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Introduction

Following the discovery of atrial natriuretic peptide
(ANP), brain natriuretic peptide (BNP) and C-type
natriuretic peptide (CNP) have been isolated from the
porcine brain and, thus, the natriuretic peptide family
comprises three ligands, ANP, BNP, and CNP. As for
the receptor for natriuretic peptides, three natriuretic
peptide receptors have been identified; guanylyl cylase-
A (GC-A), GC-B, and clearance receptor (C-receptor).
GC-A and GC-B are the particulate guanylate cyclases
and mediate most of the biological actions of the na-
triuretic peptides through the cyclic guanosine mono-
phosphate (cGMP) cascade. In contrast, C-receptor is
considered to be involved in the clearance of the natri-
uretic peptides to determine the local concentration of
the natriuretic peptides accessible to and available for
GC-A and GC-B. Although ANP and BNP have long
been thought to act mainly in the regulation of body
fluid homeostasis and blood pressure control by their
potent diuretic, natriuretic, and vasorelaxing activities
through GC-A [1,2], CNP is also recognized to be
expressed in and to affect various extracardiovascular
tissues through GC-B [3] (Fig. 1).
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Structure of CNP

Structure and distribution of CNP

CNP has a primary structure similar to that of ANP and
BNP, consisting of 22 amino acids, and the ring portion,
consisting of 17 amino acids, is highly homologous to
ANP and BNP. Different from ANP and BNP, CNP
lacks the C-terminal tail and has a Cys residue at the C-
terminus. Another species of CNP is CNP-53, which has
an N-terminal extension of 31 amino acids compared
with CNP-22. Molecular cloning of the CNP precursor
in the pig, rat, human, and mouse has revealed that the
primary structure of CNP-22 is identical in these species
[4,5]. However, two amino-acid substitutions are noted
in CNP-53 between human and porcine/rat/mouse
precursors. ProCNP consists of 103 amino acids, and a
single arginine residue precedes CNP-53 and CNP-22.
Using reverse-phase high-performance liquid chro-
matography (HPLC), we demonstrated that the major
molecular forms in the human brain are CNP-22
and CNP-53 [3]. Using the specific radioimmunoassay
(RIA) for CNP, it was elucidated that immunoreactive
CNP was detected in porcine, rat, and human brains,
but not in the peripheral organs, including the heart [3].

Chromosomal assignment of the CNP gene

We cloned mouse and human CNP genes [6,7]. The
mouse CNP gene is composed of at least two exons and
one intron. The 5-flanking region contains an array of
cis-acting regulatory elements, including Y box, GC
box, and a CRE-like sequence, as well as a dinucleotide
CA repeat (microsatellite). On the basis of polymerase
chain reaction (PCR)-analyzed microsatellite-length
polymorphisms among recombinant inbred strains of
mice, the CNP gene (Nppc) was assigned to mouse
chromosome 1 (cen-Acrg-0.79 = 0.82¢c M-Nppcl(Sag)
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3.33 £ 2.67c M-In). In contrast, using somatic hybrid
cell methodology, the human CNP gene (Nppc) was
assigned to chromosome 2 (2q24-qter). Thus, chromo-
somal assignment of the CNP locus in mice and humans
has added another locus to the conserved syntonic
group in mice and humans. It has been reported that
both the ANP and BNP genes, which are expressed
predominantly in the heart, are localized on human
chromosome 1 [8,9]. Furthermore, it is also demon-
strated that these genes are tightly linked on mouse
chromosome 4. The CNP gene is shown to be localized
on mouse chromosome 1/human chromosome 2, which
is physically separated from the ANP and BNP genes.
Therefore, CNP is functionally and evolutionarily
distinct from ANP and BNP. Given the remarkable
structural conservation of CNP among species, and
even among nonmammals, it is tempting to speculate
that CNP is a prototype of the natriuretic peptide fam-
ily, from which ANP and BNP originated through gene
duplication.

Biological actions of CNP

To examine whether CNP can elicit biological actions in
the periphery, we investigated the effect of synthetic
CNP administered intravenously in humans and rats
[10,11]. The i.v. injection of CNP (2nmol/rat) into the
conscious rat increased the plasma level of cGMP from
8.8 £ 1.6 pmol/ml to 39 * 2.2pmol/ml Smin after CNP
administration. These biological activities of CNP
administered intravenously were, therefore, weaker
than that of ANP [12,13], suggesting reduced abun-
dance of GC-B to which intravenously injected CNP
can access.
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Extracellular Fig. 1. Primary structures of the natri-

uretic peptide family. Three ligands;
11\)/}2;‘3)2:‘3116 atrial natriuretic peptide (ANP), brain
Intracellular NP (BNP), and C-type NP (CNP), two

guanylyl cyclases; GC-A, and GC-B, and
the clearance receptor. Arrows indicate
the receptor selectivities of ligands

Recently we have proposed that natriuretic peptides
are novel skeletal growth factors. We reported that
the natriuretic peptides, especially CNP, significantly
promoted longitudinal bone growth in an organ culture
experiment using tibiae from fetal mice [14]. CNP was
more potent than ANP and BNP in the production of
cGMP in this explanted fetal mouse tibia, as was the
case with chondrogenic and osteoblastic cells studied so
far [15-20]. Considering that both CNP and its selective
receptor, GC-B, were expressed in long bones [21,22],
we have made a hypothesis that CNP plays an impor-
tant role in the process of endochondral ossification as
an intrinsic skeletal growth regulator. We reported that
mice with targeted disruption of CNP showed severe
dwarfism as a result of impaired endochondral ossifica-
tion, indicating that CNP is a crucial molecule in bone
formation [22].

Generation of CNP knockout mice

Gene-targeting design of CNP knockout mice

To investigate the physiological significance of CNP in
vivo, we generated mice with a disrupted Nppc allele by
gene targeting in 129/Sv mouse-derived embryonic
stem cells. The 129/Sv mouse Nppc was isolated from a
129/Sv mouse genomic library in AFixII (Stratagene, La
Jolla, CA, USA). A targeting vector was constructed, in
which exons 1 and 2 of Nppc that encode the entire
coding sequences of mouse preproCNP were replaced
by the neomycin resistance gene. The targeting vector
was introduced into embryonic stem cells by electro-
poration. Double selection in G418 and ganciclovir
produced seven homologously recombinant embryonic
stem cell clones that were analyzed by Southern blot
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Fig. 2. Gross phenotypes of CNP knockout mice. a Gross
appearance (10-week old males) of CNP knockout mouse and
wild-type littermate. b Growth curves of male CNP knockout
mice, compared with their wild-type littermates. Body length,
defined as the distance between the incisor and the anus, was
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measured every week after birth until the animals were 10
weeks old. The growth curves of the CNP knockout mice and
their wild-type littermates are plotted. Open circles, Wild-
type; open squares, knockout mice (n = 7 each; mean = SD).
*P < 0.01 vs CNP**
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analysis with the 5" and 3’ external probes. Male chime-
ras derived from two independent clones with germ-
line transmission of the disrupted allele were bred to
C57BL/6J or 129/Sv] females, and Nppct/+ mice (wild-
type), Nppc*'~ (heterozygous for the disrupted allele)
were obtained. An RNA protection assay revealed that
Nppc mRNA levels were decreased by about 50%
in the cerebellum and tibial epiphyseal cartilage from
Nppc*'~ mice relative to those of Nppc*/* mice and
were not detected in Nppc~'~ mice [22].

Skeletal phenotype of CNP knockout mice

At birth, Nppc™'~ pups had a body weight and a naso-
anal length about 90% of those of Nppc*'* pups. In
Nppc~'~ mice, dwarfism with short tails and extremities
became prominent as they grew (Fig. 2). The naso-anal
lengths in male and female Nppc~/~ mice were 60%—
70% of those in Nppc*'* mice, and no significant differ-
ences in visceral organ/body weight ratios were noted
between genotypes at 20 weeks of age. No other gross

Fig. 3. Skeletal phenotypes of CNP
knockout mice. a Soft X-ray analysis
of the cranium and the lower extremi-
ties of 7-week-old female wild-type
mouse (left) and CNP knockout
mouse (right). b Measurement of the
length of bones of 27-week-old male
wild-type (open bars) and CNP knock-
out mice (closed bars) on the soft X-
ray film (n = 6 each; mean = SD). *P
< 0.01 CNP knockout mice vs their
wild-type littermates

Calvaria

abnormalities were found in Nppc™'~ mice. Soft X-ray
analysis revealed that the longitudinal growth of verte-
brae and tail and limb bones was affected in Nppc~'~
mice. The lengths of femurs, tibiae, and vertebrae in
Nppc~'~ mice were 50%-80% of those in Nppc*'* mice
(Fig. 3). The naso-occipital length of the calvarium,
which depends on the growth of the occipital and sphe-
noidal bones formed through endochondral ossification,
was also reduced significantly in Nppc™'~ mice rela-
tive to Nppc*'* mice (n = 4; P < 0.05) (Fig. 3). On the
other hand, in Nppc~'~ mice, there were no appreciable
changes in the shape and interparietal width of the skull
vault, which is formed by membranous ossification.
These observations indicate that loss of CNP affects
endochondral ossification, but not membranous ossifi-
cation, in vivo.

Histology of the growth plate of CNP knockout mice

Histologically, Nppc~'~ mice displayed striking narrow-
ing of the growth plate of vertebrae and long bones
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compared with Nppc*/* mice at 7 days of age (Fig. 4a,b).
The heights of the proliferative and hypertrophic zones
were markedly reduced in Nppc~/~ mice, whereas no
significant differences in the resting zone were noted
between genotypes. In situ hybridization analysis re-
vealed no appreciable difference in the intensity of type
IT and type X collagen mRNA expression between
genotypes (Fig. 4c—f). These findings suggest that
chondrocyte precursors are capable of differentiating
into hypertrophic chondrocytes in the growth plate of
Nppc~'~ mice. Notably, the ratio of the height of the
hypertophic zone to the height of the proliferative zone
was decreased by about 50% in Nppc~'~ mice compared
with Nppc*'* mice (Fig. 4). These observations suggest
that the rate of cell differentiation into hypertrophic
chondrocytes is reduced in Nppc™'~ mice. The von
Kossa staining of the growth plate of the tibia of 3-
week-old mice revealed that the metaphyseal trabecular
bones were obviously shorter and the volume of the
trabecular bones was smaller in Nppc™~ mice than in
Nppc*'* mice.

CNP as a regulator of endochondral bone ossification

Recently we have reported that CNP is expressed
locally in the growth plate and acts as a novel skeletal
regulator that plays an important role in endochondral
ossification [17]. Although CNP is expressed in a variety
of central and peripheral tissues, the phenotype of CNP
knockout mice indicates that CNP acts locally as a posi-
tive regulator of endochondral ossification. Targeted
expression of CNP in the growth plate chondrocytes
rescued animals with normal appearance, and their
skeletons were indistinguishable from those of Nppc*'*
mice. During postnatal development, no significant dif-
ference in the naso-anal length and body weight were
observed between Tg/ Nppc~'~ mice and Nppc*'* mice
[22]. Transgenic mice with elevated plasma BNP con-
centrations show skeletal overgrowth due to increased
endochondral ossification [23,24], whereas mice with
targeted disruption of BNP exhibit no skeletal ab-
normalities [25]. Thus, BNP, a hormone derived from
the cardiac ventricle, is not involved in endochondral
ossification under physiological conditions. This study
has established CNP as an endogenous ligand that
activates cGMP production in bone, thereby regulating
endochondral ossification.

Recently, two strains of mutant mice have been re-
ported that lack molecules closely related to CNP; the
C-receptor and the cGMP-dependent kinase II (cGK
IT) [26,27]. The phenotypes described in the C-receptor-
depleted mice were quite similar to those of BNP-Tg
mice [27]. It is reasonable to assume that impaired clear-
ance of intrinsic CNP in the growth plate results in the
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Fig. 4. Histological analysis of the growth plate of CNP
knockout mice vs their wild-type littermates. a, b Alcian blue
and H&E staining of the tibial growth plate from 1-week-old
wild-type (a) and CNP knockout (b) mice. ¢-h In situ hybrid-
ization analysis of type II collagen (¢, d), type X collagen (e, f),
and indian hedgehog (g, h) of the tibial growth plate from 1-
week-old wild-type mice (¢, e, g) and CNP knockout mice (d,
f, h). Bars in a and b indicate the growth plate cartilage. R,
Resting chondrocyte; P, proliferative chondrocyte, H, hyper-
trophic chondrocyte layers. a-h, X100
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accumulation of CNP, causing the elongation of the
body. In contrast, cGK II-null mice were dwarfed, as
c¢GK II was considered to be downstream of the signal-
ing pathway of CNP/GC-B. These series of experiments
were compatible with our present report, emphasizing
CNP as an important physiological positive regulator of
longitudinal skeletal growth (Fig. 5).
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