desired relationships between
district and city dimension values. For example, if city City1
and church district District1 overlap, we may include two re-
lationships with the appropriate degrees of containment, e.g.,
City1 �0.6 District1 and District1 �0.2 City1.

However, the antisymmetry property of the order on cat-
egories does not allow symmetric, direct relationships. This
restriction aims to avoid inappropriate transitive relationships
between dimension values. For example, without antisym-
metry, in our case, by p-to-p transitivity it may be inferred
that District1 �0 District1, which is undefined. Also, per-
forming this kind of roll up makes little sense.

We summarize this last discussion into the last guideline:
“(5) choose the hierarchical relationship between two cate-
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gories based on the most common case and such that aggre-
gation makes the most sense.”

5 The algebra

In this section, we present an algebra for the extended data
model. It is based on the algebra for the prototypical model.
We redefine the operators (selection, union, and aggregate for-
mation) that need to be extended in order to support partial
containment. The operators that can be taken directly from
the prototypical algebra without modification include projec-
tion, rename, difference, and identity-based join, as well as
derived operators such as value-based join, duplicate removal,
SQL-like aggregation, star join, drill down, and roll up.

For unary operators, we assume a single n-dimensional
MO M = {S, F, DM , RM}, where DM = {Di, i = 1, . . . ,
n} and RM = {Ri, i = 1, . . . , n}. For binary operators we
assume two n-dimensional MO’s M1 = (S1, F1, DM1 , RM1)
and M2 = (S2, F2, DM2 , RM2), where DM1 = {D1

i ,
i = 1 , . . . ,n}, DM2 = {D2

i , i = 1, . . . , n}, RM1 =
{R1

i , i = 1, . . . , n}, and RM2 = {R2
i , i = 1, . . . , n}. Given

a dimension Di with the set of categories CDi = {Cj , j =
1, . . . , k}, we use the notation Dimi for

⋃
j Cj .

Example 11. In order to illustrate the workings of the oper-
ators, we construct two example MOs denoted by M1

case and
M2

case . Figure 6a depicts the schema of the LOCATION di-
mension of the MOs, which is a simplified version of that of
Mcase . In Figs. 6b and 6c, the structure of the LOCATION di-
mensions of M1

case and M2
case , respectively, is presented, with

numbers near the links denoting the degrees of containment.
The arrows in Figs. 6b and 6c represent the fact-dimension re-
lationships in the LOCATION dimensions. Note that facts may
map directly to dimension values in nonbottom categories. The
TIME and USER dimensions of the MOs are identical to the
corresponding dimensions of Mcase .

5.1 Selection operator

The selection operator is used to select a subset of the facts
in an MO based on a predicate. We first restate the definition
from [26]. Given a predicate q : Dim1 × . . . × Dimn �
{true, false}, the selection operator for the prototypical mod-
el, σ, is defined as: σ[q](M) = M ′ = (S ′, F ′, D′

M′
, R′

M′
),

where S ′ = S,
F ′ = {f ∈ F | ∃(e1, . . . , en) ∈ Dim1 × . . . × Dimn;
((q(e1, . . . , en)) ∧ (f � e1) ∧ . . . ∧ (f � en))},
D′

M ′ = DM ,
R′

M ′ = {R′
i, i = 1, . . . , n},

and R′
i = {(f ′, e) ∈ Ri | f ′ ∈ F ′}.

The selection operator for the extended model, σext , uses
the new 2n-ary predicate qext : Dim1 × . . . × Dimn ×
[0; 1] × . . . × [0; 1] � {true, false}. The resulting set of
facts is F ′ = {f ∈ F | ∃(e1, . . . , en) ∈ Dim1 × . . . ×
Dimn (∃(d1, . . . , dn) ∈ [0; 1] × . . . × [0; 1] ((qext(e1, . . . ,
en, d1, . . . , dn)) ∧ (f �d1 e1) ∧ . . . ∧ (f �dn en)))}.

We thus restrict the set of facts to those that are charac-
terized by dimension values where qext evaluates to true. In
addition, we restrict the fact-dimension relations accordingly,
while the dimensions and the fact schema stay the same. The
operator supports partial containment by letting the value of
the predicate depend on degrees of containment. This allows
us to formulate queries that select either facts that are surely
characterized by a dimension value, or facts that may be char-
acterized by a value, or both.

Example 12. Suppose we want to select requests from M1
case

that were surely issued from District2. In addition, the time
of the requests we are interested in is July 14, 2001, and
the users associated with the requests must be 21–30 years
old. The predicate for the query is: (eloc = District2) ∧
((euserage ∈ [21; 30]) ∧ (etime = [07\14\2001 ]) ∧ (dloc =
1) ∧ (duserage = 1) ∧ (dtime = 1). Notice that B �1
District2, so request B will be in the result.
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Example 13. Suppose we want to select requests from M2
case

that may have been issued from City1. Moreover, we take
only nighttime requests (i.e., from 10 p.m. to 6 a.m.) into
consideration. The predicate for this query may be given as
follows: (eloc = City1) ∧ (etime ∈ {10 p.m., . . . , 12 p.m.,
. . . , 1 a.m., . . . , 6 a.m.}) ∧ (dloc = 0) ∧ (dtime = 1). Notice
that A�0 City1, so the request A will be in the result.

5.2 Union operator

The union operator is used to take the union of two MOs. Con-
sider two dimensions D1 = (CD1 ,�D1) and D2 = (CD2 ,
�D2) of the same type T , where CD1 = {C1

j , j =
1, . . . , m} and CD2 = {C2

j , j = 1, . . . , m}. The union op-

erator on dimensions for the prototypical model,
⋃D, is de-

fined as follows: D′ = D1
⋃D

D2 = (CD′ ,�D′), where
CD′ = {C1

j

⋃
C2

j , j = 1, . . . , m} and ∀(e1, e2) ∈ (Dim1 ∪
Dim2) × (Dim1 ∪ Dim2) ((e1 �D′ e2) ⇔ ((e1 �D1

e2) ∨ (e1 �D2 e2))). In what follows, we use notation C ′
j

for C1
j

⋃
C2

j .
Consider two n-dimensional MOs with S1 = S2. The

union operator on MOs for the prototypical model,
⋃

, is de-
fined as: M ′ = M1

⋃
M2 = (S ′, F ′, D′

M ′ , R′
M ′), where

S ′ = S1, F ′ = F1
⋃

F2, D′
M ′ = {D1

i

⋃D
D2

i , i =
1, . . . , n}, R′

M ′ = {R1
i

⋃
R2

i , i = 1, . . . , n}.
We proceed to first define an extended dimension union

operator (denoted
⋃D

ext). Consider two dimensions D1 =
(CD1 , PD1) and D2 = (CD2 , PD2) of the same type T . We
modify the condition for the partial order in the resulting di-
mension. Specifically, we require the following.

1. ∀(e1, e2) ∈ (Dim1 ∪ Dim2) × (Dim1 ∪ Dim2)
((∃d ∈ [0; 1]((e1, e2, d) ∈ PD′) ⇔
(∃(d1, d2) ∈ [0; 1] × [0; 1]
(((e1, e2, d1) ∈ PD1) ∨ ((e1, e2, d2) ∈ PD2))))

2. ∀(e1, e2, d) ∈ PD′

(((e1, e2) ∈ C ′
i × C ′

j) ∧ (C ′
j ∈ Anc(P )(C ′

i))) ⇒
(∃(d1, d2) ∈ [0; 1] × [0; 1]
(((e1, e2, d1) ∈ PD1) ∨ ((e1, e2, d2) ∈ PD2)) ∧ (d =
max (d1, d2))))

Only the degrees of containment for the direct relation-
ships are found using these rules. The indirect relationships
between values in the resulting dimension are inferred using
our transitivity rules.

Stated less formally, given two MOs with common fact
schemas, the union operator for the extended model takes the
set union of facts and the fact-dimension relations. Dimen-
sions are combined with the help of the

⋃D
ext operator. Specif-

ically, given two dimensions of the same type, we perform set
union on corresponding categories and build a new relation
on dimension values: there exists a relationship between two
dimension values if there exists a relationship between the
values in the first dimension, in the second dimension, or in
both. The degree of containment for a resulting relationship is
determined in a natural way, namely, if two values are directly
related in one of the two dimensions only, then their degree is
transferred unchanged into the resulting dimension. However,
if the values are directly related in both dimensions with two
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1 1
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C

1 0.3
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Fig. 7. Union of M1
case and M2

case

different degrees, then without breaking the principle of the
safe approach we can return the maximum of the two as the
new degree.

Example 14. The LOCATION dimension of an MO obtained
by uniting M1

case and M2
case is depicted in Fig. 7. Note that

some degrees of containment for the indirect relationships,
e.g., Roadway1 �0.6 City1, are not found in any of the orig-
inal MOs and can only be inferred using the transitivity rules.

5.3 Aggregate formation operator

The aggregate formation operator is used when applying ag-
gregate functions to an MO. We first restate the definition
from the prototypical model. We assume a family of aggrega-
tion functions G that “look up” the required data for the facts
in the relevant fact-dimension relation, e.g., COUNT i finds
its data in the fact-dimension relation Ri and counts them.

In addition, the operator Group : Dim1 × . . .×Dimn �
2F is defined. The operator groups the facts characterized by
the same dimension values, i.e., Group(e1, . . . , en) = {f |
(f ∈ F ) ∧ (f � e1) ∧ . . . ∧ (f � en)}.

Given a new (result) dimension Dn+1 of a new (result)
type Tn+1, an aggregation function g : 2F � Dimn+1 and
a set of grouping categories {Ci ∈ Di, i = 1, . . . n}, the
aggregate formation operator for the prototypical model, α,
is defined as follows: M ′ = α[Dn+1, g, C1, . . . , Cn](M) =
(S ′, F ′, D′

M ′ , R′
M ′), where

S ′ = (F ′,D′)
F ′ = 2F ,
D′ = {T ′

i , i = 1, . . . , n}
⋃

{Tn+1}
T ′

i = (C′
i,�′

Ti
,⊥′

Ti
,�′

Ti
)

C′
i = {Cij ∈ Ti | Type(Ci) 	Ti Cij}
�′

Ti
=�Ti|C′

i

,

⊥′
Ti

= Type(Ci),
�′

Ti
= �Ti

F ′ = {Group(e1, . . . , en) | ((e1, . . . , en) ∈ C1 × . . . ×
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Cn) ∧ (Group(e1, . . . , en) �= ∅)}
D′ = {D′

i, i = 1, . . . , n}
⋃

{Dn+1},
D′

i = (C ′
D′

i
,�′

D′
i
),

C ′
D′

i
= {C ′

ij ∈ Di | Type(C ′
ij) ∈ C′

i}
�′

D′
i
=�Di|D′

i

R′
M ′ = {R′

i, i = 1, . . . , n}
⋃

{R′
n+1}

R′
i = {(f ′, e′

i) | ∃(e1, . . . , en) ∈ C1 × . . . × Cn((f ′ =
Group(e1, . . . , en)) ∧ (f ′ ∈ F ′) ∧ (ei = e′

i)}
and
R′

n+1 =
⋃

(e1,...,en)∈C1×...×Cn
{(Group(e1, . . . , en),

g(Group(e1, . . . , en))) | Group(e1, . . . , en) �= ∅}
Thus, for every combination of dimension values (e1, . . . , en)
in the given grouping categories, the aggregation function g
is applied to the set of facts characterized by (e1, . . . , en),
and the result is placed in the new dimension. The new facts
are of type sets of the argument fact type, and the argument
dimension types are restricted to the category types that are
greater than or equal to the types of the grouping categories.
The dimension type for the result is added to the set of
dimension types.

The new set of facts consists of sets of the original facts,
where original facts in a set share a combination of characteriz-
ing dimension values. The argument dimensions are restricted
to the remaining category types, and the result dimension is
added. The fact-dimension relations for the argument dimen-
sions now link sets of facts directly to their corresponding
combination of dimension values, and the fact-dimension re-
lation for the result dimension links sets of facts to the function
results for these sets.

Example 15. Consider the MO M1
case in Fig. 6b. Suppose we

want to count the number of requests issued from different
districts regardless of issue time and user information. The
aggregate formation operator for the query would look as fol-
lows: α[RESULT ,COUNT ,District ,�,�](M1

case).

In the extended model, we have introduced p-character-
ization of facts, which allows us to capture imprecision in the
data. This sort of imprecision must be accommodated by the
aggregate formation operator. Specifically, this imprecision in
data may be handled by grouping facts in different ways, i.e.,
by using alternative grouping operators. There are three ways
of handling this, namely, by means of conservative, liberal,
and weighted fact groupings.

In the conservative grouping, we include only those facts
in a group that are known for sure to belong to that group.
We define the corresponding operator, Groupc, as follows:
Groupc(e1, . . . , en) = {f | (f ∈ F ) ∧ (f �1 e1) ∧ . . . ∧
(f �1 en)}. Since only precise data will be used in calcula-
tions and the remaining data discarded, this kind of grouping is
useful for computing a “lower bound” for a query result, in the
sense that the query result contains as little data as possible.

Example 16. Assume the aggregation query from Example
15. The requests B and E are guaranteed to have been issued
from certain districts, while for the request A we only know
that it may have been issued from the district District1. This
means that the conservative grouping of the requests by dis-
tricts would yield the fact groups {E} and {B} mapped to the
values District1 and District2 in the LOCATION dimension,

respectively, as depicted in Fig. 8a. In this case, the count for
both groups of requests would be 1, which can be seen from
the result dimension in Fig. 8c.

In the liberal grouping, a group is formed from the facts
that are known to belong to the group as well as from those
facts that might belong to that group.We define the correspond-
ing operator, Groupl, as: Groupl(e1, . . . , en) = {f | (f ∈
F )∧(f �d1 e1)∧. . .∧(f �dn en)∧(∀i ∈ {1, . . . , n}((di =
1)∨ (di = 0)))}. Liberal grouping can be used for computing
an “upper bound” for a query result, in the sense that the query
result contains as much data as possible, because all the data,
both precise and imprecise, are taken into consideration.

Example 17. Assume the aggregation query from Example
15. The liberal grouping of the requests by districts would
include the request A in a group, i.e., we would get the fact
groups {A, E} and {B} mapped to the values District1 and
District2 as depicted in Fig. 8b. In this case, the count for
the groups would be 2 and 1, respectively, which is shown in
Fig. 8d.

Finally, in the weighted grouping, we gather both kinds
of facts but apply a weight of membership to each fact in a
group. For this kind of grouping we use the liberal grouping
operator, i.e., Groupw = Groupl. We determine the weight
of membership for a fact with the help of a function Weight :
Dim1×. . .×Dimn×F � R by combining the fact’s degrees
of containment.

For example, the simplest way to combine the degrees is
to take their product, namely, if f ∈ Groupw(e1, . . . , en)
and f �d1 e1, . . . , f �dn

en, then Weightsimp(e1, . . . , en,

f) =
∏n

i=1 di.
Since weighted data will be used in calculations, with this

kind of grouping an “average” for a query result could be
computed. However, the choice of weighting function is cru-
cial; an inadequate function may introduce additional impre-
cision into the query result. For example, Weightsimp may
sometimes be inadequate because it applies zero weights even
for data that are imprecise with respect to just one dimen-
sion, i.e., ∀f ∈ Groupw(e1, . . . , en)((∃ei ∈ {e1, . . . , en}
(f �0 ei)) ⇒ (Weightsimp(e1, . . . , en, f) = 0)).

Example 18. Assume the aggregation query from Ex-
ample 15 and the corresponding liberal grouping of the
facts from Example 17. The function Weightsimp would
apply weights of membership to our facts as follows:
Weightsimp(District1,�,�, A) = 0 × 1 × 1 = 0,
Weightsimp(District1,�,�, E) = 1 × 1 × 1 = 1,
Weightsimp(District2,�,�, B) = 1 × 1 × 1 = 1. Thus,
the weighted grouping will, unlike the liberal grouping, show
that E is certain to be in District1 while A only may be in
District1. This can then be exploited by the aggregation func-
tion, e.g., by counting the facts with their expected degree of
membership in the group, which is 1 for E and 0.5 for A,
resulting in a count for District1 of 1.5.

6 Imprecision in aggregation paths

With partial containment in the model and transitivity of partial
containment defined, we face the problem of how to choose the
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Fig. 8a–d. LOCATION and RESULT dimensions after the query α a and c describe conservative grouping. b and d describe liberal grouping

most precise data aggregation path while processing a query,
or more generally how to evaluate the level of imprecision of
a path. We address these aspects next.

Given a dimension D = (CD, P ), an aggregation path
of D is a sequence of distinct categories such that for any
element of the sequence Ci and its successor Cj , the following
holds: Cj ∈ Anc(P )(Ci). In our case, we could define the
aggregation path α = {Roadway ,District ,City ,Province}.

Two aggregation paths αi and αj are alternative aggrega-
tion paths if Ci

first = Cj
first and Ci

last = Cj
last , where Ci

first

and Cj
first are their first elements and Ci

last and Cj
last are their

last elements. So, α and αalt = {Roadway ,Province} are al-
ternative aggregation paths. An aggregation path is direct if it
consists of just two elements. Thus, αalt is a direct aggregation
path.

Recall that we term a relationship between dimension val-
ues ei �d ej direct if it is given directly in the relation P
(without using transitivity); otherwise, the relationship is in-
direct.

Given an aggregation path β, ei ∈ Ci, and ej ∈ Cj , we say
that a direct relationship ei �d ej is in the path β if Cj is the
successor of Ci in β (in our case, Roadway1 �0.2 District1
is a direct relationship in path α).

Consider an aggregation path γ = {Cfirst, . . . , Clast}
and its alternative direct aggregation path γalt. We build two
sets M and Malt for γ and γalt, respectively. Both sets con-
tain relationships efirst �d elast, where efirst ∈ Cfirst and
elast ∈ Clast. Set M contains indirect relationships that are
deduced using the transitivity property on the relationships in
the path γ. Set Malt contains relationships in the path γalt.

We proceed to compare the aggregation paths, for which
purpose we introduce the concept of imprecision level of an
aggregation path γ (denoted ILγ). The imprecision level ILγ

is evaluated by the following algorithm:

(1) procedure EvaluateImprecision
(2) ILγ ← 0
(3) for each (efirst �dMalt

elast) ∈Malt

(4) where efirst ∈ Cfirst ∧ elast ∈ Clast do
(5) if (efirst �dM elast) ∈M
(6) then M ←M \ {(efirst �dM elast)}
(7) ILγ ← ILγ + |dMalt − dM |
(8) else ILγ ← ILγ + dMalt

(9) for each (efirst �dM elast) ∈M do ILγ ← ILγ + dM

The algorithm distinguishes among three cases. First, if
the link between two values exists in both paths (lines 6–7),
the difference between the containment degrees is added to the
running imprecision level total. Second, if the link exists only
in the alternative path (line 8), the alternative containment de-
gree is added. Third, for the remaining links, i.e., links existing
only in the original paths, the original containment degrees are
added. Note that if there is more than one link between two
values in a given aggregation path, e.g., efirst �p1 elast and
efirst �p2 elast , then the link with the maximum degree, i.e.,
efirst �max(p1,p2) elast , appears in the algorithm.

The algorithm gives a high imprecision-level value if there
is a large difference between the degrees of containment in the
original and those in the alternative path. Note that the algo-
rithm is meant only for choosing the best path among several
alternatives, i.e., the algorithm does not provide an absolute es-
timate of the imprecision. This definition of imprecision level
conforms to the intuitive understanding of imprecision, i.e.,
the greater the value of the imprecision level of a path, the
more imprecise results from aggregating data along the path
become.

The method does not take noncovering mappings into con-
sideration. Specifically, it ignores direct relationships that exist
to accommodate noncovering hierarchies, e.g., relationships
between dimension values in the Coordinate and District cat-
egories. In this case, we introduce additional imprecision, and
the result of the algorithm could lead to the choice of a wrong
candidate for the most precise aggregation path. Thus, we must
use the ignored relationships. However, it is not reasonable to
use as an alternative direct aggregation path the one that is in-
cluded to accommodate noncovering hierarchies because this
introduces excessive imprecision in the structure. For exam-
ple, if not every coordinate is directly related to a province,
δalt = {Coordinate,Province} must not be used.

The proposed method is helpful in choosing aggregation
paths while managing the trade-off between the speed of ag-
gregation and the amount of preaggregation applied to the
warehouse. Without preaggregation, there is no difference in
speed between aggregation along a path and the alternative
direct path. However, with preaggregation we can speed up
aggregation along a given path considerably by precomputing
some steps in it. Thus, having evaluated the imprecision level
and aggregation speed (possibly with different preaggregation
variants) of several alternative aggregation paths, we could
choose the path with the highest speed (if we are interested in
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speed), the path with the lowest imprecision level (if we are
interested in precision), or a path that balances aggregation
speed and imprecision.

The applicability of the method is limited by the fact that
in many cases we do not have an alternative direct aggrega-
tion path. In this situation, we can split the path according
to the available paths and evaluate the level of imprecision
of its subpaths. For example, in our case, we cannot use the
method directly for the path ε = {Coordinate,Roadway ,
District ,City ,Province,Country ,�} because the path
εalt = {Coordinate,�} is absent. Instead, we could split
ε into two subpaths, ε1 = {Coordinate,Roadway ,District ,
City ,Province} and ε2 = {Province, Country ,�}. Then
ε1 could be compared to ε1alt (supposing every coordinate is
directly related to a province) to get the imprecision level of
the subpath.

7 Hierarchy transformations

Using the data model described in Sect. 4, we are able to
specify nonnormalized dimension hierarchies. However, such
hierarchies pose problems to practical preaggregation, as will
be explained shortly. In this section, we briefly present algo-
rithms that normalize hierarchies (the algorithms are described
in detail elsewhere [22,24]) and extend the algorithms to ac-
commodate partial containment. Due to space constraints, the
details are deferred to the appendix.

If a hierarchy is noncovering, then some links between di-
mension values skip one or more levels. Thus, at a “skipped”
level some data are missing, and we cannot use aggregation re-
sults at a “skipped” level for computing aggregates at higher
levels. For example, suppose a coordinate Coord1 does not
lie on any roadway, but in district District1. The mapping
from category Roadway to category District is then noncov-
ering with respect to the category Coordinate, and the level of
Roadway is “skipped.” Thus, we cannot use aggregates at the
Roadway level to calculate aggregate results at the District
level.

If a dimension hierarchy is non-onto, we are not able to
reach some dimension values moving from bottom to top.
Again, this means that we cannot reuse aggregates at the low-
est level to compute aggregate results for the levels with “un-
reachable” values. For example, suppose there are no comput-
ers (IP addresses) in city City1 . The mapping from category
IPAddress to categoryCity is non-onto andCity1, the dimen-
sion value of City category, is “unreachable.” Thus, we are
unable to use aggregates at the Coordinate level to calculate
aggregate results at the City level.

Finally, if a hierarchy is nonstrict, some dimension val-
ues have multiple parents. Thus, moving from a child level
to a parent level, we may count the same data several times.
This means that we are unable to use aggregation results at
the parent level to compute aggregates at the grandparent
level. For example, suppose a roadway Roadway1 crosses
districts District1 and District2, so that Roadway1 has two
parent dimension values, District1 and District2, in cate-
gory District . Moving from the level of Roadway to the level
of District , we count aggregates for Roadway1 twice. Thus,
we cannot use aggregates at the level of District to calculate
aggregate results at the level of City .

A suite of hierarchy transformation algorithms remove
these problems and thus enable correct use of preaggregation
for nonnormalized hierarchies transparently to the user. The
algorithms normalize dimension hierarchies in three steps: hi-
erarchies are first made covering, then onto, and finally aggre-
gation strict.

Hierarchies are made covering by introducing intermedi-
ate “placeholder” values in the levels that are skipped by the
original links between dimension values and by linking these
values appropriately to the relevant existing dimension values
(which may be placeholder values). Similarly, a hierarchy is
made onto by “padding” the hierarchy downwards by inserting
“dummy” child values for dimension values with no children.
Aggregation strictness is achieved by “fusing” the set of parent
values of a lower-level dimension value into one fused value
and linking this new value to the appropriate child, parent, and
grandparent values before continuing the process upwards in
the hierarchy.

The transformations include the rearranging of relation-
ships between dimension values, but they do not take the par-
tial containment relationships and their degrees of contain-
ment into account in the process.

When extending the transformations, we must assign the
proper degrees of containment with the relationships created
during the transformations. We pose two requirements to the
extended algorithms. First, full containment relationships be-
tween dimension values must be preserved. The reason is that
if we guarantee that a dimension value is fully contained in
another one, then this is the best we can get for the values. It
would be unreasonable to eliminate or degrade such relation-
ships. Second, as we follow the safe approach to the transitivity
of containment, a new degree must be less than or equal to the
corresponding old one.

Example 19. The workings of the algorithms is best illus-
trated by an example. For the PMakeCovering algorithm, con-
sider the transformation in Fig. 9a. Here the direct link between
ek (using the example of a noncovering hierarchy in the begin-
ning of this section, ek may correspond to District1) and ei2
(corresponding to Coord1) is transformed by inserting a new
placeholder value Cek (in our example, CDistrict1) in the
intermediate category. This new value is then linked to ek and
ei2 . The degree of containment of the first link is naturally 1,
while the degree of the second link is inherited from the orig-
inal direct link. For the PMakeOnto algorithm, consider the
transformation in Fig. 9b. Here a new dummy value Lej2 (or
LCity1 in our example of a non-onto hierarchy) is inserted
below ej2 (City1) with a natural containment degree of 1.
For the PMakeStrict algorithm, consider the transformation in
Fig. 10. Here the multiple parents of value ei (corresponding to
Roadway1 in our example introducing a nonstrict hierarchy)
are fused into one new value e = {ej1 , . . . , ejm} (in our ex-
ample, m = 2 and the fused value is {District1,District2}),
which is then linked to ei and the parents ej1 , . . . , ejm (i.e.,
District1 and District2). To keep the figure simple, we have
not shown additional values in the ei category. The degree of
containment is computed to provide the highest possible de-
gree that can still be guaranteed. See the appendix for details.

The transformation algorithms described in the above ex-
ample enable the use of practical preaggregation while still
preserving the information about partial containment.
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8 Conclusions and research directions

Mobile, location-based e-services promise to become a sig-
nificant application domain for multidimensional modeling
of spatial data. We envision that such services will store data
about their interaction with the users in multidimensional data
warehouses, which will be subsequently used to analyze the
data in order to improve the services. This paper aims to pro-
vide better support for this application domain in multidimen-
sional data warehouses, the focus being on data modeling and
aggregation. This domain poses a number of interesting re-
quirements to a multidimensional data model. One of them,
partial containment among dimension values, is not supported
by existing data models. This paper extends an existing, so-
called prototypical, model that already satisfies other impor-
tant requirements to also support partial containment.

A key problem faced is to define transitivity of par-
tial containment. The essence of the problem is which de-
gree of containment to assign to an inferred relationship: if
((ei �di ej) ∧ (ej �dj ek)) ⇒ (ei �d ek), what is the value
of d? We have provided a “safe” definition of partial contain-
ment, meaning that we deduce only those relationships that
must hold. But at the same time, we try to maximize the con-
tainment degrees in inferred relationships. We feel that this is
the most basic and useful approach.

The paper also defines an algebra – with extended se-
lection, union, and aggregate formation operators – that we
believe serves well as a formal basis for an end-user query
language for our model. Several elements of the algebraic op-
erators reflect the support for partial containment. Specifically,
the predicate for selection depends on degrees of containment
as well as on dimension values. In addition, the union oper-
ator on dimension assigns proper degrees of containment to

resulting dimension values. Finally, the aggregate formation
operator uses different grouping strategies.

The presence of partial containment introduces impreci-
sion in dimension hierarchies. In particular, one aggregation
path from one level in a hierarchy to a higher level may be more
precise than an alternative path. In order to make informed de-
cisions on which path to choose among several alternatives,
the paper provides a means of evaluating the imprecisions of
paths. This allows the selection of paths based on their preci-
sions and associated speeds of aggregation.

Enabling practical preaggregation requires that dimension
hierarchies be onto, covering, and aggregation strict. The paper
extends existing hierarchy transformations to support partial
containment. This extension satisfies the requirements that full
containment relationships between dimension values be pre-
served and that the degrees of containment in partial contain-
ment relationships be as close to the original degrees as possi-
ble, but not higher (safe approach). It is relatively straightfor-
ward to provide transformations for making hierarchies onto
and covering and at the same time retain old degrees. Incorpo-
rating support for partial containment into the transformation
that makes hierarchies aggregation strict is a more complex
task. We preserve full containment at the expense of degrees
for partial containment relationships (some degrees reduce to
“zero”).

It would be of interest to study several aspects of the pro-
posed data model further. The paper adopts a “safe” approach
to inferring partial containment relationships among dimen-
sion values. Other approaches could be explored where “prob-
able” partial relationships are inferred. Such approaches could
be used together with the safe approach. In addition, it is pos-
sible to use more information when safely inferring partial
containment relationships.
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Next, with the partial containment, summarizability [27]
is generally not guaranteed, even if a multidimensional object
is normalized. It is of interest to determine which conditions
are sufficient for summarizability with partial containment.

Moreover, the extended aggregate formation operator does
not handle the imprecision introduced by mapping of facts to
dimension values of different granularities. It seems that the
approach suggested in the literature [26] to handling this sort
of imprecision can be extended to also contend with partial
containment.

Furthermore, it is very relevant to devise a prototype imple-
mentation of the model using an existing OLAP system [32].
Data models of existing systems do not meet all the formulated
requirements. Therefore, they do not provide direct support
for all the elements of our model. This raises issues related to
model-to-model transformations.

Finally, it is important to evaluate the applicability of the
model. This could be achieved by populating a data warehouse
that implements the model with the real-world spatial data and
then performing experiments with the warehouse. Appropri-
ate data on geo-referenced transportation infrastructures are
currently available from a database of a location-based ser-
vice delivery system developed and deployed by the Danish
company Euman A/S [7].
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A Hierarchy transformation algorithms

The appendix describes the hierarchy transformation approach
in detail.

A.1 Preaggregation and nonnormalized hierarchies

To preaggregate data means to store results of aggregate
queries. It is done in order to decrease the query response
time of a data warehouse system. However, the results of full
preaggregation, when all combinations of aggregates are pre-
computed, may require too much storage space, making full
preaggregation impractical. Modern data warehouse systems
instead use practical preaggregation, which means that only
select combinations of aggregates are stored and reused later
for computing other aggregates.

Furthermore, it is important that we can preaggregate val-
ues at any combination of dimension levels and reuse the
preaggregated values to compute higher level aggregate re-
sults. If this requirement is met, we say that our data is sum-
marizable. In [27], it is mentioned that data captured by the
model that we present in Sect. 4 (though without our exten-
sion for handling partial containment) is summarizable, if the
multidimensional object for the data is normalized. So the
problems with practical preaggregation occur if, in a multidi-
mensional object, facts map to dimension values at different

levels or dimension hierarchies are either non-onto, noncov-
ering, or nonstrict.

Generally, preaggregation at the lowest level of a dimen-
sion does not take into consideration fact-dimension relation-
ships at higher levels. So if all facts do not map to dimension
values at the lowest level, some data are missing. This means
that we cannot reuse aggregates at the lowest level to com-
pute higher-level aggregate results. For example, suppose a
user has issued a request from the roadway Roadway1. The
corresponding fact is then mapped to the value Roadway1,
which belongs to the category Roadway , not the lowest one.
Data for the request are missing at the lowest level. We are
thus unable to use aggregates at the level of the lowest cate-
gory Coordinate to calculate aggregate results at the level of
Roadway .

With the extension for capturing partial containment in-
troduced into the model, generally data in a normalized multi-
dimensional object may become nonsummarizable. The pro-
posed transitivity property infers only guaranteed (conserva-
tive) relationships between dimension levels, which means
that real-world relationships exist that will be missed. In spite
of this, normalization of dimension hierarchies is a first step
toward achieving summarizability.

A.2 Hierarchy transformation algorithms

We present pseudocode for the algorithms. The input to each
algorithm is a set of tables RCi,Cj ,X that specifies the rela-
tionships between dimension values in categories Ci and Cj

(Cj ∈ Anc(P )(Ci)). Column X in the table captures degrees
of containment. In Figs. 9a, 9b, and 10, we illustrate the ef-
fects of the algorithms that make hierarchies covering, onto,
and aggregation strict. On the left, a fragment of a dimension
hierarchy is depicted, while on the right, the same fragment
after the transformation is presented. When analyzing the al-
gorithms, we do not cover in detail how the mappings are
transformed (this is done elsewhere [22,23]). Instead, we ex-
plain the extension and how the transformed hierarchies meet
the formulated requirements.

A.3 Making hierarchies covering

In Fig. 9a, we assume that ei1 ∈ Ci, ei2 ∈ Ci, ej ∈ Cj , Cek ∈
Cj , and ek ∈ Ck. We also assume that Ck ∈ Anc(P )(Cj),
Ck ∈ Anc(P )(Ci), and Cj ∈ Anc(P )(Ci).

Before the transformation we have: ei2 �dei2
,ek

ek. We
may retain the same relationship between the values after the
transformation, if for the new degrees of partial containment
we let dei2 ,Cek

= dei2 ,ek
and dCek,ek

= 1. By using f-to-f or
p-to-f transitivity (depending on the values of the degrees),
we get: ((ei2 �dei2

,Cek
Cek) ∧ (Cek �dCek,ek

ek)) ⇒
(ei2 �dei2

,ek
ek). Thus, the relationship ei2 �dei2

,ek
ek

is retained by the algorithm.
Obviously, the first requirement is met: if before the trans-

formation dei2 ,ek
= 1, this also holds after the transformation.

The second requirement is also met: the degree dei2 ,ek
never

increases after the transformation (in fact, it remains the same).
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Notice that after the transformation, altering the rela-
tionships between Ci, Cj , and Ck may be required. That
is, we state that Type(Ci) �P

T Type(Cj) if Type(Ci) �P
T

Type(Ck), and Type(Ci) �T Type(Cj) if Type(Ci) �T
Type(Ck). By doing this we allow an arbitrary value of
dei2 ,Cek

. In addition, we must add the relationship
Type(Cj) �T Type(Ck), if it was not present before
the transformation, to allow dCek,ek

= 1.

(1) procedure PMakeCovering(C)
(2) for each P ∈ Anc(P )(C) do
(3) begin
(4) for each H ∈ Anc(P )(C) where

Type(P ) �(P )
T Type(H) do

(5) begin
(6) L← ΠC,H(RC,H,X) \ΠC,H(ΠC,P (RC,P,X)

�� ΠP,H(RP,H,X))
(7) N ← ΠH(L)
(8) P ← P ∪ {Mark(h) | h ∈ N}
(9) RP,H,X ← RP,H,X ∪ {(Mark(h), h, 1) | h ∈ N}
(10) RC,P,X ← RC,P,X ∪ {(c, Mark(h), dc,h) | (c, h) ∈ L

∧ (c, h, dc,h) ∈ RC,H,X}
(11) end
(12) PMakeCovering(P )
(13) end

A.4 Making hierarchies onto

In Fig. 9b, we assume that ei ∈ Ci, Lej2 ∈ Ci, ej1 ∈ Cj , ej2 ∈
Cj , and ek ∈ Ck. We also assume that Ck ∈ Anc(P )(Cj) and
Cj ∈ Anc(P )(Ci).

The transformation does not require altering the present
degrees of containment. We let the completely new degree
dLej2 ,ej2

= 1 (it conforms to the logic that a “placeholder”
Lej2 for a value ej2 is fully contained in that value). Since
no degrees are altered, the first and second requirements are
met. Finally, we add the needed relationship between the
categories Ci and Cj , i.e., Type(Ci) �T Type(Cj).

(1) procedure PMakeOnto(P )
(2) for each C ∈ Desc(P )(P ) do
(3) begin
(4) N ← P \ΠP (RC,P,X)
(5) C ← C ∪ {Mark(n) | n ∈ N}
(6) RC,P,X ← RC,P,X ∪ {(Mark(n), n, 1) | n ∈ N}
(7) PMakeOnto(C)
(8) end

A.5 Making hierarchies aggregation strict

In Fig. 10, we assume that ei ∈ Ci, ∀l ∈ {1, . . . , m}(ejl
∈

Cj), ∀l ∈ {1, . . . , n}(ekl
∈ Ck) and e = {ej1 , ej2 , . . . ,

ejm} ∈ Cf
j (a category containing “fused” dimension val-

ues of Cj). We also assume that before the transformation
Ck ∈ Anc(P )(Cj) and Cj ∈ Anc(P )(Ci), but after the

transformation Ck ∈ Anc(P )(Cf
j ), Cj ∈ Anc(P )(Cf

j ), and

Cf
j ∈ Anc(P )(Ci).

Before the transformation we have the set of relationships
L = {ei �dei,ejl

ejl
, l = 1, . . . , m}. We would like to have

these relationships between the values with the same degrees
after the transformation. But notice that in the transformed
hierarchy, the relationships can be inferred only with the help
of transitivity: ∀l ∈ {1, . . . , m}(((ei �dei,e e) ∧ (e �de,ejl

ejl
)) ⇒ (ei �dei,ejl

ejl
)). The common initial condition for

each relationship in set L is: ei �dei,e e.
In general, the common condition does not allow us to

retain all the old degrees of containment in the set. We deal
with the situation as follows: if set L has any full containment
relationships, we retain them (using f-to-f transitivity, the first
step of which is to let dei,e = 1); otherwise, we perform an
approximation, which conforms to the “safe” approach, and
retain the minimal degree in the set (using p-to-f transitiv-
ity, the first step of which is to let dei,e = min({dei,ejl

, l =
1, . . . , m}). After having assigned a value to dei,e, we per-
form further assignments. If we retain the full containment
then for completion, we infer relationships as follows: ∀l ∈
{1, . . . , m}(((dei,ejl

= 1) ⇒ (de,ejl
= 1)) ∧ ((dei,ejl

�=
1) ⇒ (de,ejl

= 0))). If we retain the minimal degree in
the set then for completion, we must let ∀l ∈ {1, . . . , m}
(de,ejl

= 1). By p-to-f transitivity we then get the required
result: ∀l ∈ {1, . . . , m}(ei �min({dei,ejl

,l=1,...,m}) ejl
). No-

tice that in the former case, for some relationships we get
ei �1 ejl

(by f-to-f transitivity), but for some relationships
we cannot avoid using f-to-p transitivity, meaning that we get
ei �0 ejl

. This means that we do preserve full containment
but miss the guaranteed degrees that were less than 1.

We also need to contend with the set of relationships N =
{ei �dei,ekl

ekl
, l = 1, . . . , n} (defined for the hierarchy prior

to the transformation). In doing so, we take into consideration
that actions for set L have already been performed. Again,
we would like for the transformation to retain these relation-
ships with the same degrees. And again the relationships in
the transformed hierarchy can be inferred only by transitiv-
ity (∀l ∈ {1, . . . , n}(((ei �dei,e e) ∧ (e �de,ekl

ekl
)) ⇒

(ei �dei,ekl
ekl

))).
Notice that the common initial condition for each relation-

ship in set N is already given after we have dealt with the set
L. Although this of course limits our capabilities, we follow
the same logic that was applied in the case of set L: if set N has
any full containment relationships, we retain them; otherwise,
we apply a conservative approximation.

We can preserve full containment because any full contain-
ment relationships in set N have degree dei,e equal to 1 in the
first condition. In this case, we partition set N into N1 and Np

such that elements of set N1 are full containment relationships,
while elements of set Np are partial containment relationships.
We infer relationships as follows: ∀l ∈ {1, . . . , n}(((ekl

∈
N1) ⇒ (de,ekl

= 1)) ∧ ((ekl
∈ Np) ⇒ (de,ekl

= 0))).
By doing so, we retain full containment where it is present but
miss guaranteed degrees that are less than 1 (analogously with
the case of set L).

If dei,e is not equal to 1, the set N does not have any
full containment relationships. We then perform approxi-
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mation as follows: ∀l ∈ {1, . . . , n}((∃ejl′ (ejl′ �dej
l′

,ekl

ekl
)) ∧ ((dej

l′ ,ekl
= 1) ⇒ (de,ekl

= 1)) ∧ (dej
l′ ,ekl

�= 1) ⇒
(de,ekl

= 0)). Thus, for some relationships in the set N , by
p-to-p transitivity we get ei �0 ekl

(this is true before the
transformation as well) and for some relationships in L by p-
to-f transitivity we get ei �dei,ekl

ekl
(the degree is less than

that before the transformation, but still greater than zero).
We see that the first and the second requirements to the pro-

cedure of inferring new degrees of containment are met. The
drawback of the algorithm is that in some cases it substitutes
zero degrees for nonzero ones. For example, if n = l = 2,
then there are 4 degrees to work with and 16 variants for the
set of degree values (each degree is allowed to be one or non-
one). Therefore, there are 64 relationships. Twelve of them
turn their degree from nonzero to zero.

In the transformed dimension, we modify the relation-
ships between category types as needed. If we need partial
containment for the algorithm to work, we introduce such
relationships. Otherwise, we only allow full containment.
Specifically, we perform the modification of the relationships
between category types according to the rules presented in the
list below. We assume that Type(Ci) = Ci, Type(Cj) = Cj ,
Type(Ck) = Ck, and Type(Cf

j ) = Cf
j .

1. (Ci �T Cj �T Ck) ⇒ ((Ci �T Cf
j ) ∧ (Cf

j �T Cj) ∧
∧(Cf

j �T Ck))
2. (Ci �P

T Cj �T Ck) ⇒ ((Ci �P
T Cf

j ) ∧ (Cf
j �P

T Cj) ∧
∧(Cf

j �T Ck))
3. (Ci �T Cj �P

T Ck) ⇒ ((Ci �T Cf
j ) ∧ (Cf

j �T Cj) ∧
∧(Cf

j �P
T Ck))

4. (Ci �P
T Cj �P

T Ck) ⇒ ((Ci �P
T Cf

j ) ∧ (Cf
j �P

T Cj) ∧
∧(Cf

j �P
T Ck))

Notice that the pseudocode contains a new (com-
pared to the variant in [22] and [23]) function
onPath : [0 ; 1 ]� [0 ; 1 ]. The function works as follows: if
((ei �di

ej) ∧ (ej �dj
ek) then onPath(dj) = di.

(1) procedure PMakeStrict(C)
(2) for each P ∈ Anc(P )(C) do
(3) begin
(4) if (∃e1 ∈ C(∃e2, e3 ∈ P (∃d1,2, d1,3(e1 �d1,2 e2

∧ e1 �d1,3 e3 ∧ e2 �= e3)))) ∧ Anc(P )(P ) �= ∅
(5) then begin
(6) N ← CreateCategory(2P )
(7) if ∃d1,2 (d1,2 = 1) ∧ (e1, e2, d1,2) ∈ RC,P,X

(8) then RC,N,X ← {(e1, Fuse({e2|
(e1, e2, d1,2) ∈ RC,P,X}), 1)}

(9) else RC,N,X←{(e1, Fuse({e2 | (e1, e2, d1,2) ∈ RC,P,X}),
min({d1,2 | (e1, e2, d1,2) ∈ RC,P,X}))}

(10) N ← ΠN (RC,N,X)
(11) RN,P,X ← {(e0, e2, ∅) | e0 ∈ N ∧ e2 ∈ Unfuse(e0)}
(12) for each e2 ∈ Unfuse(e0) where e0 ∈ N do
(13) begin
(14) if d1,0 = 1 ∧ d1,2 �= 1 ∧ (e1, e0, d1,0) ∈ RC,N,X

∧ (e1, e2, d1,2) ∈ RC,P,X

(15) then RN,P,X ← RN,P,X ∪ {(e0, e2, 0)} \ {(e0, e2, ∅)}
(16) else RN,P,X ← RN,P,X ∪ {(e0, e2, 1)} \ {(e0, e2, ∅)}
(17) end
(18) Anc(P )(C)← Anc(P )(C) ∪ {N} \ {P}
(19) Anc(P )(N)← {P}
(20) for each G ∈ Anc(P )(P ) do
(21) begin
(22) L← ΠG(ΠN,P (RN,P,X) �� ΠP,G(RP,G,X))
(23) RN,G,X ← {(e0, e3, ∅) | e0 ∈ N ∧ e3 ∈ L}
(24) for each e3 ∈ L do
(25) begin
(26) if d1,0 = 1 ∧ (e1, e0, d1,0) ∈ RC,N,X ∧ e0 ∈ N
(27) then
(28) if d2,3 = 1∧d1,2 = 1∧d1,2 ∈ onPath(d2,3)∧e2 ∈ P
(29) then RN,G,X←RN,G,X ∪ {(e0, e3, 1)}\{(e0, e3, ∅)}
(30) else RN,G,X←RN,G,X ∪ {(e0, e3, 0)} \ {(e0, e3, ∅)}
(31) else if d2,3 = 1 ∧ e2 ∈ P
(32) thenRN,G,X ← RN,G,X∪{(e0, e3, 1)}\{(e0, e3, ∅)}
(33) else RN,G,X ← RN,G,X∪{(e0, e3, 0)} \ {(e0, e3, ∅)}
(34) end
(35) Anc(P )(N)← Anc(P )(N) ∪ {G}
(36) Anc(P )(P )← Anc(P )(P ) \ {G}
(37) end
(38) PMakeStrict(N )
(39) end
(40) else PMakeStrict(P )
(41) end
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