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Abstract
Nanotechnology advancements have led to the development of its allied fields, such as nanoparticle synthesis and their 
applications in the field of biomedicine. Nanotechnology driven innovations have given a hope to the patients as well as 
physicians in solving the complex medical problems. Nanoparticles with a size ranging from 0.2 to 100 nm are associated 
with an increased surface to volume ratio. Moreover, the physico-chemical and biological properties of nanoparticles can be 
modified depending on the applications. Different nanoparticles have been documented with a wide range of applications in 
various fields of medicine and biology including cancer therapy, drug delivery, tissue engineering, regenerative medicine, 
biomolecules detection, and also as antimicrobial agents. However, the development of stable and effective nanoparticles 
requires a profound knowledge on both physico-chemical features of nanomaterials and their intended applications. Further, 
the health risks associated with the use of engineered nanoparticles needs a serious attention.
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Introduction

The multidisciplinary unit, comprising the principles of 
physics, chemistry, engineering and biology to design and 
synthesize the nanoscale materials or devices is termed as 
nanotechnology. Nanotechnology deals with the develop-
ment of nanoscale sized objects including materials, devices 
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and/or systems [1]. The rapid progress in nanotechnology 
has shown a new hope in promoting human and veterinary 
health and in addressing the deadliest diseases in the future. 
Currently, it is well accepted with a great concern of poten-
tial health risks. The exposure of nanoparticles (NPs) causes 
inflammation, toxicity, apoptosis, oxidative stress and lung 
inflammation leading to pulmonary diseases [2, 3]. Further, 
the presence of ultrafine particles at extra-pulmonary sites 
including heart, liver, brain, and also in the systemic circula-
tion have been observed to cause intestinal pulmonary fibro-
sis, metal fume fever, mesothelioma, and ardystil syndrome 
[3–5]. Nanomaterials typically have a size in the scale of 
0.2–100 nm with an increased surface to volume ratio [2]. 
The NPs are of two different types such as non-engineered 
NPs which are found in the environment and derived from 
natural events (erosion, and volcanic eruptions) and engi-
neered NPs (ENPs) produced by human using different 
materials [6]. The physico-chemical and biological proper-
ties of ENPs including strength, flexibility, performance and 
durability have drawn an attention from various fields such 
as medicine, biology, and engineering.

The properties of NPs, such as size, shape, surface 
morphology and particle diameter affect the physical sta-
bility and also the performance of NPs in vivo [7]. The 
surface area of NPs increases with the decreased size and 
the increased surface to volume ratio is correlated to their 
increased antimicrobial activity. Different types of ENPs 
ranging in size from 0.5 to 1000 nm have been synthesized 
and characterized for their applicability in biomedical fields. 
Furthermore, the efficiency of ENPs also depends on the 
surface characteristic features such as surface charge and 
hydrophobicity. The surface Zeta potential values of NPs 
helps in the determination of surface charge and surface 
hydrophobicity [8]. The interaction of NPs with the bioac-
tive compounds depends on the NPs surface charge, inten-
sity and also the electrostatic interaction between them [7]. 
Depending upon the dimensions, ENPs can be classified 
as one-dimensional (thin films), two-dimensional (carbon 
nanotubes) and three-dimensional (dendrimers, quantum 
Dots) NPs [7, 9]. Many different types of NPs have been 
developed and characterized for use in drug/bioactive agent 
delivery system which include liposomes [10], polymeric 
NPs [11] nanocapsules [12, 13], polymeric micelles [14], 
and dendrimers [15, 16]. Properties and synthesis of these 
NPs is discussed in Sect. 2.1. The effectiveness of ENPs 
in a biological system is mainly correlated to their proper-
ties, such as shape, size, configuration, surface charge, and 
chemical and biological interactions. Application of ENPs 
in imaging, phototherapy, and drug delivery require a stable 
and explicit control over NPs interaction with cells, which 
are mostly provided by the surface properties of NPs [17]. 
Moreover, the stability and size control issues remains as a 
challenge during the synthesis of ENPs [18].

The development of advanced techniques, such as trans-
mission electron microscope (TEM) including low- and 
high-resolution TEM (LRTEM and HRTEM), photon-cor-
relation spectroscopy (PCS), scanning electron microscopy 
(SEM), atomic force microscopy (AFM), laser doppler 
anemometry (LDA) have significantly influenced the devel-
opment of nanomaterials and their characterization. The dif-
ference in the surface to volume ratio allows ENPs to exhibit 
different chemical, physical, electrical, optical, mechanical, 
and magnetic properties [19, 20]. The physico-chemical and 
biological properties of ENPs can be modified depending on 
various applications [1, 21].

NPs possess a specialized property known as stimuli 
response release system in which the release of bioactive 
agents can be controlled by various physical and chemi-
cal parameters [22, 23]. Different types of stimuli, such as 
temperature [24], magnetic fields [25, 26], ultrasonic waves 
[27], pH [28], and light [29] have been investigated as effec-
tive stimuli to use in response release systems and this helps 
in the effective release of bioactive compounds at the target 
sites. The ENPs are utilized in various fields, such as optical, 
chemical and biological applications. In specific, they are 
widely used in the fields of optical devices, superconductors, 
catalysts, drug delivery, gene delivery, fuel cells, imaging 
of biosamples, biomolecules detection, tissue engineering, 
regenerative medicine, detection of pathogens, biosensors 
and also as alternatives against drug-resistant microbes [2, 
30–34].

ENPs exhibit superior inhibitory activity against microbes 
[35–37]. Both organic as well as inorganic ENPs with poten-
tial applications in different fields of life science have been 
synthesized by several research groups. However, the inor-
ganic ENPs have wide ranging applications when compared 
to organic ENPs due to their capacity to withstand adverse 
reaction conditions [21]. Several types of ENPs have been 
synthesized and characterized by different research groups 
and are shown in Table 1. Moreover, it has been observed 
that NPs play a promising role in the delivery of drugs and 
other bioactive agents with increased therapeutic and/or bio-
active efficacy [38, 39]. The role of ENPs in medicine such 
as in vivo imaging, in vitro diagnostics, tissue engineering, 
regenerative medicine and also in the detection of biomol-
ecules has been well established [40].

Antimicrobial drug resistance has forced to use alter-
native approaches for the treatment of various diseases. 
Amongst them, nanocomposites such as graphene oxide-
silver nanocomposites, Ti-GO-Ag nanocomposite, Ag 
NPs/GO nanocomposites have been reported to be very 
effective antimicrobial agents [41–43]. The nanocompos-
ites/NPs act on microbes by various ways, including DNA 
damage, inhibiting DNA replication, protein synthesis, 
release of reactive oxygen species (ROS) and cell wall/
membrane disruption (Table 1). Furthermore, different 



1187JBIC Journal of Biological Inorganic Chemistry (2018) 23:1185–1204	

1 3

types of nanomaterials, such as gold (Au), silver (Ag), 
silver oxide (Ag2O), titanium dioxide (TiO2), zinc oxide 
(ZnO), copper oxide (CuO), calcium oxide (CaO), mag-
nesium oxide (MgO) and silica (Si) have been synthesized 
and characterized for their antimicrobial activity [2, 34]. 
The antimicrobial mechanism of ENPs depends on their 
bulk properties. NPs which process high surface area to 
volume ratio reduce the microbial adhesion and the for-
mation of biofilms and are the viable approaches for the 
treatment of biofilm-associated infections [44]. The devel-
opment and characterization of magnetic NPs (MNPs) has 
evolved as a significant field of research in medicine and 
biology. The growing interest in the MNPs is due to their 
easy preparation, smaller sizes, higher biocompatibility, 
low toxicity, high stability, simple chemical functionaliza-
tion, efficient drug conjugation along with superior mag-
netic responsiveness [45]. Many different MNPs based on 
iron oxide have been developed and found potential appli-
cations in the field of drug delivery, magnetic resonance 
imaging, magnetic separation and biomolecules detec-
tion and also in the new and emerging fields of medicine, 
such as cell therapy, tissue engineering, and regenerative 
medicine.

The present review provides comprehensive and updated 
information related to various applications of ENPs in medi-
cine and biology. The data in this review has been obtained 
by various search engines including Science Direct, Google 
Scholar, Scopus, Pub Med, Research Gate and SciFinder.

Applications of ENPs

Nanotechnology and the development of ENPs have revo-
lutionized the fields of medicine and have given a ray of 
hope for physicians in combating the diseases which still 
do not have specific drugs. ENPs find potential applica-
tions in various fields of medicine and biology Different 
types of ENPs have been synthesized and characterized 
by several groups for this purpose. Some of the inor-
ganic ENPs, such as aluminum NPs (AlNPs), copper NPs 
(CuNPs), CuONPs, AuNPs, AgNPs, MgONPs and carbon-
based NPs have been synthesized, characterized and evalu-
ated for their biological activity. Furthermore, advance-
ments in the field of DNA nanotechnology and preparation 
of several different DNA-based NPs has been a significant 
impact in the field of medicine and biology such as drug 
delivery, and preparation of biosensors/biochips [46]. 
Various organic ENPs including quaternary ammonium 
compounds, chitosan, polysiloxanes, and triclosan have 
also been characterized for their biological activity [2]. 
Several different metalloid NPs such as polymercoated bis-
muth sulfide NPs, and cadmium telluride NPs have also 
been employed in the diagnostic assays [47]. The applica-
tion of ENPs in various fields is represented schematically 
in Fig. 1.

Table 1   Different engineered nanoparticles and their mode of antimicrobial actions

Nanoparticles/nanocomposites Mode of action References

Aluminum nanoparticles Disrupt cell walls by generating ROS [2, 216]
Bismuth nanoparticles Alter/modify the process of Krebs cycle, nucleotide and amino acid 

metabolism
[2, 192, 193]

Carbon-based nanoparticles Cause damages to the bacterial cell membrane, interacts physically and 
interrupt cell wall, inhibit the respiratory chain

[2, 221, 223]

Copper oxide nanoparticles Reduce the adhesion of bacterial cell and interrupt the biological pro-
cesses within the microbial cell

[2, 213–216]

Gold nanoparticles Disrupt cell wall, attach with DNA and inhibits the DNA replication and 
transcription

[2, 204, 206, 212]

Iron containing nanoparticles Generate Reactive Oxygen Species (ROS) because of oxidative stresses 
which in turn destroy bacterial cell

[2]

Magnesium oxide nanoparticles Generate ROS, due to electrostatic contact and alkaline effects cells are 
damaged

[2, 192, 193]

Silver nanoparticles Affect DNA integrity, prevent DNA duplication process, inhibits electron 
transport chain and energy transfer

[2]

Titanium dioxide nanoparticles Release ROS and results in DNA impairment [2]
Zinc oxide nanoparticles Generate hydrogen peroxides, Zn2+ ions from the nanomaterials cause 

cell membrane damage
[2, 198, 199, 201]

Ti-GO-Ag nanocomposite DNA damage, interruption of cell signal transduction, oxidative damage, 
leak out of intracellular contents, and dehydrogenase inactivation

[41]

Graphene oxide-silver nanocomposites Oxidative stress, [42]
AgNPs-graphene oxide (Ag NPs/GO) composites Synergistic action between graphene oxide and Ag NPs [43]
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ENPs in cancer therapy

The most common and widely used mode of cancer treat-
ments include surgical removal of an abnormal tissue, 
chemotherapy, biotherapy, radiation therapy alone and/
or in combination with two or more different therapies. 
Though these conventional cancer therapies have improved 
the patient survivability, they carry certain limitations such 
as non-specific distribution of drugs, aqueous insolubil-
ity of drugs, and multidrug resistance [48, 49]. One of the 
major shortcoming of conventional therapy is non-specific 
distribution of drugs, which limits the therapeutic dosage, 
and also affects the normal cells, tissues and organs with 
severe side effects, and bring down the quality life of cancer 
patients [50]. Hence, designing a specific drug to target can-
cer cells/tissues accompanied by the controlled drug release 
helps to overcome the shortcomings of conventional cancer 
therapy and could benefit the cancer treatment significantly.

The development of NPs has offered a great benefit and 
interest in cancer therapy in addition to overcoming the 
limitations of conventional chemotherapies [51, 52]. ENPs 
have several advantages including the enhanced solubility 
of hydrophobic drugs, prolonged circulation time, capacity 
to carry higher payloads of drugs, minimized non-specific 
uptake, prevention of undesirable side effects, enhanced 
intracellular penetration, specific anticancer drug targeting 
and in cancer imaging [53, 54]. Drug carriers enter into can-
cer tissue compartments through openings/fenestrae between 
vascular endothelial cells and several different NPs can eas-
ily pass through these fenestrae [55]. The great advantage 
of ENPs is their specific drug delivery to target sites such 
as cancer cells or tumors, which in turn increases the drug 
concentration at the target site/s by avoiding the toxicity to 

normal cells. However, the factors such as, molecular weight 
and stability are attributed to the specific distribution, opti-
mized blood circulation and finally accumulation within 
tumors. Moreover, the rate of leakage of NPs across tumor 
vascular fenestrae can also be controlled through several 
parameters such as shape, size and surface properties, con-
centration (in tumor blood vessel) of NPs, and blood vessel 
factors such as the size of fenestrae, density, and distribution 
[55]. Further, NPs have the great potential in overcoming the 
multiple drug resistance mechanism in cancer therapy [52]. 
In addition, ENPs can be tailored to carry therapeutic drugs 
as well as imaging probes or diagnostic agents simultane-
ously and also can be designed to target diseased tissues 
specifically to enable combination therapy to overcome mul-
tidrug resistance [56].

Cancer cells display greater affinity towards particles of 
certain size than healthy cells due to their faulty particle 
screening and the presence of immature blood vessels which 
may be leaky and the phenomenon is known as the enhanced 
permeation and retention (EPR) effect [57, 58]. Hence, the 
EPR effect allows NPs to accumulate more (100–200 times) 
into tumor cells/tissue than normal cells/tissues [40] and this 
mechanism is also considered as a “gold standard” for the 
designing of anticancer drugs and also for targeting the site 
of tissue inflammation [40, 59–62]. The approval of cisplatin 
as an antitumor agent by the Food and Drug Administra-
tion (FDA) in 1978 has generated interest in exploring other 
metals such as gold and gold-based compounds in cancer 
therapy [63]. The first clinical trial for NPs based anticancer 
drug delivery started in the mid-1980s, and in 1995, the 
first liposomal NPs encapsulated with doxorubicin drug had 
entered the pharmaceutical market. Since then, several new 
and novel ENPs have been approved or under the develop-
ment as anticancer drug delivery systems and cancer therapy. 
Different types of ENPs have been explored in the cancer 
therapies which include inorganic ENPs, polymeric ENPs 
and conjugates, micelles, dendrimers, protein and bacterial 
carriers (Fig. 2). Several different ENPs have been approved 
as anticancer agents by FDA for metastatic breast cancers, 
ovarian cancers and Kaposi’s sarcomas [64].

Liposome NPs for cancer treatment

Liposomes find potential applications in the cancer treatment 
due to their unique characteristic features such as biocompat-
ibility, biodegradability, lack of immune system activation, 
low toxicity, and the capability to encapsulate both hydro-
phobic and hydrophilic drugs. Thus, liposomes have gained 
a significant attention as carrier systems for the delivery of 
therapeutic agents [65]. Moreover, surfaces of liposomes are 
modifiable through several chemical linkages/strategies to 
acquire significant therapeutic functions, including site-spe-
cific drug delivery, enhanced accumulation at the target site, 

Fig. 1   Applications of engineered nanoparticles in different fields of 
medicine and biology
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prolonged systemic circulation, and increased cellular inter-
nalization [66, 67]. The therapeutic potential of liposomes 
as carriers for payloads and drug delivery to the target sites 
has led to the development of several different liposomal 
formulations for cancer therapy [68]. Several such vesicu-
lar formulations have been approved by FDA including 
1,2-distearoyl-sn- glycero-3-phosphoethanolamine(DSPE), 
egg yolk phosphatidylglycerol (EggPG), hydrogenated phos-
phatidylcholine from soybean lecithin (HSPC), and 1,2-dis-
tearoyl-glycero-3-phosphocholine (DSPC) [67].

Polyethylene glycolated (PEGylated) liposomes have 
greater advantages of stable drug entrapment, very low drug 
leakage for longer period of time, prolonged circulation in 
the blood and the capability to accumulate in target/tumor 
tissues through EPR effect [69–71]. The earlier study has 
reported that modified liposomes coated with Folate-poly(l-
lysine) and carrying doxorubicin drug have shown twofold 
higher cytotoxicity than poly(l-lysine) coated liposomal 
DXR on KB cells [72]. This might be attributed to the occur-
rence of folate receptor-mediated endocytosis. Further, the 
evaluation of Folate receptor targeted liposomes as carriers 
of a chemotherapeutic drug; Vincristine (F-l-VIN) exhibited 
a significant receptor-specific cytotoxicity with an IC50value 
of 2.64 ± 0.14 μM on KB cancer cells compared to non-
targeted liposomes [73]. PEGylated liposome loaded with 
doxorubicin is used in the treatment of different types of can-
cer and several nanosomes loaded with different drugs such 
as camptothecin, docetaxel, vitamin D analog and bryosta-
tin-1 have also been developed by Aphios Corp. Woburn, 
MA 01801, USA and used in the treatment of multiple types 
of cancer [67].

Several researchers have effectively reported the use of 
liposomes, dendrimers and polymeric NPs in the combi-
nation therapy against cancers [74]. For example, attempts 
have been made to simultaneously deliver DNA and drugs 
via liposomes using cationic core–shell NPs, which were 
synthesized by self-assembling biodegradable amphiphi-
lic copolymers. These ENPs are more advantageous than 
liposomes, because of their easy fabrication, and manipu-
lation of their size and charges [75]. According to them, 
the cancer growth was more effectively suppressed by the 
co-delivery of paclitaxel along with a plasmid encoding for 
interleukin-12, compared to the individual delivery of pacli-
taxel or the plasmid as observed in a breast cancer animal 
model. Likewise, a formulation of combretastatin–doxoru-
bicin nanocell was used to deliver combretastatin and dox-
orubicin to target lung carcinoma, melanoma and various 
other cancer types [76]. Such studies were further supported 
by few novel polymeric nano-formulations, such as poly 
[lactic-co-glycolic acid] NPs co-encapsulating vincristine 
and verapamil, polyalkylcyanoacrylate NPs co-encapsulating 
doxorubicin and cyclosporin A, poly [ethylene glycol]–poly 
[aspartate hydrazide] block copolymers–Dox–WOR NPs, 
PDMAEMA–PCL–PDMAEMA-based cationic micelles, 
against various cancer types [74, 77–79].

Polymer and polymer–drug conjugate NPs for cancer 
treatment

Polymeric NPs are generally colloidal solid systems and 
have the capability to dissolve, entrap, encapsulate, and 
adsorb therapeutic drug onto the constituent polymer 

Fig. 2   Different types of engi-
neered nanoparticles (ENPs) 
approved by FDA or under 
clinical trial for cancer therapy
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matrix [80]. Polymeric NPs may vary from nanospheres 
to nanocapsules such as micelle [81], polymerosome [82, 
83] dendrimers [84] and hyper-branched polymers [85]. 
Moreover, natural macromolecules including polysaccha-
rides and polypeptides [86] have also been characterized 
as drug delivery systems. Different shapes/designs of poly-
meric ENPs may be attributed to the flexibility provided 
by polymers.

It is well known that polymeric ENPs have been exten-
sively used in the encapsulation as well as delivery of drugs 
such as lipophilic and hydrophilic drugs for many years. The 
unique physical and chemical properties of the polymers, 
including dispersity index, molecular weight, crystallin-
ity and hydrophobicity helps in the precise control of drug 
release kinetics and degradation of drugs [67]. Moreover, 
the surface chemistry of polymeric NPs can be modified and 
stabilized through conjugation, grafting, or adsorption of 
other hydrophilic polymer such as PEG, to improve the cir-
culation half-life and also to reduce the hepatic uptake [87, 
88]. PEG helps to protect NPs from the reticulo-endothelial 
system (RES); however, it is known to prevent the cellular 
uptake as well as intracellular drug release [89].

Modification of polymeric chains through side-chain 
grafting of chemotherapeutic drugs results in the formation 
of polymer–drug conjugates. Polymer–drug conjugates helps 
in the delivery of higher doses of drugs to the target sites. 
The entry of synthetic polymer–drug, HPMA-doxorubicin 
[N-(2-hydroxypropyl) methacrylamide] copolymer (PK1), 
into the phase II clinical trial for advanced breast cancer [90] 
has been a breakthrough and created a significant interest in 
the field of cancer therapeutics. Further, the pharmacoki-
netic study of PK1 has showed a distribution time (t1/2) and 
an elimination (t1/2) time of 1.8 and 93 h, respectively. In 
the Phase I clinical study PK1 exhibited antitumor activ-
ity against refractory cancers with maximum-tolerated dose 
of 320 mg/m2 and dose-limiting toxicities such as febrile 
neutropenia and mucositis [90]. Furthermore, several poly-
mer–drug conjugates are in clinical phase and/or recom-
mended for use in cancer therapy which include paclitaxel 
polymer conjugate (paclitaxel poliglumex) against lung 
cancer [91], and Oncaspar (PEG–l-asparaginase) for acute 
lymphoblastic leukemia [92]. Polymer drug conjugates in 
which drugs are grafted on the side chains of poly-amino 
acids have also been demonstrated with significant thera-
peutic efficacy along with high drug loading capability [67, 
93, 94]. Moreover, several different linkers have been used 
to increase the drug loading capacity of polymeric–drug 
conjugates. It has been reported that the degradable linker, 
polyglutamate-glycine-camptothecin enhanced the drug 
loading capacity from 5 to 50%. Further, the use of glycine 
linker has significantly increased the drug loading capacity 
compared to polyglutamate-camptothecin alone; this may be 
due to the reduced steric hindrance by glycine linker [67].

Micelle and dendrimeric NPs for cancer treatment

Micelles are spherical structures with a hydrophobic core 
formed by amphipathic lipids or other molecules, includ-
ing poly-amino acids or polymers. Polymeric micelles 
act as promising and perspective delivery molecules for 
cancer therapeutic drugs [95]. It has been reported that 
polymeric micelles ranging in size from 10 to 200 nm are 
known to enhance the accumulation of drugs within tumor 
cells due to the EPR effect [96, 97]. Several different 
micelle NPs have been developed and characterized such 
as, Genexol-PM, NK105, and Nk911 [67]. However, the 
first non-targeted polymeric micelle formulation approved 
for cancer therapy is Genexol-PM. Genexol-PM is a block 
copolymer micelle formulation of paclitaxel (Taxol) with 
a size of ~ 60 nm and drug (Paclitaxel) loading capacity of 
~ 15% (w/w). It has been reported earlier that Genexol-PM 
exhibit higher paclitaxel concentration in the tumor tissue 
than Taxol alone [98]. Genexol-PM, which is in the phase 
II trial study, has shown antitumor activity in patients with 
non-small-cell lung cancer at the dose of 230 mg/m2 with 
low incidence y of toxicity [99]. Polymeric micelles loaded 
with thioridazine (THZ-MM) and doxorubicin (DOX-MM) 
have been synthesized and characterized to determine the 
antitumor activity. The size of these micelles were found 
to be ~ 89.6 nm (DOX-MM) and ~ 77.0 nm (THZ-MM), 
respectively, and the co-delivery and/or individual deliv-
ery of these micelles had shown significant anticancer 
activity against breast cancer stem cells [97].

Dendrimers ranges in size from 5 to 10 nm are globular 
macromolecules possessing well-defined branching archi-
tectures. The basic components of dendrimers are central 
core, branching units and terminal group, the availability 
of terminal functional groups helps in further surface mod-
ifications [100]. Therapeutic agents/drugs can be encap-
sulated or bound in the internal cavities or on surfaces of 
the dendrimers through electrostatic and/or hydrophobic 
interactions or through covalent attachment to the terminal 
functional groups. The availability of controlled synthetic 
mechanisms led to the development of different class of 
dendrimers which find potential applications in diagnos-
tics, drug targeting and also in drug delivery. Several dif-
ferent types of dendrimers have been developed by sev-
eral research groups such as polyamidoamine (PAMAM), 
Poly (propylene imine) (PPI), and Poly-l-lysine (PLL) 
dendrimers. Doxorubicin (DOX) conjugated to carboxyl-
terminated PAMAM dendrimers decreased the tumor 
(lung metastasis) burden in a model and also increased 
the efficacy of DOX treatment against lung metastasis in 
mouse model [101]. Further, researchers have developed 
“avidimers” [67], containing methotrexate polyamidoam-
ine targeted for tumor vasculature [102].
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Protein and polymerosome NPs for cancer treatment

Proteins are considered as ideal molecules in the preparation 
of NPs due to their capability to interact with both solvent 
and the drug [103]. Moreover, protein-based NPs are bio-
degradable, less toxic, easily metabolizable, and allow sur-
face modifications for the attachment of ligands and drugs 
for targeted delivery and efficacy [103, 104]. Several water 
soluble proteins including albumin, gelatin, elastin, legumin 
and water insoluble proteins such as zein, gliadin have been 
explored in the synthesis of NPs and have been character-
ized as drug delivery carriers in the cancer treatment [103].

Protein-based NPs have made a significant improvement 
in cancer therapy. Albumin is a natural molecule capable 
of transporting molecules (no-covalent interactions) across 
endothelial barriers. Albumin accumulates in the tumor due 
to its intrinsic targeting abilities and enhanced permeabil-
ity and retention effect [67]. Several studies have demon-
strated the increased uptake of albumin bound paclitaxel in 
endothelial cells as well as in the extra vascular space [105, 
106]. The albumin bound drug NPs such as Abraxane, ABI-
008, are albumin-bound paclitaxel are approved by FDA for 
metastatic breast cancer therapy [67] and ABI-009 is under 
clinical trial against non-hematologic malignancies [103]. 
An earlier study showed that albumin-bound paclitaxel NP 
formulation (ABI-007) has showed maximum-tolerated dose 
ranging from 100 to 150 mg/m2, the dose-limiting toxicities 
observed were neutropenia and peripheral neuropathy [105]. 
Albumin has been evaluated as a delivery system for the low 
water solubility drugs such as rapamycin at the concentra-
tion of ~ 2.5 mg/mL [103]. Abraxane in combination with 
other chemotherapeutics such as vorinostat and rapamycin 
have been tested against metastatic breast cancer, ovarian 
and prostate cancer.

Amphipathic polypeptide or synthetic polymers forms 
polymerosomes or polymer shell vesicles (with a diameter 
of about ~ 100 nm) through self-assembly. The morphol-
ogy of polymerosomic NPs depends on hydrophilicity or 
hydrophobicity of polymers and structures may be bilayer, 
spherical, or cylindrical [67, 107]. Moreover, the thickness 
of the membrane core is determined by the hydrophilic/
hydrophobic ratio and size of the di-block copolymer [107]. 
Polymerosome NPs exhibit significant stability and lateral 
fluidity and the release of polymerosomes depend on the 
destabilization and degradation of shell layer and polymer 
chain, respectively [67]. Ahmed et al. [108] reported that 
the polymerosome NPs loaded with doxorubicin and pacli-
taxel with a maximum-tolerated dose of 2.5 mg/kg, exhib-
ited therapeutic effect on breast cancer tumor. Moreover, 
in comparison to formulations by free drug, the polymero-
some NPS reduced tumor size within 5 days post-injection. 
A nano-dumbbell consisting of hydrophobic NP core and a 
hydrophilic polymerosome shell has been synthesized to use 

as transducers in photodynamic therapy [109]. In addition, 
the lipid shell polymerosomes loaded with zinc (II) phthalo-
cyanine (photosensitizer used photodynamic therapy) was 
used to minimize corrosion and/or non-specific absorption 
during transportation [110].

Inorganic NPs for cancer treatment

The development of nanotechnology offered the develop-
ment of metal and metal based ENPs with potential appli-
cations in biomedicine especially targeted drug therapy for 
cancer. Several inorganic NPs have been developed, char-
acterized and evaluated for use in cancer therapy including 
AuNPs, AlNPs, CuNPs, and semiconductors such as quan-
tum dots, carbon nanotubes, carbon dots and iron oxide, 
These molecules have been evaluated for therapeutic and 
diagnostic purposes in cancer therapy, however, only less 
number of inorganic ENPs have been translated into clini-
cal practice presently [111]. The characteristic features of 
quantum dots such as size-dependent luminescence, stabil-
ity against photo-bleaching and high fluorescence yields 
allow them to use in a wide range of medical and biological 
fields including cancer therapy, drug delivery, cell targeting/
imaging, fluorescent probes and diagnostics [112]. The EPR 
effect is difficult to be used for tumor drug delivery due to 
heterogeneity of tumor vasculature, uptake by the RES and 
particle detection. However, PEGylation of NPs reduces 
uptake by RES and increases the EPR effect compared to 
free drugs [58]. Addition of tumor recognition molecules 
such as transferrin, epidermal growth factor, monoclonal 
antibodies, on the surface of NPs helps in the delivery of 
drugs at the tumor sites. It has been reported that, metal 
oxide NPs such as cobalt oxide NPs (CoONPs) modified 
by the addition of N-phosphonomethyl iminodiacetic acid 
(PMIDA) facilitated the binding/conjugation of cancer cell 
lysate antigen (Ag-PMIDA-CoONPs), These Ag-PMIDA-
CoONPs were found to stimulate the immune responses 
against conjugated cancer lysate antigens only and acts as 
a antigen delivery system for antitumor vaccine [113], Fur-
thermore, PMIDA-CoO NPs and chitosan-coated CoONPs 
were also reported to induce apoptosis/cell death through 
DNA damage, caspase activation and oxidative stress in leu-
kemic cell lines [114, 115].

Inorganic ENPs made of transition metals d-block ele-
ments such as Ti, V, Cr, Re, Mn, Au, and Cu have found 
potential applications in photo activated chemotherapy for 
cancer and inorganic ENPs based cancer therapy is becom-
ing significant and interesting field [116]. Further, the 
anticancer activity and photophysics of several inorganic 
elements such as Ti, V Cu, Fe, Pt, Rh, and Au have been 
well established [63]. However, further advancement in the 
characterization of these inorganic NPs and in vitro/in vivo 
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study on different types of cancers would help in the poten-
tial application of these ENPs at the clinic.

Gold nanostructures with a particle size ranging from 
2 to 500 nm are generally synthesized from the reduction 
of HAuCl4 assisted by various reducing/stabilizing agents 
under the different environmental conditions such as pH, 
pressure and temperature. The advantages of AuNPs synthe-
sis is that their size and shape can be easily controlled during 
their synthesis. The ideal size between 1 and 150 nm with 
varied shape, and possessing distinctive chemical, physi-
cal, optical and electrical properties can be obtained readily 
[117–119]. AuNPs are the most stable materials and exhibit 
similar properties even when dilutions are changed and usu-
ally, they are non-toxic and exhibit both in vitro and in vivo 
biocompatibility. Because of this reason, they are widely 
employed in the biomedical applications especially for can-
cer diagnosis and therapy [120]. The most likely mechanism, 
by which AuNPs enter the cells, is by non-specific receptor-
mediated endocytosis. In particular, AuNPs are effective as 
thermal destructive agents of cancerous cells owing to their 
effective photothermal heating capabilities and surface func-
tionalization [121]. The photothermal therapy requires high 
photothermal conversion efficiency of NPs. The photother-
mal conversion efficiency of AuNPs depends on structural 
dimensions such as size and shape [122]. Several different 
AUNPs have been characterized and their potential applica-
tions in diagnosis and treatment of melanoma cancer have 
been determined [122]. Moreover, AuNPs based platforms 
have also been employed in the detection of circulating can-
cer markers such as vesicles, circulating tumor cells, proteins 
and nucleic acids as well [123]. Furthermore, in a recent 
study the green synthesized AuNPs were demonstrated with 
in vitro anticancer activity against MCF-7 cell lines at 74 μg/
mL [124].

AuNPs are used in biomedicine as drug carriers, radio-
sensitizers, and used in thermal therapy for cancers, diagno-
sis of cancers, and image analysis [119]. Au possess several 
advantages with synthetic versatility to the unique electronic 
and optical properties, AuNPs are widely employed for vari-
ous biomedical applications. AuNPs have the ability to bind 
to amines and thiols, thus providing a suitable way for intro-
ducing several functional groups and may be employed as 
therapeutic agents when combined with therapeutic drugs 
or radionuclides, delivering genes/small-interfering RNAs, 
photo-acoustic imaging, and to target specific sites or pro-
teins [119, 125–129].

In recent years, the available drugs are modified to 
enhance their pharmacokinetics to reduce non-specific 
toxicity and enable the delivery of drugs to target tissues 
at high doses. For instance, 5 nm AuNPs was used as a 
delivery agent bound with cetuximab as an active targeting 
agent in treating pancreatic cancers [130]. Likewise, AuNPs 
complexed with gemcitabine at low doses led to increased 

tumour growth inhibition (> 80%) in a pancreatic cancer 
model [130, 131]. Jiang et al. [132] synthesized AuNPs 
coated with citrate with sizes between 2 and 100 nm. These 
particles when bound with trastuzumab antibodies enabled 
to target and cross-link to human epidermal growth factor 
receptor (HER)-2 in human breast cancer cells. Hyperther-
mia induces apoptotic cell death and hence, used in cancer 
therapy in combination with radiotherapy and chemotherapy. 
AuNPs are very advantageous in this regard and an in vivo 
study has demonstrated that 100 nm sized Au nanoshells 
accumulated in human breast cancer cells (SK-BR-3) maxi-
mally within 24 h when injected intravenously. Interestingly, 
applying of laser showed an increase of 37 °C in nanoshell-
treated mice, while in control mice there was only 9 °C 
increase. Also, there was no tissue damage found in the 
nanoshell group and mice survived up to 90 days without 
any tumour recurrence symptoms. Similarly, 110 nm sized 
PEGylated Au nanoshells and laser therapy were found 
effective in treating human prostate cancer [119, 133–135]. 
While, AuNPs improve the contrast and structural imaging 
modalities in Magnetic Resonance Imaging (MRI), positron 
emission tomography (PET) and computed tomography 
(CT) analysis and help to diagnose cancers. Molecular imag-
ing studies provide in vivo data on the metabolic functions 
of cancers and allow easy identification of molecular mark-
ers [58, 136]. Most of the AuNPs studies in cancer diagno-
sis and therapy have shown positive effects. However, more 
studies are encouraged to investigate on the factors including 
shape, size, surface coating, and doses, influencing on the 
functional properties of AuNPs in addition to their observa-
tion in animal models.

ENPs and nanocomposites in tissue engineering 
and regenerative medicine

The development of biomaterials led to the evolution of 
advanced technology in the field of medicine known as tis-
sue engineering (TE) and regenerative medicine (RM) and 
has revolutionized the field of medicine.

The fundamental components of TE include biomaterial 
scaffolds, cells, and signaling biomolecules [137]. Restora-
tion of tissue function and/or repopulation of defect site by 
TE approach involve implantation of biomaterial scaffolds 
which are porous, biodegradable and seeded with adequate 
amount of normal cells [138, 139].

Growth factors (GFs) and differentiation factors (DFs) 
play a significant role in the proliferation, migration, matura-
tion, and differentiation of functional precursors into mature 
functional tissues [140]. Hence, the success of RM and TE 
depend on the accurate presentation of GF’s/DF’s surround-
ing the healthy tissue and their concentration on the bioma-
terials during TE approach [141, 142]. Moreover, the effect 
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of TE and RM also depends on the availability of effective 
and controlled release of GF’s/DF’s.

Several different types of biological nanomaterials includ-
ing NPs, nanotubes, nanofibers, and fabricated nano-devices 
lesser than 100 nm dimension having potential applications 
in cell growth and tissue regeneration have been studied by 
several research groups. Biological nanomaterials explored 
in TE and RM must have the capability of eliciting several 
specific cell to cell interactions such as attachment, adhe-
sion, multiplication, and differentiation. Hence, the selection 
of biomaterials is the most significant factor in the success 
of TE approach [143]. Biocompatibility surfaces coupled 
with suitable mechanical properties constitute the basic and 
fundamental requirements of biological materials explored 
in TE and RM. Several such biological materials have been 
investigated and characterized for use in TE and RM. How-
ever, it has been observed that no single biodegradable 
polymeric material can satisfy the basic and fundamental 
requirements. Therefore, the combination of biomaterials 
through addition of inorganic/biomolecules onto biodegrad-
able polymeric matrices is an effective strategy to obtain 
nanocomposites having multifunctional and specific activ-
ity [143]. Several different polyester based nano composite 
materials have been developed to use in medical applica-
tions. The natural polymeric substances such as, silk [144], 
starch [145] and collagen [16] have been characterized for 
their potential application in medicine.

The advanced technology exploring the scaffolds and NPs 
loaded with bioactive agents has grown significantly which 
in turn led to the advancement in the field of TE and RM. 
The intended application of scaffold determines its com-
position and physical parameters. Many different natural 
and synthetic polymers have been characterized and used 
as TE scaffolds [138, 139]. The most commonly used TE 
scaffolds based natural polymers are gelatin, fibrin, collagen, 
polyhydroxyalkanoates, hyaluronic acid, chitosan and algi-
nate [142]. Whereas, PLGA, PGA, PLA, PCL, PEG, PEG 
derivatives (poly (fumarate)) PEG copolymers such as poly 
(amido-amines), poly (vinyl alcohol), orpoly (urethanes) 
constitute the synthetic polymers used in TE scaffolds.

Several inorganic materials including cement, bioactive 
glass, calcium phosphate ceramics and ceramic/polymer 
composites have also been developed and found their appli-
cation in bone TE [146, 147]. Many different conventional 
and advanced techniques have developed for the preparation 
of biological scaffolds used in TE approach which include 
melt molding, fiber bonding, solvent casting, gas foaming, 
particulate leaching, rapid prototyping phase separation, 
electrospinning, nanofabrication. Moreover, the surface-
patterning techniques such as nano-imprint lithography, 
electron-beam lithography, photolithography, nano-contact 
and printing, have also been developed in the preparation of 
effective TE scaffolds. However, among all electrospinning 

is the most common and versatile technique used in the prep-
aration of TE scaffolds having high surface area to volume 
ratio [40, 148]. Different ENPs coupled scaffolds have been 
characterized for use in bone and cartilage TE and RM.

ENPs and nanocomposites in drug delivery

The ENPs are capable of delivering the drug/bioactive 
agents in a controlled manner. Transient and sustained 
delivery of bioactive agents to the target/specific site is a 
major challenge in TE and RM approach. The controlled and 
sustained release of drug/bioactive agent by the ENPs pro-
vides several advantages which include protection of thera-
peutic molecule from degradation, maintenance of drug/
bioactive agent concentration, along with targeted delivery 
and reduced side effects. Hence, the therapeutic efficacy of 
a drug/bioactive agent increases with the development of 
effective delivery systems, in this regard NPs acts as a prom-
ising device [38, 39]. However, an ideal NP carrier should 
be stable, biodegradable, non-immunogenic, and capable of 
releasing the drug/bioactive agent only at the target site in a 
cost-effective manner [149, 150]. The role of ENP’s in drug 
delivery has been well established and play significant and 
crucial role even in TE and RM also [140]. NPs are required 
to cross the physiological barriers of the system depend-
ing upon the application, target cells and route of admin-
istration [151]. Hence, the success and also the efficiency 
of NPs-based delivery system depends on the capability of 
transporting loaded bioactive agent through physiological 
barriers to reach the target site for optimum pharmacological 
activity. ENPs are internalized through different mechanisms 
such as phagocytosis, endocytosis, pinocytosis depending on 
the type of NPs and drug conjugate system.

The cell viability and internalization property varies from 
one cell type to another. Moreover, other parameters includ-
ing composition, surface charge, size and concentration of 
NPs, and also incubation time influences the cell viabil-
ity and internalization efficiency of NPs by the cell [40]. 
NPs based drug/bioactive agent delivery can be carried out 
through encapsulation using nanospheres developed from 
biodegradable (natural/synthetic) or non-degradable poly-
mers. Poly(l-lactide) (PLA) or poly(l-lactide-co-glycolic) 
(PLGA) [152, 153] are the best examples for synthetic bio-
degradable NPs, while proteins and polysaccharides such 
as, collagen, gelatin, fibrin, alginate, and chitosan can be 
used as natural biodegradable polymers for NPs synthesis. 
Metals and metal oxides/sulfides such as, gold, hydroxyapa-
tite, alumina and silica [154–157] constitute non-degradable 
NPs. The selection of polymeric material for the construc-
tion of NPs for delivery system depends on many factors 
including, size, surface chemistry and charge of the NPs, 
characteristic features of the dug/bioactive agent, dug/bioac-
tive agent release profile, and also the biodegradability and 
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biocompatibility of NPs [158]. The ENPs synthesized from 
biodegradable materials exhibit significant biocompatibility 
with negligible immunogenicity, apart from degradability.

The application of ENPs/nanocomposites in drug/bioac-
tive agent delivery may improve the effective treatment of 
many diseases; one such is the cancer targeted drug delivery. 
Targeted drug delivery may be passive, active or physical 
targeting of cells, tissues, organs and even organelles. Orga-
nelle targeting drug delivery is an emerging and promising 
field of research due to its application in cancer therapy.

The passive targeting is based EPR effect (Sect. 2.1), is 
known to be influenced by several parameters including the 
shape, size, and surface charge of NPs which in turn influ-
ences penetration speed, circulation time, and also intracel-
lular internalization mechanism [159, 160]. The surface 
properties of NPs could play significant role in their circu-
lation in the blood vascular system and subsequent internali-
zation by the cells [150]. Cancer cells tend to take up NPs 
with positive charge more readily than negatively charged 
NPs because of their negative charge on the surface [150]. 
Moreover, the geometry of NPs also influences the cellu-
lar uptake. Further, Li et al. established that internalization 
rate of PEGylated NPs spheres is faster compared to cubes, 
however, rods and disks exhibited slowest internalization 
rate [161]. Many different NP structures in which drugs are 
dissolved, entrapped, and/or conjugated on to the surface 
have been developed and several of them have received clini-
cal approval and approved by FDA for instance; liposome 
mediated doxorubicin and daunorubicin delivery system, an 
albumin-bound NPs containing paclitaxel, abraxane against 
breast cancer [162].

However, active targeting is selective and can react only 
with target cells. In this process the NPs are functionalized 
with a ligand which has significant affinity towards molecule 
abundant on cancer cells. This increases the uptake specific-
ity, delivery efficiency of NPs and sometimes protects the 
drug from enzymatic digestion. Active targeting mechanism 
directs the drug to a specific cell, organ, or organelle and can 
alter the normal distribution patterns of a carrier; however, 
passive targeting rely on the EPR effect and natural distribu-
tion of the drug [150]. Physical targeting involves navigation 
of drugs to the target site using external stimulation factors, 
such as magnetic fields and/or radiation such as photother-
mal therapy.

Several NP based photothermal agents have been tested 
in cancer therapy such as, AuNPs, graphene, carbon nano-
tubes. Several different mechanisms such as pH, heat and fic-
tionalization/conjugation of NPs with polymer or PEG have 
been explored in the delivery of drugs. For instance, carbon 
nanotubes and graphene oxide conjugated with polymer is 
pH sensitive and kill cells photothermally [163], while gra-
phene nanosheet coated with silica and functionalized with 
PEG have been reported to deliver doxorubicin [164]. The 

heat energy produced from MNPs due to their oscillation 
in a magnetic field is also explored in the cancer treatment 
(magnetic hyperthermia). However, the therapeutic effect 
and production of heat energy depend on distance between 
target cell and MNPs, strength of the magnetic field and 
sensitivity of target cell to magnetic field. Biological poly-
mers such as, carbohydrates and proteins are coated onto 
MNPs to protect them against potential toxin release and 
corrosion. The imaging capabilities of MNPs offer great 
potentials in delivering MNPs based drug carriers to the 
target site (precision oncology), which in turn allows evalu-
ation of distribution of the drug carrier and noninvasive 
imaging [45].The MNPs are mainly based on cobalt, nickel, 
magnetite (Fe3O4) or maghemite. However, iron oxides are 
most commonly employed due to its shape controllability 
and biological compatibility [150]. An earlier study showed 
that, iron oxide NPs obtained in the size of ~ 100 nm were 
found to be biocompatible and effective carrier for targeted 
drug delivery to cancer cell lines [165]. Many clinical trials 
have been conducted both in vivo and in vitro by photother-
mal therapy and also by magnetic hyperthermia [166]. It has 
also been reported that combinatorial effect of photother-
mal therapy and magnetic hyperthermia promotes effective 
internalization of NPs by tumor cells, rather than individual 
effect [167]. MNPs have potential significant applications in 
the field of in vivo human diagnostics and drug delivery and 
are already been used in the transportation of antimicrobial 
agents and anticancer drugs [168].

ENPs in biomolecules detection

Over the past few years, nanoscience and nano-biotechnolog-
ical research advancements have focused towards the appli-
cation of nanotechnology in biomolecular detection [135, 
169]. The ENPs have significantly played a significant role 
in biomolecules detection. In specific, they have replaced the 
conventional molecular techniques and improved the sensi-
tivity and accuracy of the identification. The thermal, opti-
cal, physical and electrochemical techniques have certainly 
improved in recognizing the molecules in solution when 
observed in the biosensing devices. NPs are widely used 
in developing new sophisticated sensing devises and assays 
which can improve the identification of nucleic acids and 
proteins [169, 170]. Several types of NPs including AuNPs, 
MNPs, quantum dots, silica NPs, inorganic phosphor NPs 
have been used in detecting viruses, hormones, specific anti-
gens, thyroid-stimulating factors, DNA and other biomol-
ecules [169, 171]. The physiological changes in the cell such 
as change in the type and concentration of metabolites may 
takes place due to pathological/disease condition or disorder, 
hence, the diagnosis of the disease and identification of its 
related physiological changes such as sensing and monitor-
ing of the intracellular pH helps in understanding the disease 
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biology [172]. Several nanoscale metal organic frame works 
(nMOFs) have been developed for the detection of several 
physiological changes in living cells, such as sensing the real 
time intracellular pH [173], intracellular oxygen quantifica-
tion [174], and sensing nitric oxide concentration [175].

The advancement in the field of nanotechnology and 
development of novel NPs employed in the biomolecular 
detection could be a major breakthrough in the field of medi-
cine which helps in the detection and diagnosis of many dis-
eases which are still undetectable in the early stage such can-
cer through convention diagnostics. The availability of such 
advanced biomolecular diagnostics helps in the improve-
ment of disease management along with the improvement 
in patient’s quality life.

ENPs and nanocomposites as antimicrobial agents

The improper or misuse of antimicrobials have caused the 
resistance property in microorganisms and is a present 
global challenge and causing a great threat to the patients 
infected with pathogenic microbes [2].There is a rise in the 
number of drug-resistant bacteria including methicillin-
resistant Staphylococcus aureus (MRSA), and vancomycin-
resistant enterococci which is a challenge to the medical 
practitioners..

Recent advancement in the area of nanobiotechnology 
has made the possibility of synthesizing nano-range mole-
cules with incredible applications in the field of biomedicine 
and therapeutics. Further, these nanoscale nanocomposites 
possess excellent antimicrobial properties against various 
resistant microbes [2]. Hence, the antimicrobial property 
of ENPs can be employed as alternatives in treatment of 
drug-resistant microbes in the medical field. The possible 

mechanisms of antimicrobial action by ENPs are represented 
in Fig. 3 and Table 1.

Several inorganic NPs including silver NPs (AgNPs) have 
exhibited antimicrobial activity against diverse microbes. 
Silver ions have more affinity towards sulfur and phosphate 
groups and this might be significant in its antimicrobial 
activity. Silver ions (Ag+) released from NPs reacts with 
the proteins with sulphur components on the cell membrane. 
Ag+ produces ROS within the cell and are one of the main 
cause for cell death [176].The size of NPs is the key fac-
tor in deciding their efficacy against microbes. The size of 
< 10 nm produces holes/pores on cell membrane resulting in 
cell leakage and eventually will lead to microbial cell death 
[176, 177]. The minimum inhibitory concentration (MIC) 
values of AgNPs against pathogenic microbes differ with 
the type and sizes of the nanoparticles [2].

The biosynthesized AgNPs have been investigated against 
several pathogens with superior inhibitory potential [21, 
178–184]. The AgNPs synthesized using Andrographis pan-
iculata leaf extract exhibited higher antibacterial activity 
against Gram positive Enterococcus faecalis strains. Further, 
the surface zeta potential study revealed the key role of cell 
surface charge in bactericidal activity [185]. Further, the 
AgNPs synthesized using leaf extract of Ocimum gratissi-
mum exhibited bactericidal activity against E. coli and S. 
aureus through ROS mediated cell surface damage [186]. 
Similarly, the surface of MgONPs has typically high pH 
and when bacterial cells interact with MgONPs, the high 
alkaline pH damages the cell membrane which is also called 
as alkaline effect [187–189]. Further, the antibacterial effect 
of MgONPs also depends on their size. The MgONPs less 
than 15 nm are known to exhibit superior bactericidal activ-
ity [187, 190]. MgONPs are effective against both Gram-
negative and Gram-positive bacterial strains [191, 192]. In 

Fig. 3   Mode of action of engi-
neered nanoparticles against 
microorganisms
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another study, it has been shown that MgONPs were effec-
tive against E. coli (MIC; 500 μg/mL), S. aureus (MIC; 
1000 μg/mL), and Pseudomonas aeruginosa (MIC; 1000 μg/
mL) [193]. Titanium dioxide inhibits bacterial strains by 
releasing ROS. In particular, the crystal surface of TiO2 
interacts with fluids or water through photocatalytic reac-
tion that generates the hydroxyl free radicals. The release of 
ROS then causes site specific DNA damages [2, 194–197]. 
ZnONPs show antimicrobial activity by generating hydrogen 
peroxides, and releasing Zn2+ ions. Also, ZnONPs release 
ROS including H2O2, OH−, and O2

2−. These ROS effectively 
damage the bacterial cell growth [198, 199]. The generation 
of hydrogen peroxides increases with the increased surface 
area of ZnONPs [2]. ZnONPs are shown to inhibit several 
kinds of Gram-negative and Gram-positive bacterial strains 
and are very effective against food borne pathogens [200, 
201]. The inhibitory potential of iron oxide NPs is due to 
generation of singlet oxygen (1O2), superoxide radicals 
(O2–), hydroxyl radicals (OH−), and hydrogen peroxide 
(H2O2).

AuNPs were shown to possess anti-cancerous and anti-
bacterial activity through photo thermal heating [21]. AuNPs 
and toluidine blue O (photosensitizer) have exhibited a syn-
ergistic antimicrobial activity against methicillin-resistant 
Staphylococcus aureus [202–205]. The bioactive molecules 
including antimicrobials, carbohydrates, antibodies, pro-
teins, and oligonucleotides may be capped with AuNPs for 
better biological activities [206, 207], For example, the addi-
tion of vancomycin (antibiotic) to kill vancomycin-resistant 
enterococci [208, 209] and aminoglycosidic antibiotics to 
act against various bacterial pathogenic strains [210, 211]. 
AuNPs act on the bacterial cell by generating holes/pores 
in the cell wall/membrane and inhibit the transcription pro-
cess through preventing the DNA uncoiling [212]. Several 
studies have reported the antimicrobial properties of copper 
(Cu) NPs (CuNPs) against several bacterial strains including 
Gram-positive Bacillus subtilis and S. aureus [213]. CuNPs 
produced through the biological process have been reported 
to possess higher inhibitory potential against drug-resistant 
human pathogens such as S. aureus and E.coli [214]. The 
antimicrobial property of CuNPs is due to their effective 
adhesion/attachment to the bacterial cell walls and causing 
the cell architecture damages [215]. Moreover, CuNPs have 
greater affinity towards carboxyl and amine groups found on 
B. subtilis cell surface and hence, they are highly effective 
against these strains [2].Copper ions released are reported 
to have the potential to disrupt biochemical processes inside 
bacterial cells [216] may also intercalate with nucleic acid 
strands and interact with DNA molecules. The mechanism 
of antimicrobial of AlNPs is due to the disruption of cell 
walls leading to cell death through ROS generated from the 
NPs [216]. However, aluminum NPs are regarded as scav-
engers of free radicals and appear to protect cells from the 

death due to oxidative stresses. However, this property is 
size independent and might depend upon the structure of the 
particles [2, 217]. Bismuth (Bi) NPs (BiNPs) are reported 
to function against several microbes. A study by Hernan-
dez et al. [117, 218] reports the antibacterial and antifungal 
activity of BiNPs at < 1 and 2 mM concentrations, respec-
tively. The BiNPs were reported to inhibit the drug-resistant 
bacterial strain, Helicobacter pylori significantly [219]. The 
mechanism of action was due to the inhibition of the bacte-
rial growth by altering the amino acid metabolism and Krebs 
cycle [220]. Carbon nanotubes are shown to be effective 
against Gram-positive and Gram-negative bacterial strains 
including Salmonella enterica, E. coli, and Enterococcus 
faecium. Moreover, carbon NPs when complexed with silver 
inhibit multidrug-resistant microbes such as Acinetobacter 
baumannii, K. pneumonia, S. aureus, and Yersinia pestis [2, 
221]. They cause cell wall disruption and DNA damages 
[222, 223]. Fullerenes, a soccer ball shaped carbon NPs have 
been investigated and showed antimicrobial activity against 
Salmonella spp., E. coli, Shewanella oneidensis and Strepto-
coccus species [224–226]. Likewise, graphene oxides were 
also shown to effectively inhibit E. coli and S. aureus [227].

The organometallic polymers were reported to have effec-
tive inhibitory effect on several microbes. Experimental 
study has showed that peptide (lysine and phenylalanine) 
based NPs exhibit higher antimicrobial potential against 
P. aeruginosa, E. coli, Serratia marcescens and Candida 
albicans [2, 228]. Several different nanocomposites have 
been prepared and characterized for antibacterial activity 
for instance, AgNPs-graphene oxide (Ag NPs/GO) compos-
ites exhibited antibacterial activities against E. coli and S. 
aureus [43].Ag NPs decorated on thiol (-SH) grafted GO 
layers exhibited inhibitory effect against S. aureus and P. 
aeruginosa [42] and Ti substrates surface modified by GO 
thin film and AgNPs against Porphyromonas gingivalis and 
Streptococcus mutans [41]. Likewise, quaternary ammo-
nium compounds are shown to inhibit microbes by inter-
acting with the bacterial cell membrane. They cause cell 
membrane pores and denatures cellular proteins/enzymes 
[2, 229]. Polymers such as polysiloxane and triclosan are 
reported to possess superior activities against E. coli and S. 
aureus and Corynebacterium spp., respectively [230, 231].

Nanotechnology bids an excellent opportunity to inhibit 
viral multiplication and their global spread [2]. AgNPs have 
shown to possess antiviral properties against Hepatitis-B, 
HIV-1 (human immunodeficiency virus 1), HSV 1 (herpes 
simplex virus type 1) and monkeypox virus [2, 232, 233]. 
AgNPs exert antiviral activities by acting as a virucidal 
agent or by inhibiting the entry of virus particularly at early 
stage of viral replication. Also, NPs are reported to inhibit 
viral particles by binding on to their cell surfaces. After 
binding, they alter or denature the viral proteins [2]. AuNPs 
have also been reported to exhibit anti-HIV activity and with 
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different anionic groups can inhibit influenza virus. The 
negatively charged AuNPs exhibit inhibitory effect against 
several influenza strains; this may be ascribed to the preven-
tion of viral attachment. AgNPs capped with mercaptoethane 
sulfonate effectively inhibited HSV 1 infection [21]. These 
NPs prevent the infection by hindering the virus entry into 
the cell. The Au/Cu sulfide core/NPs shell system has shown 
antiviral activity against norovirus virus-like particles [234]. 
Likewise, TiO2, poly-l-lysine (PL), and DNA/RNA nano-
composite was shown to inhibit influenza A virus [235]. The 
surface modified NPs potentially inhibited viral infections 
[236]. More recently, NPs functionalized with zanamivir 
showed an effective activity against H1N1 influenza virus 
through apoptosis process [237]. Likewise, previously, it has 
been reported that AgNPs inhibit the replications in several 
viral particles such as herpes simplex virus, dengue virus 
2, respiratory syncytial virus, parainfluenza virus 3, bean 
yellow mosaic virus, and H3N2 influenza [237, 238]. Fun-
gal infections have tremendous contribution in increasing 
the mortality of immunocompromised patients [2]. Many 
investigations have showed that the NPs potential against 
fungi and fungal spores. The antifungal activity varies with 
particle sizes or zeta potentials. Zeta potential is believed to 
interact with negatively charged microbial surface and func-
tion as antifungal agents. Chitosan NPs are reported to have 
inhibitory effect on Candida albicans and Fusarium solani. 
The inhibitory effect may be credited to the occurrence 
of negatively charged sialic acid residues in cell the wall. 
Moreover, AgNPs also exhibit antifungal activity against C. 
albicans and Saccharomyces cerevisiae [2]. The synthesized 
amphotericin B-silver hybrid NPs have significantly inhib-
ited the growth of C. albicans, F. culmorum and Aspergil-
lus niger species [239]. Further, amphotericin B-copper (II) 
complex exhibited enhanced therapeutic potential against 
C. albicans, C. parapsilosis and A. niger [240]. Likewise, 
CuNPs synthesized chemically have shown antifungal activ-
ity against Fusarium spp [241]..

Limitations

The NPs can be synthesized by several ways such as, chemi-
cal, biological, mechanical method by milling and grinding 
technology, and gas phase synthesis. In most of these syn-
thetic processes the size of the NPs does not exceed 100 nm. 
Furthermore, the chemical methods are not eco-friendly; 
however, the biological methods do not lead the production 
of any toxic agents and are eco-friendly [242]. The contact 
of ENPs with living cells/tissues is affected by various fac-
tors including their shape, size, and composition. The strong 
permeability of ENPs is a pre-requisite for its potential 
application as antimicrobial agent or an agent in drug deliv-
ery. Most of the synthesized NPs can penetrate membrane 

barriers and diffuse in the body. However, there are some 
possible health hazards of ENPs when they accumulate in 
cells, tissues and other cellular structures [2]. Synthesis and 
exposure of NPs with a diameter less than 100 nm may result 
in adverse side effect; however, the risk linked to NPs varies 
depending on NPs type [3, 201, 243]. The reactive oxygen 
species generated by NPs are major contributors in inflam-
mation and toxicity, inducing oxidative stress, apoptosis and 
activation of signaling pathways. The NPs might escape the 
body’s defense mechanisms because of their nanoscale size 
and might result in toxic responses and inflammation [2, 3].

Several studies have reported the relationship between 
pulmonary inflammation and toxicity responses to ultrafine 
particles [2, 4]. Further, the consequence of ENPs on bio-
logical systems is not completely acknowledged. Therefore, 
complete understanding on the harmful effects/limitations 
on the use of NPs has to be addressed. Although intrinsic 
properties NPs offer lot of advantages some of those intrin-
sic characteristic features poses difficulties also. For exam-
ple, the high surface area, of NPs favor particle agglomera-
tion followed by formulation instability due to high surface 
Gibbs energy, and it is highly challenging to prevent [244]. 
Moreover, the independent control of these intrinsic param-
eters is also difficult and they might also influence stability 
issues including sedimentation [245]. Hence, it is difficult 
to generalize the protocols for NPs synthesis and for optimal 
cellular uptake. Moreover, it is highly essential to evaluate 
the potential negative impacts on environment as well as 
ecological systems due to the production of NPs in a larger 
scale. Furthermore, there may be unintended exposure of 
NPs by humans due to their bioavailability in different eco-
systems and capability to move along the food webs [246]. 
Hence, thorough evaluation and regulation is required before 
the production of NPs in larger scale and also about their 
utility in biomedical fields.

Conclusion

The advent of nanotechnology and its allied fields revolu-
tionized the field of medicine. Development of NPs repre-
sents an exciting, reliable and promising advancement in the 
field of medicine and biology. The potential application and 
use of ENPs in the treatment of wide range of bacterial, viral 
and fungal diseases, cancer therapy, drug delivery, tissue 
engineering, regenerative medicine, diagnostics, imaging 
and biomolecules detection has a significant effect on patient 
care and treatment. The development of advanced and effec-
tive ENPs and their applications in cancer treatment would 
help in overcoming the shortcomings of conventional cancer 
therapy and may provide a ray of hope for cancer patients 
in future. The rise of drug resistance property by microor-
ganisms is another great threat, concern and challenge to 
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the medical practitioners, which could also be overcome 
through advanced ENPs. The advancement of cutting edge 
nanomedicine offered the possibility and fascinating oppor-
tunities in NPs based bioimaging, early detection of diseases 
and targeted drug delivery for enhanced therapy. Various 
ENPs are shown to be effective against several pathogenic 
microorganisms, and are explored in cancer therapy, TE, 
RM, diagnostics and biomolecules detection. However, the 
effectiveness of ENPs in various fields of medicine and biol-
ogy depends on the type of NPs, their size, stability, and 
composition. Though, ENPs possess numerous biological 
activities, their utilization is limited due to the facts such 
as toxicity, non-degradability, biocompatibility which may 
cause serious health risks. However, these limitations can 
be overcome through the use of eco-friendly approaches for 
NPs synthesis and is well appreciated also. Therefore, more 
studies are required to prove the effective utility of NPs in 
various fields of medicine and biology.
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