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Abstract
Introduction A genome-wide association analysis revealed a rheumatoid arthritis (RA)-risk-associated genetic locus on chro-
mosome 9, which contained the tumor necrosis factor receptor-associated factor 1 (TRAF1). However, the detail mechanism 
by TRAF1 signaled to fibroblast-like synoviocytes (FLSs) apoptosis remains to be fully understood.
Materials and methods Synovial tissue of 10 RA patients and osteoarthritis patients were obtained during joint replacement 
surgery. We investigated TRAF1 level and FLSs apoptosis percentage in vivo and elucidated the mechanism involved in the 
regulation of apoptotic process in vitro.
Results We proved the significant increase of TRAF1 level in FLSs of RA patients and demonstrated that TRAF1 level 
correlated positively with DAS28 score and negatively with FLSs apoptosis. Treatment with siTRAF1 was able to decrease 
MMPs levels and the phosphorylated forms of JNK/NF-κB in vitro. Moreover, JNK inhibitor could attenuate expression 
of MMPs and increase percentage of apoptosis in RA-FLSs, while siTRAF1 could not promote apoptosis when RA-FLSs 
were pretreated with JNK activator.
Conclusions High levels of TRAF1 in RA synovium play an important role in the synovial hyperplasia of RA by suppressing 
apoptosis through activating JNK/NF-kB-dependent signaling pathways in response to the engagement of CD40.
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disor-
der characterized by joint involvement and systemic fea-
tures which affects 0.28% of Chinese people. The lining 
layer of synovial tissues obtained from RA patients dis-
plays an increase in cellularity, which is composed mostly 

of activated macrophages with an underlying layer of fibro-
blast-like synoviocytes (FLSs) [1]. FLSs from the intimal 
lining are considered major effectors of cartilage destruction 
in RA based on their ability to produce massive amounts 
of degradative enzymes [2]. The c-Jun N-terminal kinase 
(JNK)/nuclear factor kappa-B (NF-κB) pathway is one of the 
important signal transduction pathways related to RA-FLSs 
apoptosis. Studies have confirmed that the JNK/NF-κB sign-
aling pathway is involved in the occurrence and development 
of RA synovitis by reducing the apoptosis of FLSs [3–5].

In 2007, a genome-wide association analysis revealed an 
additional RA-risk-associated genetic locus on chromosome 
9, which contained the tumor necrosis factor receptor-associ-
ated factor 1 and the complement 5 genes (TRAF1-C5) [6]. 
TRAF1 is a cytoplasmic adaptor protein that has been shown 
to interact directly or indirectly with tumor necrosis factor 
receptor (TNFR) family-related molecules [7, 8]. Although 
the functions of TRAF1 remain to be investigated further, 
they appear to act as adapter proteins leading to the assembly 
of larger signaling complexes that consist of effector proteins 
with enzymatic functions. TRAF1, thereby, regulate the 
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balance between cell survival and death by activating JNK 
mitogen-activated protein kinases and the transcription fac-
tor NF-κB. A number of studies have confirmed that TRAF1 
regulates the balance between cell survival and death by 
regulating JNK mitogen-activated protein kinases and the 
transcription factor NF-κB; however, the results were contro-
versial. [9–14]. Existing studies suggested that the specific 
role of TRAF1 in the JNK/NF-κB signaling pathway depend 
on upstream inducing factors. This enlightens us to identify 
the mechanism involving TRAF1 actions in RA.

In the present study, we investigated the effect of TRAF1 
on RA-FLSs apoptosis, and elucidated the mechanism 
involved in the process. TRAF1 has been shown to decrease 
apoptosis as it enhances JNK/NF-κB activation in response 
to the engagement of CD40.

Materials and methods

Study subjects

10 patients of RA diagnosed according the 1987 revised cri-
teria of the American College of Rheumatology (ACR) were 
enrolled in the study [15]. Of the patients, 5 were female and 
5 were male. The median age was 58.50 ± 9.40 years. The 
following measures were recorded at screening: course of 
disease, morning stiffness, swollen and tender joint count 
(both 0–28), patient-assessed global score (0–100), and 
erythrocyte sedimentation rate (ESR). Disease activity in 
RA patients was determined according to disease activity 
score (DAS28). Components of DAS28 score were ESR, 
swollen and tender joint count and patient-assessed global 
score. Synovial tissue samples from 10 RA patients and age- 
and sex-matched osteoarthritis (OA) patients were obtained 
during joint replacement surgery in the First Affiliated Hos-
pital of Soochow University and The Affiliated Drum Tower 
Hospital, Medical School of Nanjing University.

This study was performed in line with the principles of 
the Declaration of Helsinki. Approval was granted by the 
ethics committee of the First Affiliated Hospital of Soochow 
University or The Affiliated Drum Tower Hospital, Medical 
School of Nanjing University. All subjects provided written 
informed consent before participating in the study.

FLSs culture and stimulation

Synovial tissue specimens were obtained from RA patients 
and OA patients by synovectomy or joint replacement sur-
gery. Carefully minced tissues were digested with 1 mg/ml 
collagenase I (Sigma-Aldrich, St. Louis, MO) in serum-
free Dulbecco’s modified Eagle’s medium (DMEM) (Gibco 
BRL, Grand Island, NY) for 4–6 h at 37  C in a standard 
cell culture chamber. The tissue digest was filtered through 

a 70 μm cell strainer (BD, Durham, NC) to enrich for cells. 
The cell suspension was thoroughly washed with serum-free 
DMEM and finally cultured in DMEM supplemented with 
10% fetal bovine serum (Gibco BRL, Grand Island, NY), 
100 U penicillin, and 100 µg/ml streptomycin overnight in 
a cell culture chamber containing 5%  CO2. After removal 
of non-adherent cells after 1 day, adherent fibroblast-like 
synoviocytes were cultured until near confluence (90%) and 
then were split using a 1/3 ratio for serial passage. A rela-
tively homogeneous population of cells was obtained after 
passage 3 by visual inspection of cell morphology by light 
microscopy. Cells from passage 3–5 were used for subse-
quent experiments.

The FLSs were treated with either 30 μM SP600125, 
a specific JNK inhibitor (Selleck, Houston, TX, USA), or 
5 μM Anisomycin, a TRAF1 activator (Selleck, Houston, 
TX, USA). In some experiments, 10 μg/ml CD40 block-
ing antibody (Functional Grade, eBioscience) and 1 ng/ml 
CD154 (CD40 Ligand) (Functional Grade, eBioscience) 
were added to the cocultures for 48 h. Cells treated with 
DMSO alone were used as controls.

Western blotting

Rabbit antibodies to SAPK/JNK (9252), phosphor-SAPK/
JNK (4668), NF-κB P65 (8242), phosphor-NF-κB P65 
(3033) (Cell Signaling Technology), MMP-1 (10371-1-AP), 
MMP-3 (17873-1-AP), MMP-13 (18165-1-AP) (Protein-
tech), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
(Cell Signaling Technology) and Goat anti-RabbitIgG 
(H + L) (SA00001-2) (Proteintech) were used for western 
blotting. FLS were washed twice with PBS and lysed on ice 
for 30 min with 1× RIPA buffer (Cell Signaling Technol-
ogy) containing 1% 100× protease/phosphatase inhibitor 
Cocktail (Cell Signaling Technology). Lysates were centri-
fuged at 12,000 g at 4  C for 20 min, and the supernatants 
were subjected to sodium dodecyl sulfate–polyacrylamide 
gel electrophoresis. Proteins were then transferred to poly-
vinylidene fluoride membranes (Millipore), blocked for 1 h 
in 5% nonfat milk (in 10 mM Tris pH 7, 150 mM NaCl, 0.1% 
Tween 20, TBST), and then immunoblotted with indicated 
primary antibodies and appropriate horseradish peroxidase-
conjugated secondary antibodies. The bands were visual-
ized in a luminol-based detection system with piodophenol 
enhancement.

Quantitative real‑time reverse 
transcription‑polymerase chain reaction (RT‑PCR) 
analysis

Total cellular RNA was extracted using Trizol reagent (Inv-
itrogen) and 1 μg RNA was used in RT reactions. cDNA 
was synthesized by Primer Script RT reagent Kit (TaKaRa). 
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Sequences of the forward and reverse primers were: TRAF1 
5ʹ-CGG CGC CGA GAT GGAG-3ʹ and 5ʹ-GTG TGG TTC 
AAC GTC ACA GC-3ʹ; MMP-1 5ʹ-CTG GCC ACA ACT GCC 
AAA TG-3ʹ and 5ʹ-CTG TCC CTG AAC AGC CCA GTA CTT 
A-3ʹ; MMP-3 5ʹ-ATT CCA TGG AGC CAG GCT TTC-3ʹ and 
5ʹ-CATTT GGG TCA AAC TCC AAC TGT G-3ʹ; MMP-13 
5ʹ-TCC CAG GAA TTG GTG ATA AA GTAGA-3ʹ and 5ʹ-CTG 
GCA TGA CGC GAA CAA TA-3ʹ; GAPDH 5ʹ-TGG CCT TCC 
GTG TTC CTA C-3ʹ and 5ʹ-GAG TTG CTG TTG AAG TCG 
CA-3ʹ. For real-time PCR experiments, reactions contain-
ing SYBR Premix EX Taq (Takara), ROX Reference Dye 
(Takara), cDNA, and gene primers were run on a Step One 
Plus real-time PCR system and analyzed using Step One 
Software, version 2.1 (Applied Biosystems). Relative gene 
quantification was calculated by the 2ΔCt method and then 
normalized to the level of GAPDH.

Cell counting kit‑8 (CCK‑8)

FLSs were incubated in a 96-well plate. Pre-incubation of 
the plate was in a humidified incubator 37℃, 5%  CO2, fol-
lowed by addition of 10 μl of the CCK-8 solution to each 
well of the plate. Incubation of the plate was for 2 h in the 
incubator. Measured absorbance at 450 nm was done using 
a micro-plate reader. A calibration curve was prepared using 
the data obtained from the wells that contain known num-
bers of viable cells.

Overexpression and knockdown of TRAF1

To create FLS cells that overexpressed TRAF1, the open 
reading frame of the human TRAF1 gene was cloned into 
pcDNA3.1 vector (RiboBio, Guangzhou, China) to construct 
TRAF1 expressing plasmid. To silence TRAF1 expression, 
FLS were transfected with control siRNA (siNC) or TRAF1 
small interfering RNA (siTRAF1, TGT GGA AGA TCA CCA 
ATG T) (RiboBio, Guangzhou, China) using Lipofectamine 
2000 (Invitrogen).

Enzyme‑linked immunosorbent assay (ELISA)

MMP-1 level was measured by ELISA kit (Fcmacs, China) 
according to the manufacturer’s protocol. MMP-3 and 
MMP-13 level were measured using human total MMP-3 
and MMP-13 ELISA Kits (R&D system, USA), respectively, 
according to the manufacturers’ instructions.

Terminal deoxynucleotidyl transferase‑mediated 
dUTP nick end labeling (TUNEL) assay

TUNEL assay (In Situ Cell Death Detection Kit; Roche, 
Basel, Switzerland) was used on tissue sections. Sections 
were paraformaldehyde-fixed and hydrated. We randomly 

selected three representative slides from each group. The 
TUNEL assay was then performed according to the manufac-
turer’s protocol. Slides were mounted with ProLong Antifade 
(Invitrogen–Molecular Probes, Carlsbad, CA) containing 4’, 
6-diamidino-2-phenylindole (DAPI). The slides were analyzed 
using a fluorescent microscope (BZ-X710; Keyence, Osaka, 
Japan). Dead cells were quantified by counting TUNEL-posi-
tive nuclei in 10 random microscopic fields (20×).

Flow cytometry analysis

Cells were harvested and washed with pre-cooled PBS three 
times, followed by being resuspended using binding buffer 
to a concentration of 1 ×  106/ml. The rates of apoptosis for 
FLS were detected by staining with Annexin V and 7AAD 
(BD Pharmingen) according to the manufacturer’s instruc-
tion. Data were collected with a fluorescence-activated cell 
sorting (FACS) Calibur flow cytometer (BD Biosciences) 
and analyzed by FlowJo software (Tree Star).

Statistical analysis

The data were expressed as mean ± standard error of mean 
and analyzed with Prism 5 (GraphPad Software). Student’s 
t test was used to analyze significance between the two 
groups, and comparisons among more than two groups were 
analyzed using one-way ANOVA. The value of p < 0.05 was 
considered statistically significant.

Results

TRAF1 expression in RA synovial tissue correlates 
negatively with apoptosis

The mRNA expression of TRAF1 was determined in FLSs 
from RA and OA patients by RT-PCR analysis. As shown 
in Fig. 1A B, TRAF1 mRNA and protein level were sig-
nificantly higher in RA patients than in control patients. We 
used the DAS28 to explore the relationship between disease 
activity and the TRAF1 mRNA level. Positive correlation 
of the TRAF1 level and the DAS28 score was observed with 
r = 0.806, p = 0.005 (Fig. 1C). In addition, FLSs apoptosis 
percentage was calculated by TUNEL, which was negatively 
correlated with TRAF1 mRNA level (Fig. 1D, E). These 
results indicate that TRAF1 mediates FLSs apoptosis in RA 
patients.

TRAF1 decreases RA‑FLSs apoptosis through JNK/
NF‑κB and increases MMP expressions in vitro

We postulated that a potential mechanism of TRAF1 could 
decrease FLSs apoptosis through suppressing JNK/NF-κB 
pathway in RA. To test this, we used FLSs isolated from 
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RA patients to examine the influence of TRAF1 on syn-
oviocytes in vitro. FLSs were co-cultured with TRAF-
1siRNA at different concentrations (30 nM or 60 nM) for 
48 h. The results showed that the TRAF1siRNA could 
not only decreased the levels of TRAF1 (Supplementary 
information, Fig. S1), but also significantly decreased 
the levels of MMP-1, MMP-3 and MMP-13 in a dose-
dependent manner, consistent with the secreted protein 
level in the cell culture supernatant detected by ELISA 
(Fig. 2A–D). However, the percentage of FLSs apoptosis 
was increased while the proliferation rate was decreased 
in TRAF1siRNA group (Fig. 2E, F). In addition, we found 
TRAF1siRNA significantly decreased levels of the phos-
phorylated forms of JNK and NF-κB/p65 proteins in FLSs 
(Fig. 2G). These data suggest that TRAF1 contributes to 
the RA-FLSs apoptosis by activating JNK/NF-κB pathway 
and increase MMP-1, MMP-3 and MMP-13 expression.

JNK is required for TRAF1‑mediated apoptosis 
of FLSs in RA patients

Next, we examined whether JNK is sufficient and neces-
sary for TRAF1 to decrease the apoptosis of FLSs in RA 
patients. We found that pretreatment of RA-FLSs with 
the JNK inhibitor-SP600125 decreased MMPs expression 
and increased percentage of apoptosis cells (Fig. 3A, B). 
Conversely, pretreatment of RA-FLSs with a selective 
activator of JNK, Anisomycin, inhibited the apoptosis 
induced by TRAF1siRNA (Fig. 3C, D). Collectively, these 
data reveal that JNK is a key mediator whereby TRAF1 
decreases apoptosis of FLSs in RA patients.

Fig. 1  TRAF1 expression correlates negatively with apoptosis in 
FLSs of RA patients. A TRAF1 mRNA level in FLSs of RA and OA 
patients. B TRAF1 protein level in FLSs of RA and OA patients. 
C Correlation of TRAF1 level and the DAS28 score (r = 0.806, 

p = 0.005). D FLS apoptosis percentage by TUNEL in synovial tissue. 
E Correlation of TRAF1 level and FLSs apoptosis percentage (r = − 
0.860, p = 0.002). n = 10/group. **p < 0.01; ***p < 0.001
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TRAF1 elevates MMPs expression and secretion 
via CD40

Next, we examined whether the receptor CD40 existing 
on FLSs membrane responsible for TRAF1 induced signal 

transduction. We demonstrated TRAF1 overexpression plas-
mid alone increased TRAF1 level (Supplementary informa-
tion, Figure S2). Co-culture of CD40 antibody-CD40L and 
TRAF1 with RA-FLSs for 48 h showed decreased MMP-
1, MMP-3, MMP-13 expression compared with TRAF1 

Fig. 2  TRAF1 decreases RA-FLSs apoptosis through JNK/NF-κB 
pathway and increases MMPs expressions in  vitro. FLSs from RA 
patients were cultured alone or with siTRAF1 at different concentra-
tions (30  nM and 60  nM) for 48  h. MMP-1, MMP-3 and MMP-13 
level of FLSs were quantitated by qPCR (A). The levels of MMP-1, 
MMP-3 and MMP-13 in cell supernatants were measured by ELISA 
(B–D). The apoptosis percentage was determined by flow cytom-

etry in siNC and siTRAF1 (60 nM) treated RA-FLSs (E). The pro-
liferation rate was measured by CCK-8 assay in siNC and siTRAF1 
(60  nM) treated RA-FLSs (F). Western blotting analysis of the 
protein levels of JNK, p-JNK, NF-κB and p-NF-κB in siNC and 
siTRAF1 (60 nM) treated RA-FLSs. GAPDH was used as a protein 
loading control (G). n = 5/group. All experimental data were verified 
in at least two independent experiments. *p < 0.05; **p < 0.01
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overexpression plasmid alone (Fig. 4A). In addition, the 
presence of MMP-1, MMP-3, and MMP-13 in the superna-
tant from FLSs cultures showed similar results (Fig. 4B–D). 
Collectively, these data suggest that TRAF1 increases MMPs 
expression via CD40 in RA-FLSs.

Discussion

Synovial hyperplasia is a major pathophysiologic feature of 
RA, ultimately causing bone invasion to lose its integrity. 
Various genome-wide association studies have identified 
single-nucleotide polymorphisms in the TRAF1-C5 locus 
on chromosome 9 as risk factors for RA patients since 2007 

[6, 16, 17]. Evidence for TRAF1 showed both positive and 
negative regulator of immune signaling in various diseases 
[18]. However, limited studies addressed the role of TRAF1 
in FLSs of RA patients. In 2002, Youn et al. showed that the 
expression of TRAF1 was the most dramatically enhanced 
in RA synoviocytes after TNF-α stimulation [19]. Nishi-
moto T et al. reported a single-nucleotide polymorphism 
of TRAF1 predicted the clinical response to anti-TNF treat-
ment in Japanese patients with RA in 2009 [20]. Here, we 
proved the significant increase of TRAF1 level in FLSs of 
RA patients and demonstrated the TRAF1 level correlated 
positively with DAS28 score. These results suggest that the 
disorder of TRAF1 in FLSs is an important factor in the 
pathogenesis of RA.

Fig. 3  JNK is a mediator of TRAF1 decreasing apoptosis of FLSs in 
RA patients. The protein expression of JNK, p-JNK, MMP-1, MMP-
3, MMP-13 and the apoptosis percentage in JNK inhibitor-SP600125 
and DMSO-treated RA-FLSs for 48 h by Western blotting and flow 
cytometry (A, B). RA-FLSs and siTRAF1 were cultured alone or 
together in the presence or absence of Anisomycin. The expression 

of JNK, p-JNK, MMP-1, MMP-3 and MMP-13 were quantified by 
Western blotting (C). The apoptosis percentage was determined by 
flow cytometry (D). GAPDH was used as a protein loading control. 
n = 3/group. All experimental data were verified in at least two inde-
pendent experiments. *p < 0.05; **p < 0.01
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The imbalance between FLSs apoptosis inhibitors and 
apoptosis-promoting factors leads to prolonged synovial 
cell survive and increases the secretion of MMPs, which 
promotes articular cartilage and bone tissue damage. Insuf-
ficient synovial cell apoptosis is considered to be the patho-
genesis of RA [2]. Extensive studies have demonstrated 
that TRAF1 was involved in multiple signaling pathways 
and thus influenced apoptotic responses. TRAF1 has been 
widely reported as an anti-apoptotic gene, including protect-
ing staurosporine-induced macrophages apoptosis [21] and 
resistant to CD30-mediated apoptosis in classical Hodgkin 
lymphoma [22]. It should be noted that the anti-apoptotic 
effect of TRAF1 is not universal; some exceptions have 
been reported in hepatocyte and cerebral cell apoptosis via 
ASK1 [23, 24]. These data suggested that TRAF1 differen-
tially affects receptor-transduced signals and controls criti-
cal proliferative and anti-apoptotic functions in a cell type-
dependent manner. Herein, we demonstrate that TRAF1 
level correlated negatively with FLSs apoptosis in vivo and 
treatment with siTRAF1 was able to increase percentage 

of FLSs apoptosis in vitro. These results suggest that the 
reduction of apoptosis in FLSs of RA patients is related with 
TRAF1 and this might be associated with consequent hyper-
proliferation of FLSs.

TRAF1 belongs to a group of NF-κB-dependent gene 
products that function cooperatively at the earliest check-
point to suppress TNFα-mediated apoptosis [25, 26]. Inter-
estingly, not only TRAF1 can cause NF-κB activation but 
also the expression is up-regulated by NF-κB, suggest-
ing that they could form part of a positive feedback loop 
sustaining the NF-κB-activated state of TNFα-stimulated 
cells [27]. Previous reports showed that binding of NF-κB 
to three of five putative binding sites within the human 
TRAF1 promoter was found in electrophoretic mobil-
ity shift assay studies. Moreover, triggering of TNF-R1, 
CD40, and the interleukin-1 receptor resulted in transcrip-
tion of the TRAF1 gene [28]. Researchers have shown 
that a deficiency of TRAF1 in cultured hepatocytes led to 
the inhibition of NF-κB-mediated inflammatory responses 
and the suppression of the JNK pro-death pathway [24]. 

Fig. 4  TRAF1 increases MMPs 
expression via CD40 in RA-
FLSs. RA-FLSs and TRAF1 
were cultured alone or together 
in the presence or absence of 
CD40 antibody. The mRNA 
expression of MMP-1, MMP-3 
and MMP-13 were quantified 
by qPCR (A). The MMP-1, 
MMP-3 and MMP-13 levels in 
cell supernatants were measured 
by ELISA (B–D). n = 3/group. 
All experimental data were veri-
fied in at least two independent 
experiments. *p < 0.05
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JNK activation in several cell types, including FLSs, con-
tributed to pathology in part through cellular production 
of inflammatory cytokines and MMPs [29]. However, the 
specific regulation of TRAF1 on the JNK/NF-κB signaling 
pathway was controversial [9–14]. Our previous research 
provided evidence for the increased expression levels of 
CD40 and TRAF1, as well as total NF-κB p65, phospho-
NF-κB and NF-κB-related gene expression in synovial tis-
sue of CIA mice model [30]. In this study, we confirmed 
the role of TRAF1 and JNK/NF-κB signaling pathways in 
FLSs of RA patients. We demonstrated that treatment with 
siTRAF1 was able to decrease MMPs levels and the phos-
phorylated forms of JNK/NF-κB in vitro. Moreover, JNK 
inhibitor could attenuate expression of MMPs and increase 
percentage of apoptosis cells in RA-FLSs, while siTRAF1 
could not promote apoptosis when RA-FLSs were pre-
treated with JNK activator. Taken together, these data 
suggest that JNK is a mediator for TRAF1 reduced apop-
tosis of FLSs in RA patients. The mechanism of TRAF1 
that controls the JNK/NF-κB pathway was not confirmed 
in this study and required further investigation. Related 
researches showed that TRAF1 expression enhances the 
ubiquitination of ERK5 on lysine 184, which is necessary 
for its kinase activity and AP-1 family members (c-Fos/c-
Jun) activation in UVR-induced skin carcinogenesis [31]. 
Other studies showed that TRAF1 promotes myocardial 
injury and  hepatic steatosis through regulating ASK1 
(apoptosis signal-regulating kinase 1)-mediated JNK/p38 
cascades [32, 33].

CD40-CD40L interaction results in the activation of a 
variety of signaling cascades, which ultimately determine 
the diverse physiologic effects. In 2007, Eeva et al. showed 
the CD40-induced protection against CD95-mediated apop-
tosis is associated with a rapid upregulation of anti-apop-
totic c-FLIP [34]. Other studies showed that CD40-CD40L 
inhibits apoptosis and stimulates proliferation of B cells by 
upregulating bcl-xL expression and blocking oxidant accu-
mulation [35, 36]. However, some functional studies have 
produced conflicting results on its apoptotic function. For 
example, CD40 induced Fas-dependent apoptosis in human 
intrahepatic biliary epithelial cells and endothelial cells 
[37, 38]. In addition, some researches revealed that CD40 
antibody had no effect on apoptosis [39, 40]. These results 
raise a possibility that the phenotypic consequences of CD40 
signaling on apoptosis, therefore, appear to be dependent 
on the cell types and proinflammatory microenvironment. 
TRAF1 interacted directly with a subset of TNFR family 
members. As one of the upstream inducers, CD40 mediated 
its specific role in the TRAF1 signaling pathway in RA-
FLSs remains unclear. In this study, we also showed that 
co-culture of CD40 monoclonal antibody and TRAF1 with 
RA-FLSs significantly reduced MMPs expression compared 
with TRAF1 expression plasmid alone. These data suggest 

that TRAF1 increases MMPs expression in response to the 
engagement of CD40 in RA-FLSs.

In conclusion, our ex vivo and in vitro experiments dem-
onstrated the first time that CD40/TRAF1 decreases RA-
FLSs apoptosis through the JNK/NF-κB pathway in RA 
patients. These findings not only extend our knowledge of 
the immunoregulatory function of TRAF1 in RA, but also 
offer TRAF1 as a potential biomarker or therapeutic target 
to further explore in the future.
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