
VLDB Journal (2002) 11: 380–402 / Digital Object Identifier (DOI) 10.1007/s00778-002-0078-5

An XML query engine for network-bound data

Zachary G. Ives∗,∗∗, Alon Y. Halevy, Daniel S. Weld

Department of Computer Science and Engineering, Box 352350, University of Washington, Seattle, WA 98195-2350, USA;
e-mail: {zives,alon,weld}@cs.washington.edu

Edited by A.Y. Halevy. Received: December 15, 2001 / Accepted: July 1, 2002
Published online: December 13, 2002 – c© Springer-Verlag 2002

Abstract. XML has become the lingua franca for data ex-
change and integration across administrative and enterprise
boundaries. Nearly all data providers are adding XML import
or export capabilities, and standard XML Schemas and DTDs
are being promoted for all types of data sharing. The ubiquity
of XML has removed one of the major obstacles to integrating
data from widely disparate sources – namely, the heterogeneity
of data formats. However, general-purpose integration of data
across the wide area also requires a query processor that can
query data sources on demand, receive streamed XML data
from them, and combine and restructure the data into new
XML output – while providing good performance for both
batch-oriented and ad hoc, interactive queries. This is the goal
of the Tukwila data integration system, the first system that
focuses on network-bound, dynamic XML data sources. In
contrast to previous approaches, which must read, parse, and
often store entire XML objects before querying them, Tukwila
can return query results even as the data is streaming into the
system. Tukwila is built with a new system architecture that
extends adaptive query processing and relational-engine tech-
niques into the XML realm, as facilitated by a pair of operators
that incrementally evaluate a query’s input path expressions as
data is read. In this paper, we describe the Tukwila architec-
ture and its novel aspects, and we experimentally demonstrate
that Tukwila provides better overall query performance and
faster initial answers than existing systems, and has excellent
scalability.

Keywords: XML – Query processing – Data streams – Data
integration – Web and databases

1 Introduction

For many years, a wide variety of domains, ranging from sci-
entific research to electronic commerce to corporate informa-
tion systems, have had a great need to be able to integrate data

∗ Supported in part by an IBM Research Fellowship.
∗∗ Present address: Department of Computer and Information
Science, University of Pennsylvania, Philadelphia, PA 19104, USA.

from many disparate data sources at different locations, con-
trolled by different groups. Until recently, one of the biggest
obstacles was the heterogeneity of the sources’ data models,
query capabilities, and data formats. Even for the most basic
data sources, custom wrappers would need to be developed for
each data source and each data integration mediator, simply
to translate mediator requests into data source queries, and
to translate source data into a format that the mediator can
handle.

The emergence of XML as a common data format, as well
as the support for simple web-based query capabilities pro-
vided by related XML standards, has suddenly made data
integration practical in many more cases. XML itself does
not solve all of the problems of heterogeneity – for instance,
sources may still use different tags or terminologies – but of-
ten, data providers come to agreement on standard schemas,
and in other cases, we can use established database tech-
niques for defining and resolving mappings between schemas.
As a result, XML has become the standard format for data
dissemination, exchange, and integration. Nearly every data
management-related application now supports the import and
export of XML, and standard XML Schemas and DTDs are be-
ing developed within and among enterprises to facilitate data
sharing (instances of these are published at the BizTalk and
OASIS web sites1). Language- and system-independent pro-
tocols such as the various web services standards, Microsoft’s
.NET [NET01] initiative, and Sun’s JXTA [JXT01] peer-to-
peer protocols use XML to represent transactions and data.

Processing and integrating XML data poses a number of
challenges. In many data integration applications, XML is
merely a “wire format,” the result of some view over a live, dy-
namic, non-XML source. In fact, the source may only expose
subsets of its data as XML, via a query interface with access
restrictions, e.g., the source may only return data matching a
selection value, as in a typical web form. Since the data is con-
trolled and updated externally and only available in part, this
makes it difficult or impossible to cache the data. Moreover,
the data sources may be located across a wide-area network
or the Internet itself, so queries must be executed in a way
that is resilient to network delays. Finally, the sources may
be relatively large, in tens to hundreds of megabytes or more,

1 See www.biztalk.org and www.xml.org.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [2834.5 2834.5] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Z.G. Ives et al.: An XML query engine for network-bound data 381

and that may require an appreciable amount of time to transfer
across the network and parse. We refer to these types of data
sources as “network-bound”: they are only available across a
network, and the data can only be obtained through reading
and parsing a (typically finite) stream of XML data.

To this point, integration of network-bound, “live” XML
data has not been well studied. Most XML work in the database
community has focused on designing XML repositories and
warehouses [Aea01,XLN,Tam,GMW99,FK99b,AKJK+02,
KM00,BBM+01,SGT+99], exporting XML from relational
databases [FTS99,FMS01a,CFI+00], adding information
retrieval-style indexing techniques to databases [NDM+01,
FMK00], and on supporting query subscriptions or continu-
ous queries [Aea01,CDTW00,AF00] that provide new results
as documents change or are added.

Clearly, both warehousing and indexing are useful for stor-
ing, archiving, and retrieving file-based XML data or doc-
uments, but for many integration applications, support for
queries over dynamic, external data sources is essential. This
requires a query processor that can request data from each
of the sources, combine this data, and perhaps make addi-
tional requests of the data sources as a result. To the best of
our knowledge, no existing system provides this combination
of capabilities. The Web community has developed a class
of query tools that are restricted to single-documents and not
scalable to large documents. The database community’s web-
based XML query engines, such as Niagara and Xyleme, come
closer to meeting the needs of data integration, but they are
still oriented towards smaller documents (which may be in-
dexable or warehoused), and they give little consideration to
processing data from slow sources or XML that is larger than
memory.

Query processing for data integration poses a num-
ber of challenges, because the data is not tightly con-
trolled or exclusively used by the data integration sys-
tem. For example, query optimization is difficult in the
absence of data source statistics. This subjects has been
the focus of adaptive query processing research discussed
elsewhere (e.g., [RS86,WA91,HS93,UF00,HH99,IFF+99,
UF01,UFA98,KD98,AH00]). However, adaptive query pro-
cessing research has generally focused on relational query
processing, not on XML. One of the major advantages offered
by relational query processing has been a pipelined execution
model in which new tuples can be read directly off the network
and fed into the query plan. This presents a number of signif-
icant benefits for data integration and for enabling adaptivity:

• A single execution pipeline does not require materializa-
tion operations, or pre-parsing or preprocessing of an XML
document, so initial answers will be returned more quickly.
This satisfies an important desideratum for interactive data
integration applications.

• A single pipeline provides the most opportunities for ex-
ploiting parallelism and for flexibly scheduling the pro-
cessing of tuples. This enables the use of techniques
such as the pipelined hash join [RS86,WA91,HS93,UF00,
HH99,IFF+99] as well as eddies [AH00].

Pipelining and adaptive query processing techniques have
largely been confined to the relational data model. One of the
contributions of this paper is a new XML query processing
architecture that emphasizes pipelining the XML data stream-

ing into the system, and which facilitates a number of adaptive
query processing techniques.

As described in Sect. 2, XML queries operate on com-
binations of input bindings: patterns are matched across the
input document, and each pattern-match binds an input tree to
a variable. The query processor iterates through all possible
combinations of assignments of bindings, and the query op-
erators are evaluated against each successive combination. At
first glance, this seems quite different from the tuple-oriented
execution model of the relational world, but a closer exam-
ination reveals a useful correspondence: if we assign each
attribute within a tuple to a variable, we can view each le-
gal combination of variable assignments as forming a tuple
of binding values (where the values are XML trees or con-
tent). In this paper, we describe an XML query processing
architecture, implemented in the Tukwila system, which ex-
ploits the correspondence between the relational and XML
processing models in order to provide adaptive XML query
processing capabilities, and thus to support efficient network-
bound querying, even in the presence of delays, dynamic data,
and source failures. This architecture includes the following
novel features:

• Support for efficient processing of scalar and structured
XML content. Our architecture maps scalar (e.g., text
node) values into a tuple-oriented execution model that
retains the efficiencies of a standard relational query en-
gine. Structured XML content is mapped into a Tree Man-
ager that supports complex traversals, paging to disk, and
comparison by identity as well as value.

• A pair of streaming XML input operators, x-scan and web-
join, that are the enablers of our adaptive query process-
ing architecture. Each of these operators transforms an
incoming stream of XML data into an internal format that
is processed by the query operators. X-scan matches a
query’s XPath expressions against an input XML stream
and outputs a set of tuples, whose elements are bindings to
subtrees of XML data. Web-join can be viewed as a com-
bination of an x-scan and a dependent join – it takes values
from one input source, uses them to construct a series of
dynamic HTTP requests over Internet sources, and then
joins the results.

• A set of physical-level algebraic operators for combin-
ing and structuring XML content and for supporting the
core features of XQuery [BCF+02], the World Wide Web
Consortium XML query language specification, which is
nearing completion.

In this paper, we describe Tukwila’s architecture and im-
plementation, and we present a detailed set of experiments that
demonstrate that the Tukwila XML query processing archi-
tecture provides superior performance to existing XML query
systems within our target domain of network-bound data. Tuk-
wila produces initial results rapidly and completes queries in
less time than previous systems, and it also scales better to
large XML documents. The result is the first scalable query
processor for network-bound, live XML data.We validateTuk-
wila’s performance by comparing with leading XSLT and data
integration systems, under a number of different classes of
documents and queries (ranging from document retrieval to
data integration); we show that Tukwila can read and process
XML data at a rate roughly equivalent to the performance of

382 Z.G. Ives et al.: An XML query engine for network-bound data

<db>
<book publisher="mkp">
<title>Readings in Database Systems</title>
<editor>Stonebraker</editor>
<editor>Hellerstein</editor>
<isbn>123-456-X</isbn>

</book>
<book publisher="mkp">
<title>Transaction Processing</title>

<author>Bernstein</author>
<author>Newcomer</author>
<isbn>235-711-Y</isbn>

</book>
<company ID="mkp">
<name>Morgan Kaufmann</title>
<city>San Mateo</city>
<state>CA</state>

</company>
</db>

Fig. 1. Sample XML document representing book and publisher data

db

book

book
company

Readings
In Database
Systems

123-456-X

title

isbn

 publisher="mkp"

Principles
of Transaction
Processing

235-711-Y

title

isbn

publisher="mkp"

Morgan Kaufmann

San Mateo

name city state

editor

Stonebraker
Hellerstein

editor

CA

author author

Bernstein Newcomer

ID="mkp"

Fig. 2. Graph representation for Fig. 1.
Dashed edges illustrate relationships de-
fined by IDREFs; dotted edges point to
text nodes

SQL and the JDBC protocol across a network; we show that
Tukwila’s performance scales well as the complexity of the
path expressions is increased; and we show that Tukwila’s x-
scan operator can scale well to large (hundreds of megabytes)
graph-structured data with IDREFs.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the basics of querying for XML; then Sect. 3
begins by describing standard techniques for XML query pro-
cessing, and finishes by presenting the Tukwila architecture
and emphasizing its differences. We then describe the XML
query operators and cost model in Sect. 6, and how the opera-
tors can be extended to support a graph data model in Sect. 7.
Section 8 provides experimental validation of our work. Sec-
tion 9 discusses related work, and we conclude in Sect. 10.

2 Querying XML

During the past few years, numerous alternative query lan-
guages and data models for XML have been proposed, in-
cluding XML-QL [DFF+99] and XSLT [XSL99]. XSLT is a
single-document-oriented query language consisting of rules:
each rule matches a particular path in an XML tree and ap-
plies a transformation to the underlying subtree. XML-QL was
a data-oriented query language, adapted from the semistruc-
tured database community, and could join data across docu-
ments, but had few document-oriented features.

Recently the World Wide Web Consortium has combine
the features of these languages with its XQuery language spec-
ification [BCF+02] and accompanying data model [FMN02].
The XQuery data model defines an XML document as a tree
of ordered nodes of different content types (e.g., element, pro-
cessing instruction, comment, text), where element nodes may
also have unordered attributes. For example, the XML docu-
ment of Fig. 1 can be modeled as the tree of Fig. 2. In this
diagram, we have represented elements as labeled nodes, text
content as leaf nodes, attributes as annotations beside their
element nodes, and special IDREF-typed reference attributes

as dashed edges from their elements to their targets (where
the target element is identified by an ID-typed attribute of the
same name).

The XQuery language is designed to extract and combine
subtrees within this data model. It is generally based on a
FOR-LET-WHERE-RETURN structure (commonly known as
a “flower” expression): the FOR clause provides a series of
XPath expressions for selecting input nodes, the LET clause
similarly defines collection-valued expressions, the WHERE
clause defines selection and join predicates, and the RETURN
clause creates the output XML structure. XQuery expressions
can be nested within a RETURN clause to create hierarchi-
cal output, and, like OQL, the language is designed to have
modular and composable expressions. Furthermore, XQuery
supports several features beyond SQL and OQL, such as ar-
bitrary recursive functions.

XQuery execution can be considered to begin with a vari-
able binding stage: the FOR and LET XPath expressions are
evaluated as traversals through the data model tree, beginning
at the root. The tree matching the end of an XPath is bound
to the FOR or LET clause’s variable. If an XPath has multi-
ple matches, a FOR clause will iterate and bind its variable to
each, executing the query’s WHERE and RETURN clause for
each assignment. The LET clause will return the collection
of all matches as its variable binding. A query typically has
numerous FOR and LET assignments, and legal combinations
of these assignments are created by iterating over the various
query expressions.

An example XQuery appears in Fig. 3. We can see that the
variable $b is assigned to each book subelement under the
db element in document books.xml;$t is assigned the title
within a given $b book, and so forth. Our version of XPath
includes extensions allowing for disjunction along any edge
(e.g., $n can be either an editor or author), as well as a
regular-expression-like Kleene star operator (not shown).

In the example, multiple match combinations are possible,
so the variable binding process is performed in the following
way. First, the$bvariable is bound to the first occurringbook.

Z.G. Ives et al.: An XML query engine for network-bound data 383

<result> {
FOR $b IN document("books.xml")/db/book,

$t IN $b/title/data(),
$n IN $b/(editor|author)/data()

RETURN <item>
<person>{$n}</person>
<pub>{$t}</pub>

</item>
} </result>

Fig. 3. XQuery query that finds the names of people who have pub-
lished and their publications. The FOR clause specifies XPath expres-
sions describing traversals over the XML tree, and binds the subtrees
to variables (prefixed with dollar signs)

<result>
<item>
<person>Stonebraker</person>
<pub>Readings in Database Systems</pub>

</item>
<item>
<person>Hellerstein</person>
<pub>Readings in Database Systems</pub>

</item>
<item>
<person>Bernstein</person>
<pub>Transaction Processing</pub>

</item>
<item>
<person>Newcomer</person>
<pub>Transaction Processing</pub>

</item>
</result>

Fig. 4. The result of applying the query from Fig. 3 to the XML data
in Fig. 1

Then the $t and $n variables are bound in order to all match-
ing title and editor or author subelements, respec-
tively. Every possible pairing of $t and $n values for a given
$b binding is evaluated in a separate iteration; then the pro-
cess is repeated for the next value of $b. We observe that this
process is virtually identical to a relational query in which we
join books with their titles and authors – we will have a tuple
for each possible 〈title, editor|author〉 combination per
book. The most significant difference is in the terminology;
for XQuery, we have an “iteration” that produces a binding
for each variable, and in a relational system we have a “tuple”
with a value in each attribute.

The RETURN clause specifies a tree-structured XML con-
structor that is output on each iteration, with the variables re-
placed by their bound values. Note that variables in XQuery are
often bound to XML subtrees (identified by their root nodes)
rather than to scalar values. The result of the example query
appears in Fig. 4.An item element is output for each possible
combination of bindings.

Finally, we note that some XML data makes use ofIDREF
attributes to represent links between elements (the dashed lines
in Fig. 2). IDREFs allow XML to encode graph-structured as
well as tree-structured data. The current XQuery proposal has
limited support for IDREF traversal, only offering traversal of
a fixed number of edges, rather than transitive closure. How-
ever, since there are many interesting applications of graph-

structured XML data, we investigate querying it in this paper
using an extended version of XQuery.

3 Previous approaches to XML processing

As discussed in the previous section, the XML data model
and XQuery language are considerably more complex than
simple relational query processing because of their reliance
on path expressions. In particular, the hierarchical nature of
XML typically means that a document can be normalized to a
single relational table, but a set of tables that have parent-child
foreign-key relationships.

People have generally attempted to handle the XML pro-
cessing problem using one of four methods: (1) focus on tech-
niques for “shredding” XML into tables, combining the ta-
bles, and re-joining the results to produce XML output; (2)
make a few modifications to object-oriented or semi-structured
databases, which also inherently support hierarchy, so they
support XML; (3) use a top-down tree-traversal strategy for
executing queries; and (4) use a custom wrapper at the source
end for index-like retrieval of only the necessary content. Be-
fore we describe the Tukwila architecture, it is useful to briefly
examine these previous approaches, including their relative
strengths and weaknesses.

Relational databases. A variety of research projects at
INRIA [FK99a,MFK+00], AT&T Labs [DFS99,FTS99,
FMS01b], IBM Almaden [CFI+00,SKS+01,TVB+02], and
the University of Wisconsin [SGT+99] focused on the prob-
lems of mapping XML data to and from relational databases.
Today, all of the major relational DBMS vendors build upon
this work and provide support some form of XML export
(e.g., [Rys01,BKKM00]). In general, results suggest that a
relational database is generally not ideal for storing XML, but
when the XML data either originates from relational tables or
is slow to change, it may be an acceptable solution. Signifi-
cant benefits include scalability and support for value-based
indexes; drawbacks include expensive document load times
and expensive reconstruction of XML results. The relational
query optimizer can improve performance significantly if the
XML query maps to simple SQL, but it frequently makes poor
decisions for more complex queries, since it does not optimize
with knowledge of XML semantics [ZND+01].

Object-oriented and semi-structured databases. Several ma-
jor commercial OODBs, including Poet and ObjectStore, have
been adapted to form new XML databases. They provide
some benefits over strictly relational engines because their
locking and indexing structures are designed for hierarchical
data; however, OO query optimizers are still generally rela-
tively weak. The Lore semi-structured database [GMW99],
which has a number of special indexing structures, has also
been adapted to XML (though performance was shown to be
poor relative to a relational system storing XML [FK99a]).
Several native XML databases [KM00,BBM+01,AKJK+02,
MAM01] are also under development. Most of these systems
focus on issues relating to efficiently storing and traversing
hierarchical objects, as well as on indexing. For more details,
please see the discussion of related work in Sect. 9.

384 Z.G. Ives et al.: An XML query engine for network-bound data

Web-oriented DOM processors. The techniques mentioned
above focus on storage and retrieval of XML content. Of
course, XML is expected to also be a format for content trans-
mission across networks, and some of this content will be of a
transient nature – there is a need for systems that format, query,
combine, and present it without storing it. For this domain, an
entirely different class of query processors has been devel-
oped. These processors, such as the XT, Xalan, and MSXML
XSLT engines and the Niagara system from the University
of Wisconsin [NDM+01] typically work by parsing an XML
document into an in-memory DOM tree; then they traverse
the tree using XPath expressions, extract the specified content,
and combine it to form a new document. For transient data of
small size, this performs much better than storing the data on
disk and then querying it; however, it is limited by available
memory, and it cannot begin producing answers until after the
input document has been parsed. (For a large document over
a slow Internet connection, this may be a significant delay.)

Other web-oriented processors. The MIX system from the
University of California-San Diego [BGL+99] is web-based,
but has a pull-based, lazy XML evaluation method where the
query processor can request specific regions from the data
from the mediator as required. This allows for better scala-
bility than the DOM approach, but suffers from two potential
problems. First, it requires a custom wrapper at the source,
which processes the pull-based messages. Second, one of the
major costs in wide-area communication is round-trip time,
and the pull-based method requires considerable communica-
tion between data source and consumer.

4 The Tukwila XML architecture

Our intent in designing the Tukwila system is to provide the
scalability and query optimization of a full-fledged database
while maintaining the interactive performance characteristics
of the web-based systems. We want to be able to support
naive producers of XML content, but also to take advantage of
more complex systems that can process queries (or portions
of queries) directly.

Although the Tukwila project investigates both query op-
timization and execution for integrating network-bound XML
data, in this paper we shall focus on the query execution archi-
tecture and operators.A brief discussion of the query optimizer
and cost model appears in Sect. 6.

The Tukwila architecture is based on the following obser-
vations:

1. The basic execution model of XQuery is very similar to
that for relational databases: XQuery evaluates the WHERE
and RETURN clauses over every possible combination of
input bindings, and each combination of bindings can be
viewed as a tuple.

2. The FOR and LET clauses bind input variables using
XPath expressions, which typically are traversals over
XML parse tree structure, occasionally with selection or
join predicates. The majority of XPath expressions traverse
in the downward (“forwards”) direction, which matches
the order in which a parser encounters the XML elements
as it reads an input stream.

3. Most selection and join predicates in XQuery involve
scalar (text node) data, rather than complex XML hier-
archies. Bindings to hierarchical XML data are most com-
monly used only in the RETURN clause.

4. The majority of XML processors use DOM-based parsers,
which must construct the entire XML parse tree before
query processing begins. Incremental parsing, combined
with pipeline-based execution2 as in relational databases,
would produce significant benefits. First, it can reduce the
time to first answers, as results percolate through the query
plan more quickly. Second, the increased parallelism of
pipelined operators allows for adaptive scheduling, which
allows the query processor to overlap I/O with computa-
tion [IFF+99] and prioritize important work [UF01].

Based on these observations, we have designed an archi-
tecture that is particularly efficient for common-case query
execution.

4.1 The Tukwila execution engine

The core operations performed by most queries are path
matching, selecting, projecting, joining, and grouping based
on scalar data items. Our engine can support these operations
with very low overhead, and in fact it can approach relational-
engine performance on simple queries. Our query execution
engine also emphasizes a relational-like pipelined execution
model, where each “tuple” consists of bindings to XML con-
tent rather than simple scalar attributes. This gives us the time-
to-first-tuple benefits cited previously, and it has the benefit of
leveraging the best techniques from relational query process-
ing.

A high level view of the Tukwila architecture is illustrated
in Fig. 5. The query optimizer passes a plan to the execution
engine; at the leaf nodes of this plan are x-scan operators.
The x-scan operators: (1) retrieve XML data from the data
sources; (2) parse and traverse the XML data, matching regu-
lar path expressions; (3) store the selected XML subtrees in the
XML Tree Manager; and (4) output tuples containing scalar
values and references to subtrees. The tuples are fed into the
remaining operators in the query execution plan, where they
are combined and restructured. As it flows through the oper-
ators near the top of the query plan, each tuple is annotated
with information describing what content should be output as
XML, and how that content should be tagged and structured.
Finally, the XML Generator processes these tagged tuples and
returns an XML result stream to the user.

In a sense, the “middle portion” of our architecture (repre-
sented by the “Query Operators” box and the Page Manager)
resembles a specialized object-relational database core. Tu-
ples contain attribute values that have been bound to variables;
these values can be scalar, and stored directly within the tuple,
or they can be XML structures, similar to CLOBs (character
large objects) in an OR database – XML structures are stored
separately from the tuple, in an XML Tree Manager, which is a
virtual memory manager for XML subtrees. (Note that we do
not attempt to support any other object-oriented types, nor do
we implement methods.) The tuples being pipelined through

2 Note that while not all operators are pipelineable, a fairly large
class of queries can be answered with pipelined operators.

Z.G. Ives et al.: An XML query engine for network-bound data 385

Binding
Tuples

Query
Operators

XML
Generator

Query
Optimizer

X-scan
Operators

XML
Data

Partly Tagged
Data

XML
Data

Temp
Storage

Tukwila XML Engine

XML
Sources

Page
Manager

.

.

.

<sub>
 <val>1</val>
 <val>2</val>
</sub>

<sub>
 <val>1</val>
 <val>2</val>
</sub>

XML Tree
Manager

Query
Plan

User
Application

Query

Fig. 5. Architecture of the Tukwila query execution engine. After a query plan arrives from the optimizer,
data is read from XML sources and converted by x-scan operators into output tuples of subtree bindings.
The subtrees are stored within the Tree Manager (backed by a virtual page manager), and tuples contain
references to these trees. Query operators combine binding tuples and add tagging information; these are
fed into an XML Generator that returns an XML stream

FOR $b IN document("books.xml")/db/book,
$pID IN $b/@publisher,
$t IN $b/title/data(),
$pub IN
document("amazon.xml")/book/item,
$t2 IN $pub/title/data(),
$p IN $pub/source,
$pi IN $p/@ID,
$pr IN $pub/price/data()

WHERE $pr < 49.95
AND $pID2 = $pID
AND $t = $t2

RETURN <book>
<name>{ $t }</name>,
<publisher>{ $p }</publisher>
</book>

Fig. 6. Query returning titles and publishers for books priced under
$49.95 at Amazon. The plan for this query is shown in Fig. 7

the query plan contain references to subtrees within this Tree
Manager, so if multiple variables are bound to an XML tree,
the data does not need to be duplicated. Our query opera-
tors can manipulate both references within the Tree Manager
and values embedded within the tuple, so both object-based
and value-based operations are possible – including grouping,
nesting, and aggregation. XML subtrees are reference-counted
and garbage-collected when all tuples referring to them have
been processed by the system.

The Tukwila architecture allows us to leverage a number
of components from the relational world, such as most of the
basic memory management strategies and operators; it is also
straightforward to make use of adaptive query processing op-
erators when these are appropriate for the query semantics.
We discuss Tukwila’s query operators later in this paper.

4.2 Pipelining XML data

One of the virtues of the flat relational model is its extreme
flexibility as a representation. For example, since relations
are order-independent, joins can be commuted and non-order-
preserving algorithms can be used. Techniques for query
decorrelation can be used. Predicates can be evaluated early
or late, depending on their selectivity.

A hierarchical data model, such as XML, is often more
intuitive to the data consumer (since it centers on a particular

concept), but the natural model of execution – breaking a query
by levels in the hierarchy – is not necessarily the most efficient.
Even more restrictive than hierarchy is ordering: by default,
XQuery is very procedural, specifying an order of iteration
over bindings, an implicit order of evaluating nested queries,
and so forth.

One possible execution model for XQuery would resemble
that for nested relations, and in fact “recursive” algebras for
nested relations, in which all operators can operate at any level
of nesting in the data, have been proposed and implemented
(e.g., [HSR91,Col89]). However, we have a preference for
mapping XML – even hierarchical XML – into something
more resembling the “flat” relational model: an XML docu-
ment gets converted into a relation in which each attribute rep-
resents the value of a variable binding, and position is encoded
using counter or byte-offset information. Each such binding
may contain arbitrary XML content; but unlike in a nested
relational model, the query may only manipulate the top level
of the structure. Nested structure must be expanded before it
can be manipulated.

This architecture allows us to directly leverage relational
query execution and optimization techniques, which are well-
understood and provide good performance. Moreover, we be-
lieve that, particularly in the case of data integration, we can
get better performance from an execution model that preserves
structure but has “flat” query operators, for three key reasons.
First, many data integration scenarios require significant re-
structuring of XML content anyway – hence, it makes little
sense to spend overhead maintaining structure that will be lost
in the end. Second, we can make the unnesting and re-nesting
operations inexpensive: our x-scan algorithm provides a low-
overhead way to unnest content, and we can insert additional
metadata into every tuple to make it easy to re-nest or re-order
values. Third, we believe that there is an inherent overhead
in building algorithms that preserve multiple levels of hier-
archy, and as a result we feel a “RISC” philosophy is most
appropriate.

Example. Figure 7 shows a physical query plan and the tuple
encoding for the simple XQuery of Fig. 6.The x-scan operators
at the leaves convert XML to streams of tuples by binding vari-
ables to the nodes matched by regular path expressions. Gen-
eral query operators such as selects and joins are performed
over these tuples: first we select Amazon publications
priced under $49.95, and then we join the results with books

386 Z.G. Ives et al.: An XML query engine for network-bound data

X-scan X-scan
$b = db/book
$pID = $b/@publisher
$t = $b/title

$pub = book/item
$t2 = $pub/@title
$p = $pub/source
$pi = $p/@ID
$pr = $p/price

books amazon

$pID = $pi,
$t = $t2

Output

Element

Output

Element

Element

$t

<name>, 1

$p

<publisher>,1

<book>,2

publisher

name

name

name

book

$pr < 49.95
prt2 pip

b pID t prt2 pip

b pID t prt2 pip

b pID t prt2 pip

b pID t prt2 pip

b pID t prt2 pip

b pID t prt2 pip

publishername

prt2 pip

b pID t

Result

<book>
 <publisher>...

pub

pub

pub

pub

pub

pub

pub

pub

Fig. 7. Query plan for Fig. 6 includes a pair of x-scan operators to
compute the input bindings, a join across these sources, and a series
of output and element operators that copy the desired variables to
the output and construct XML elements around them

on the publisher and title values. Once the appropriate
binding values have been selected and joined, an output XML
tree must be generated with the variables’ content. The out-
put operator is responsible for replicating the subtree value
of a given binding to the query’s constructed output. The el-
ement operator constructs an element tag around a specified
number of XML subtrees. In the figure, the output subtree is
shown at different stages of construction – first we output $t
and insert a name element above it; then we output $p and a
publisher element tag around it; finally, we take both of
these subtrees and place them within a book element. As a
last step, the stream of tuples is converted back into a stream
of actual XML.

In subsequent sections, we describe in detail how Tukwila
encodes XML structural information, including tags, nested
output structure, and order information.

4.2.1 Encoding XML tags

In XQuery, a single RETURN clause builds a tree and inserts
references to bindings within this tree. The tree is in essence
a template that is output once for each binding tuple.

In Tukwila, we need to encode the tree structure and attach
it to each tuple. We do this by adding special attributes to
the tuple that describe the structure in a right-to-left, preorder
form. The benefit of this encoding is that we do not need
pointers from parent nodes to children – instead, each non-leaf
node specifies a count of how many subtrees lie underneath
it, and the decoding algorithm simply expands each subtree
recursively.

Figure 8 shows this schematically: the tree in the right
half of the figure is encoded as the tuple in the left half. The

leftmost four entries in the tuple are the values of the variable
bindings, which contain data values but are not directly part of
the XML document under construction. The XML fragment
represented by this tuple can be decoded as follows: we start at
the rightmost item in the tuple (book); this represents a book
element with two children (indicated by the “/2” in the figure),
and we output a <book> tag. We traverse to the leftmost child
of the element by moving left by two attributes; this yields a
<name> with two children. Again, we traverse the left child
– here, we are instructed to output the fst attribute. Next we
visit the sibling, lst, and output its value, and so on.

Of course, the encoding mentioned above assumes that
there are no 1 : n parent-child relationships in the returned
output (every element occurs once for every combination of
input bindings). It is very common for XQueries to contain cor-
related nested subqueries, which embed many results within
each iteration of the outer query.

4.2.2 Encoding nesting

As mentioned previously, although we want to capture hier-
archical nesting of XML results, we do not actually encode it
using nested relations. Instead, we flatten or denormalize the
results: a single parent tuple with n child tuples is represented
by n “wide” tuples with both parent and child information. The
XML hierarchy could be decoded by grouping together all tu-
ples with the same parent content. However, that approach
does not support proper bag semantics, since duplicate par-
ents will be combined, and it is fairly costly since all parent
attributes must be matched. Instead of adopting that approach,
we insert an additional attribute that encodes the parent’s se-
quence ID, and group tuples by this ID to find all of the children
with a common parent.

Note that this flattened encoding gives the query pro-
cessor the opportunity to arbitrarily re-order tuples at any
point, potentially distributing consecutive data items any-
where in the tuple stream, as long as it performs a sort at the
end. It is worth noting that this tuple encoding approach has
some similarities to the “outer union” encoding implemented
in [CFI+00,SSB+00] and in Microsoft SQL Server’s FOR
XML EXPLICIT mode; however, we encode the branches of
the subquery hierarchy rather than the XML data hierarchy.
As a result, we seldom have null values in our tuple stream.

4.2.3 Encoding order

All of Tukwila’s path-matching algorithms can insert attributes
that record both the position of a binding, by encoding its byte
offset within the XML stream, and its ordering relative to
any other matches for the same variable. Note that these are
two distinct concepts, especially when references are used.
By adding an ordinal attribute, Tukwila may use non-order-
preserving join operators but still maintain XQuery ordered
semantics: it simply sorts the data before outputting it.

4.2.4 Generating XML output

Converting from a tuple stream to an XML stream requires
several steps: (1) traverse the XQuery RETURN clause con-
structor embedded within a tuple, outputting the appropriate

Z.G. Ives et al.: An XML query engine for network-bound data 387

book

lst fst adnm

publishername
lst fst adnm

name/2 publisher/2 book/2lstfst nmad

Bindings Constructed XML Result Tree
Fig. 8. Encoding of a tree within a tu-
ple, for the query of Fig. 7. The encod-
ing is done in bottom-up fashion, so each
parent element needs only to specify its
number of children. (The arrows are for
visualization only.) The tree “leaves” are
references to attributes containing bind-
ings

structure; (2) retrieve and embed any referenced XML sub-
trees; and (3) correctly output hierarchical XML structure
which may span multiple tuples. The first step, traversing the
tree structure embedded within a tuple consists of starting at
the rightmost output attribute and recursively traversing the
tuple-encoded tree, as described in Sect. 4.2.1. Each time a
leaf node is encountered, the second step is performed: the
referenced XML subtree is retrieved from the Tree Manager
and replicated to the output.

The first two steps above are used when all values encoded
within a tuple are to be output; this is not necessarily the case if
grouping or nesting attributes are present. If nested structure is
being represented, then each tuple will actually consist of data
for the parent relation followed by data for the child relation.
Clearly, the parent data should only be output once for the
entire group. This is easily determined by testing whether the
parent ID attribute has changed between successive tuples.

Groups can be grouped or nested, so this process scales to
arbitrary depth. Moreover, XQuery semantics are outer-join-
like, so it is possible to have a publisher with no books. In this
case, the book attributes in the tuple are set to null values, and
the XML decoder simply outputs the publisher attributes with
no book content.

In the next two sections, we describe the Tukwila query
operators, which make use of this tuple-based encoding. We
begin with the operators that produce the tuple stream: the
x-scan and web-join operators.

5 Streaming XML input operators

It is Tukwila’s support for streaming XML input that most
differentiates it from other XML query processors. This sup-
port is provided by two different operators that take an input
XML stream and a set of XPath expressions, and they return
“tuples of trees” representing the combinations of variable
bindings that match the XPaths. The simpler operator, x-scan,
performs XPath matching over a specified input document.
The web-join operator adds further mechanisms for supporting
data-dependent queries: like the dependent join in a relational
system, it is provided with a stream of “independent tuples.”A
web-based (e.g., HTTP) query string is generated by inserting
values from the current tuple into a query generating expres-
sion; this query request is performed, and the resulting XML
document is then pattern-matched against XPath expressions.
Finally, the matching bindings are combined with the original
independent tuple to produce a Cartesian product. X-scan is
used for querying static or predetermined web sources, and
web-join allows Tukwila to dynamically query and combine
numerous sources.

The intuition behind the streaming XML input operators
is that an XPath expression greatly resembles a regular ex-

pression (where the alphabet consists of element and attribute
labels), and this can be simulated by a finite state machine.
Tukwila uses an event-driven (SAX) XML parser to match
input path expressions as an XML stream is being parsed; a
variable binding is created each time a state machine reaches
an accept state. Bindings are combined to form tuples, which
are pipelined through the system, supporting output of XML
results as the data stream is still being read.

While using a finite state machine to match XPath expres-
sions seems natural, the algorithms for supporting the details
of XPath, combining the bindings, and supporting efficient
execution are quite complex. To the best of our knowledge,
Tukwila is unique in creating pipelinable XML query results
directly from a data stream, and in using finite state machines
to do so – and as a result it shows significant performance and
scalability benefits over other systems. Systems such as Nia-
gara fetch and parse an entire input XML document, construct
a complete DOM representation in memory, and finally match
path expressions across the tree and pass the results through
query operators. XSLT processors such as Xalan, MSXML,
and XT are similar, but use a recursive pattern-matching se-
mantics rather than a set of query operators. Most other XML
query processors are designed to operate on XML in a local
warehouse. One interesting system that is not a query pro-
cessor but bears some resemblance to Tukwila is the DBIS
system and its XFilter [AF00] operator3. DBIS takes XML
documents and determines whether they meet specific XPath
expressions, and it “pushes” those that do to “subscribing”
users. DBIS performs document filtering rather than query
processing, so XFilter, an operator with a binary (match/non-
match) return value, differs substantially from x-scan in its
functionality. The XML Toolkit [GMOS02] builds upon the
XFilter work, but proposes a “lazy” approach to building de-
terministic finite state machines from nondeterministic path
expressions.

We now present the details of the streaming XML input
operators, beginning with x-scan.

5.1 X-scan operator

Given an XML text stream and a set of regular path expres-
sions as inputs, x-scan incrementally outputs a stream of tuples
assigning binding values to each variable. A binding value is
typically a tree – in which case the tuple contains a reference
to data within the Tukwila XML Tree Manager – but if it is
a scalar value, this value may be “inlined” directly within the
tuple. A depiction of x-scan’s data structures appears in Fig. 9:
the XML stream is processed by an event-driven SAX parser,

3 In fact, the XFilter and x-scan operators were developed concur-
rently.

388 Z.G. Ives et al.: An XML query engine for network-bound data

which creates a series of event notifications. The XML data is
stored in the XML Tree Manager and is also matched against
a series of finite state machines (responsible for XPath pat-
tern matching). These state machines produce output binding
values, which are then combined to produce binding tuples.

Basic XPath expressions are a restricted form of regular
path expressions4. Thus x-scan converts each XPath expres-
sion into a regular expression and generates its corresponding
nondeterministic finite state machine; it later converts this into
a deterministic machine, for reasons discussed later in this sec-
tion. XPath expressions originating at the document root are
initialized to the active mode, and the active machines’ states
are updated as x-scan encounters subelements and attributes
during document parsing. Figure 9b shows the state machines
created for the example query of Fig. 3.

Initially, only the top-level machine (Mb in our example)
is active. When any machine reaches an accepting state, it
produces a binding for the variable associated with it. The
machine then activates all of its dependent state machines,
and they remain active while x-scan is scanning the value of
the binding. In our example, the machines Mn and Mt remain
active while we scan children of b.

Associated with each machine is a table for binding values.
As a machine reaches an accept state, it adds an entry contain-
ing its bound subtree value, and also an association with the
entry’s parent binding (shown in Fig. 9a as a dashed arrow
from parent to child)5. In our example, Mb’s table would just
store values of b, while Mn and Mt would store author/editor
names and titles, respectively, and these would be associated
with their corresponding b values. The final output of x-scan
is essentially a join of the entries maintained by the machines,
done for matching parent-child pairs (this is done in a data-
driven, rather than iterator, model, as with a pipelined hash
join [WA91]).

We illustrate the execution of x-scan on our example data
of Fig. 2. Suppose Mb is initialized to machine state 1, which
takes the XML root as its start position. The root node is
a virtual node representing the entire document, and its only
child is the db node. X-scan follows the edge to the db node,
setting Mb to state 2. Next, x-scan can follow one of two
outgoing edges to book nodes. It chooses the leftmost one
(Readings in Database Systems), causing it to set Mb to state
3. Mb is now in an accepting state, so x-scan writes the ref-
erence to the current node into Mb’s table, suspends Mb, and
activates Mn and Mt. The editor element takes Mn from
state 4 to 5, which is an accepting state for Mn. Hence, x-scan
writes “Stonebraker” and a pointer from the current book.
In the meantime, Mt follows the arc to the title element,
putting its machine into state 8, which is also an accepting
state. Hence, the tuple 〈title1, book1〉 will be written into
Mt’s table. From this node, no (non-text) children remain for
exploration, so x-scan pops the stack and backs up the state
machines. It sets Mb to state 2, where it can continue to explore
the second book node, proceeding as before. �

4 We shall discuss additional, non-path-oriented XPath features
later in this section

5 The implementation can store subtrees by value or reference.
For expository simplicity, we write as though nodes are stored by
ID-based reference and attributes are stored by value.

To this point, we have described how x-scan performs sim-
ple path expression matching. However, XPath supports ca-
pabilities beyond mere path matching, and these features are
also provided by x-scan.

Querying order (node indexing). XPath expressions may re-
strict bindings based on ordering information, such as a con-
straint on a subelement’s index number (e.g., “2nd paragraph
subelement”) or on the relative positions of bindings (e.g., $a
BEFORE $b). X-scan supports both capabilities: the x-scan
state machines are annotated with counters to keep track of el-
ement indices, and the output of the x-scan can include both a
binding and its index or its absolute position. A select operator
can then filter out tuples based on order.

Selection predicates.Another useful capability in x-scan is
the ability to apply certain selection predicates over the vari-
able bindings and their subtrees. These can be simple pred-
icates over values (e.g., “bind $b to book titles with the
value ‘Transaction Processing’ ”) – similar to “sargable pred-
icates” [SAC+79]. Additionally, x-scan supports existential
path tests (e.g., return books only if they have titles). Existen-
tial quantification of a path is similar to any other path expres-
sion, except that its binding is not returned. (Other forms of
existential quantification are possible, and they can be imple-
mented using correlated subqueries and traditional relational
techniques.)

Node test functions.XPath expressions often in-
clude node tests, which restrict the type of XML
node being selected (e.g., text(), comment(),
processing-instruction()). Similarly, an XPath
edge with an at-sign prefix () represents an attribute node.
All of these conditions are expressed within the x-scan state
machines as restrictions on the XML nodes to be matched.

Traversing in reverse.Our current implementation of x-scan
does not evaluate the XPath “parent” axis, i.e., it does not tra-
verse backwards through the tree. Instead, the Tukwila query
optimizer rewrites path expressions with the parent operator
by splitting them into a parent-binding and a child-binding.
Conditions are evaluated on the child, and if they are met, the
parent is used. (While this process may at times be less effi-
cient than supporting a true “parent” traversal, we expect use
of the parent axis to be uncommon.)

Efficiency enhancements. In x-scan, we include a number of
optimizations to boost XML parsing and processing perfor-
mance. First, we avoid processing XML content (i.e., handling
SAX parser messages) when the state machines are inactive –
it is important to avoid unnecessary copying and handling of
string data. Additionally, the instant it becomes evident that a
subtree cannot satisfy an XPath expression (e.g., it does not
meet a sargable predicate or is missing an attribute), we deac-
tivate the state machines until the next subtree is reached.

Expected complexity of state machines.While x-scan uses de-
terministic finite state machines – which can be exponentially

Z.G. Ives et al.: An XML query engine for network-bound data 389

ELEMENT: book
 ATTRIB: pub...
 ...
...
ELEMENT: name
TEXT: Stonebr...

SAX Events

State Machines

Bindings
Binding
Tuples

XML Tree Manager

<db>
 <book publisher...
 <title>Read...
 <editors>
 <name>Ston...
 ...

XML Stream

db: {
 book: {
 @publisher...
 title: {Read...
 editors: {
 name: {Ston...
 ... b

t

#1 n

Re...

St...

He..

b n t

#1

#1

Re...

Re...

St...

He..

a X-scan process

Mb:

Mn:

Mt:

1 2 3

4
5

db book

editor

7 8
title

6

author

b State machines for Fig. 3 query

Fig. 9. X-scan takes an XML document and maps it into the
XML Tree Manager, while simultaneously running state ma-
chines over the parse tree. Each state machine creates variable
bindings, and these must be combined to produce binding tu-
ples. Solid arcs in b denote state transitions on the label; dashed
arcs denote dependencies between machines

larger than the nondeterministic machines from which they
are derived – XPath expressions tend to be short (queries to
depth of more than 6-8 seem to be rare). Furthermore, XPath
only supports a restricted version of regular path expressions:
instead of Kleene closure, XPaths are limited to simpler “wild-
card” and “descendent” operations.

Handling memory overflow.Typically, x-scan needs very little
working space – it outputs a stream of binding tuples (i.e., sets
of subtrees) and little state needs to be maintained between the
production of any two tuples. However, there are two cases
where it may run out of memory.

First, the XML data that is still being referenced may be
larger than memory. Since the XML Tree Manager is a paged
data structure, segments of this data are swapped to and from
disk as needed. Of course, as a result, a large XML file could
produce “thrashing” in the swap file during query processing.
However, our experiments in Sect. 8 suggest that this is typ-
ically avoided, which we attribute to two factors. First, the
system supports “inlining” of scalar values: string, integer, or
other “small” data items are embedded directly in the tuple,
avoiding the dereferencing operation. Typical query opera-
tions in XQuery are done on scalar rather than complex data
(e.g., joining or sorting are frequently based on string values);
thus these operations often only need data that has been in-
lined. Large, complex tree data is typically only required at
the XML generation stage, when the final results are returned.
A second mitigating factor is that many XML queries tend to
access the input document in sequential order, and the Tree
Manager therefore can avoid re-reading data that has been
paged out. For purposes of comparison, we point out that a
paged DOM-based approach would have similar behavior to
our scheme (except that in-memory representation of XML is
larger in a DOM tree, typically at least 2–4 times larger, be-
cause of DOM’s heavyweight nature); a mapping from XML
to relations (“shredded XML”) typically requires a significant
amount of materialization in the first place, and often incurs

heavy costs whenever it needs to perform joins to recreate
irregular structure.

The second memory overflow case, which may occur for
trees with high fanout, is when sibling XPaths each have many
bindings, and x-scan must return all combinations. To take the
query of Fig. 3 as an example, we might somehow have many
authors and alternative titles per book, and x-scan would have
to return every possible title-author pairing for each book. To
accomplish this, x-scan maintains the current value of b, plus
tables for n and t bindings. As values of n are added, they are
combined with b and all existing values of t; and the process
works similarly for new values of t. Each time a new value
of b is encountered, the tables can be flushed and the process
restarted. In an extreme case, the tables may grow larger than
memory – this case can be handled in a manner similar to the
pipelined hash join overflow strategies of [UF00,IFF+99].

5.2 Web-join operator

The x-scan operator is analogous to the sequential table scan
in relational databases, and to the “wrapper fetch” operation
in relational data integration: it allows the query processor to
read through an XML document and extract out the relevant
content. If the source has more sophisticated query capabili-
ties, certain operations may in fact be “pushed” into it via the
x-scan HTTP query request.

In distributed query processing, sometimes it is beneficial
to make use of a dependent join operator instead of more tradi-
tional table scan and join operators. Instead of requesting data
independently from two sources and then joining it, the de-
pendent join reads data from one source, sends this data to the
other source and requests matching values, and then combines
the data from the two sources. This operation is particularly
useful in two cases: one is if the join with the second source
is highly selective, so much less data is transferred using the
dependent join. The second is when the source requires input
values before it will return an answer (e.g., the source may be

390 Z.G. Ives et al.: An XML query engine for network-bound data

XPath
expressions

Input tuple

Query
generating
expression $a $b

Query request
to data source

http://site.org/
$a?val=$b

$c = root/"subpath"
$d = $c/...
...

XML
Query
Result

Binding
tuples

Joined output tuples

x-scan

Fig. 10. The web-join operator takes each input tuple and substi-
tutes its values into a query generating expression. This expression
becomes a web request that queries a data source; its results are
matched against a set of XPath expressions by an x-scan operator.
The resulting tuples are joined with the original input tuple to produce
a set of results for later query processing

an online bookseller with a web forms interface that requires
an author or title), this is equivalent to the notion of “bind-
ing patterns” in relational data integration [RSU95,KW96,
LRO96].

In a web context, a query to a data source is generally
provided using one of two means: via an HTTP request (GET
or POST) or via a SOAP call with some form of query (per-
haps an XQuery). For both of these domains, we propose the
web-join operator. Web-join (Fig. 10) is intuitively similar to
the combination of an x-scan operator with a relational-style
dependent join: it receives an input tuple stream and a query
generating expression (shown schematically in the lower left
of the Fig. as a string with two underlined parameters, $a
and $b, although in reality it can be any string expression).
The parameters in the query generating expression will be in-
stantiated with values from the input tuple stream, and the
resulting query string will be evaluated as a URI string, HTTP
POST sequence, or SOAP envelope. The XML resulting from
the request is now evaluated against XPath expressions by an
embedded x-scan operator. Now, each of the resulting binding
tuples is joined with the original tuple and output. The process
repeats for each tuple of the original input stream.

Web-join is an important operator for querying dynamic
sources, especially ones with embedded Xlinks or URIs. It also
allows our query processor to do “lazy” evaluation: Tukwila
can request some initial data, execute filtering operations on
it, and then request additional content for those elements that
remain.

6 Tukwila XML query operators and optimization

The previous section presented the query operators that are
responsible for mapping an XML data stream into a stream
of tuples. Now we describe the query operators that process
this data. A logical query algebra usually is designed to be
expressive and minimal. In contrast, the set of physical query
operators needs to have predictable performance (to make the

optimizer’s cost model easier to build) and in efficient imple-
mentations for specific contexts (where the optimizer should
choose the most appropriate implementation).

As we have constructed the physical algebra for Tukwila,
we have focused on providing efficient support for executing
a relatively expressive “core” of XQuery: our focus to this
point has not been on supporting the full language. Currently,
we do not support recursion, typechecking, or conditional as-
signments. We have also implemented only a small subset of
the proposed XQuery function library. However, we feel that
the current implementation is sufficient to demonstrate how
common-case queries can be executed quickly, and that it can
eventually be extended to include the absent features. The
complete list of operators is summarized in Table 1, and we
provide more detail below.

6.1 Query operator classes

Streaming input. The x-scan and web-join streaming input
operators were already discussed in Sect. 5.

Path evaluation. The follow operator is a path traversal opera-
tor. It takes as input a binding tuple, evaluates an XPath (which
may involve following an IDREF or even an XLink) originat-
ing at one of the bindings, and returns a sequence of 0 or more
binding tuples. Since x-scan has very little overhead, follow is
primarily useful when following XLinks or references within
a graph-structured document6.

Combination/filter. Most of these operators are almost iden-
tical to the standard relational equivalents. One notable ex-
ception is the collector operator, which we first proposed
in [IFF+99]: it starts reading from one or more data sources,
but can switch to alternate sources depending on availability
and performance. We have one additional operator, assign,
which adds a new attribute (and binding) to a tuple, assigning
it the result of some scalar expression. This expression may be
posed in terms of other bindings (e.g., a string concatenation).

Second-order. The second-order operators all process sets (or
bags) of tuples. The only nonstandard operator is aggregate,
which takes a stream of tuples representing subquery content
nested within parent query content and, for each parent, com-
putes an aggregate value across all of its children. This is very
similar to the relational GROUP BY operator, with two ex-
ceptions: (1) the grouping information is already present, as
the result of a group operator as discussed below; and (2) the
nested data within the group is preserved rather than discarded.

Nesting. These operators are also second-order, but we sep-
arate them because they have a special role in our XML en-
coding. The group operator hierarchically restructures tuples:
for each set of tuples that have an identical set of grouping
attribute values, the operator conceptually outputs a single tu-
ple with these grouping attributes, plus an embedded subtable

6 We expect that XLink reference traversal will be less frequently
used than the other operations, and hence we have defined but not
yet implemented this operator feature.

Z.G. Ives et al.: An XML query engine for network-bound data 391

Table 1. Physical query operators and algorithms in Tukwila

Name Class Function
x-scan streaming input Match input path expression
web-join streaming input Query based on bound vars.
follow path evaluation Evaluate XPath over binding
select combination/filter Filter tuples by predicate
project combination/filter Discard bindings
hybrid hash join combination/filter Equijoin
pipelined hash join combination/filter Equijoin
merge join combination/filter Ordered equijoin
nested loops join combination/filter Order-preserving join
union combination/filter Relational-style union
collector combination/filter Union with fail-over
assign combination/filter Evaluate expression
distinct 2nd-order Remove duplicates
sort 2nd-order Reorder tuples
aggregate 2nd-order Compute aggregate over group
nestChild nesting Correlated nesting of elements
group nesting Group and restructure sets of elements
output result Output binding to XML
element result Create XML element
attribute result Create XML attribute

with tuples of the non-grouped attributes. In Sect. 4.2.1, we
described how this nested structure is encoded within “flat” tu-
ples; we provide each tuple-group with a unique ID, and this
becomes the identifier for the “parent tuple,” while all non-
grouped attributes are the “child tuple.” Group is primarily
useful for providing a relational-style group-by, or for extract-
ing common structure from “flat” XML.

Nested FLWR query expressions are a basic idiom in
XQuery, and we handle this case with our nestChild opera-
tor, which has semantics very similar to a relational left outer
join. NestChild takes a parent and a child tuple stream, plus
a correlation predicate. For each parent tuple, nestChild finds
the set of child tuples meeting the predicate and groups them
with the parent tuple. At the same time, it groups the parent’s
XML subtree together with all of the children’s XML subtrees.
(We note that many nested relational algebras and their deriva-
tives include a unary operator called “nest” which is closer in
nature to our group operator than our nestChild. Systems with
that type of algebra must perform least two operations – join
and “nest” – to achieve the same effect as our nestChild, and
end up doing redundant work.)

Whereas the join operator is typically allowed to output
results in any order, nestChild semantics require a nested loops
join-like ordering, where all child values are returned with
their parent. We encode the “hierarchical tuple” as described in
Sect. 4.2.1, which preserves enough information to determine
whether any two “flat” tuples contain the same parent tuple.
Using this approach, if we use order-preserving operators, we
can pipeline the encoded structure all the way to the output
result; otherwise, we must use a hashing or sorting algorithm
to cluster tuple groups together before we convert them to
XML.

Result. These operators are responsible for creating the output
for the XQuery. They construct the output XML tree and are
applied using a postfix ordering. An output operator always
creates a leaf node in the output; it simply outputs the result of

a binding as a string value. Attribute wraps the result of the last
output node within the specified XML attribute name (which
may be a literal or the value of a binding). Element constructs
an XML element around the last k nodes (which may be the
result of previous output, attribute, or element operations),
where k is a constant specified by the query and the attribute’s
label may be either a literal or the value of a binding.

6.2 Optimization and cost model

A complete description ofTukwila’s query optimizer is beyond
the scope of this paper, but to provide a better perspective on
the overall query execution process, we briefly discuss the
optimizer and cost model here.

Since Tukwila focuses on ad hoc queries over remote data
sources, where each source has XML data of arbitrary com-
plexity, our query optimization component must be able work
even given no initial statistics about the underlying sources.
We have developed a technique called convergent query pro-
cessing [Ive02] to enable the query processor to incrementally
execute a plan, re-optimize as it gets improved statistics about
the data sources (e.g., expected number of tuples produced by
the x-scan operator over a particular source, apparent or actual
selectivity of a join), and adapt the query plan to a more ef-
ficient one – without having to redo work,. Convergent query
processing essentially calibrates the optimizer’s cost model
and statistics to match real-world conditions and performance,
so the optimizer can pick a better plan and improve running
times.

Our query optimizer is a System-R [SAC+79]-style dy-
namic programming optimizer, and it optimizes at the phys-
ical level. Tukwila’s cost model looks very much like that
of a relational DBMS: it recursively builds cost and cardi-
nality estimates for increasingly larger subtrees of the query
plan, starting with the leaves. We estimate (and periodically
re-estimate) the number of tuples that the x-scan operator will

392 Z.G. Ives et al.: An XML query engine for network-bound data

produce, including the fan-out at each step of an x-scan path
expression. This becomes the “cardinality of the x-scan” from
the perspective of the tuple processor and optimizer. The rate
of tuple production can also be estimated; it will need to be
re-estimated frequently, because it can quickly change due to
variations in XML structure or congestion in the network.

Given cardinalities and expected rates of production, we
can leverage existing relational query optimizer cost estima-
tion techniques for the remaining operators in the plan. Costs
for relational operators like join can be estimated just as in
their original context; the remaining XML operators generally
have a close equivalent in the relational world (e.g., nestChild
is implemented much like a join) or an easily predictable cost
(e.g., element creates a new tag for each input tuple).

Initial query optimization in Tukwila is typically done
without statistics, and in this case we typically estimate that
each XML element has a fan-out of 1,000 at the first level and
10 for every successive level, and we use the standard System-
R heuristics for selectivity estimation. Once execution begins,
we can obtain more accurate estimates of selectivity and car-
dinality values and use those to get a better query plan.

A more detailed discussion of the Tukwila query optimizer
appears in [Ive02], and we plan to publish an extensive evalu-
ation of the optimizer in the future. Note, however, that many
XML queries (and significantly, most of the queries in this pa-
per) do not depend heavily on query optimizer decisions: the
query optimizer focuses on ordering join, nesting, and group-
ing operators, and queries that only have selection or a single
join are minimally impacted by optimizer decisions. Instead,
what matters is the performance of the query operators, par-
ticularly the x-scan.

With the basic set of operations described in this sec-
tion, Tukwila can execute the core, database-like subset of
XQuery that avoids conditionals, recursive functions, and type
information. Additionally, whereas XQuery is a heavily tree-
oriented query language, we can also support graph-structured
data in Tukwila, as we describe in the next section.

7 Supporting graph-structured data in Tukwila

To this point, we have presented the Tukwila query process-
ing system under the assumption that our data is completely
tree-structured and that this structure is mirrored in the XML
element/attribute hierarchy. However, the XQuery data model
and language do support limited forms of encoding graphs in
XML, through the use of IDREF attributes (within a docu-
ment) and XLinks (outside a document). In this section, we
briefly describe some of the issues involved in supporting these
operations.

7.1 Join-based traversal

The conventional way to evaluate anIDREF is to use a join op-
eration: for example, suppose we allow only a singleIDREF in
each XPath. To evaluate these expressions, take all XPaths and
separate them into “pre-IDREF-traversal” and “post-IDREF-
traversal” steps. Do an x-scan of the input document with the

pre-IDREF XPaths. In parallel, do an x-scan over the same
document for all elements that haveIDs, and evaluate the post-
IDREF XPaths. Now join the results when the last IDREF of
the first x-scan matches the originating ID of the second x-
scan. Similar techniques can be used to support k IDREFs
in each XPath. XQuery does not support Kleene closure over
IDREFs, so a query must have a fixed number of reference
traversals and this technique can always be made to work.

The join-based traversal method is effective for following
links in many situations, but it has two potential drawbacks.
First, standard join algorithms will not “short-circuit” once an
IDREF is matched to its target ID, i.e., they do not “know”
that there should be precisely one match to every IDREF.
Alternative means of traversing IDREFs, which we discuss
next, can move to the next reference as soon as the current
reference has been matched once – fully pipelining the results.
Second, the join-based traversal only works for IDREFs or
XLinks that all belong to the same target document.

7.2 Follow-based traversal

A second option, which supports both IDREFs and XLinks,
is to use the Tukwila follow operator. In following an IDREF,
follow does an XPath match against an in-memory XML doc-
ument that was output from a prior x-scan and returns a set of
bindings. For IDREF traversal, follow makes use of an index
of ID elements that was created by the x-scan operation. This
index is further described below.

Follow is intuitively an x-scan that operates on “tuples
of trees” rather than on XML documents. Given a set of path
expressions and an input tuple stream (as well as the XML trees
it references), follow adds new variable bindings to each of its
input tuples by evaluating the path expressions against the trees
within the tuple. If a pattern matches multiple subtrees within
the tuple, a set of tuples will be returned, one for each possible
binding combination. (This operator is essentially a special
case of the map operator in some object-oriented algebras.)

Follow is the only reasonable option for evaluating
XLinks. At each link, it opens the referenced document and
evaluates the XLink path expression to select out the desired
XML data, then matches the remainder of the query’s XPath
against this document fragment, in a manner similar to x-scan
or web-join.

7.3 Graph traversal with X-scan

As we shall see in our experimental evaluation, x-scan’s state
machine infrastructure adds very little overhead in perform-
ing XPath matching against an XML tree. Hence, any XPath
traversal across a document’s tree structure should generally
be done at the x-scan level. Traversals across IDREFs can
also be done at the x-scan level, and as we shall see later, this
performs reasonably for moderately sized documents that do
not contain large numbers of references. We now discuss the
extensions necessary for traversing IDREFs in x-scan.

The first difference is the addition of three new data struc-
tures, shown in the upper left corner of Fig. 11:

• ID index: records the IDs of all elements and their match-
ing locations in the XML data. It is used to facilitate res-
olution of IDREFs in the graph.

Z.G. Ives et al.: An XML query engine for network-bound data 393

ELEMENT: book
 ATTRIB: pub...
 ...
...
ELEMENT: name
TEXT: Stonebr...

SAX Events

State Machines

Bindings
Binding
Tuples

XML Tree
Manager

<db>
 <book publisher...
 <title>Read...
 <editors>
 <name>Ston...
 ...

XML Stream

db: {
 book: {
 @publisher...
 title: {Read...
 editors: {
 name: {Ston...
 ... b

t

#1 n

Re...

St...

He..

b n t

#1

#1

Re...

Re...

St...

He..

Structural
IndexID index

ID2

. .
 .

ID1
ID3

Unresolved
IDREFs

. .
 .

.
:

Fig. 11. Graph-based execution of x-scan
uses 3 new data structures (upper left). The
ID index records the positions of each ID
within the XML data graph; the unresolved
index maintains a list of IDREFs that have
not been resolved; the structural index phys-
ically encodes element, attribute, and refer-
ence relationships

• Unresolved-ID index: maintains a list of references to not-
yet-seen elementIDs (to be resolved as they are found later
in the input).

• Structural index: provides an index of the XML graph,
corresponding to Fig. 2, but without the data values at the
leaves. This is not necessary, but speeds x-scan’s traversal
through the graph in memory.

When x-scan processes graph-structured XML, it gener-
ates a structural index, which is a trie-like index of the XML
graph structure (i.e. the subelement and IDREF links). This
index allows x-scan to quickly traverse back through XML
structure in evaluating references. In addition, as we explain
below, the construction of the structural index continues even
when we need to suspend the state machines because of un-
resolved IDREFs. This index is intended only to last for the
lifespan of the query, so it is built in memory and paged out
only as necessary. (We expect that x-scan will generally only
be used to traverse moderately-sized graph data, and will be
supplanted by follow or joins for larger documents, so paging
of this index should seldom occur.)

Each node in the index contains information about an ele-
ment (itsID and an offset into the original XML data file so that
the node’s source can be accessed quickly) as well as point-
ers to all subelements, attributes, and IDREFs of the element.
Essentially, the index structure looks like the graph of Fig. 2
except that data values such as those in the leaf (PCDATA)
nodes are not stored.

In addition, x-scan creates the ID index, which records
all the IDs that it has encountered so far, mapping from ID
to entry in the structural index, and the unresolved-ID index
which records all IDs that have not yet been seen in the input,
and lists all referrers to each such ID.

X-scan’s general execution proceeds similarly to the tree-
structured case, except when an element with references is
encountered, and the references are to be traversed by the reg-
ular path expression. If the reference is to an element that has
already been parsed (a backward reference), the state machines
are run over the reference’s target in the structural index, and
then parsing continues.

Forward references

On occasion x-scan will encounter an IDREF edge which
points “ahead” to a node which has not yet been parsed. When
x-scan hits a forward reference, it pauses all state machines 7

7 Conceptually, x-scan could continue state machine operation un-
til the reference target is found, then insert the target, return all of

and adds an entry to the list of unresolved IDREF symbols,
specifying the desired ID value and the referrer’s address.
However, x-scan continues reading the XML source and build-
ing the structural index. Once the target element is parsed, x-
scan fills its address into each referringIDREF in the structural
index, removes the entry from the list of unresolved IDREFs,
and awakens the state machines and proceeds. Although this
approach causes x-scan output to stall as it waits for a reference
to be resolved, our empirical results have shown that with the
help of the structural index, x-scan “recovers” quickly. In the
worst case, x-scan should still do at least as well as a DOM-
based query processor – as with DOM, it builds a structure
in memory that can be quickly traversed; however, unlike the
DOM implementations with which we are familiar, x-scan can
still execute when this structure must be paged to disk because
it exceeds virtual memory.

Cycles

In order to avoid cyclic traversals of references, x-scan main-
tains a history of nodes visited by each automaton state in a
given path traversal. X-scan uses deterministic automata, so if
a machine re-visits a node that it has encountered in the same
state along the same path, this is a cycle and can be aborted.

7.4 General guidelines for reference traversal

There are a number of ways of supporting graph-structured
data within the Tukwila system. Each of these methods has
different capabilities and performance results; we now present
a set of guidelines by which an optimizer can choose the best
mechanism for evaluating XPaths in the graph context.

We begin by noting that the x-scan operator is very efficient
on strictly tree-structured data, so we believe it will seldom
make sense to use either the join or follow methods to traverse
anything but IDREFs or XLinks. Thus, the query processor
should use x-scan to evaluate the segment of an XPath before
(or after) a reference traversal.

The type of reference being evaluated now becomes im-
portant: as was noted earlier, the join method does not work
for evaluating XLinks. Our x-scan implementation does not
follow XLinks, either, because such a traversal is quite expen-
sive and probably should not be done as a leaf-level operation.
Thus, for XLinks, the follow operator is the only option.

the matches found afterwards, and continue normal operation; but
for simplicity of coding, our implementation does not do this.

394 Z.G. Ives et al.: An XML query engine for network-bound data

For documents with a low number of IDREFs, the x-
scan traversal approach works well. Once a large number of
IDREFs must be evaluated, however, the join and follow alter-
natives look more promising. The follow operator is a unary
operator, and only requires one scan of a given document;
however, it traverses through the XML data (which may result
in thrashing if the document is larger than memory). The join
operator is less likely to cause thrashing, since it combines
tables that are each completed in a single pass – but it requires
two separate scans of the input document.

8 Experimental results

Now that we have seen the details of the Tukwila query engine
for both tree-structured and graph-structured data, we move
to our experimental validation of the system. Our implemen-
tation was written in C++. We originally wrote the system
for Windows 2000 using the Apache Xerces-C XML parser
at the core of our x-scan implementation. Later, we migrated
to a slightly slower Linux machine using James Clark’s expat
1.95.1, which performed faster XML parsing. In the exper-
iments below, we used the expat-based implementation for
comparing XML pattern matching experiments (Sect. 8.1),
and we relied on the Windows machine for the compute-bound
and memory scalability experiments, since it was faster and
had more memory.

Our system architecture is based on a client-server model,
with a Java client that submits queries using SOAP over
HTTP, then reads and times the XML results. Most experi-
ments measured the performance of the Tukwila engine on
an 866 MHz Pentium III machine with 1 GB RAM (of which
we allocate only a subset to Tukwila) under Windows 2000
server; but as mentioned above, for the studies of XML pat-
tern matching performance in Sect. 8.1, we instead ran Tuk-
wila on an 800 MHz Pentium III with 256 MB RAM under
Red Hat Linux 7.1. In all cases, XML documents were served
via HTTP from our web server, a dual Pentium II 450 MHz
system with 512 MB RAM, running Windows 2000 and IIS 5.
The web server and query processing machine communicated
via 100 MB fast Ethernet, with each machine on a separate
subnet within a larger-scale network. Experiments were run
once for “warm-up” and repeated at least seven times, and er-
ror bars are included for queries where the confidence interval
is less than 95%.

Experimental data sets were chosen to encompass a range
of different XML data classes, and are listed in Table 2. They
include real documents, real semistructured data, semistruc-
tured data generated with the recent XMark XML query
benchmark [SWK+02], synthetic data with references, and re-
lational tables saved in XML format. The synthetic data with
references was the only data set that we created ourselves;
it was designed to have random variation in depth and dis-
tribution of IDREFs. The data set was generated using the
following process: replicate a “core” XML subtree a speci-
fied number of times, and then randomly attach it to different
points within the current document, with probability 15% that
it attaches to the root. Afterwards, the designated number of
IDREF edges were added between random pairs of endpoints.

Since we are proposing a new model for query execu-
tion, we begin by comparing Tukwila’s performance with that

Table 4. List of queries used for comparing pattern-matching per-
formance

Nbr. Input Query
Q1 religion Chapter 5’s (medium trees)
Q2 religion Chapters ≥ 8 (medium trees)
Q3 religion Sura titles with “Mormon” (single result)
Q4 religion Suras with “The” in title (large trees)
Q5 xmark-50 XMark query Q1 (person0’s data)
Q6 xmark-50 XMark query Q2 (bidder 1’s bid increases)
Q7 dmoz Return all topic IDs

of systems using more traditional approaches. Later, we look
at scalability and the performance of Tukwila on database-
style operations including join; we examine how hierarchically
nesting XML content limits performance because it restricts
order; and we look at how Tukwila’s x-scan algorithm can be
used to support IDREF traversal for graph-structured data.

8.1 XML extraction queries

Clearly, the core operation at the heart of any XML processor is
the pattern-matching and XML content extraction step, and in
fact this is where Tukwila’s approach differs from other imple-
mentations. Our first set of experiments focuses on comparing
the relative performance of Tukwila with other systems when
extracting XML content with XPath expressions. Our suite
of queries is described in Table 4, and consists of a mix of
text-oriented and path-oriented queries over different types of
hierarchical documents and semistructured data. (We exam-
ine performance on more regular XML data from relational
systems in the next section.)

See Table 3 for details on the systems in our comparison;
all except for Tukwila are main-memory-only XML engines.
We included three popular XSLT processors in our study: the
Apache Xalan-C system, James Clark’s XT engine (which
was generally rated as one of the faster XSLT engines), and
the XSLT processor in Microsoft’s MSXML 4.0 toolkit (which
has been heavily optimized and is considered to have the fastest
parser and XSLT engine available). We also wanted to com-
pare with data integration systems, so we included the Decem-
ber 2000 version of the Niagara system (as of this time, the
latest version that is publicly available). Early in the develop-
ment of Tukwila, we also compared our performance against
the Lore System [GMW99], an XML repository; at the time,
Tukwila significantly outperformed Lore. Unfortunately, Lore
is no longer being distributed, and therefore we omit it from
our comparison, because it would be unfair to compare with
an outdated version of Lore.

Figure 12 shows the results for the queries in two graphs:
part a shows the time to the initial five answers, as a way of
measuring quick feedback to the user; part b shows the overall
query completion time. Note that queries Q3, Q5, and Q6 all
had fewer than five answers, so they have identical timings.

We make several observations about the results. First, al-
though Tukwila was run on a slower machine (800 MHz vs
866 MHz) with less memory (256 MB vs 1 GB) than all of
the other systems, it nearly matched or significantly outper-
formed all of the other engines documents across the entire
suite of queries. Microsoft’s MSXML processor lives up to

Z.G. Ives et al.: An XML query engine for network-bound data 395

Table 2. Data sets used in experiments

Name Size Description
religion 7 MB Concatenation of Bosak’s collection of religious texts

(bible, quran, Book of Mormon)
xmark-50 59 MB 0.5-scale-factor XMark auctions file
xmark-1000 118 MB 1.0-scale-factor XMark auctions file
xmark-500 596 MB 5.0-scale-factor XMark auctions file
dmoz 341 MB Open directory (dmoz) RDF hierarchy
dblp-proc 155 kB DBLP list of conference proceedings
dblp-pubs 8.9 MB DBLP list of conference publications
dblp-conf 39 MB DBLP complete conference information
dblp-cj 61 MB DBLP complete conference and journal information
customer-10 0.5 MB TPC-H 10 MB (0.01-scale-factor) customer table in XML
orders-10 5.4 MB TPC-H 10 MB (0.01-scale-factor) orders table in XML
lineitem-10 32 MB TPC-H 10 MB (0.01-scale-factor) lineitem table in XML
customer-100 5.2 MB TPC-H 100 MB (0.1-scale-factor) customer table in XML
orders-100 53 MB TPC-H 10 MB (0.1-scale-factor) orders table in XML
lineitem-100 324 MB TPC-H 100 MB (0.1-scale-factor) lineitem table in XML
synth 100 kB-100 MB Data from synthetic generator (see text)

Table 3. Systems compared in Sect. 8.1

Name Implemented Domain Description
Xalan 1.1 C++ Doc Apache XSLT processor, built over Xerces-C parser
XT 19991105 Java Doc James Clark’s XSLT processor
MSXML 4.0 C++ Doc Microsoft parser and XSLT processor toolkit
Niagara 1.0 Java XML-DB University of Wisconsin XML integration system
Tukwila 1.0 C++/Java XML-DB XML engine described in this paper

its reputation as being a very fast engine, and it is actually
faster by a margin of half a second for the queries over the
relatively small religion document – we attribute this to
the additional overhead Tukwila incurs to optimize its queries.
For larger documents, however, such as the XMark document,
Tukwila is substantially faster overall, and is especially faster
for Query Q7. Q7 clearly demonstrates that Tukwila is the
only processor to scale to large XML data files: our system
comfortably processed the 324 MB dmoz XML document on
a 256 MB machine in less than a quarter the time that MSXML
(needing most of the 1 GB of RAM in its experimental con-
figuration) did. No other systems were able to accommodate
the large document.

Surprisingly, although our suite of queries was relatively
simple, some of the queries could not be executed on all sys-
tems. Niagara does not support the XML-QL LIKE predicate
or index variables, so we could not express queries Q3, Q4,
and Q5. MSXML executed query Q2 with incorrect results
(returning no answers). Several query processors failed with
the XMark document (generating what appear to be spurious
parse errors), and nearly all failed on the largedmoz document
(running out of memory even on a 1 GB system).

Overall, x-scan’s support for pipelined operation over data
streams results in much better time to initial tuple (in general
returning five answers in approximately 2 s, except in the cases
where there were fewer than five answers to be returned), and
in fact the incremental processing model improves overall ex-
ecution time as well. We also observe that the Niagara system,
which has largely focused on producing partial answers in
order to return early results, can only produce those results

after it has finished loading and parsing an XML document –
Niagara would benefit significantly from the x-scan operator.

8.1.1 Slow links

Our first experiment measured general query processing per-
formance across a local area network; however, wide-area
query processing is one of the focal points of the Tukwila
project. Thus our second experiment repeats the previous
queries in a bandwidth-constrained environment. We simu-
lated these conditions by artificially adding a 50 msec delay
to the initial request for a document (representing a slightly
longer round-trip time), plus a 15 msec delay per 16 kB of
data sent (limiting the throughput of the connection). This de-
lay was sufficient to inject 960 msec of delay per megabyte of
data transferred, giving us about 1 MB per second or 8 Mbits
per second as our approximate transfer rate. We repeated all of
the queries of the previous section except for the dmoz query,
which we judged to be too huge for anyone to want to transfer
in this situation.

Performance results are in Fig. 13. As expected, Tukwila’s
incremental output greatly improves the time to initial an-
swers, but the overall query completion time also shows a
relative performance gain versus the other query processors.
Since Tukwila does filtering and construction of content in par-
allel with reading, it manages to use the network delay times
to help compute answers; in contrast, the other query engines
are idle during delays, since they cannot process results until
after the parse is complete.

396 Z.G. Ives et al.: An XML query engine for network-bound data

1.
6

1.
4 2.

2

1.
0

17
.7

15
.1

1.
8

1.
8

1.
83.

2

3.
1

2.
8

3.
04.

1

4.
1

3.
9

3.
9

1.
6

8.
8

8.
3

XXXX XX XX

38
5.

9

49
.2

X

43
.0

XXX0

20

40

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Query

R
u

n
n

in
g

ti
m

e
(s

ec
)

Tukwila
Niagara
MSXML
Xalan
XT

* **

a First 5 tuples returned (queries marked with a * have fewer than 5
tuples total)

2.
4

2.
5

2.
2

1.
6

15
.1

1.
8

1.
8

1.
93.

2

3.
1

2.
8

3.
0

43
.0

4.
1

4.
1

3.
9

3.
9

17
.7

10
6.

9

16
.7

10
.3

XXXX XX XX

54
5.

5

49
.2

X XX X0

20

40

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Query

R
u

n
n

in
g

ti
m

e
(s

ec
)

Tukwila
Niagara
MSXML
Xalan
XT

b Total query time

Fig. 12. Experimental comparison of XML queries shows that Tuk-
wila has equal or better total running time (and better time to first
tuples) for a variety of XML extraction queries

8.1.2 Scale-up

A point of emphasis in our design of the Tukwila architec-
ture has been scalability to large XML documents. While
most XML files on the Web are currently only tens of kilo-
bytes in size, as XML matures, querying and integration of
data between groups or enterprises is expected to become
commonplace – and such data will be considerably larger. In
many of these situations, the query processor may be servicing
many outstanding requests simultaneously, so each query must
run with limited resources. Moreover, current query proces-
sors’in-memory representations of XML data are substantially
larger than the original XML data – e.g., the XT processor re-
quired over 260 MB of memory to load and scan the 39 MB
DBLP XML file in query Q4 of the previous subsection; even a
server with 1 GB of memory cannot handle many such queries
simultaneously.

Tukwila avoids this pitfall by supporting out-of-core exe-
cution. Many aspects of the Tukwila architecture (e.g., external
sorts, grouping operators, hash and pipelined hash joins) will
scale in predictable ways, as they are well-understood compo-

3.
3

9.
4

9.
5

1.
1

83
.7

82
.0

11
.0

10
.7

10
.7

10
.2

10
.1

9.
8 11

.9

10
.9

11
.0

10
.8

10
.8

X X X X

13
.9

9.
7

X XX

92
.4

88
.3

X X0

20

40

60

80

100

Q1 Q2 Q3 Q4 Q5 Q6

Query

R
u

n
n

in
g

ti
m

e
(s

ec
)

Tukwila
Niagara
MSXML
Xalan
XT

a First 5 tuples

9.
6

9.
4

9.
5

9.
5

82
.0

11
.0

10
.7

11
.5

10
.2

10
.1

9.
8 11

.9

92
.4

88
.3

10
.9

11
.0

10
.8

10
.8

83
.7

23
.1

17
.1

XXXXX XX X X0

20

40

60

80

100

Q1 Q2 Q3 Q4 Q5 Q6

Query

R
u

n
n

in
g

ti
m

e
(s

ec
)

Tukwila
Niagara
MSXML
Xalan
XT

b Total query time

Fig. 13. In the wide-area context, Tukwila’s architecture provides
even greater performance improvements when compared to the other
systems

nents of relational query engines. As observed in Sect. 6, most
query operations take place over scalar data values rather than
subtrees, and these values are likely to be inlined within the
tuple – hence page faults in the XML Tree Manager are not
likely to greatly affect performance.

The main concern for scalability, then, is the x-scan oper-
ator and the data structures it uses. We investigated the perfor-
mance of x-scan for both simple path expressions and more
complex ones (i.e., those with more bindings and a Kleene-star
operator in them), across a variety of document sizes.

We took all of the queries from the previous section, plus
two selection queries over relational data and plotted the run-
ning times versus the data sizes in Fig. 14. We note that an
interesting dichotomy emerges: the relational tables, which
are quite “dense” with many tuples and many XPath matches,
seem to yield running times that all fall on the approximately
same line at the left of the plot. Likewise, the other queries
over sparser semi-structured data seem to follow a different
line with a lower slope. As we would hope, Tukwila’s per-
formance appearance appears to scale approximately linearly,
with the slope determined by the number of pattern matches
that occur.

Z.G. Ives et al.: An XML query engine for network-bound data 397

0

90

180

270

360

0 100 200 300 400 500 600 700

Data Size (MB)

R
u

n
n

in
g

T
im

e
(s

ec
)

Religion/Q1
Religion/Q2
Religion/Q3
Religion/Q4
Xmark/Q5
Xmark/Q6
Dmoz/Q7
TPCH Orders, Qty > 32
TPCH Lineitem, Cust <= 1234

Relational data (dense)

Semistructured data (more sparse)

Fig. 14. An X-Y plot of running times versus data sizes shows that
Tukwila yields relatively consistent and linear performance. Note that
queries over relational data, which is typically more “dense,” result
in a higher slope than more sparse semi-structured data

0

80

160

240

320

0 7000 14000 21000 28000
Document Size (KB)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Kleene, Completion
Simple, Completion
DOM Parse

Fig. 15. Scale-up results for query completion time on synthetic data
for simple path query, Kleene-* query, and DOM parse. (Time to first
5 tuples was under 2 s)

Figure 15 shows performance over a range of synthetic
data, generated as described at the beginning of this section.
We observe that the time required to process a simple query
grows at a rate only slightly faster than it takes to parse the
XML and build a DOM tree (the approach taken by previous
systems); x-scan state-machine operation and Tree Manager
overhead within Tukwila is fairly low. Kleene query execution
times grow at a significantly faster rate than the simple query,
but this query produces many more tuples because it consists of
two sibling Kleene-star path expressions – the Cartesian prod-
uct of these two bindings must be returned for each common
subtree. The increase in execution times is closely approxi-
mated by the growth rate in the number of tuples produced.

8.2 Database-style operations

One of the major sources of data is, of course, relational
databases, and there is significant interest in sharing relational

data in the XML format. An important concern is the amount
of overhead incurred by “adding XML into the loop.” Do we
lose a great deal by querying over an XML view, rather than
over traditional relational data? To answer this question, we
compared three different means of processing selection and
join queries:

• XMLified SQL, where we sent a SQL selection or join
query to a database at the server (DB2 UDB 6.1 running
on a 450 MHz web server), read the data via Java JDBC
and sent it as tuples across the network to our mediator,
which added XML tags around the tuples and returned
the results to our client. The relational database was fully
indexed. This approach is similar to those adopted by the
SilkRoute [FTS99] and XPERANTO [CFI+00] mediator
layers, which wrap an XML view interface over relational
systems, except that we do not translate queries.

• Relational Mediator, in which all tuples from the tables
were simply read from JDBC and returned to the original
Tukwila system, which executed a relational query and
then converted the data to tagged XML.

• Tukwila, which took materialized XML views of the re-
lational tables, read them via HTTP, and did XML query
processing over the data using the techniques described in
this paper.

As Fig. 16 illustrates, the Tukwila and Relational Media-
tor approaches tended to have very comparable running times,
despite the fact that the XML-ified input tables were consid-
erably larger. Moreover, the overhead inherent in JDBC and
Java socket I/O (even given the fast 100 Mbps network) appear
to be more substantial than we had anticipated, so processing
the query at the server was not necessarily a win. As expected,
selection queries are significantly faster when done within the
database engine. However, both join queries execute more
slowly when done inside the relational engine. We attribute
this to the fact that JDBC was a bottleneck in our experiments
and the join results were larger than the sum of the combined
inputs – as a result, it was more efficient to read the original
tables separately and join them within the mediator. Likewise,
it was essentially as efficient to read and process the XML
version of the data as it was to read the data through JDBC.
We conclude that the choice of whether to push an operation
into a data source depends greatly on the communication-link
costs, even when we are choosing between querying data in
its original relational form or converting it to XML first.

While we do not claim that JDBC is the fastest means of
exchanging relational data (and we acknowledge that many
modern databases provide other mechanisms for exporting
XML), we observe that its performance is acceptable for many
business and scientific applications. Since Tukwila performs
similarly on equivalent queries, we believe that x-scan-based
XML data exchange also provides sufficient performance for
real-world applications. Moreover, the Tukwila XML-based
engine provides greater interoperability because it can com-
bine relational and non-relational data.

8.2.1 Nesting data

As we observed in Sect. 4.2.2, the operation of hierarchically
nesting XML child elements within a parent element is very

398 Z.G. Ives et al.: An XML query engine for network-bound data

Table 5. Queries with database-style selection (Q8-Q9) and join (Q10-Q11) operations
using relational data mapped into XML

Nbr. Class Input Query
Q8 Rel. Sel. 5 MB TPC-H Orders for Customer “1234”
Q9 Rel. Sel 31 MB TPC-H LineItems with Quantity > 32
Q10 Rel. Join 5 MB x 0.5 MB Join TPC-H Orders for Customer key < “1234”

with all Customers
Q11 Rel. Join 31 MB x 7 MB Join TPC-H LineItems with Orders

1.
6

0.
2

0.
5

0.
32.
6

1.
1 4.
1

1.
9

1.
3

1.
2

1.
6 4.
7

0

20

40

60

80

100

120

140

Q8 Q9 Q10 Q11

T
im

e
to

5
T

u
p

le
s

(s
ec

)

Tukwila
Relational Mediator
XMLified SQL

a First 5 tuples

11
.5

72
.7

14
.0

82
.2

12
.0

79
.9

13
.0

84
.6

1.
3

31
.9

17
.8

12
8.

8

0

20

40

60

80

100

120

140

Q8 Q9 Q10 Q11

T
o

ta
lQ

u
er

y
T

im
e

(s
ec

)

Tukwila
Relational Mediator
XMLified SQL

b Total query time

Fig. 16. Experimental comparison of relational queries shows that Tukwila performs nearly as well over data mapped into XML as the
comparable relational-model integration system. In-SQL execution, included for comparison only, was better for the selection query but not
for the joins

0

25

50

75

100

10 20 30 40
Size of Papers List (MB)

R
u

n
n

in
g

 t
im

e
(s

ec
)

Nest Proceedings - Complete
Nest Proceedings - First 5
Proceedings - Complete
Proceedings - First 5

Fig. 17. Comparison of nest and join operations combining DBLP
papers and proceedings. Nest requires the (larger) inner relation to
be read first, thus it has much longer time-to-first-results and slower
overall time than the optimal join

similar to a left outer join in relational databases. However,
a nesting operation has an important constraint, which is that
the elements must appear contiguously, clustered by parent.
Clearly, maintaining this grouping incurs some overhead, and
we wanted to examine how significant this was.

A general practice in query optimization, especially for
network-based data, is to use the smaller join relation as the
inner relation, and the larger as the outer relation. Not only
does this reduce memory overhead in algorithms such as the
hash join, but it also produces initial results earlier (assuming
roughly equivalent transfer rates between sources) because the

hash join must block until it has finished reading its inner re-
lation. Unfortunately, since a nest operation is used to create
a 1 : n hierarchical relationship, it must place the larger join
relation as the inner relation so it can iterate over it for each
parent tuple. We can see in Fig. 17 that as a result, nest per-
forms more slowly than a hash join that has been commuted to
the opposite configuration. In fact, the hash join completes its
execution in the same amount of time as nest takes to output
the first 5 tuples.

This suggests that performance in interactive applications,
where first answers are most important, would be considerably
improved if it were possible to do the nest the same manner as
the join, i.e., if we did not have to maintain the parent-based
ordering constraints on its output tuples. However, if we output
results without preserving order, we must ultimately sort the
data to get it into its proper form. We are experimenting with
a user interface in which the final sort operation is performed
at the client-side on a periodic basis, which frees the query
processor to stream out results in any order and provide faster
feedback to the user.

8.3 Supporting graph-structured data

Although most of today’s XML queries traverse the document
as a tree, there are many potentially interesting uses of XML
as a representation for semistructured graphs, encoding edges
as both elements and IDREFs. Thus, the x-scan operator has
a number of features designed for querying graphs. Previous
work on IDREF traversal has typically been done using the
join or follow approaches described in Sect. 7, but we now
examine the use of x-scan as an alternative.

Z.G. Ives et al.: An XML query engine for network-bound data 399

0

30

60

90

0 2000 4000 6000
Document Size (KB)

E
xe

cu
ti

o
n

T
im

e
(s

ec
)

1:3 References:Elements
1:4 References:Elements
1:8 References:Elements
Traverse Tree Only

Fig. 18. Scale-up results for Kleene-* graph query on synthetic data,
with tree query shown for reference

8.3.1 X-scan traversal of IDREFs

In our comparison of strategies for evaluating graph-style ref-
erences, we suggested that x-scan could be used on moder-
ately sized documents that had low numbers of references.
In Fig. 18, we see execution times of x-scan across synthetic
documents of different sizes. The different lines represent ex-
ecution times when the ratio of IDREFs to elements is 1:8,
1:4, 1:3, and for comparison we include the execution time
for a typical tree-traversing query, which does not build the
structural index, over the mid-sized (1:4-ratio) documents. For
proportionately low numbers of references, we see that the
overhead in supporting graphs is relatively low; and even with
fairly high numbers of traversed IDREFs, running times are
reasonable, especially since initial results are output quickly.
With a 1:3 ratio of IDREFs to elements, Tukwila takes 90 s
to return 193,000 leaf nodes from a 7 MB synthetic graph. In
contrast, the tree version of the same query yields only 55,000
leaf nodes. As the ratio of IDREFs gets even higher – not
shown in the graph – the XML graph begins to approach full
connectivity, and x-scan spends large amounts of time doing
repeated evaluations. Clearly, in these situations, the join- or
follow-based approach is more appropriate.

8.3.2 Graph traversal with limited memory

We also examined in detail the performance characteristics
of x-scan, particularly those related to paging data to disk.
For simple tree-based queries, memory constraints are typi-
cally not an issue – Tukwila needs only to maintain state and
subtrees for a limited amount of time, i.e. until all tuples ref-
erencing the subtrees have passed through the pipeline. Thus,
for example, when we queried the the 159 MB Open Directory
Project topic hierarchy for all topic aliases, query processing
times were approximately 7 min 43 s whether Tukwila was
given 20 MB of memory or 250 MB. Results were similar for
tree-style queries over other data sets such as DBLP. Addi-
tional experiments demonstrated that the performance bottle-
neck was clearly in the areas of network I/O and parsing –
saving a locally cached copy of the input XML document to
disk (from a separate thread) added no perceptible time over-
head to the query.

Our final experiment, in Fig. 19 measures the performance
of x-scan graph traversal across large XML data files when

the amount of memory available to the Tree Manager and
the structural index are constrained. Data sets on the graph
include two synthetic data sets of 103 MB and 51 MB, each
with a 1:8 element-to-IDREF ratio, and the DBLP conference
data set with cross-references from papers to conferences as
IDREFs8. Our experiments do include a data set in which
most of the referenced items are relatively clustered (DBLP)
and one in which they are randomly distributed throughout the
document (the synthetic data). In all cases, the structural index
ranged in size from two to three times the data set size. We
separately adjusted the size of the index’s memory allocation
and the Tree Manager’s allocation, to see how greatly each
affected performance. In general, the variations in memory
had less of an impact than one might expect – we attribute
this to the fact that the query processor is generally network-
bound, and hence can make use of free CPU and disk cycles.
Moreover, as expected, the size of the index buffer affects
performance more than the size of the Tree Manager. A final
observation is that, as expected, the DBLP data set, with a
fairly strong locality of references, is basically not impacted
by memory, whereas the synthetic data with its randomized
reference targets is somewhat more affected.

9 Related work

As described earlier, most previous XML query processors
have fallen into one of two classes:

• Web-oriented processors, including XSLT processors
such as XT and Xalan, the Niagara [CDTW00] and
MIX [BGL+99,LPV00] data integration systems)

• Repository-based systems that require all the data to first
be loaded into a local store, and then processed, such as
those of [FK99b,SGT+99,DFS99,GMW99].

Most web-oriented query processors have shortcomings
in terms of scalability and ability to incrementally parse and
produce answers.

When we compare Tukwila to repository systems, we note
that a repository’s particular storage mapping may simplify
certain path expressions, e.g. if a set of path expressions
includes multiple data items that are mapped to the same
tuple in a table. Frequently, however, indexing techniques
such as join indices [Val87], access support relations [KM90],
dataguides [GW97], and t-indices [MS99] must be used to
speed the processing of path expressions. However, both of
these techniques are typically ill-suited for a network-based
query domain with autonomous data sources, unless queries
are frequently repeated over the same data; because they invest
a great deal of time into mapping, storing, and indexing data
before it can be queried, and this often cannot be amortized
across multiple queries.

Related to repository-based systems are XML query in-
terfaces over existing databases: SilkRoute [FTS99] and
XPERANTO [CFI+00] support creation of XML queries and
views over relational systems, and IBM, Oracle, and Microsoft

8 We also attempted to use the Open Directory data file, but were
unable to successfully “clean” the document by removing elements
unacceptable to the Xerces parser, while still maintaining IDREF
link integrity.

400 Z.G. Ives et al.: An XML query engine for network-bound data

0:00
1:12
2:24
3:36
4:48
6:00
7:12
8:24
9:36

10:48
12:00

20
M

B

40
M

B

10
0M

B

25
0M

B

20
M

B

40
M

B

10
0M

B

25
0M

B

20
M

B

40
M

B

10
0M

B

25
0M

B

DBLP 39MB Synth 51MB Synth 103MB

XML file and size, and XML Tree Manager memory allotted

E
xe

cu
ti

o
n

T
im

e
(m

in
:s

ec
)

8MB for Indices
90MB for Indices
250MB for Indices

Fig. 19. Query processing times with restrictions on XML tree memory (x-axis) and index buffer memory
(bar shades). Index buffer size impacts performance more than tree memory

all support some XML export features in their products. These
systems are very useful for exporting data into XML to facil-
itate data integration, but they are clearly not intended to be
general-purpose XML processors.

A goal of our architecture is to support fully pipelined ex-
ecution and leverage sophisticated techniques developed for
relational query processing over the network, such as those de-
veloped for data integration and distributed databases [KD98,
UFA98,UF00]. Our internal execution model bears similari-
ties to object-relational database engines, including the use of
references for (potentially out-of-core) large objects – in our
case, XML subtrees. This approach bears some similarities
to the ADT for structured text described in [BCD+98]. Our
physical algebra borrows some of its hierarchical aspects from
the nested relational algebra [RKS88].

The key operator responsible for outputting pipelined tu-
ples from an input document in Tukwila is the x-scan operator,
which uses a hierarchical set of finite state machines to traverse
the input as it is streaming into the system. Unlike a reposi-
tory system, x-scan does not break the XML document into
components requiring indexing and later reassembly; unlike
existing main-memory systems, it scales beyond memory and
it supports efficient traversal of IDREFs for graph-structured
input.

The x-scan pattern matching approach bears some similar-
ity to the Knuth-Morris-Pratt substring-matching algorithm,
which also uses finite state machines to perform matches –
however, our algorithm supports hierarchies of bindings and
path expressions, traverses graph structure, and avoids cycles.
X-scan also has similarities to the XFilter operator [AF00],
developed simultaneously but focusing on filtering XML doc-
uments according to an XPath expression. XFilter returns a
Boolean value (match or non-match) rather than a tuple stream,
and as a result differs considerably in functionality and imple-
mentation. Finally, x-scan has similar goals to the scan logical
operator proposed by Cluet and Moerkotte for tree-structured
data in [CM97], but our work includes a specific algorithm,
support for graph-structured data, and an experimental evalu-
ation.

10 Conclusions

Technology trends in networking and data exchange have in-
creased the need for an XML query processor for network-
bound data. Applications such as integration of intranet or
Internet-based data, query and transformation systems for
XML documents, “live” data analysis tools, and electronic
commerce all require the following abilities:

• The ability to query, combine, and restructure the content
of XML documents of arbitrary size.

• The ability to combine data from multiple sources, includ-
ing data that is the result of dynamically computed queries.

• Support for a “streaming” or pipelined query processing
model that produces results as soon as possible.

This paper describes the architecture of the Tukwila XML
data integration system, the first XML processor that satisfies
the above requirements. Our key contributions include:

• An architecture which extends tuple-oriented, relational
techniques such as pipelining, as well as recently devel-
oped adaptive query processing techniques for network-
based relational data, to work efficiently on XML.

• Two key operators, x-scan and web-join, that map XML
data (from both static and dynamically queried sources)
into tuples in a streaming fashion.

• A set of basic operators for combining and restructuring
tuples of XML subtrees into new XML content.

We described a set of experiments that demonstrate that our
system provides superior performance to existing XML query
systems when applied to network-bound data. In conclusion,
our results suggest that it is indeed possible to construct a
native query processor for XML data that rivals the efficiency
of a relational query engine.

The architecture of Tukwila suggests several directions
for future research. Clearly, a next step is to develop improved
query optimization techniques for the XML context, particu-
larly in the context of data integration – where few statistics
will be available. We are in the process of building a new
adaptive query processing framework for the next version of
Tukwila, which will support multiple strategies for continuous

Z.G. Ives et al.: An XML query engine for network-bound data 401

re-optimization of an executing query. Additional important
avenues of research include further investigation of process-
ing graph-structured data – in particular, support for features
such as Skolem functions to create graph-structured query re-
sults – and the performance implications of ordered versus
unordered execution.

Acknowledgements. The authors would like to thank Phil Bernstein,
Daniela Florescu, Hartmut Liefke, David Maier, Rachel Pottinger,
Dan Suciu, and the anonymous reviewers for their comments on
earlier versions of this paper. This work has greatly benefited from
their suggestions.

References

[Aea01] Abiteboul S (2001) A dynamic warehouse for XML data
of the web. IEEE Data Eng Bull

[AF00] Altinel M, Franklin MJ (2000) Efficient filtering of XML
documents for selective dissemination of information.
In: VLDB ’00

[AH00] Avnur R, Hellerstein JM (2000) Eddies: Continuously
adaptive query processing. In: SIGMOD ’00

[AKJK+02] Al-Khalifa S, Jagadish HV, Koudas N, Srivastava D,
Wu Y (2002) Structural joins: a primitive for efficient
XML query pattern matching. In: ICDE ’00

[BBM+01] Barbosa D, Barta A, Mendelzon A, Mihaila G, Rizzolo
F, Rodriguez-Gianolli P (2001) ToX – the Toronto XML
engine. In: International Workshop on Information In-
tegration on the Web, Rio de Janeiro, Brazil

[BCD+98] Brown LJ, Consens MP, Davis IJ, Palmer CR, Tompa
FW (1998) A structured text ADT for object-relational
databases. In: TAPOS 4(4):227–244

[BCF+02] Boag S, Chamberlin D, Fernandez MF, Florescu D, Ro-
bie J, Simeon J, Stefanescu M (2002) XQuery 1.0: An
XML query language. http://www.w3.org/TR/xquery/,
30 April. W3C working draft.

[BGL+99] Baru CK, Gupta A, Ludäscher B, Marciano R, Papakon-
stantinou Y, Velikhov P, Chu V (1999) XML-based in-
formation mediation with MIX. In: SIGMOD ’99, pp.
597–599

[BKKM00] Banerjee S, Krishnamurthy V, Krishnaprasad M,
Murthy R (2000) Oracle8i - the XML enabled data man-
agement system. In: ICDE ’00, pp 561–568

[CDTW00] Chen J, DeWitt D, Tian F, WangY (2000) NiagaraCQ: a
scalable continuous query system for internet databases.
In: SIGMOD ’00

[CFI+00] Carey MJ, Florescu D, Ives ZG, Lu Y, Shanmugasun-
daram J, Shekita E, Subramanian S (2000) XPERANTO:
Publishing object-relational data as XML. In:ACM SIG-
MOD WebDB Workshop ’00

[CM97] Cluet S, Moerkotte G (1997) Query processing in the
schemaless and semistructured context. (unpublished
manuscript)

[Col89] Colby LS (1989) A recursive algebra and query op-
timization for nested relations. In: SIGMOD ’89, pp
273–283

[DFF+99] Deutsch A, Fernandez MF, Florescu D, Levy A, Suciu D
(1999) A query language for XML. In: 8th International
World Wide Web Conference

[DFS99] Deutsch A, Fernandez MF, Suciu D (1999) Storing
semistructured data with STORED. In: SIGMOD ’99,
pp 431–442

[FK99a] Florescu D, Kossmann D (1999) A performance evalu-
ation of alternative mapping schemes for storing XML
data in a relational database. Technical Report 3684,
INRIA, March

[FK99b] Florescu D, Kossmann D (1999) Storing and query-
ing XML data using an RDBMS. IEEE Data Eng Bull
22(3):27–34

[FMK00] Florescu D, Manolescu I, Kossmann D (2000) Integrat-
ing keyword search into XML query processing. In: 9th
International World Wide Web Conference, May

[FMN02] Fernandez M, Marsh J, Nagy M (2002) XQuery 1.0 and
XPath 2.0 data model. http://www.w3.org/TR/query-
datamodel/, 30 April. W3C working draft

[FMS01a] Fernandez MF, Morishima A, Suciu D (2001) Efficient
evaluation of XML middle-ware queries. In: SIGMOD
’01, May

[FMS01b] Fernandez MF, Morishima A, Suciu D (2001) Efficient
evaluation of XML middle-ware queries. In: SIGMOD
’01

[FTS99] Fernandez M, Tan WC, Suciu D (1999) SilkRoute: trad-
ing between relations and XML. In: 9th International
World Wide Web Conference, November

[GMOS02] Green TJ, Miklau G, Onizuka M, Suciu D
(2002) Processing XML streams with determin-
istic automata and stream indexes. Available at:
www.cs.washington.edu/homes/suciu/files/paper.ps,
February

[GMW99] Goldman R, McHugh J, Widom J (1999) From
semistructured data to XML: migrating the Lore data
model and query language. In: ACM SIGMOD WebDB
Workshop ’99, pp 25–30

[GW97] Goldman R, Widom J (1997) Dataguides: enabling
query formulation and optimization in semistructured
databases. In: VLDB ’97, pp 436–445

[HH99] Haas PJ, Hellerstein JM (1999) Ripple joins for online
aggregation. In: SIGMOD ’99, pp 287–298

[HS93] Hong W, Stonebraker M (1993) Optimization of par-
allel query execution plans in XPRS. Distrib Parallel
Databases 1(1):9–32

[HSR91] Harvey TM, Schnepf CW, Roth MA (1991) The design
of the Triton nested relational database system. SIG-
MOD Rec 20(3):62–72

[IFF+99] Ives ZG, Florescu D, Friedman MT, Levy AY, Weld DS
(1999) An adaptive query execution system for data
integration. In: SIGMOD ’99, pp 299–310

[Ive02] Ives ZG (2002) Efficient query processing for data inte-
gration. PhD thesis, University of Washington, August

[JXT01] Project JXTA (2002) Protocol specification revision
1.1.1 platform.jxta.org/spec/v1.0/JXTAProtocols.pdf,
12 June

[KD98] Kabra N, DeWitt DJ (1998) Efficient mid-query re-
optimization of sub-optimal query execution plans. In:
SIGMOD ’98, pp 106–117

[KM90] KemperA, Moerkotte G (1990) Access support in object
bases. In: SIGMOD ’90, pp 364–374

[KM00] Kanne CC, Moerkotte G (2000) Efficient storage of
XML data. In: ICDE ’00, p 198

[KW96] Kwok CT, Weld DS (1996) Planning to gather informa-
tion. In: AAAI ’96, pp 32–39, August

[LPV00] Ludäscher B, Papakonstantinou Y, Velikhov P (2000)
Navigation-driven evaluation of virtual mediated views.
In: EDBT ’00, pp 150–165

[LRO96] Levy AY, Rajaraman A, Ordille JJ (1996) Querying het-
erogeneous information sources using source descrip-
tions. In: VLDB ’96, pp 251–262

402 Z.G. Ives et al.: An XML query engine for network-bound data

[MAM01] Marian A, Abiteboul S, Mignent L (2001) Change-
centric management of versions. In: VLDB ’01

[MFK+00] Manolescu I, Florescu D, Kossman D, Xhumari F,
Olteanu D (2000) XML and relational: how to live with
both. In: VLDB ’00, September

[MS99] Milo T, Suciu D (1999) Index structures for path expres-
sions. In: ICDT ’99, pp 277–295

[NDM+01] Naughton J, DeWitt D, Maier D, Aboulnaga A, Chen J,
Galanis L, Kang J, Krishnamurthy R, Luo Q, Prakash N,
Ramamurthy R, Shanmugasundaram J, Tian F, Tufte K,
Viglas S, WangY, Zhang C, Jackson B, Gupta A, Chen R
(2001) The Niagara Internet query system. IEEE Data
Eng Bull June

[NET01] Microsoft (2001) What are XML web services?
www.microsoft.com/net/xmlservices.asp, May

[RKS88] Roth MA, Korth HF, Silberschatz A (1988) Extended al-
gebra and calculus for nested relational databases. TODS
13(4):389–417

[RS86] Raschid L, Su SYW (1986) A parallel processing strat-
egy for evaluating recursive queries. In: VLDB ’86, pp
412–419

[RSU95] Rajaraman A, Sagiv Y, Ullman JD (1995) Answering
queries using templates with binding patterns. In: PODS
’95, pp 105–112

[Rys01] Rys M (2001) Bringing the internet to your database: us-
ing SQLServer 2000 and XML to build loosely-coupled
systems. In: ICDE ’00, pp 465–472

[SAC+79] Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA,
Price TG (1979) Access path selection in a relational
database management system. In: SIGMOD ’79, pp 23–
34

[SGT+99] Shanmugasundaram J, Gang H, Tufte K, Zhang C, De-
Witt DJ, Naughton JF (1999) Relational databases for
querying XML documents: limitations and opportuni-
ties. In: VLDB ’99, pp 302–304

[SKS+01] Shanmugasundaram J, Kiernan J, Shekita EJ, Fan C,
Funderburk J (2001) Querying XML views of relational
data. In: VLDB ’01, pp 261–270

[SSB+00] Shanmugasundaram J, Shekita E, Barr R, Carey M,
Reinwald B, Lindsay B, Pirahesh H (2000) Efficiently
publishing relational data as XML documents. In:VLDB
’00

[SWK+02] Schmidt A, Waas F, Kersten ML, Carey MJ, Manolescu
I, Busse R (2002) XMark: A benchmark for XML data
management. In: VLDB ’02

[Tam] Tamino (2002) Technical description.
www.softwareag.com/tamino/details.htm

[TVB+02] Tatarinov I, Viglas S, Beyer KS, Shanmugasundaram
J, Shekita EJ, Zhang C (2002) Storing and querying
ordered XML using a relational database system. In:
SIGMOD ’02

[UF00] Urhan T, Franklin MJ (2000) XJoin: A reactively-
scheduled pipelined join operator. IEEE Data Eng Bull
23(2)

[UF01] Urhan T, Franklin MJ (2001) Dynamic pipeline schedul-
ing for improving interactive performance of online
queries. In: VLDB ’01, September

[UFA98] Urhan T, Franklin MJ, Amsaleg L (1998) Cost-based
query scrambling for initial delays. In: SIGMOD ’98,
pp 130–141

[Val87] Valduriez P (1987) Join indices. TODS, 12(2):218–246
[WA91] Wilschut AN, Apers PMG (1991) Dataflow query exe-

cution in a parallel main-memory environment. In: Proc.
1st International Conference on Parallel and Distributed
Information Systems (PDIS), pp 68–77, December

[XLN] eXcelon Corporation (2002) Platform
www.exceloncorp.com/platform/index.shtml

[XSL99] W3C (1999) XSL Transformations (XSLT), version 1.0.
www.w3.org/TR/xslt, 16 November. W3C recommen-
dation

[ZND+01] Zhang C, Naughton JF, DeWitt DJ, Luo Q, Lohman GM
(2001) On supporting containment queries in relational
database management systems. In: SIGMOD ’01

