
The VLDB Journal (2002) 11: 216–237 / Digital Object Identifier (DOI) 10.1007/s00778-002-0070-0

A formal perspective on the view selection problem

Rada Chirkova1, Alon Y. Halevy2, Dan Suciu3

1 Stanford University, Stanford, CA 94305, USA; e-mail: rada@cs.stanford.edu
2 University of Washington, Seattle, WA 98195, USA; e-mail: alon@cs.washington.edu
3 University of Washington, Seattle, WA 98195, USA; e-mail: suciu@cs.washington.edu

Edited by S. Ceri. Received: November 20, 1001 / Accepted: May 30, 2002 /
Published online: September 25, 2002 – c© Springer-Verlag 2002

Abstract. The view selection problem is to choose a set of
views to materialize over a database schema, such that the
cost of evaluating a set of workload queries is minimized and
such that the views fit into a prespecified storage constraint.
The two main applications of the view selection problem are
materializing views in a database to speed up query process-
ing, and selecting views to materialize in a data warehouse
to answer decision support queries. In addition, view selec-
tion is a core problem for intelligent data placement over a
wide-area network for data integration applications and data
management for ubiquitous computing. We describe several
fundamental results concerning the view selection problem.
We consider the problem for views and workloads that consist
of equality-selection, project and join queries, and show that
the complexity of the problem depends crucially on the qual-
ity of the estimates that a query optimizer has on the size of
the views it is considering to materialize. When a query opti-
mizer has good estimates of the sizes of the views, we show
a somewhat surprising result, namely, that an optimal choice
of views may involve a number of views that is exponential
in the size of the database schema. On the other hand, when
an optimizer uses standard estimation heuristics, we show that
the number of necessary views and the expression size of each
view are polynomially bounded.

Keywords: Materialized views – View selection

1 Introduction

The problem of view selection has received significant atten-
tion in recent literature [1, 2, 5, 9–11, 14, 15, 20, 21]. Broadly
speaking, the problem is the following: given a database
schema R, storage space B, and a workload of queries Q,
choose a set of views V over R to materialize, whose com-
bined size is at most B. The set of views V is called a view
configuration. The views can either be materialized within the
database, in which case they are available to supplement nor-
mal query processing, or they can be materialized in a separate
data warehouse, and in that case the workload queries should

be answered only from the views. The goal of the view se-
lection process is to find a set of views that minimizes the
expected cost of evaluating the queries in Q in either of the
above contexts. In addition, the view selection problem may
involve choosing a set of indexes on the views, and may con-
sider the cost of updates to the views V .

The original motivation for the view selection problem
comes from data warehouse design, where we need to de-
cide which views to store in the warehouse to obtain optimal
performance [2,14,20]. Another motivation is provided by re-
cent versions of several commercial database systems which
support incremental updates of materialized views and now
use materialized views to speed up query evaluation. There-
fore, choosing an appropriate set of views to materialize in
the database is crucial in order to obtain performance benefits
from these new features [1].

The view selection problem and its generalizations will
play an even greater role in contexts where data needs to be
placed intelligently over a wide area network. In these con-
texts, users are spread over a network, and each location may
have different types of query characteristics and/or perfor-
mance requirements. A very simple version of this problem
was considered in the context of data placement in distributed
databases (see [16] for a survey). For example, consider the
context of peer-based data management [8], where data is both
integrated and accessed from many peers on a wide-area net-
work. Each of these peers has a local store but can also retrieve
data at different rates from various points on the network. A
key factor in ensuring good performance in such a context is
intelligent placement and replication of data at different nodes
on the network, which is akin to selecting a set of views at each
node. Note that the view selection problem can be viewed as
a special case of this intelligent data placement problem, in
which there are only two nodes in the network (the database
and the warehouse).

This paper considers the fundamental properties of the
view selection problem for workload and view configurations
involving conjunctive queries (i.e., queries allowing join, pro-
jection, and equality selection). Several algorithms have been
proposed in the past for solving the view selection problem for
such queries (e.g., [1, 20]), but they all made certain critical
tacit assumptions. The first assumption is that the only views

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [2834.5 2834.5] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

R. Chirkova et al.: A formal perspective on the view selection problem 217

that need to be considered for an optimal view configuration
are those that are subexpressions of queries in the workload
(i.e., that contain a subset of the tables with a subset of the
join predicates in the query). The second assumption is that
there is some low upper bound on the number of views in an
optimal view configuration.

For most real applications, these assumptions are correct,
but it is possible in theory to find examples where they break.
The following example, adapted from [5], shows a query work-
load for which the first assumption does not hold. While this
is essentially an abstract example, we have given it a real-life
appearance to make it easier to read. (We will show later in the
paper that the second assumption doesn’t always hold either.)

Example 1 This example exhibits a workload of conjunctive
queries and a storage limit, such that it is impossible to ma-
terialize the answers to all workload queries. We consider for
materialization conjunctive views, such that each view alone
satisfies the storage limit and can support all workload queries.
This example shows that for the given workload, an infinite
number of such views are not subexpressions of any workload
query. Moreover, the example shows that the search space of
such views is infinite. While this is essentially an abstract ex-
ample, we have given it a real-life appearance to make it easier
to read.

Here is how this example might come about. Consider a
hypothetical shipping company that serves a number of cities,
with fixed delivery schedules between pairs of cities. Sup-
pose the company has a centralized database, with a base table
T (source, d, dest) that stores all pairs of cities source and
dest, such that there is a scheduled delivery from source to
dest on day d of the week (a number between 1 and 7). See
Fig. 1 for a graph that illustrates an instance of T with 89
cities; the graph represents deliveries scheduled between the
cities. In the graph, delivery day d is omitted to reduce clutter.

Suppose that agents of the company try to contract ship-
ments to independent truck drivers, by attracting them with
tours connecting two or more cities. The company predefines
a number of tour types to offer to the truck drivers, and agents
need to query the database and find out whether the tour re-
quested by the driver exists starting at a given city. Every tour
type starts and ends in the same city. The simplest tour is the
“two-city roundtrip”, for which we give the definitions in both
SQL and datalog. The query returns all cities X1, such that
there exist two scheduled deliveries: one, from X1 to some
other city X2 on Monday (day #1), and two, back from X2 to
X1 on Tuesday (day #2).

select distinct T1.source
from T AS T1, T AS T2 Q1 (X1) : −
where T1.source = T2.dest T (X1, 1, X2),

and T1.dest = T2.source T (X2, 2, X1).
and T1.day = 1 and T2.day = 2;

We are only concerned with set semantics in this paper,
hence the distinct in the SQL statement. The equivalent
datalog formulation should be self-explanatory.

A more complex tour is the “four cities in five days with a
break” tour below:

Q2(X1) : − T (X1, 1, X2), T (X2, 1, X3), T (X3, 2, X4),
T (X4, 4, X3), T (X3, 5, X1)

Here the break is on Wednesday (day #3) and the return trip
goes through X3 a second time.

Suppose the company predefines a large collection of such
tour types, each involving up to a dozen or so cities. For each
tour there will be an associated query, and the set of all such
queries defines our workload: Q = Q1, Q2, Notice that
the queries only inform the agents whether the desired tour
is available from a given starting city, and do not return the
actual tour.

As tours get longer, the corresponding queries get more
complex. We consider precomputing (materializing) the an-
swers to some queries to speed up this workload. For exam-
ple, if the number of queries in the workload is small, then we
may simply precompute all of them and store their answers.
If the number of queries increases, however, then their com-
bined answers may be too large, even though the answer to
each individual query is relatively small. We assume that the
storage limit in the problem prevents us from materializing
any table that is larger than the set of all city names mentioned
in the table T . (Notice that the answer to any single query in
our workload is just a set of city names.) Our goal is to find
a single view to materialize, such that the view satisfies the
storage limit and can support all workload queries.

Obviously the choice of the best view depends on the par-
ticular statistics available on the database. From Fig. 1 it can be
seen that the graph of connections among the cities is sparse,
and only a small subset of cities are on some cycle. In the
figure, the only twelve cities belonging to any cycle at all are
represented as ovals. Then, one idea is to precompute a view
with the (small) set of cities that belong to some cycle. For
example, the view

C5(X1) : − T (X1, D1, X2), T (X2, D2, X3),
T (X3, D3, X4), T (X4,D4,X5), T (X5, D5, X1)

computes the set of cities on a cycle of length 5, but ignoring
the days of the delivery1. The view C5 can be used to speed
up query Q2, for example by rewriting Q2 as:

Q′
2(X1) : − C5(X1), T (X1, 1, X2), T (X2, 1, X3), C5(X3),

T (X3, 2, X4), T (X4, 4, X3), T (X3, 5, X1)

Query Q′
2 is indeed equivalent to Q2, because in Q2

both X1 and X3 must be on a cycle of length five. In-
deed, the body of Q2 contains the following circuit of length
five:X1, X2, X3, X4, X3, X1. Moreover,Q′

2 can be evaluated
more efficiently than Q2: for example, the plan

((C5 � T) � T) � (((C5 � T) � T) � T) for Q′
2

is more efficient than the plan

(T � T) � ((T � T) � T)

forQ2, because the answer toC5 � T is smaller than T . How-
ever, C5 cannot be used to speed up Q1 in a similar fashion,
since there is no relationship between cycles of length 2 and
those of length 5. If we could compute a view containing all

1 Our randomly generated graph happens not to have any cycle of
length 5.

218 R. Chirkova et al.: A formal perspective on the view selection problem

V10,V4

V10,V4

C,V10,V4

C,V10,V4

V10,V4

C,V10,V4

V10,V4

 V10,V4

V10,V4

C,V10,V4

C,V10,V4

V10,V4

V4

V10,V4

C,V10,V4

V4

V4

C,V10,V4

V4

V10,V4

V10,V4

V10,V4

C,V10,V4

V10,V4

V4

V4

V10,V4

C,V10,V4

 C,V10,V4

V10,V4

V4

V10,V4

V10,V4

V10,V4

V10,V4

V10,V4

V4

V10,V4

V10,V4

V4

C,V10,V4

C,V10,V4

V10,V4

V10,V4

Fig. 1. A database instance for Example 1. The nodes (both rectangles and ovals) represent cities, the edges represent scheduled deliveries (the
delivery day is omitted). LabelsC, V10, V4 attached to the nodes represent the views C, V10, V4 defined in the example, with C ⊂ V10 ⊂ V4.
The view C contains all cities on some circuit; the cities are represented as ovals

possible cycles, sayC = C2 ∪C3 ∪C4 . . ., whereCn denotes
the set of nodes on a cycle of length n, then that view would
satisfy the storage limit and could, at the same time, be used
to speed up all queries in the workload. For example, in Fig. 1
there are 12 nodes in C, and they are marked with the symbol
C. The “view” C, however, is not conjunctive, and we restrict
our consideration to conjunctive views.

Another idea is to compute a single view with all cities
from which we can follow a long chain of cities, say of length
10, that does not (necessarily) end in the starting city:

V10(X1) : − T (X1, D1, X2), T (X2, D2, X3),
. . . , T (X9, D9, X10)

Notice that V10 contains C, C ⊆ V10, since a chain simply
“wraps around” a cycle, but the converse is false. In Fig. 1 there
are 35 more nodes inV10 and are marked with the symbolV10.

The view V10 satisfies the storage limit. At the same time,
all queries in the workload can be sped up by usingV10; this can
be done in several ways, we only illustrate here one possible
rewriting for both Q1 and Q2:

Q1(X1) : − V10(X1), T (X1,1,X2), V10(X2), T (X2,2,X1).
Q2(X1) : − V10(X1), T (X1,1,X2), T (X2,1,X3), V10(X3),

T (X3, 2, X4), T (X4, 4, X3), T (X3, 5, X1).

There is nothing special about the number 10 in V10. We
could have used any view Vn defining a chain of length n.
The views Vn are smaller when n is large, and vice versa.
There are 44 nodes in the view V4 in Fig. 1, marked with V4,
and indeed this set includes the 35 nodes in V10 . Clearly, we
need to choose large values for n, since a smaller view will
eliminate more false positives, and thus speed up the workload
even more.

Our focus in this paper is on the choice of the view(s). First,
the example illustrates that it does not suffice to consider only
views that are defined as subsets of subgoals of the queries in
the workload. In fact, V10 is not a subexpression of any query
in the workload. Second, the example illustrates that it is not
clear where to stop: ever larger values of n seem to produce
better and better views Vn.

As we show later in the paper, it is also unclear how many
views we need to select. Hence, we are faced with several
fundamental questions regarding the view selection problem:
(1) which set of views do we need to consider in an optimal
view configuration? (2) what is the maximal size of an optimal
view configuration? and (3) what is the complexity of the view
selection problem?

R. Chirkova et al.: A formal perspective on the view selection problem 219

We show that a key factor affecting the answer to the afore-
mentioned problems is which statistics we may expect to have
on the database relations. These statistics are crucial in order to
estimate the size of the views we consider to materialize and
the cost of evaluating queries over the views. We therefore
distinguish two versions of the problem: the Partial Statistics
Assumption (PSA) and the Complete Statistics Assumption
(CSA). Under PSA, we assume that standard statistics are
maintained on the database, and that cost and size estimates
are obtained by some estimation function. In contrast, under
CSA we assume that we have an oracle that gives us the precise
size of any view over the database schema. Note that in prac-
tice such an oracle can be based on statistics collected from
running queries over the database for some period of time.

After formally defining the view selection problem in
Sect. 2, we begin by considering the problem under CSA
in Sect. 3. We first show that the workload queries provide
an exponential upper bound on the size of the view defini-
tions we need to consider in an optimal configuration, and
as a result, the view selection problem is decidable in triple
exponential time. However, then we show a rather surprising
result: in general, an optimal view configuration may include
a number of views that is exponential in the size of the query
and database schema. As a result, the view selection problem
has an exponential-time lower bound. In fact, this result holds
even if we further restrict the expressive power of our query
language, and under different cost models.

Next, we consider the view selection problem under PSA
in Sect. 4. We show here that an optimal solution to the view
selection problem always includes a number of views that is
bounded by a polynomial in the size of the database schema,
the workload of queries, and the binary representations of the
relation sizes and the available space bound. We also prove
that the size of the view definitions in an optimal configura-
tion is bounded linearly in the size of the query definitions
in the workload. The two upper bounds place the view selec-
tion problem in the complexity class NP. The results for the
PSA assume certain properties of the size estimation func-
tion that are general enough to capture most size estimators
commonly used in practice. While unreasonable choices of
size estimation functions break our results, they also make the
view selection problem rather uninteresting.

Our results also shed light on the problem of answering
queries using views [12,13]. It is known that given a conjunc-
tive query Q with n subgoals with no comparison predicates
and a set of views V , there exists an equivalent rewriting of
Q using V only if there exists a rewriting with n subgoals or
less [18]. However, it has been an open problem whether an
optimal rewriting also satisfies the same bound on its size.
Our results on the size of an optimal view configuration also
establish bounds on the size of an optimal rewriting of a query
using a set of views.

1.1 Related work

There has been relatively little theoretical analysis of the view
selection problem in the literature to date. In [5], Chirkova and
Genesereth considered the space requirements for the view se-
lection problem for the context of data warehouse design. They
consider certain restrictions under which they show that one

can limit the search of an optimal configuration to views that
are subexpressions of the queries in the workload. Gupta [9]
considers the view selection problem, but he does not model
the attributes of the relations being joined. That is, he consid-
ers every relation to be a proposition and looks at query plans
that are AND-OR graphs over these propositions. As a con-
sequence, his model does not capture selections, projections,
or different join predicates. Our work shows that the com-
plexity of the problem crucially depends on modeling these
operations. In a later paper [11], the authors also consider the
cost of view maintenance, but under the same model of inputs.
Finally, in both papers, the set of relations in the warehouse
is given as part of the input, whereas in our work we’re only
given the database schema and the workload queries.

In [20], Theodoratos and Sellis describe an algorithm for
searching a space of candidate warehouses. They do not dis-
cuss the complexity of the view selection problem, and their
search space does not include warehouses that contain views
that are projections on the database relations. As we show in
Sect. 3, considering such views has a significant impact on the
complexity of the view selection problem.

Agrawal et al. [1] describe a system for view selection that
is incorporated into the Microsoft SQL Server. They present
several very effective heuristics for pruning the space of pos-
sible view configurations. An important aspect of their work
is that they consider the problem of selecting views and in-
dexes simultaneously. Because of that, they do not consider
projection views, since those can often (but not always!) be
simulated by indexes on other views.

Harinarayan et al. [14] show that the problem of view
selection for data cubes is NP-hard, and describe greedy al-
gorithms for approximating an optimal set of views. View-
selection for data cubes is further elaborated in [15]. In [10]
the work of [14] is extended to include index selection.
Other works that considered algorithms for view selection
are [2,17,21,23].

This paper is mainly based on an earlier conference pa-
per [6]. The main result in Sect. 3.4 was described in an ex-
tended abstract in [4].

2 Problem definition

We consider the view selection problem for the case in which
both queries and views may contain joins, projections and
equality selections (i.e., conjunctive queries). Furthermore,
we consider queries and views under set semantics, rather than
bag semantics. Clearly, it is desirable to extend our analysis
to more complex queries and to bag semantics. However, an
in depth consideration of all the factors involved in this prob-
lem requires that we start from a limited language, and this
language already yields several interesting results.

Throughout the paper we use the datalog notation for con-
junctive queries. Note that in this notation, joins are expressed
as multiple occurrences of the same variable. In general, we
say that a variable is a join variable if it appears in more than
one subgoal in the body of the query. Given a database in-
stance D, the size of a view V over D is the number of tuples
in the answer to V .

220 R. Chirkova et al.: A formal perspective on the view selection problem

Workloads. The appropriate choice of views in a particular
context is highly dependent on the set of queries we expect to
be given. We model our expected queries by a query workload,
which is a set of queries Q = Q1, . . . , Qm, where each query
Qi has an associated non-negative weight, wi. The weight
describes the relative frequency of Qi within the workload.
We require that the weights sum up to 1 (

∑
1≤i≤m wi = 1).

View configurations. Given a database schema R and a work-
load Q, our goal is to choose a set of views V to materialize.
We refer to a choice of views as a view configuration (or con-
figuration for short). There are several contexts in which we
may be choosing configurations:

1. Performance of query processing: we may choose to mate-
rialize a set of views over a database, such that subsequent
queries can make use of these views in query process-
ing. Many commercial database systems today support the
functionality of answering queries using views [3,7,22].

2. Warehouse design: the goal is to select a set of views to
materialize in a data warehouse, on which we expect to
process OLAP-style queries. In this case, the query pro-
cessor of the warehouse must use only the selected views
in order to answer the queries.

3. Data placement in a distributed setting: we may want to lo-
cally cache views on data that is stored in remote locations.
When processing queries, the views can be used to reduce
the amount of communication between the nodes [8].

We use the following terminology when referring to view
configurations. The size of the configuration for a given
database instanceD is the sum of the sizes of the views evalu-
ated over D. Given a configuration V , we evaluate the cost of
answering a workload Q on V using a cost model C. Specifi-
cally, we assume that the specification of a schema R includes
a set of statisticsΣR. The functionC(R,V, Qi) estimates the
cost of evaluating the queryQi given the schema (and, in par-
ticular, the database statistics) and the views in V .We elaborate
on these statistics below.

In practice, before we actually materialize the chosen
views, we may only be able to approximate their sizes. As
we see later, the quality of the size estimator function plays a
crucial role in the complexity of the view selection problem.

We assume that the function E(R, V) returns the esti-
mated size of a view V over a database with schema R and
its associated statistics ΣR. Note that the function C uses the
estimates produced by E, hence the accuracy of the cost de-
pends on the accuracy of both C and E. Given the function C
and a configuration V , the cost of the configuration, denoted
by C(R,V,Q), is the sum

∑
Qi∈Q C(R,V, Qi) × wi.

Finally, our goal is to select a view configuration that sat-
isfies a given space constraint. We denote by B an amount of
memory allotted for the views, and we assume thatB is given
via its binary representation. We are now ready to formally
define the view selection problem.

Definition 1 View selection problem Let R be a database
schema, B be the available storage space, Q be a workload
on a database described by the schema R, C be a cost es-
timation function for query processing, and E be a function
for estimating the sizes of queries over R. The view selection
problem is to find a set of views V over R whose total size is
at most B and that minimizes C(R,V,Q). ��

A few points are worth noting about the definition before we
proceed:

1. The input to the problem includes the database schema and
the statistics associated with it. Hence, a solution applies
to the set of databases obeying these statistics, and not
only to a single database instance.

2. The input to the view selection problem does not include
a database instance. Hence, the complexity results we
present later are in terms of the size of the schema and
of the workload, not the size of the database.

3. We present several complexity results concerning the view
selection problem. While view selection is an optimization
problem, the corresponding decision problem that we refer
to in the results is: Is there a view configuration whose cost
is less than K?, for a given number K.

4. It is important to note that materializing all the queries in
Q is not always a possible solution because of the space
limitation (even if we ignore the cost of materializing and
updating the views). It is, of course, reasonable to assume
thatB is at least big enough to hold the result of any single
query in Q.

2.1 Cost and size estimates

A key difficulty in treating the view selection problem is that
we tread a very fine line with the choice of a cost model. In
previous work, the view selection problem left the cost model
as a parameter (e.g., [20]), or, when actually implemented, re-
lied on the cost estimates of the optimizer (e.g., [1]). Ideally,
we would like to leave the cost model as a parameter to the
problem, and obtain results that hold for any cost model. On
the other hand, we show some interesting results when con-
sidering certain classes of cost models. This tradeoff affects
the following discussion about the inputs to the view selection
problem.

Cost model. For the purpose of our discussion, the critical
aspect of a cost model is the estimated cost of a join. In our
discussion we consider the following cost model for joins.
Consider a join of two relations, R and S, of size L and M ,
respectively. LetN be the size of the relationR � S. Then the
cost of the join ofR andS isα×LM+β×(L+M)+γ×N .We
consider two versions of this cost model. In the first version,
which we call the product cost model, we assume α �= 0. We
call the remaining version (α = 0) the sum cost model.

This cost model faithfully describes most real-world situ-
ations:

• For nested-loop joins, the first term is the dominating factor
in the cost, as α is a fraction that depends on the number
of main-memory pages available.

• For hash or sort-merge joins, the I/O costs are assumed
to be proportional to the sum of the sizes of the joined
relations, but the main-memory costs are still proportional
to the size of the product of the joined relations. Hence,
here we assume that α is relatively small.

Finally, we assume that the cost of a selection is that of a
scan on the relation, and the cost of a projection on a relation
of size N is N log(N) (though in practice, it is rarely more
than 3N).

R. Chirkova et al.: A formal perspective on the view selection problem 221

When a view selection algorithm examines a particular
candidate configuration V , it needs to compute C(R,V,Q).
In our discussion, we assume the cost can be computed in time
polynomial in the size of Q and the configuration V . In gen-
eral, query optimization can be exponential in the size of the
query, and hence, calculating C(R,V,Q) could potentially
be exponential in the size of Q. The reason for our choice is
twofold: (1) in practice, query optimizers rarely perform an
exhaustive search of query plans; and (2) we want to isolate
the effect of the view selection problem from the problem of
evaluating a configuration.

In estimating costs of configurations, we also need to spec-
ify what kinds of query execution plans the optimizer will be
considering. We assume standard query plans, where selec-
tions are pushed down to the leaves and the projection is the
last operation; query plans differ only in the join order. In our
discussion we will distinguish between cases in which the op-
timizer considers only left-linear query plans and cases where
it considers all bushy query plans.

Size estimation. A key difficulty in evaluating the cost of a
candidate view configuration is that we also need to evaluate
the sizes of the views in the configuration, which are, in turn,
used as inputs to the cost estimation function C. Hence, a
key aspect in the analysis of the view selection problem is
specifying which statistics about the database are available as
input along with the schema.

The availability of statistics significantly affects the anal-
ysis of the view selection problem. Hence, we study two ver-
sions of the view selection problem, and we show that they
lead to drastically different results. In the first version, dis-
cussed in Sect. 3, we make the complete statistics assumption
(CSA), in which we assume that we have an oracle that tells
us the size of any view over the database. In practice, it may
often be possible to obtain such an oracle. In some cases, we
can approximate such an oracle by using the results of many
runs on the system during which a large body of statistics have
been gathered. In other cases, we may be able to evaluate the
results of the views and compute their sizes.

In the second version of the problem, we make the partial
statistics assumption (PSA), where we rely on the size and cost
estimators of the query processor, and assume their functions
are parameters to the problem. In Sect. 4 we consider the PSA
case under some reasonable assumptions on size estimation
functions that are considered in practice.

An important distinction between CSA and PSA is the
monotonicity property of the size estimator. We say that the
size estimation function E is monotone if, whenever a view
V1 is contained in V2, V1 ⊆ V2, then E(R, V1) ≤ E(R, V2)
for every given statistics ΣR. Under CSA size estimators are
always monotone, while under PSA they usually are not. This
has important consequences on the view selection problem.

Additional issues. Two important issues that arise in the con-
text of the view selection problem are selection of indexes on
the view in the configuration and considering the cost of up-
dating the views. The bulk of our discussion does not consider
these two issues, but Sect. 5 discusses how our results could
be affected by their consideration.

3 Complete statistics assumption

In this section we consider the view selection problem under
the complete statistics assumption (CSA). That is, we assume
that we have an oracle that can accurately estimate the size of
any view over the database. We begin in Sect. 3.1 by show-
ing that view selection is decidable. The main result of the
section (Sect. 3.2) is that there exist a database schema and a
query workload for which the number of views in an optimal
configuration is exponential in the size of the schema. As a
consequence, we obtain an exponential-time lower bound on
the complexity of the view selection problem for CSA. Sec-
tion 3.3 explores some of the boundaries of the lower-bound
result.

3.1 Decidability of view selection

The first question that we ask about the view selection problem
is whether it is even decidable. A priori, it is not even clear
which views need to be considered for optimal configurations,
and whether there is even a finite number of such views. In
fact, in Sect. 4 we show that in certain cases the number of
relevant views could be infinite.

The following theorem, which is an extension of a result
in [5], shows that view selection is decidable for CSA. The
theorem holds for any cost estimation functionE that is mono-
tone, in particular for CSA.

Theorem 1 Suppose the cost estimation function,E, is mono-
tone. Consider a view selection problem given by R, Q, B,
and assume the problem admits at least one configuration2

(not necessarily optimal). Then, there exists an optimal view
configuration V0 such that each view in V0 has a number of
subgoals that is at most exponential in the size of Q, and the
number of views in V0 is at most double exponential in the size
of Q. Moreover, an optimal view configuration can be found
in triple exponential time. ��

Proof. We will construct a set of views W with the following
properties: (a) each view V̄ ∈ W has a number of subgoals
that is at most exponential in the size of Q; (b) the number of
views in W is at most double exponential in the size of Q; and
(c) for any view configuration V for the given problem, and
any view V ∈ V , there exists a view V̄ ∈ W such that V̄ is
contained in V (V̄ ⊆ V) and, denoting V ′ the configuration
obtained from V by replacing V with V̄ (V ′ = V − {V } ∪
{V̄ }), we have C(R,V ′,Q) ≤ C(R,V,Q). Once we have
constructed W with these properties, the theorem is proven as
follows: first, there exists at least some view configuration for
our problem that consists only of views in W: indeed, starting
from any view configuration V (and we know there exists at
least one), we replace one by one each viewV ∈ V with a view
V̄ ∈ W , and notice that in doing so the total size of the view
configuration will not increase, because we have V̄ ⊆ V . Next,
denoting V0 the cheapest view configuration for our problem
consisting only of views in W , we prove that this is an optimal
view configuration. Indeed, let V be any view configuration.
We replace one by one each view V ∈ V with V̄ ∈ W:
eventually we end up with a configuration V ′ consisting only

2 When B is too small, there may be no solution at all.

222 R. Chirkova et al.: A formal perspective on the view selection problem

of views in W , such that C(R,V ′,Q) ≤ C(R,V,Q), and
also C(R,V0,Q) ≤ C(R,V ′,Q) by definition of V0: this
proves that V0 is optimal. Finally, we can search for V0 in triple
exponential time, by just enumerating all subsets V0 ⊆ W .

In the remainder of the proof we show how to construct W
and prove its properties (a), (b), (c). Let Q = {Q1, . . . , Qm}.
Consider all variables occurring in all queries in the workload:
V ar(Q1), . . . , V ar(Qm). Let ni be the number of subgoals
in Qi, for i = 1, . . . ,m. Define a new set of variables, V ar,
to be:

V ar =
⋃

k1≤n1,...,km≤nm

(V ar(Q1))k1

× . . .× (V ar(Qm))km (1)

A variable x̄ in V ar is x̄ = 〈x1, . . . , xp〉, where
x1, . . . , xp ∈ V ar(Q1) ∪ . . . ∪ V ar(Qm), and there are at
mostni variables fromV ar(Qi), for every i = 1, . . . ,m. This
should not be confused with a p-tuple, (x1, . . . , xp): rather, x̄
is a new variable, and we want a one-to-one correspondence
between p-tuples and such new variables. Notice that the num-
ber of variables in V ar is exponential in the size of Q. Next,
consider all subgoals one can construct with variables in V ar.
We assume for the moment that we have a fixed schema: then
there are still only exponentially many subgoals, because for
each predicate name of arity k one can construct (| V ar |)k

subgoals; we will discuss below how we can drop this as-
sumption. Finally, define W to consists of all possible views
whose bodies consists of such subgoals: to obtain W we need
to enumerate all subsets of such subgoals, and for each of them
enumerate all subsets of the variables to designate head vari-
ables. This leads to another exponent. Hence W has properties
(a) and (b).

Now we prove that W has property (c). Let V be some
view configuration, and let V ∈ V . We will construct V̄
satisfying (c). Recall that Q = {Q1, . . . , Qm}. For each
i = 1, . . . ,m, consider some rewriting Q′

i of Qi that uses
V . To be more precise, the body of Q′

i has as one of its sub-
goals θi(V), where θi is a substitution of V ’s head variables,
θi : V ar(Head(V)) → V ar(Q′

i):

Q′
i : − g1, . . . , gk, θi(V) (2)

We assume for the moment that V is used exactly once in the
rewriting Q′

i, and denote g1, . . . , gk the other subgoals in the
rewriting; we discuss the general case below. Here θi(V) is
one predicate, consisting of V ’s head with its head variables
substituted according to θi.

Denote e(Q′
i) the expanded body of Q′

i, where all views
have been replaced with their bodies. It is easy to extend θi

to a substitution θi : V ar(V) → V ar(Q′
i) which is a homo-

morphism θi : V → e(Q′
i): simply define it to be the identity

mapping on all variables in V ar(V)−V ar(Head(V)). Here,
and in the sequel, we relax the conditions on homomorphisms
from V by dropping the requirement that it maps head vari-
ables to head variables: thus, θi : V → e(Q′

i) maps V ’s body
to that of e(Q′

i), and we don’t care if it relates V ’s head vari-
ables to those in e(Q′

i). Hence, the expanded queryQ′
i has the

form:

e(Q′
i) : − e(g1), . . . , e(gk), θi(Body(V)) (3)

where e(gj) denotes the expansion of the subgoal gj (its body,
with head variables appropriately substituted, and all existen-
tial variables renamed).

Since Qi and Q′
i are equivalent, there exist homomor-

phisms ϕi : e(Q′
i) → Qi and ψi : Qi → e(Q′

i). Consider
now the homomorphism3 ρi : V → Qi, ρi = ϕi ◦ θi: this
is a function ρi : V ar(V) → V ar(Qi). Recall that we are
doing this for every i = 1, . . . ,m. Define the substitution
ρ̄ : V ar(V) → V ar to be ρ̄(z) = 〈ρ1(z), . . . , ρm(z)〉, for
every variable z in V . Now we can define the new view, V̄ , to
be V̄ = ρ̄(V) (more precisely: Body(V̄) = ρ̄(Body(V)),
Head(V̄) = ρ̄(Head(V))). Obviously V̄ ∈ W . Since
ρ̄ : V → V̄ is a homomorphism, it follows that V̄ ⊆ V .

It remains to prove C(R,V ′,Q) ≤ C(R,V,Q), where
V ′ = V−{V }∪{V̄ }. For that we show that every rewritingQ′

i
that uses V can be reformulated into a rewriting Q′′

i that uses
V̄ , and with no greater cost. We use the monotonicity of the
cost estimation function,E, and the fact that V̄ ⊆ V , to argue
that the cost of the plan with V̄ is not greater than that of V .
In Eq. 2 replace θi(V) with πi(V̄), where πi : V ar → V ari
is the substitution defined by πi(〈x1, . . . , xm〉) = xi, and
replace every subgoal gj with ϕi(gj):

Q′′
i : − ϕi(g1), . . . , ϕi(gk), πi(V̄) (4)

Hereϕi(gj) denotes the head of the view gj to which we apply
the substitutionϕi. Sinceπi(Body(V̄)) = ϕi(θi(Body(V))),
the expansion of Q′′

i is the following:

e(Q′′
i) : − ϕi(e(g1)), . . . , ϕi(e(gk)), ϕi(θi(Body(V))) (5)

It follows that ϕi : e(Q′
i) → e(Q′′

i) is a homomorphism: in
fact, Body(e(Q′′

i)) (Eq. 5) is precisely the image under ϕi of
of Body(e(Q′

i)) (Eq. 3). It is easy to check now that Qi and
Q′′

i are equivalent: the identity mapping is a homomorphism
from e(Q′′

i) toQi, while ϕi ◦ψi is a homomorphism fromQi

to e(Q′′
i).

Finally, we discuss how to relax the two assumptions we
made during the proof. One was that V be used exactly once
in the rewriting of Qi, i = 1, . . . ,m. This resulted in V̄ using
only a subset of the variables in V ar, namely those for which
k1 = . . . = km = 1 in Eq. 1. The case when V occurs
multiple times in some rewritings of some queries is handled
similarly, by treating each occurrence differently, as we treated
occurrences from different queries differently. In that case we
need variables for which the ki �= 1, but we never need values
of ki that are larger than ni, the number of subgoals of Qi,
because each rewriting using more than ni occurrences of V
can be replaced with a rewriting using at most ni occurrences.

The second assumption was that the schema is fixed, to
allow us to argue that W uses only exponentially many dis-
tinct subgoals. We can drop this assumption. Examining the
body of the view V̄ constructed in the proof, we notice that
its subgoals have a special form. First, all variables have
the same values of k1, . . . , km in Eq. 1. Second, for every
j = 1, . . . , (k1 + . . .+ km), if we apply the substitution πj to
V̄ then each subgoal becomes a subgoal in one of the queries
Qi in the workload. It follows that we only need to include
in W subgoals that correspond to tuples of subgoals, each be-
longing to some query Qi: there may be multiple subgoals in

3 As discussed, we do not impose any conditions on how ρi maps
V ’s head variables.

R. Chirkova et al.: A formal perspective on the view selection problem 223

the sameQi, but no more thanni, the total number of subgoals.
The total number of such tuples is bound by an exponential in
the size of Q, independent on the schema. ��

Example 2 We illustrate the main idea in the proof of Theo-
rem 1 on the following example. Consider the view selection
problem given by the schema R = {T}, the queries:

Q1(X1
0) : − T (X1

0 , X
1
1), T (X1

1 , X
1
0)

Q2(X2
0) : − T (X2

0 , X
2
1), T (X2

1 , X
2
2), T (X2

2 , X
2
0)

Q3(X3
0) : − T (X3

0 , X
3
1), T (X3

1 , X
3
2), T (X3

2 , X
3
3),

T (X3
3 , X

3
4), T (X3

4 , X
3
0)

and some space bound B. The queries compute cycles of
length 2, 3, and 5, respectively. Consider a configuration
V = {T, V } where V is the following view:

V (Z0) : − T (Z0, Z1), T (Z1, Z2), . . . ,
T (Z118, Z119), T (Z119, Z0)

V computes cycles of length 120. Assume that the total space
used by T and V is less than B, and assume the following
rewritings to be the cheapest for the given configuration:

Q′
1(X

1
0) : − θ1(V (Z0)), T (X1

0 , X
1
1), T (X1

1 , X
1
0)

Q′
2(X

2
0) : − θ2(V (Z0)), T (X2

0 ,X
2
1), T (X2

1 ,X
2
2), T (X2

2 ,X
2
0)

Q′
3(X

3
0) : − θ3(V (Z0)),T (X3

0 ,X
3
1),T (X3

1 ,X
3
2),T (X3

2 ,X
3
3),

T (X3
3 , X

3
4), T (X3

4 , X
3
0)

where θ1(Z0) = X1
0 , θ2(Z0) = X2

0 , θ3(Z0) = X3
0 . These

are indeed equivalent rewritings because, for example, each
cycle of length 2 is also a cycle of length 120 (simply walk 60
times around the cycle). The main idea in the theorem is to re-
place V with V ′ = {T, V̄ }, such that V̄ has “few” subgoals and
is contained in V . We illustrate how the theorem’s proof con-
structs V̄ for this example. The homomorphismsρi : V → Qi,
i = 1, 2, 3, are defined as follows: ρ1(Zj) = X1

j mod 2
,

ρ2(Zj) = X2
j mod 3

, and ρ3(Zj) = X3
j mod 5

. The view

V̄ has 2 × 3 × 5 = 30 variables, which we denote Uabc,
0 ≤ a < 2, 0 ≤ b < 3, 0 ≤ c < 5, in one-to-one cor-
respondence with triples (X1

a , X
2
b , X

3
c), and is defined to be

V̄ = ρ̄(V). Notice that V̄ has only 30 subgoals: for exam-
ple the subgoals T (Z0, Z1), T (Z30, Z31), T (Z60, Z61), and
T (Z90, Z91) are mapped into the same subgoal in V̄ , namely
T (U000, U111). It is easy to see that V̄ computes cycles of
length 30, i.e., V̄ is isomorphic to:

V̄ (Y0) : − T (Z0, Z1), T (Z1, Z2), . . . ,
T (Z28, Z29), T (Z29, Z0)

under the isomorphism Zj −→ U(jmod2)(jmod3)(jmod5). In ad-
dition, V̄ ⊆ V , since every cycle of length 30 is also a cycle
of length 120 (simply walk four times around the cycle). Fi-
nally, each of the three rewritings Q′

1, Q
′
2, Q

′
3 that use V can

be modified into rewritingsQ′′
1 , Q

′′
2 , Q

′′
3 that use V̄ , by replac-

ing the terms V (X1
0), V (X2

0), V (X3
0) with V̄ (X1

0), V̄ (X2
0),

and V̄ (X3
0), respectively.

3.2 CSA: an exponential-time lower bound
under the product cost model

In the remainder of the section, we show that the number of
views in an optimal view configuration under CSA can be ex-
ponential in the size of the schema and the workload. This
is a relatively surprising result and, in fact, none of the algo-
rithms proposed for view-selection would consider such view
configurations.

We start by considering a version of our cost model for
joins where the cost of the join is proportional to the prod-
uct of the sizes of the relations being joined, even though the
coefficient α of the product can be arbitrarily small. For this
product version of our cost model, we show that the number
of views in an optimal view configuration can be exponential
in the size of the schema and the workload. In Sect. 3.4, we
describe the same exponential result for the sum cost model,
that us, for the case where α = 0 and the cost of a join is pro-
portional to the sum of the sizes of the input relations and of
the join result. We note that the proofs for the two cost mod-
els are substantially different, though they rely on the same
general technique.

For both cost models, we show that there are an infinite
number of non-isomorphic inputs to the view selection prob-
lem, such that for each of the inputs, the size of any opti-
mal view configuration is exponential in the size of the in-
put. We conclude that under the product and sum cost model
assumptions, the view selection problem has an exponential-
time lower bound.

We now consider the construction for the product-cost-
model case. Assuming that α > 0 in our cost model, we con-
struct the inputs to the view selection problem, as follows: fix
an integer parameter n. Consider a database schema R that
includes two relations, S and T (referred to by the predicates
s and t in the queries), of arity n. The workload Q includes
three queries:

q1(X1, . . . , Xn) : − s(X1, . . . , Xn)
q2(X1, . . . , Xn) : − t(X1, . . . , Xn)
q3(X1, . . . , Xn) : − s(X1, . . . , Xn), t(X1, . . . , Xn)

The first two queries simply ask for the database relations,
while the third query asks for their intersection. If we are
considering views to be materialized in a database, then the
query q3 suffices for the proof. Queries q1 and q2 are needed
if we are creating a data warehouse. In the remainder of this
section, we consider only q3. We assume that the available
storage is denoted by B, and later in the section we show that
B should be

B = N2 × n2 +N × 2n(n+3)/2 + 2N + 2n+3 + 1,

where N =
(

n
�n/2�

)
. (To simplify the notation, in the re-

mainder of this section we only consider even values of the
parameter n, so that �n/2� = n/2. All the constructions and
proofs can be extended in a straightforward way to the case of
odd-valued n.)

Recall that one of the inputs to the view selection problem
is a database schema with a set of associated statistics. Since
we are making the complete statistics assumption, a query
processor estimating the cost of query plans has access to

224 R. Chirkova et al.: A formal perspective on the view selection problem

accurate estimates of sizes of views over the schema. Hence,
in order to show that the number of views of an optimal view
configuration can be exponential in the sizes of R, Q, and
the binary representation of B, we need to produce a set of
statistics on the database that will yield such a configuration.

The remainder of this section proceeds as follows: in
Sect. 3.2.1, we fix a value of the parameter n and the cor-
responding triple (R,Q, B) as above. For that triple, we con-
struct a database instance, D. We show that on the database
instanceD, there exists an equivalent rewriting of the workload
Q that uses an exponential number of views in the parameter
n. More precisely, the number of views used in the rewriting is(

n
n/2

)
+1. The corresponding view configuration is denoted

by V . We show that V satisfies the storage space constraintB.
Next, we show that there exists a constant n0, such that

for all integer values n ≥ n0 and when only left-linear query
plans are considered, a rewriting of the workload Q that uses
the view configuration V is optimal on the database instance D
and under the storage space constraint B. This proof is rather
tedious, and hence left to Appendix 6. The important aspect of
this proof is that it can be generalized to any database instance
D′ that has the exact same statistics as D. In particular, if every
possible view on the database has the same size estimate on D
and D′, then all cost estimates that we show (in Appendix 6)
to be true for database D, will still hold on database D′.

Hence, we show that there exist a database schema R, set
of complete statistics Σ on the database and a view configu-
ration V , such that V is an optimal view configuration for the
workload Q on all databases with the statistics Σ (as long as
n ≥ n0). As a result, we obtain the main result and conclude
that the view selection problem has an exponential-time lower
bound, under the product cost model and when only left-linear
plans are considered.

3.2.1 A database with an exponential-size optimal rewriting

We now explain how to construct the specific database instance
D for the database schema R, the query workload Q, and
the storage space constraint B (see above), such that on this
database instance D and under the product cost model (α > 0),
there exists a rewriting of the workload Q that uses a number
of views that is exponential in n.

The view configuration we use is denoted by V , and it
includes all projections of the table S

⋂
T on n/2 of its at-

tributes. There areN =
(

n
n/2

)
such views; we denote them

by v1, . . . , vN . In addition, V includes a projection of S
⋂
T

on its first attribute; we denote this view by v0. Therefore, the

total number of views in V is N + 1 =
(

n
n/2

)
+ 1.

Recall that the workload Q includes three queries. For
our purposes, q3 is the only query we need to consider; we
reproduce it here for convenience:

q3(X1, . . . , Xn) : −s(X1, . . . , Xn), t(X1, . . . , Xn).
The query rewriting we will consider essentially inserts all
the views in the configuration between the subgoal of s and
subgoal of t. Formally, it is:

q′
3(X1, . . . , Xn) : −s(X1, . . . , Xn), v0(X1),

Table 1. Case n = 2: tables for the relations s and t

S : X1 X2

1 a1 a2

2 b1 b2

5 A a2

6 b1 A
7 A c2

8 d1 A
[F] F F
[IS] I(S) I(S)

T : X1 X2

3 c1 c2

4 d1 d2

5 A a2

6 b1 A
7 A c2

8 d1 A
[F] F F

[IT] I(T) I(T)

v1(X11, . . . , X1n/2), v2(X21, . . . , X2n/2),
. . . , vN (XN1, . . . , XNn/2), t(X1, . . . , Xn);

where each set of arguments{Xi1, . . . , Xin/2} is the appropri-
ate subset of {X1, . . . , Xn}. It is easy to see the the rewriting
is equivalent to q3.

Intuitively, our intention is the optimal query execution
plan for the rewriting be the one that starts with s, and joins it
with v0, the result with v1, and so on, until joining with t. We
denote this plan by P∗. Note that in effect, the plan starts with
the tuples in s and the results of the intermediate joins are suc-
cessively non-growing subsets of s, until finally intersecting
with t. To make this the optimal plan, we want that every vi,
for i > 0 remove one special tuple ti from the intermediate
result. Furthermore, it should be the case that ti is not removed
by the join with any other view in the configuration. We call
these tuples stubborn tuples, because ti can only be removed
by vi. To guarantee that every stubborn tuple is eliminated
by exactly one view, we construct a set of carefully crafted
eliminator tuples.

As we explain the construction, we illustrate it for the case
of n = 2. In this case, since v0 is the same as v1, the view
configuration includes two views. Table 1 shows a possible
database instance D, i.e., the contents of the tables S and T .
In Table 2 we show the views V1 and V2, and Table 3 shows
two possible intermediate results (S&V1 and S&V2). Recall
that V1 and V2 are defined as follows:

v1(X1) : − s(X1, X2), t(X1, X2).
v2(X2) : − s(X1, X2), t(X1, X2).

The database instance includes the following sets of tuples:

1. The stubborn tuples: as explained above, these are tuples
that are in S but not in T (and symmetrically, in T but not
inS). In Table 1, tuples 1 and 2 are the stubborn tuples ofS
and tuples 3 and 4 are the stubborn tuples of T . Consider
the stubborn tuples of S. There are N stubborn tuples,
t1, t2, ... , tN . Each stubborn tuple ti in R has n distinct
values for each of its attributes, ai1, ai2, . . . , ain. For any
two stubborn tuples ti and tj inR where i �= j, ti and tj
do not have values in common; in other words, each value
in the domain of the stubborn part of R occurs in exactly
one attribute of exactly one tuple there.
There is a 1-1 mapping between the stubborn tuples in S
and subsets ofn/2 attributes ofS, and hence with the views
in the warehouse.We assume some ordering on these views

R. Chirkova et al.: A formal perspective on the view selection problem 225

and denote byVi the ith such view, and correspondingly by
attr(i) the ith such subset. Note that attr(i) is the schema
of the view Vi.

2. Eliminator tuples: these tuples guarantee that each stub-
born tuple can only be eliminated by a single view in the
configuration. There are two sets of eliminator tuples (one
for the stubborn tuples of S and one for those in T), but
both sets are in both relations S and T , and hence in the
intersection (see tuples 5–8 in Table 1).
Consider the eliminator tuples for the stubborn tuples of
S. For each stubborn tuple ti = (ai1, ai2, . . . , ain) in S,
there is a set E(ti) of n/2 eliminator tuples (thus the total
number of eliminator tuples for the stubborn tuples of S
is N ∗ n/2).
Let A be a new constant that appears nowhere else in S
or T . Recall that each stubborn tuple ti has an associated
set of attributes attr(i) of size n/2. For each attribute Ai

in attr(i), we construct one eliminator tuple for ti, which
is the tuple resulting by replacing the value of Ai in ti by
the constant A.
Note that the construction of the eliminator tuples ensures
that the projection ofS andT on attr(i) (which is the view
Vi) does not have a projection of the stubborn tuple ti. On
the other hand, the projection of S and T on any other set
attr(j) of n/2 attributes of S does have a projection of
ti. As a result, the tuple ti is eliminated from the partial
relation in the plan P∗ only after the join with Vi. Further-
more, the stubborn tuples are completely eliminated only
after joining S with all the views in V (hence, the choice
of their name).
Finally, note that the eliminator tuples for the stubborn
tuples of S and those for the stubborn tuples of T are over
different domains.

3. The intimidator tuples: here again, there is a set of intim-
idator tuples forS and a set forT , but neither set belongs to
the intersection of S and T . The role of the intimidator tu-
ples is to ensure that it is cheaper to eliminate the stubborn
tuples than to join an intermediate result that still contains
stubborn tuples with T . This is achieved by increasing the
size of T so a join with it becomes expensive. Note that
because we begin by joining S with V0, we immediately
lose all the intimidator tuples of S and don’t carry them
along through all the intermediate joins.
Specifically, the intimidator tuples are constructed over
a domain that is disjoint from any of the other con-
stants in S or T . The domains of the intimidator tu-
ples in S and in T are also disjoint. The number of in-
timidator tuples in S (and in T) should be greater than
(N +N2 ∗ n+N ∗ 2n∗(n+3))2 (for reasons that become
clear in the full version of the proof). In the case of n = 2
this translates into 4,235,364 tuples (represented by the
last rows in Table 1).

4. Necessary fat tuples: the purpose of the necessary-fat tu-
ples in S and in T is to prevent us from constructing a
cheap plan for q3 that includes projections on S ∩ T that
are wider thann/2 attributes. This is done by ensuring that
such a wider projection is much bigger than a projection
on n/2 attributes, and hence more expensive to join with.
The necessary fat tuples are built over a domain F , that is
disjoint from the domains of the other tuples in S and T .
The size of F is F = 2n+3 (also for reasons described in

Table 2. Case n = 2: tables for the views v1 and v2

V1 : X1

(5, 7) A
(6) b1

(8) d1

([F]) F

V2 : X2

(5) a2

(6, 8) A
(7) c2

([F]) F

Table 3. Case n = 2: the tables S&V1 and S&V2

(a) S&V1 : X1 X2

2 b1 b2

5 A a2

6 b1 A
7 A c2

8 d1 A
[F] F F

(b) S&V2 : X1 X2

1 a1 a2

5 A a2

6 b1 A
7 A c2

8 d1 A
[F] F F

the proof). There are Fn necessary-fat tuples in S and in
T . They are all the possible different tuples that one can
build from the domain F . In the case of n = 2, the domain
F includes 32 constants, and hence there are 322 = 1024
fat tuples (represented by the next to last rows in Table 1).

By obtaining upper bounds on the sizes of the views
v0, . . . , vN in the view configuration V , it is easy to show
that V satisfies the storage space constraintB for all values of
the parameter n. In the appendix, we show that the plan P∗ is
indeed the optimal query plan for q3.

3.2.2 An exponential-time lower bound

The previous section described a particular database instance
D for which q′

3 is an optimal rewriting of q3 under the product
cost model (α > 0). The same claim holds for any database
whose statistics agree with those of D. Recall that the input to
CSA includes a set of statistics, which is a function that maps
every view over R into an integer that specifies its size. Hence,
it follows that if we denote the set of statistics of D byΣ, then
the CSA problem with the schema R and the statistics Σ will
have an exponentially-sized optimal configuration under the
product cost model:

Theorem 2 Consider the view selection problem (R,Q, B)
above, where Σ is the set of statistics for the database in-
stance D above, and in the cost model, α > 0 (the prod-
uct cost model). Assume we restrict query plans to be left-
linear. Then an optimal view configuration consists of the
views V0, V1, . . . , VN defined above (N =

(
n

n/2

)
). ��

As a result, the following theorem establishes a lower
bound on the view selection problem for CSA under the prod-
uct cost model.

Theorem 3 Under CSA and the product cost model, the view
selection problem has an exponential-time lower bound when
only left-linear plans are considered. ��

3.3 Product cost model: extensions of the lower bound

In this section we explore the limitations of the theorem of the
previous section.

226 R. Chirkova et al.: A formal perspective on the view selection problem

The number of join and head variables. In the theorem of
the previous section, the queries in the workload have a num-
ber of head and join variables that depends on the database
schema. We can relax this restriction, and show that the result
holds even if the number of head variables is bounded or if the
number of join variables is bounded.

Suppose k is a constant upper bound on the number of
join and/or head variables in queries. For each integer value
n, consider a database schema R that consists of the schemas
of two relations, s and t, each of arity n + k. We consider a
query workload Q with two parts:

1. A modification of the query q3 from the beginning of
Sect. 3:

q(Y1, . . . , Yk) : − s(X1, . . . , Xn, Y1, . . . , Yk),
t(Z1, . . . , Zn, Y1, . . . , Yk);

here q is a join of the relations s and t on k attributes
Y1, . . . , Yk, which are also the distinguished variables of
the query.

2. The remainder of the workload Q constitutes all queries
that are projections of either s or t on k attributes each;
because k is a constant with respect to n, the number of
such queries is polynomial in the parameter n.

With this workload, we can prove the following result:

Theorem 4 Under CSA, under the product cost model, and
considering only left-linear plans, the view selection problem
has an exponential-time lower bound even if all the queries in
the input have a bounded number of variables in their head or
if all the queries in the input have a bounded number of join
variables. ��

The shape of query execution plans. Theorems 2, 3 and 4 hold
when we restrict ourselves to left-linear trees. The question of
whether, under the product cost model, the exponential-time
lower bound still holds when we consider bushy plans remains
open. In fact, we can show that an optimal bushy plan for q3
inD requires only a single view which is a projection of S (or
T) on a single attribute.

However, P∗ is still an optimal plan under the product cost
model (α > 0) when we consider all bushy plans in which S
(or T) is the last relation being joined (that is, either S or T is
the right child of the root of the join tree). This is an important
observation in a distributed query processing context. In this
context, we may have S and T stored in different locations,
and may store views on T (or on the intersection of S and T)
in S’s node to perform local filtering before we send data over
the network to evaluate the intersection of S and T . Hence,
our result implies that the number of local views we may want
to store on a remote source may be exponential in the size of
the schema. ��

The role of projections. Our last result in this section identifies
projections as being the culprit for the exponential-time lower
bound.

Theorem 5 Given any database schema R, any workload Q,
and any space constraint B, if an optimal view configura-
tion includes only projection-free views, then the number of

views in the configuration is at most quadratic in the size of
the schema and workload, for both the product and sum cost
models. ��

Proof sketch. The idea of the proof is as follows: consider any
query q in the workload Q. In the definition of q, the number
M of selection and join predicates is no more than quadratic
in the number of variables and constants in the body of q.
Suppose D is any database instance with the schema R, and
P is any plan that uses views and computes the query q on the
database D.

Suppose a view v used in the plan P is defined using a
selection or join predicate p from the definition of the query q.
Consider the point in the computation of the plan P where the
table for the view v is joined with the intermediate relation that
has been computed so far. Because the views in the plan P do
not use projections, once the table for v has been used in the
plan P , from that point and until the end of the computation of
the plan P all its intermediate relations satisfy the predicate p.
Therefore, it takes at mostM views to compute the query q on
any database, whereM is quadratic in the number of variables
and constants in the body of the query q. ��

3.4 CSA: an exponential-time lower bound
under the sum cost model

In Sects. 3.2 and 3.3 we considered the product cost model,
that is, the case where the cost of a join is proportional to the
product of the cardinalities of the joined relations. However,
many efficient join algorithms have a cost that is proportional
to the sum of the sizes of the input and output relations; we call
this cost model the sum cost model. In this section we show
that the technique described in Sect. 3.2 can be used to show
that under the sum cost model, the view selection problem also
has an exponential-time lower bound.

The exponential example from Sect. 3.2 cannot be carried
over directly to the sum-cost-model case for the following
reason. The proof of in Sect. 3.2 relied on the fact that while
computing the query q3, directly joining the relations S and T
would be too expensive (since only a small number of tuples
would match). Hence, we were able to show that adding an
exponential number of views between S and T reduced the
overall cost. In the sum-cost model, the join of S and T with-
out views is the cheapest way of computing the query q3. The
problem is that under the sum cost model the query q3 from
Sect. 3.2 does not provide any “expensive and wasteful" com-
putation that was key to the previous proof. In fact, it seems
that under the sum cost model an exponential example cannot
be constructed, because adding subgoals (views) to a rewriting
of a query seems to only increase the costs of computing the
query.

Surprisingly, this intuition is wrong. We now show that
a different workload and query will establish an exponential
lower bound for the sum-cost model case as well.

The schema and the workload. Fix an integer parameter n.
Consider a database schema R that includes n relations, S1
through Sn (referred to by the predicates s1 through sn in the
queries), each of arity n+ 1. The workload Q includes n+ 1

R. Chirkova et al.: A formal perspective on the view selection problem 227

queries:

r1(X1, . . . , Xn+1) : − s1(X1, . . . , Xn+1).
r2(X1, . . . , Xn+1) : − s2(X1, . . . , Xn+1).

...

rn(X1, . . . , Xn+1) : − sn(X1, . . . , Xn+1).
rn+1(X1, . . . , Xn, Y1, . . . , Yn) : − s1(X1, . . . , Xn, Y1),

s2(X1, . . . , Xn, Y2), . . . ,
sn(X1, . . . , Xn, Yn).

The first n queries simply ask for the database relations, while
the last query asks for their natural join on n first attributes
of each relation. Notice that the last attribute of each relation
goes to the answer to the query rn+1; as a result, the relation
rn+1 has n more attributes than each database relation. If we
are considering views to be materialized in a database, then the
query rn+1 suffices for the proof. Queries r1 through rn are
needed if we are creating a data warehouse. In the remainder
of this section, we consider only the query rn+1.

We assume that the available storage is denoted by B.
For the sum-cost-model case, B should be proportional to

N2×n2+N×2n(n+3)/2, whereN =
(

n
n/2

)
. Notice that the

storage space constraint B here is asymptotically the same as
the storage space constraint for the product-cost-model case.

Using this query workload, storage space constraint, and
a database instance we are going to describe, we will be able
to show that there exist a set of complete statistics Σ on the
database and a view configuration V , such that V is an optimal
view configuration for the workload Q on all databases with
the statistics Σ. As a result, we obtain the exponential-time
lower bound under the sum cost model.

The view configuration. We now describe the view configu-
ration V we use in this section. Consider again the query

rn+1(X1, . . . , Xn, Y1, . . . , Yn) : − s1(X1, . . . , Xn, Y1),
s2(X1, . . . , Xn, Y2), . . . ,
sn(X1, . . . , Xn, Yn),

and consider a projection of rn+1 on the firstn of its attributes:

p(X1, . . . , Xn) : −rn+1(X1, . . . , Xn, Y1, . . . , Yn).

The view configuration V that we use comprises all projections

of the table P on n/2 of its attributes. There areN =
(

n
n/2

)

views in the configuration V; we denote them by v1, . . . , vN .
Recall that N is exponential in the parameter n.

The query rewriting we consider essentially inserts all the
views in the configuration V between the subgoal of s1 and
subgoal of s2. Formally, it is:

rn+1(X1, . . . , Xn, Y1, . . . , Yn) : −s1(X1, . . . , Xn, Y1),
v1(X11, . . . , X1n/2), v2(X21, . . . , X2n/2), . . . ,
vN (XN1, . . . , XNn/2),
s2(X1, . . . , Xn, Y2), . . . , sn(X1, . . . , Xn, Yn).

The database instance. We now explain how to construct the
specific database instance D for the database schema R, query
workload Q, and storage space constraint B, such that on
this database instance D and under the sum cost model, the
rewriting of the workload Q that uses all the views in the view
configuration V , is optimal on D.

Intuitively, our intention is the optimal query execution
plan for the rewriting be the one that starts with S1, joins it
with V1, joins the result with V2, and so on, until joining with
the remaining database relations S2, S3, . . . , Sn. We denote
this plan by P∗. Note that just like in Sect. 3.2, the plan starts
with the tuples in a database relation (S1) and the results of
the intermediate joins are successively non-growing subsets of
the relation, until finally joining with the remaining database
relations (S2 through Sn). To make this an optimal plan, we
want that every view vi remove only special (stubborn) tuples
ti from the intermediate result. Just like in Sect. 3.2, to guar-
antee that every stubborn tuple is eliminated by exactly one
view, we construct a set of carefully crafted eliminator tuples.
Here are the details of the construction.

To build the relations S1, S2, . . . , Sn, we start by building
n relation templates T1, T2, . . . , Tn, where each Ti is an n-
ary relation; all templates are constructed on pairwise disjoint
domains. Each relation template Ti has N stubborn tuples
andNn/2 corresponding eliminator tuples. The stubborn and
eliminator tuples for each Ti are built exactly as described in
Sect. 3.2.

The next step in building the relations S1, S2, . . . , Sn is to
introduce fat tuples, also described in Sect. 3.2. The domain
F of the fat tuples is disjoint with the union of the domains of
the relation templates T1 through Tn.

We now construct the projection Pi of each database rela-
tion Si on its first n attributes (recall that each Si has n + 1
attributes). Consider the case n = 3. We have three relation
templates, T1, T2, T3, and a set of fat tuples, all built on pair-
wise disjoint domains. The relations P1, P2, and P3 share the
fat tuples and all the eliminator tuples of the templates T1
through T3; in other words, all fat and eliminator tuples we
have constructed so far go to the intersection of the relations
P1, P2, and P3. Let the remaining tuples of the relation P1
be the union of the stubborn tuples of T2 and T3. (Note that
the relation P1 does not include any of the stubborn tuples of
T1, because the relations T1, T2, and T3 are built on pairwise
disjoint domains.) The stubborn tuples of P2 and P3 are con-
structed analogously. This concludes the construction of the
relations P1, P2, and P3. The construction can be extended to
any value of n in a straightforward way; its output comprises
n n-ary relations P1, . . . , Pn, where each Pi is a projection of
the database relation Si on its first n attributes. We will see
shortly how to construct the remaining part of each relation
Si.

Note that even though we don’t know the values of the last
attribute of any relation Si, by construction of the projections
of Si on their first n attributes we have the following guaran-
tees on the plan P∗. First, each view vi in the plan P∗ removes
only a certain part of stubborn tuples of the relation S1 (recall
that the join of the relation S1 with each vi in the plan P∗ is a
natural join on the first n attributes ofS1). Second, all views in
the configuration V are required to remove all stubborn tuples
from the relation S1. Finally, if we modify the plan P∗ by

228 R. Chirkova et al.: A formal perspective on the view selection problem

swapping the relation S1 with any other Si, i > 0, these two
properties will still hold.

So far we have been able to reuse parts of the technique
from the product-cost-model case. Namely, we have con-
structed (parts of) database relationsS1 throughSn using stub-
born and eliminator tuples, and we have built a plan P∗ that
has an exponential number of useful views v1, . . . , vN . What
we don’t have yet is the expensive-and-wasteful component in
the computation of the query rn+1, such that we could use that
component to offset the costs of using an exponential number
of views in the plan P∗.

Recall that we haven’t yet specified the values of the (n+
1)st attribute in each of the database relations S1, . . . , Sn. We
are going to specify these values in a way that would create an
expensive and wasteful computation in all plans for the query

rn+1 that have fewer than N =
(

n
n/2

)
views.

We take a unary relation R that has k different tuples; we
will determine the value of k shortly. We finalize the construc-
tion of each database relation Si, 1 ≤ i ≤ n, by making Si a
cross-product of the corresponding relation Pi (we have built
Pi as a projection of Si on its first n attributes) with the unary
relation R. (Now each stubborn, eliminator, or fat tuple in the
relation Pi corresponds to k tuples in the relation Si.) This
concludes the construction of the database D that comprises
relations S1, . . . , Sn.

Optimality of the configuration. The details of the proof for
the sum-cost model case are similar in spirit to those of the
product-cost model case. In the rest of this section we provide
a brief explanation why the view configuration we designed
is indeed the optimal one.

Let us see how the structure of the relations S1, . . . , Sn in
the databaseD creates the expensive and wasteful computation
in all plans for the query rn+1 that have fewer thanN views. By
construction of the relations S1, . . . , Sn, each stubborn tuple
in the relations is shared by exactly n − 1 of the n relations,
and for each subset of the set {S1, . . . , Sn} of size n− 1 (for
example, the subset {S2, . . . , Sn}), there exists a stubborn
tuple that is present in each of the n− 1 relations but is not in
the remaining nth relation (S1 in the example).

Consider the relations S1, S2, . . . , Sn−1. From the obser-
vation above, there exists a stubborn tuple t that is present in
each of the n−1 relations but is not in the relation Sn. There-
fore, the tuple t does not go to the answer to the query rn+1
on the database D. Recall the construction of the relations
S1, . . . , Sn: each relation Si is a cross-product of a relation
Pi with a unary relationR that has k tuples. Therefore, in any
of the relations S1, . . . , Sn−1, there are k tuples that have the
same projection t′ on the first n attributes as t does. We denote
this set of k tuples by T .

Now consider a view v in the view configuration V , such
that v is the only view that removes the tuples T (by removing
their projection t′) from the relationS1. Suppose a plan P com-
putes the query rn+1 by joining the relations S1, S2, . . . , Sn,
in this order. The plan P can use views; our only restriction is
that the plan do not use the view v. Then, in the plan P , the tu-
ples T generate k2 tuples in the intermediate relation S1&S2
(more precisely, in the intermediate relation that results from
joining the relation S2 with the preceding intermediate rela-
tion – recall that the plan P can have views). The reason is

that the join of the relations S1 and S2 in the query rn+1 is
a natural join on the first n attributes, but the last attribute
of each of S1 and S2 goes unchanged to the relation S1&S2.
Recall that all the tuples in T has the same projection on the
first n attributes, and all the tuples have different values in the
last attribute. Therefore, after the k tuples T in S1 are joined
with the k tuples T in S2, the relation S1&S2 has k2 tuples
that have the same projection (t′) on the first n attributes as T
does, but have all possible pairs of the k values in the last two
attributes.

By the same token, the k tuples T result in k3 tuples in
the relation S1&S2&S3, in k4 tuples in S1&S2&S3&S4, and
so on. (Recall that each of S1, . . . , Sn−1 has the tuples T).
Finally, the k tuples T result in kn−1 tuples in the relation
S1&...&Sn−1. Under the sum cost model, the cost of obtaining
the kn−1 tuples in the relation S1&...&Sn−1 is at least kn−1.

Recall that the tuples T all have the same projection t′ on
the first n attributes. In addition, recall that by construction of
the database D, the relation Sn does not have any tuples with
projection t′! Therefore, the kn−1 tuples that are generated
by the tuples T in the relation S1&...&Sn−1, are dangling
w.r.t the relation Sn (i.e., the tuples T do not contribute to
the result of the join S1&...&Sn). It follows that when the
relation S1&...&Sn−1 is joined with the relation Sn, via a
natural join on the first n attributes, none of the tuples in the
result are generated by the tuples T ! We conclude that in the
plan P for the query rn+1, we have an expensive and wasteful
computation with the cost at least kn−1.

Note that by construction of the stubborn tuples in the
relations S1, . . . , Sn, the reasoning above also holds for all
plans for the query rn+1 that involve arbitrary permutations
of the relations S1, . . . , Sn and that do not use all the views in
the view configuration V .

To summarize the above, we have constructed the relations
S1, . . . , Sn in such a way that whenever a plan for the query
rn+1 does not include all the views in the view configuration
V , the cost of the plan involves an expensive and wasteful
computation, with the cost at least kn−1. Note that we have
so far refrained from assigning a value to k. Now the time
has come: we want the value kn−1 to offset some costs in the
computation of the plan P∗, which first joins the relation S1
with all the views in the view configuration V , and then joins
the result with the remaining database relations. Because the
plan P∗ joins the relation S1 with all the views in V , the result
of the join does not have any stubborn tuples. As a result, the
evaluation of the plan P∗ does not involve the expensive and
wasteful computation of kn−1 tuples. If we make the value
kn−1 greater than the cost of joining the relation S1 with all
the views in V in the plan P∗, it is easy to see that under the
sum cost model, the plan P∗ will be cheaper than any plan that
does not use all views in the set of views V . We conclude that
if a plan for the query rn+1 uses a proper subset of the views
in V , the plan is bound to be more expensive on the database
D than the plan P∗ with all the views in V (an exponential
number of views).

It remains to consider plans for the query rn+1 on the
database D that use other views than the views in V . Simi-
larly to the product-cost-model case, because of our choice
of the storage space constraint B and by construction of the
database D, we can show that any view not in V either does not
satisfy one of the constraints of view selection (in particular,

R. Chirkova et al.: A formal perspective on the view selection problem 229

the storage space constraint), or cannot be part of an equiv-
alent rewriting of the query rn+1. We therefore establish the
following theorem.

Theorem 6 Under CSA and the sum cost model, the view se-
lection problem has an exponential-time lower bound when
only left-linear plans are considered. ��

Similarly to the product-cost model case, the lower bound
holds also for bushy trees as long as the last relation in the plan
is a stored relation (i.e., not a view). As in the product cost
model, we can strengthen the lower bound result by showing
that it holds even with certain restrictions on the query:

Theorem 7 Under CSA, under the sum cost model, and con-
sidering only left-linear plans, the view selection problem has
an exponential-time lower bound even if all the queries in the
input have a bounded number of variables in their head or
if all the queries in the input have a bounded number of join
variables. ��

4 The partial statistics assumption

We consider now the view selection problem under the partial
statistics assumptions, PSA, when only limited statistics over
the database are available for estimating the view sizes. In
this case our goal is to find a view configuration V whose
total estimated size is at most B (the space bound) and that
optimizes the estimated costC(R,V,Q) of the workload. This
scenario is more likely in practice, and is similar to that of an
optimizer in a relational database system that has to base its
cost estimation on limited database statistics. The main results
in this section are that the number of views in an optimal
configuration of a view selection problem is bounded by a
polynomial, and that the number of subgoals in any view that
is part of an optimal solution is bounded linearly in the largest
number of subgoals occurring in some query in the workload.
The results, however, hold only under certain assumptions of
the selectivity estimation function, which we need to discuss
first.

Database systems maintain a collection of statistics on the
database to perform size estimates. Statistics range signifi-
cantly in complexity, from simple numbers to complex his-
tograms. Examples include: the cardinality of a base table; the
number of distinct values in a given field; the most frequent
values in a given field; an equiwidth histogram on a certain
attribute of some base table. Size estimators use heuristics to
compute the size of query answers from these statistics. Ex-
amples of well-known simple heuristics are those for joins and
selections. Given cardinalitiesNR andNS of the tablesR and
S, the size of R � S is estimated to be c×NR ×NS where c
is the join selectivity factor, and the size of a selection σb(R)
is estimated to be d × NR, where d is the selectivity of the
Boolean condition b.

The database statistics, denoted ΣR, play now a central
role in the size estimator function, and we denote byE(R, V)
the estimated size of a view V over the database with schema
R. Our goal is to analyze the complexity of the view selection
problem when the function E is a parameter.

Obviously, artificially chosen functions E could place
the view selection problem anywhere between trivial and ex-
tremely complex. For example, ifE estimates the size of every

view with one or more joins to be prohibitively large, then there
exists at most one valid view configuration, namely that ma-
terializing exactly the base relations (in a warehouse design
setting, where we have access only to the views), or not ma-
terializing anything (in the query optimization setting, where
we have access to the base tables anyway): in this case the
problem is trivial. On the other hand E may estimate the size
of very complex views, with thousands of columns, as being
artificially low, forcing us to inspect an extremely large search
space: here the problem becomes overly complex.

Without restricting too much the choice of the estimator
functionE, we focus our discussion on functions that are more
likely to be used in practice. Our results in this section hold
even under very generous assumptions about E.

Modeling statistics. We model database statistics as a collec-
tion of two kinds of numbers: factors and cardinalities. Fac-
tors are real numbers between 0 and 1, e.g., join selectivity
factors, the frequency of a given value in a field, etc. Exam-
ples of cardinalities are the number of distinct tuples in a base
table, the number of distinct values in a field, the number
of values in a certain interval of a histogram, etc. We write
Σ = {c1, . . . , cp, N1, . . . , Nq}, where c1, . . . , cp are factors
andN1, . . . , Nq are cardinalities. Statistics are always associ-
ated with a particular database schema R. Thus, the numbers p
and q inΣ depend on R. The complexity of the view selection
problem, which is a function on R, Q and B, will implicitly
also be a function of p and q. Furthermore, statistics can be
specific to the particular relations involved (e.g., the join se-
lectivity of R and S), or can be generic and used whenever
more specific statistics are not available.

Example 3 Consider the schema R with a binary rela-
tion R, a ternary relation S, and the statistics Σ =
{cR2R1 , cS2 , c�, cσ, NR, NS}. Here cR2R1 is the join selec-
tivity of R(X,Y) � R(Y,Z); cS2 is the selectivity factor for
a selection on the second attribute of S; c� is a generic join
selectivity that the functionE will use for all other joins; cσ is
a generic selectivity factor for all other selections.NR, NS are
the cardinalities of R and S, respectively. Consider the view:

V (X,Y, Z, U) : − R(X,Y), R(Y,Z), S(U, “Smith′′, Z).

An estimator may compute the size of the view by the follow-
ing product:

E(R, V) = c� × cR2R1 × cσ ×N2
R ×NS .

Thus, the size is a product of the selectivity factors, for the
joins and the selections, and of the cardinalities of the base
tables.

Example 4 The following example involves a projection. We
note that in practice, estimating the size of a projection (i.e., the
select distinct ... SQL statement) is much harder
than for selections and joins, and there are no widely used
robust techniques to address this problem. The following is
one of the commonly used estimators. Consider the view:

V (X,U) : − R(X,Y), S(Y,Z), T (Z,U)

the following size estimation may be used:

E(R, V) = (c�)2 ×NR1 ×NS ×NT2

230 R. Chirkova et al.: A formal perspective on the view selection problem

whereNR1 is the number of distinct values in the first column
of R, NS is the number of tuples in S, and NT2 is the number
of distinct values in the second column of T .

In summary, our discussion considers the class of multi-
plicative size estimators, which captures most estimators used
in practice:

Definition 2 Multiplicative estimators A size estimator E on
the statistics Σ = {c1, . . . , cp, N1, . . . , Nq} is called multi-
plicative if, for every view V :

E(R, V) = cγ1
1 × . . .× cγp

p ×N δ1
1 × . . .×N δq

q (6)

Here γ1, . . . , γp, δ1, . . . , δq are natural numbers that depend
on the view V and satisfy the following conditions, where s is
the number of subgoals in V : (1) 1 ≤

∑
i δi ≤ s; (2) when

V is projection free then
∑

i δi = s; and (3)
∑

i γi ≤ λs, for
some fixed integer λ > 0.

Given the results in Sect. 3 for CSA, one wonders if for
PSA we still need an exponential number of views to in an
optimal view configuration. The answer is “no”, as we shall
prove in a moment, but first we notice that PSA introduces a
new kind of problem: some multiplicative estimators E may
lead to view selection problems that do not have optimal so-
lutions! This is illustrated by the following example. Recall
that the cost of a join between two tables of (estimated) sizes
L and M is αLM + β(L+M) + γN .

Example 5 Consider the schema R with two binary relations
R and S and the queries:

Q1(X,Y) : − R(X,Y), S(Y, Y)
Q2(X,Y) : − R(X,Y)
Q3(X,Y) : − S(X,Y)

Assume the statistics to be Σ = {c, d,NR, NS , NS1}, where
NR, NS , NS1 are the cardinalities ofR,S, and π1(S), respec-
tively, c is the selectivity for S(Y, Y), i.e., E(R, S(Y, Y)) =
c × NS , and d is explained below. Assume a space bound
B such that we can store R and S, but not R, S and Q1,
or R,S and S(Y, Y). In particular, NR + NS < B <
NR + NS + c × NS . Hence, in the warehouse context, we
are forced to choose R and S as views to materialize, and
have some space left for some additional view(s) to reduce the
cost ofQ1. Consider the following infinite sequence of views,
for n = 0, 1, 2, . . .:

Vn(X) : − S(X,Y0), S(Y0,Y1), S(Y1,Y2), . . . , S(Yn−1, Yn)

Suppose E estimates the sizes of the views Vn to be:

E(R, Vn) = dn ×NS1

Henced indicates by what factor the cardinality of the semijoin
is reduced by each additional S. Since 0 < d < 1, for all
values of n large enough, the estimator will conclude that
there is enough space to store Vn in addition to R and S:
NR +NS +dn ×NS1 < B. Moreover, consider the following
rewriting of Q1:

Q1(X,Y) : − R(X,Y), Vn(Y), S(Y, Y)

and the following plan for it: (R � Vn) � S. As n goes
to infinity and the estimated sizes of both Vn and R � Vn

converge to 0, the cost of this plan converges to β(NR +NS).
There is no optimal solution to the problem in this case, since
the cost of any plan for Q is greater than β(NR +NS).

This example shows that Theorem 1 from CSA fails un-
der PSA, the reason being that the size estimation function
E here is not monotone. Indeed, for every n ≥ 1, the view
V (Y) : −S(Y, Y) is contained in the view Vn (V ⊆ Vn).
However, for n large enough, the estimates are E(R, V) =
c×NS > dn×NS1 = E(R, Vn). In general, as this discussion
suggests, it is virtually impossible to find robust estimators that
are monotone.

The assumption of large cardinalities. The lack of an optimal
solution in the example above is due to the fact that E esti-
mates the cardinalities of certain views Vn to be excessively
small (even less than 1, for large n). To avoid such anoma-
lies, we will make the following assumption: all cardinalities
are large. Technically, this translates into two conditions, one
on the function E and the other on the statistics Σ. First, we
will assume that the function E always returns a cardinality
that is at least L, some lower bound. That is, there exists a
multiplicative estimator E′ such that:

E(R, V) =
{

�E′(R, V)� when E′(R, V) > L
0 or L otherwise

In the gray zone, when the multiplicative formula is less than
L, we let the estimator choose whether to believe that the view
is empty, and return 0, or that it is non-empty, and returnL. For
such estimators, we revisit the view selection problem slightly,
but allowing only views with a non-zero size estimate to be
included in any view configuration4.

The second technical condition for the large cardinalities
assumption is that there exist two numbers c and N such that
for every set of statistics Σ = {c1, . . . , cp, N1, . . . , Nq} we
have c ≤ min(c1, . . . , cp) and N ≤ min(N1, . . . , Nq, L).
Recall that the statistics vary with the schema R. Our condi-
tion implies that, as the schema increases in complexity, all
new cardinalities and/or factors added toΣ are larger than the
fixed values N and c. The two theorems below also assume
two technical conditions: c × N > 1 and cλ × Nµ > 1, re-
spectively, where λ is from Def. 2 and µ will be introduced
below. These conditions are justified by the same assumption
on large cardinalities, and read: “if we apply one selection,
or a succession of λ/µ selections, respectively, to a table of
cardinality N , we still obtain an answer with at least 1 tuple”.

A polynomial bound on the number of views. We first prove
that, when a solution to the view selection problem exists un-
der PSA, then there exists one with a polynomial number of
views. This result should be contrasted to Theorem 3, which
proves that under CSA certain problem instances require an
exponential number of views.

For the remainder of this section, given a view selection
problem R,Q, B, a view configuration, V , means one in which
every query in the workload Q is rewritten only in terms of the

4 Views with estimated size 0 would, of course, artificially reduce
the cost of any plan in which they participate.

R. Chirkova et al.: A formal perspective on the view selection problem 231

views, and whose total size does not exceed B. In addition,
we use a product cost model, in which the cost of the join
of two relations R and S of size L and M , respectively, is
α×LM+β×(L+M) whereα > 0. Notice that, compared to
the cost formula in Sec. 2.1 we dropped the term γ×N , where
N is the size of the result: this is without loss of generality since
N ≤ LM , hence the term γ ×N is dominated by α × LM ,
after increasing α by 1.

We start with the following Lemma.

Lemma 1 Consider a view selection problem given by R, Q,
and B, and let s be the largest number of subgoals in the
body of any query Qi in Q. Assume the problem admits at
least one view configuration5 (not necessarily optimal). Then,
there exists a view configuration V0, whose cost is bounded
by:

C(R,V0,Q) ≤ (s− 1)(αB2s + 2βBs) (7)

Proof. Let V be some view configuration for our problem.
Consider every query Qj in Q and its rewriting using only
views in V . Based on the results on query rewriting using
views in [18] there exists a rewriting of Qj that only uses a
subset of those views, namely at most one for every subgoal
inQj . Let V0 ⊆ V be the set of views used in these rewritings
for all queries Qj ∈ Q. V0 is obviously a view configuration
for our problem, since its total size does not exceed that of V
(and, hence, does not exceed B).

In particular, each view V in V0 has an estimated size
which is at most B, and there are at most s − 1 joins be-
tween such views in each query Qj . Moreover, the size of
each intermediate result is estimated to be at most Bs (this
can be shown using (2) in Definition 2), hence, each join
costs at most αB2s + 2βBs, resulting in C(R,V0, Qj) ≤
(s− 1)(αB2s + 2βBs). ��

Theorem 8 Assume c × N > 1. Consider a view selection
problem given by R, Q, and B, and assume V is its optimal
view configuration, either under the left-linear plan restric-
tion, or under bushy plans. Then the number of views in V is
bounded by a polynomial in the size of R, Q, and the binary
representations of B, c, and N .

Proof. Given an optimal configuration V , for each queryQi ∈
Q we have a rewriting ofQi in terms of the views in V . Let i be
such that the rewriting ofQi uses the largest number of views
(break ties arbitrarily) and let k be the number of views used
in the rewriting of Qi. Our goal is to prove that k is bounded
by a polynomial, since then the total number of views in V is
also bounded by a polynomial. By Lemma 1 there exists some
configuration whose cost is at most (s − 1)(αB2s + 2βBs),
hence the cost of V is also bounded by this value. The idea is
that if k is “too big”, then the cost ofQi alone will exceed this
value.

Formally, consider an optimal plan for Qi that uses V ,
which, under our assumptions in Sect. 2, has the form π(A �

B). Here A � B represents the last join in the plan, and
C(R,V, Qi) ≥ α ×NA ×NB + β(NA +NB) ≥ α ×NA,

5 When B is too small, there may be no solution at all.

whereNA, NB are the estimated sizes ofA andB. The plansA
andB correspond to subsets of k subgoals in body(Qi) under
the rewriting with V . Suppose A has more subgoals than B,
henceA has at least k/2 subgoals (or at least k−1, in the case
of left-linear joins). Since A has no projections and all views
in A have an estimated size at least L, the estimated size of A
is:

NA ≥ cγ1
1 × . . .× cγp

p × L
k
2

≥ cγ1+...+γp × L
k
2

≥ cλ
k
2 × L

k
2

and we obtain:

α× c
k
2 × L

k
2 ≤ C(R,V, Qi) ≤ 1

wi
C(R,V,Q) (8)

Obviously:

C(R,V,Q) ≤ C(R,V0,Q) (9)

since V is an optimal solution. Inequalities (8), (9), and (7),
together with c × L ≥ c × N > 1, give us the polynomial
upper bound on k. ��

Join-sensitive size estimators. Under our current assumptions
for size estimators, some view selection problems may have
view configurations but no optimal ones. We show here that,
with some additional restrictions on the estimator function,
every view selection problem admits an optimal view config-
uration, if it admits any at all, and that finding such a config-
uration places the problem in NP.

Referring to the notations in Definition 2, we call a multi-
plicative estimator join-sensitive if there exists a positive con-
stant µ > 0 such that

δ1 + . . .+ δq ≥ µ× s,

where s is the number of subgoals in the view V . Here the
constant µ, together with λ, c, andN , are fixed for all database
schemas and associated statistics.

A join-sensitive estimator will penalize us if we try to use
views with too many joins, because it will estimate their size as
being very large. Definition 2 already does this for projection-
free views, while a multiplicative estimator extends this to
arbitrary views. As we have seen in Example 5, considering
estimators that are not join-sensitive may make sense in prac-
tice. Indeed, the size estimator E there is not join-sensitive,
since in the estimated size of Vn a single factor is a cardinality.
However, most estimators in practice are chosen to be join-
sensitive both for simplicity and because they are computed
bottom up. For example, for Vn, they would first consider
the expression π(S � S � . . . � S). The estimator then
computes the number of tuples in the join, yielding some ex-
pression of the form fn−1 × Nn

S , and finally computes the
number of tuples in the projection. The result has the form
gfn−1 ×Nn

S , where g and f are some numbers between 0 and
1. Such an estimator is join-sensitive.

The view selection problem always has a solution when
the estimator is join-sensitive. Moreover, in searching for a
solution, one only needs to consider views whose size is lin-
early bounded by the largest number of subgoals of any query
in Q; this is a strengthening of Theorem 8, which only gives
a polynomial upper bound.

232 R. Chirkova et al.: A formal perspective on the view selection problem

Theorem 9 Assume E to be a join-sensitive estimator, and
assume cλ × Nµ > 1. Consider a view selection problem
given by R, Q, and B, and assume it admits at least one view
configuration. Let s be the largest number of subgoals in any
query in Q. Then the following hold, both under the restriction
to left-linear join plans and under arbitrary bushy plans: (1)
the view-selection problem always has an optimal solution;
(2) if a view V is part of an optimal solution then the number
of subgoals in V is O(s); and (3) the view selection problem
is in NP.

Proof. By Lemma 1 there exists a view configuration V0
whose cost satisfies:

C0 = C(R,V0,Q) ≤ (s− 1)(αB2s + 2βBs) (10)

We first show that, for any configuration V , if it contains
at least one view V that is not equivalent to any query in the
workload Q such that the estimated size of V is larger than
a certain bound (namely max(1, 1

α)C0), then the cost of V is
larger than C0. In other words, when searching for an optimal
configuration we can restrict our consideration to views that
either are queries in the workload or have an estimated size
smaller than max(1, 1

α)C0.
Assume V is such a view, i.e., V is not equivalent to any

query in the workload Q and has an estimated size larger than
max(1, 1

α)C0. Let V be used in the rewriting of some query
Qi (of course, views that are never used can simply be dropped
from the configuration).V must be used either in a selection or
in a join insideQi (since V is not equivalent toQi). In the first
case the cost of the selection is at least E(R, V) > C0. In the
second case, the costs of the joins make the cost of computing
Qi at least α × E(R,V) × M (M is the size of the relation
with which V is joined). Since M ≥ 1, we have the cost of
Qi exceeds C0.

Thus, an optimal configuration, if it exists, consists only
of views in the sets Q and W = {V | E(R, V) ≤
max(1, 1

α)C0}. When E is a join-sensitive estimator we can
show that the latter set is finite. For that we prove something
stronger: that for each view in W , the number of subgoals
in the body of the view is O(s), where, recall, s = maxi(|
body(Qi) |). Let k =| body(V) |, for some view V in W . Re-
call that c ≤ min(c1, . . . , cp), N ≤ min(N1, . . . , Nq), and
cλ × N > 1. Since E is join-sensitive, the estimated size of
V is:

E(R, V) = cγ1
1 × . . .× cγp

p ×N δ1
1 × . . .×N δq

q

≥ cγ1+...+γp ×N δ1+...+δq ≥ cλk ×Nµk.

This, together withE(R, V) ≤ max(1, 1
α)C0 and with Eq. 10

gives us an upper bound for k, which is essentially the product
of s and the number of bits needed to represent B. Then, the
claims in the theorem follow immediately: (1) holds since we
have reduced the search space to a finite set of views; we have
shown (2) already; and, finally, (3) holds since it suffices to
guess the views in the configuration. ��

5 Conclusions

View selection is becoming a critical problem in several
data management applications: query optimization, data-

warehouse design, data placement in distributed environ-
ments, and ubiquitous computing. This paper answered sev-
eral fundamental questions about the view selection problem:
which views need to be considered in an optimal view configu-
ration, what is the cardinality of an optimal view configuration,
and what is the complexity of the view selection problem.

As we have shown, the answer depends critically on
whether we can accurately estimate the size of views over the
given database. When we have accurate size estimates, i.e., un-
der the complete statistics assumption, we have shown that the
cardinality of an optimal view configuration may be exponen-
tial in the size of the database schema and query workload. As
a result, we have established an exponential-time lower bound
on the view selection problem, and a double-exponential up-
per bound. Under the partial statistics assumption, when we
use multiplicative size estimators, we have shown that the
cardinality of an optimal view configuration is polynomially
bounded, and, hence, the view selection problem is in NP.
We have also shown that under certain conditions, the view
selection problem may not have an optimal solution.

Index selection. An important issue in the formulation of the
view selection problem is the effect of choosing indexes on the
views in the configuration. While our results have not consid-
ered the selection of indexes, it is easy to show that the results
still hold if we assume that the number of views in an optimal
configuration does not change if we consider indexes.

The intuitive justification for this assumption is that in-
dexes cannot increase the number of views needed for an op-
timal configuration. That is, if an indexed view is part of an
optimal plan for a query, then there should be some database
instance such that the view is useful in an optimal plan that
does not use indexes. The justification for using a view (if it’s
not needed for correct query semantics) is that using the view
reduces the overall cost of the query. There are two factors
affecting the usefulness of a view. The main one is whether
the size of the intermediate result is smaller after the join, and
the secondary one is the cost of performing the additional join
(which must be compensated for by the benefit of the result).
The presence or absence of an index only affects the second
factor, not the first, because it does not affect the resulting size
of the join result. Hence, the presence of an index may change
the cost-benefit threshold locally, but has little effect on the
rest of the plan.

Updating costs. Another important practical issue is the cost
of maintaining the views that have been materialized (though
in some contexts it is sufficient to assume views are updated in
an off-line process done periodically). In most of the cases we
discussed, it suffices to model the cost of updates by assuming
some of the queries in Q are update queries. The subtle issue,
however, is that in the presence of updates, the view configu-
ration may contain queries whose sole purpose is to speed up
updates, rather than support any of the queries in Q [19]. In
future work, we will extend our analysis to cover such cases.

Implications of our results. This paper describes mostly the-
oretical results concerning the view selection problem. A nat-
ural question that arises is how the results impact the design of
practical algorithms. The first implication is that practitioners

R. Chirkova et al.: A formal perspective on the view selection problem 233

should be aware that pitfalls indeed exist in this problem space.
The craftiness that was required to prove the lower-bound the-
orems hints that in practice, exponential configurations may
not be common. Our results show that the size of the config-
uration may become an issue mostly when there is heavy use
of views with projections and when views provide different
vertical partitions of a particular relation. Hence, we believe
that design and analysis of efficient view-selection algorithms
for applications of this nature presents an interesting area of
future work. Of particular interest is the direction that would
explore the design of approximation algorithms for view se-
lection and would analyze how close to optimal are small sets
of views. Another direction of future research is to discover
more special cases where optimality is attainable with a rea-
sonable number of views. (The paper mentions one such case,
views defined without using projections.)

6 Appendix: Proof of Optimality of the View
Configuration

We now prove that the view configuration V that we described
in Sect. 3.2.1 is the optimal on the database instance D. We
recall that we only consider left-linear plans, and the product
cost-model ([4] generalizes this result to the sum cost-model).

More precisely, we show that there exists an integer n0,
such that for all n ≥ n0, a plan for the query q3 that uses all
the views in V is optimal on the database instance D under
the left-linear plan constraint. Later, we generalize the result
to the case in which the plan may be bushy, as long as either
S or T is the last term.

We recall that our query rewriting q′
3 of the query q3 is

q′
3(X1, . . . , Xn) : − s(X1, . . . , Xn), v0(X1),

v1(X11, . . . , X1n/2),
v2(X21, . . . , X2n/2), . . . ,
vN (XN1, . . . , XNn/2),
t(X1, . . . , Xn),

and the query plan P∗ that we consider is:

P∗ = S � V0 � V1 � ... � VN � T .

We need to show that under the product cost model as-
sumption and on the database instance D, the cost of our pre-
ferred plan P∗ cannot exceed the cost of any other left-linear
plan for the query q3.

We first note that if a rewriting q′
3 of q3 does not mention

both S and T , then it cannot be equivalent to q3. Hence, we
can consider only rewriting (and hence plans) that refer to both
tables.

To show that P∗ is an optimal left-linear plan for the query
q3 on the database instance D, we need to cover several cases.
We proceed as follows, considering first plans in which S
precedes T :

• We first show that P∗ is cheaper than a direct intersection
of the tables S and T (Sect. 6.2).

• Then, we show that if we permute the views v0, . . . , vN in
P∗, or even remove some of the views from the plan, the re-
sulting plan cannot be cheaper than the plan P∗ (Sect. 6.3).

• Next, we consider all other types of views that can be
defined and are not in the workload V (Sect. 6.4). For each
one, we show one of the following:

– The view cannot be stored in the available space B,
– The view is useless in some way in the computation of
q3, or

– The resulting plans are clearly more expensive than
P∗.

• Finally, in a symmetric fashion, we can repeat the same
arguments for the case in which T precedes S, and show
that no such plan can be cheaper than P∗.

We begin by estimating the cost of P∗.

6.1 The cost of the preferred plan P∗ on the database
instance D

Our proof will use the fact that our preferred plan P∗ for the
query q3 can be represented as a join of a sub-plan P∗

1 with
the stored table T ,

P∗ = P∗
1 � T,

where

P∗
1 = S � V0 � V1 � ... � VN .

Under the product cost model, the cost of the sub-plan P∗
1 of

P∗ is

|P∗
1 | = |S| × |V0| + |S � V0| × |V1| + |S � V0 � V1| × |V2|

+ |S � V0 � V1 � V2| × |V3| + ... (11)

+ |S � V0 � V1 � ... � VN−1| × |VN |.

Intuitively, when the plan P∗
1 is computed on the database

instance D, each view vi strictly reduces the size of the in-
termediate result S � V0 � ... � Vi, until only the tuples
from S

⋂
T remain in the relation S � V0 � ... � VN . More

precisely, the view v0 removes all intimidator tuples from S,
and each view vi, i > 0, removes exactly one stubborn tu-
ple from S. After computing the upper bounds on the sizes
of the views and intermediate relations in P∗

1 on the database
instance D, we obtain the following upper bound on the cost
of the sub-plan P∗

1 :

|P∗
1 | ≤ |S| × |V0| +M, (12)

whereM is the number of intimidator tuples in S. As the cost
of the preferred plan P∗ is

|P∗| = |P∗
1 | + |S � V0 � ... � VN | × |T |, (13)

we obtain the following upper bound on the cost of the pre-
ferred plan P∗:

|P∗| ≤ |S| × |V0| +M + |S
⋂
T | × |T |. (14)

6.2 The preferred plan P∗ is cheaper than the plan without
views

Consider the original plan for q3, that is, the direct intersection
of the tables S and T . In estimating the cost of this plan on
D, we will be using the following facts that are all true by

234 R. Chirkova et al.: A formal perspective on the view selection problem

construction of the tables S and T in the database instance D.
Each of S and T includes at least M tuples (the intimidator
tuples IS and IT , respectively); S and T are of equal sizes; the
table S

⋂
T (and consequently, any view that is a projection

on S
⋂
T) has less than M tuples; in each of S and T , there

are N stubborn tuples (N =
(

n
n/2

)
). From these facts, it

follows that on D, the cost of the direct intersection of S and
T is

|S| × |T | = (|IS | +N + |S
⋂
T |) × |T | = |IS |

× |S| +N × |T | + |S
⋂
T | × |T | (15)

≥ |V0| × |S| +N ×M + |S
⋂
T | × |T |

> |S| × |V0| +M + |S
⋂
T | × |T |.

From inequality 14, it is clear that the direct intersection of S
and T is more expensive than the preferred P∗ on the database
instance D.

6.3 Plans where all views are in V

We now focus on all plans for q3 where S is the first term,
T is the last term, and that use only the views in the view
configuration V .

First consider any plan P(ij) that is obtained from the
preferred plan P∗ by swapping two views vi and vj , 0 < i <
j ≤ N . By construction of the table S and of the views, the
view vi removes from S exactly one tuple – a stubborn tuple
si that no other view in V can remove from S. Similarly, vj

removes from S some other stubborn tuple sj and nothing
else. We conclude that the intermediate relation S � V0 �

... � Vj � ... � Vi in the plan P(ij) is exactly the same as
the intermediate relation S � V0 � ... � Vi � ... � Vj in
the plan P∗. We observe that the costs of computing these two
relations, as well as the remaining parts of the two plans, are
the same. (By construction of the table S

⋂
T in the database

instance D, all tables Vi, i > 0, are of the same size.) We
conclude that the cost of the plan P(ij) on the database instance
D is the same as the cost of the preferred plan P∗.

It is straightforward to generalize this case to the case
when the views v1, . . . , vN in the plan P∗ are permuted in an
arbitrary way. We conclude that each resulting plan has the
same cost, on the database instance D, as the preferred plan
P∗.

Now consider a plan P(01) that is the same as the preferred
plan P∗, except that the views v0 and v1 are swapped. Recall
that in the database instance D, the domain of the table S

⋂
T

is disjoint from the domain of the intimidator tuples of S. It
follows that the view v1 removes all the intimidator tuples
from S, just as v0 does. (In addition, v1 removes one stubborn
tuple from S.) It follows that the table S � V1 does not have
any intimidator tuples. Therefore, joining S � V1 with V0
does not remove any further tuples from S.

We conclude that the intermediate relation S � V1 � V0
in the plan P(01) is the same as the relationS � V1. Therefore,
in the sequence S � V1 � V0 in the plan P(01), V0 is useless
and can be removed.

Having shown that the view v0 is useless in the plan P(01)

and can be removed, we proceed to compare the cost of com-
puting the intermediate relation S � V1, in the modified
plan P(01), to the cost of computing the intermediate rela-
tion S � V0 � V1 in the plan P∗. Recall that the table V0
is a projection of the table S

⋂
T on just one attribute, while

the table V1 is a projection of S
⋂
T on n/2 attributes. By

construction of the fat tuples in the intersection of S and T ,
the size of the table V1 grows exponentially (as n increases) in
the size of the table V0. It follows that the cost of computing
the table S � V1, in the plan P(01), also grows exponentially
faster than the cost of computing the table S � V0 � V1 in
the plan P∗.

After observing that the remaining parts (� V2 � ... �

VN � T) in the plans P(01) and P∗ are the same, we conclude
that there exists an integer value n1, such that for all n > n1,
the cost of the plan P(01) on the database instance D is greater
than the cost of the preferred plan P∗.

Now consider any plan P(0i) that is obtained from the
preferred plan P∗ by swapping the view v0 with some view
vi, i > 1. This plan can be obtained from the preferred plan
P∗ in two steps. First, the views v1 and vi are swapped; we
know that the resulting plan P(1i) has the same cost as P∗.
Second, the view v0 in the plan P(1i) is swapped with the view
vi to obtain the plan P(0i), which is similar to the case above
when the views v0 and v1 are swapped in P∗ to obtain the
plan P(01). We conclude that the plan P(0i) is asymptotically
more expensive on the database instance D than the plan P∗.

Now we consider plans that result from removing one or
more views from the preferred plan P∗. We have already seen
above that swapping the view v0 with any other view in P∗
is equivalent to removing the view v0 from the plan P∗ alto-
gether and results in a more expensive plan. Consider the case
when the view vN is removed from the plan P∗, to obtain
the plan P(−N). We know that the view vN removes exactly
one stubborn tuple sN from the table S, and no other view
in V can remove the tuple sN from the table S. We conclude
that the stubborn tuple sN remains in the intermediate relation
S(−N) = S � V0 � ... � VN−1.

Consider the cost of the plan P(−N); it is the sum of the
cost of computing the table S(−N) and of the cost of joining
the table S(−N) with the table T . The computation of the table
S(−N) involves computing the join of the tableS with the view
v0, and therefore the cost of computing S(−N) can be bound
from below by the expression |S|×|V0|. At the same time, the
table S(−N) has one more tuple (the stubborn tuple S) than
the table S � V0 � ... � VN = S

⋂
T . Therefore, the cost

of computing the join of the tables S(−N) and T is

|S(−N)| × |T | = (|S
⋂
T | + 1) × |T |

> |S
⋂
T | × |T | +M

(the table T has at least M tuples).
Therefore, the cost of computing the plan P(−N) can be

bound from below by

(|S| × |V0|) + (|S
⋂
T | × |T | +M).

The comparison of this lower bound on the cost of the plan
P(−N) with the upper bound on the cost of the preferred plan
P∗ in inequality 14 allows us to conclude that the plan P(−N)

R. Chirkova et al.: A formal perspective on the view selection problem 235

is more expensive on the database instance D than the pre-
ferred plan P∗.

The case when a view vi, 1 ≤ i < N , is removed from the
plan P∗, is treated similarly to the case above after we observe
that we can first swap the views vi and vN to obtain a plan
with the same cost as the cost of the preferred plan P∗, and
then remove the last view vi from the resulting plan, to obtain
a plan whose cost is the same as that of P(−N).

In the case when at least two views (besides v0) are re-
moved from the preferred plan P∗, we estimate the cost of the
resulting plan by starting with P∗ and removing one view at
a time. Observe that at each step, one more stubborn tuple is
added to the intermediate relationR that is joined with the ta-
ble T . Therefore, the cost of joining that intermediate relation
Rwith T grows at each step by at least 1×M (1 tuple is added
to the intermediate relation R, and T has at least M tuples).
Therefore, at each step the output plan is strictly more expen-
sive on the database instance D than the input plan (recall that
the cost of joining the relation S � V0 with all other views in
V does not exceed M). We conclude that the plan output by
the whole process is strictly more expensive than the preferred
plan P∗.

Finally, we consider left-linear plans where two or more
views in V occur before S. Suppose that the views v0, . . . , vm,
m > 0, occur before S in the plan Pm.

Consider the intermediate relation V0 � ... � Vm in
the plan Pm. There are three cases, based on the number of
attributes in this relation.

First, the relation V0 � ... � Vm can have fewer than n/2
attributes.As we will see from Sect. 6.4, views with fewer than
n/2 attributes do not remove any stubborn tuples from tables
S or T . Therefore, a join of the relation V0 � ... � Vm with
the table S can only remove the intimidator tuples from S. We
transform the plan Pm by removing the views v1, . . . , vm. It
is easy to see that the resulting plan (i) is cheaper than the plan
Pm and (ii) is equivalent to the plan S � V0 � Vm+1 � ... �

VN � T . As we saw above, this plan is more expensive on the
database instance D than the preferred plan P∗. We conclude
that Pm is also more expensive than P∗.

The second case is when the intermediate relation V0 �

... � Vm in the plan Pm has exactly n/2 attributes. In this
case, we can replaceV0 � ... � Vm by one of the views vi εV ,
i > 0, that has exactly the same attributes as V0 � ... � Vm.
This will transform the plan Pm into a cheaper left-linear plan
where exactly one view (vi) precedes S. It is easy to see that
the resulting plan is equivalent to a left- linear plan where S
is the first term and that only includes views from V . We have
shown above that any such plan is at least as expensive on the
database instance D as the preferred plan P∗.

The remaining case is when the intermediate relation V0 �

... � Vm in the plan Pm has at least n/2 + 1 attributes. Then
the relation V0 � ... � Vm must contain a projection W of
the table S

⋂
T on at least n/2 + 1 attributes. Therefore, the

table W contains a projection of all the fat tuples on at least
n/2 + 1 attributes. By construction of the fat tuples, the size
of the tableW , on the database instance D, is at least F ×|Vi|,
i > 0, where F is the size of the domain of the fat tuples, and
vi is a view in the view configuration V . As the sizes of all
projections ofS onn/2 attributes are the same on the database
instance D, we can choose Vi to be V1. We conclude that the

size of the intermediate relation V0 � ... � Vm in the plan
Pm is also at least F × |V1|:
|V0 � ... � Vm| ≥ |W | ≥ F × |V1|.

Recall that in the plan Pm, the intermediate relation V0 �

... � Vm is joined with the tableS. The cost of Pm is therefore
at least the sum of the cost of joining V0 � ... � Vm with
the table S and of the cost of joining the resulting relation
V0 � ... � Vm � S with the table T :

|Pm| ≥ |V0 � ... � Vm| × |S| + |V0 � ... � Vm � S| × |T |.

Notice that the size of the relation V0 � ... � Vm � S is at
least the size of S

⋂
T , otherwise the rewriting is not equiv-

alent to q3. Finally, we observe that on the database instance
D, the table V1 has at least one more tuple than the table V0.

Taking together all the estimates, we obtain the following
lower bound on the cost of the plan Pm:

|Pm| ≥ F × (|V0| + 1) × |S| + |S
⋂
T | × |T | > |V0|

× |S| + 1 ×M + |S
⋂
T | × |T |

(the size of S is at leastM). From inequality 14, we conclude
that the plan Pm is more expensive on the database instance
D than the preferred plan P∗.

It is easy to see that all plans that result from permuting the
views in the plan Pm, are at least as expensive on the database
instance D as the plan Pm itself. We conclude that all such
plans are more expensive on the database instance D than the
preferred plan P∗.

6.4 Left-linear plans that use other types of views

Consider a conjunctive view w that can be defined on the
schema R of the database instance D and such that w is not
in the view configuration V . We now consider all left-linear
plans for the query q3 where S precedes T and that include at
least one such view w.

We show that each such plan falls into one of three cate-
gories. In the first category are plans that do not compute the
query q3 correctly. In the second category, the view w is use-
less in the sense that ifw is removed from a plan P , or replaced
by a view from V , the resulting plan correctly computes the
query q3 and is cheaper on the database instance D than the
plan P . In the third category are all plans where the view w
cannot fit into the storage space B. Hence, we conclude that
for any conjunctive view w that is not in the view configura-
tion V , the view w cannot be used to compute the query q3 in
our problem setting.

Views with selections. We first consider all conjunctive views
that are defined using equality selection (we ignore trivial se-
lections of the form Xi = Xi). Using any such view w in
a rewriting q′′

3 of the query q3 is equivalent to applying the
selection to the answer to the query q3. (Recall that we only
consider conjunctive rewritings of the query q3.) Suppose the
table Q′′

3 is the result of computing the rewriting q′′
3 on the

database instance D. Because of the selection, the table Q′′
3

should either have two equal columns, or should have a col-
umn with only one value. Recall that the “real” answer to the

236 R. Chirkova et al.: A formal perspective on the view selection problem

query q3 is the intersection of the tables S and T . By construc-
tion of the database instance D, the table S

⋂
T does not have

equal columns or columns with only one value. We conclude
that the rewriting q′′

3 is not equivalent to the query q3 and thus
need not be considered.

Views with projections on less than n/2 attributes. Consider
a view that is a projection of S

⋂
T on fewer than n/2 at-

tributes. By construction of the eliminator tuples in S
⋂
T in

the database instance D, any such vieww includes projections
of all stubborn tuples, both of S and T . Therefore, any such
view w cannot remove stubborn tuples from the table S. We
conclude that no such view besides v0 (or besides any single
projection of S

⋂
T on one attribute) can be useful in a plan

for computing the query q3.

Views with projections on more thann/2 attributes. Now con-
sider a conjunctive view w that is a projection of S

⋂
T on

more than n/2 attributes. Take any view vi ε V , say v1 (all
such views are of same size on the database instance D). By
construction of fat tuples in S

⋂
T , the size of the tableW for

the view w is at least F × |V1| on the database instance D;
here, F is the size of the domain of the fat tuples.

The storage space constraint B has been chosen in such a
way that it can store all the tables (on the database D) for the
views in the configuration V and nothing else. Therefore, B
is proportional to N × |V1| (there are N views v1, . . . , vN in

V , where N =
(

n
n/2

)
).

Notice that the value F is greater than N . We conclude
that if a view w is defined as a projection of S

⋂
T on more

than n/2 attributes, the table for w cannot satisfy the storage
space constraint B as soon as the value of the parameter n is
greater than some value n2. Therefore, for all n ≥ n2, any
view configuration that includes w does not satisfy B.

Views on a single table. Finally, consider a view w that is
defined using the tableS only (or the tableT only). We replace
S by S

⋂
T in the definition of w, to obtain a view w′. The

view w′ is contained in w, therefore the size of the table for
w′ does not exceed the size of the table for w on the database
instance D. Consider a rewriting q̃3 of the query q3 that uses
the view w. We transform the rewriting q̃3 by replacing the
view w with the view w′. The cost of computing the resulting
rewriting q̃′

3 (using a left-linear plan) cannot be greater on the
database D than the cost of computing q̃3 itself. At the same
time, the rewriting q̃′

3 falls into one of the categories that we
have already considered. From the preceding sections, the cost
of an optimal left-linear plan for the rewriting q̃′

3 cannot exceed
the cost of the preferred plan P∗ on the database instance
D. We conclude that the cost of computing the rewriting q̃3
cannot exceed the cost of the preferred plan P∗ on the database
instance D.

6.5 Bushy plans where T (or S) is the last term

Here we consider plans that may be bushy as long as T (or
S) is the last term in the plan. Let P be such a plan. We want
to show that the plan P is never cheaper on the database D

than the preferred plan P∗. We have already established that
if P includes any other views besides the views in V then P
is more expensive on the database D than P∗. Therefore, all
that remains to be done is to show that for any set of views
V ′ ⊆ V and for any (bushy) plan P that uses only the views
in the set of views V ′, P is not cheaper on the database D than
the preferred plan P∗.

Suppose the plan P is not equivalent to a left-linear plan
(otherwise, we have already shown that P is not cheaper on
the database D than the preferred plan P∗). The main idea in
the proof is that the plan P is bound to have a sub-plan that
joins the tables for at least two views vi and vj , 0 < i < j,
from the set of views V . In this case, the result Vij of the sub-
plan contains the table Vi � Vj , which has at least 1 + n/2
attributes. The plan P joins the table Vij with either the table
S

⋂
T or the table T . In each case, using the results we have

obtained for left-linear plans, we can show that the plan P is
more expensive on the database D than the preferred plan P∗.

Acknowledgements. We would like to thank Surajit Chaudhuri,
Michael Genesereth, Zack Ives, Henry Kautz, and Rachel Pottinger
for very stimulating discussions regarding this work.

References

1. Agrawal S, Chaudhuri S, Narasayya V (2000) Automated selec-
tion of materialized views and indexes in Microsoft SQL Server.
In: Proc VLDB, pp 496–505, Cairo, Egypt

2. Baralis E, Paraboschi S, Teniente E (1997) Materialized views
selection in a multidimensional database. In: Proc VLDB, pp
156–165

3. Bello R, Dias K, Downing A, Feenan J, Finnerty J, Norcott W,
Sun H, Witkowski A, Ziauddin M (1998) Materialized views in
Oracle. In: Proc VLDB, pp 659–664

4. Chirkova R (2001) The view selection problem has an
exponential-time lower bound for conjunctive queries and views.
In: Proc PODS

5. Chirkova R, Genesereth M (2000) Linearly bounded reformu-
lations of conjunctive databases. In: Proc DOOD, pp 987–1001

6. Chirkova R, Halevy A, Suciu D (2001) A formal perspective on
the view selection problem. In: Proc VLDB

7. Goldstein J, Larson P-A (2001) Optimizing queries using mate-
rialized views: a practical, scalable solution. In: Proc SIGMOD,
pp 331–342

8. Gribble S, Halevy A, Ives Z, Rodrig M, Suciu D (2001) What
can databases do for peer-to-peer? In: ACM SIGMOD WebDB
Workshop

9. Gupta H (1997) Selection of views to materialize in a data ware-
house. In: Proc ICDT, pp 98–112

10. Gupta H, Harinarayan V, Rajaraman A, Ullman JD (1997) Index
selection for OLAP. In: Proc ICDE, pp 208–219

11. Gupta H, Mumick IS (1999) Selection of views to materialize
under a maintenance cost constraint. In: Proc ICDT, pp 453–470

12. Halevy AY (2000) Theory of answering queries using views.
SIGMOD Record

13. Halevy AY (2001) Answering queries using views: a survey.
VLDB J 10(4)

14. Harinarayan V, Rajaraman A, Ullman JD (1996) Implementing
data cubes efficiently. In: Proc SIGMOD, pp 205–216

15. Karloff HJ, Mihail M (1999) On the complexity of the view-
selection problem. In: Proc PODS, pp 167–173, Philadelphia,
Penn., USA

R. Chirkova et al.: A formal perspective on the view selection problem 237

16. Kossmann D (2000) The state of the art in distributed query
processing. Submitted for publication.

17. Lee M, Hammer J (1999) Speeding up warehouse physical de-
sign using a randomized algorithm. In: Proc. Int. Workshop on
Design and Management of Data Warehouses (DMDW-99)

18. Levy AY, Mendelzon AO, SagivY, Srivastava D (1995) Answer-
ing queries using views. In: Proc PODS, pp 95–104, San Jose,
Calif., USA

19. Ross KA, Srivastava D, Sudarshan S (1996) Materialized view
maintenance and integrity constraint checking: trading space for
time. In: Proc SIGMOD, pp 447–458

20. Theodoratos S, Sellis T (1997) Data warehouse configuration.
In: Proc VLDB, pp 126–135, Athens, Greece

21. Yang J, Karlapalem K, Li Q (1997) Algorithms for materialized
view design in data warehousing environment. In: Proc VLDB,
pp 136–145, Athens, Greece

22. Zaharioudakis M, Cochrane R, Lapis G, Pirahesh H, Urata M
(2000) Answering complex SQL queries using automatic sum-
mary tables. In: Proc SIGMOD, pp 105–116

23. Zhang C,Yang J (1999) Genetic algorithm for materialized view
selection in data warehouse environments. In: Proc. Int. Conf.
on Data Warehousing and Knowledge Discovery (DaWak-99)

