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Abstract
Introduction  In bone tissue, bone resorption by osteoclasts and bone formation by osteoblasts are repeated continuously. 
Osteoclasts are multinucleated cells that derive from monocyte-/macrophage-lineage cells and resorb bone. In contrast, 
osteoblasts mediate osteoclastogenesis by expressing receptor activator of nuclear factor-kappa B ligand (RANKL), which 
is expressed as a membrane-associated cytokine. Osteoprotegerin (OPG) is a soluble RANKL decoy receptor that is pre-
dominantly produced by osteoblasts and which prevents osteoclast formation and osteoclastic bone resorption by inhibiting 
the RANKL–RANKL receptor interaction.
Materials and Methods  In this review, we would like to summarize our experimental results on signal transduction that 
regulates the expression of RANKL and OPG.
Results  Using OPG gene-deficient mice, we have demonstrated that OPG and sclerostin produced by osteocytes play an 
important role in the maintenance of cortical and alveolar bone. In addition, it was shown that osteoclast-derived leukemia 
inhibitory factor (LIF) reduces the expression of sclerostin in osteocytes and promotes bone formation. WP9QY (W9) is a 
peptide that was designed to be structurally similar to one of the cysteine-rich TNF-receptortype-I domains. Addition of the 
W9 peptide to bone marrow culture simultaneously inhibited osteoclast differentiation and stimulated osteoblastic cell pro-
liferation. An anti-sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) antibody inhibited multinucleated osteoclast 
formation induced by RANKL and macrophage colony-stimulating factor (M-CSF). Pit-forming activity of osteoclasts was 
also inhibited by the anti-Siglec-15 antibody. In addition, anti-Siglec-15 antibody treatment stimulated the appearance of 
osteoblasts in cultures of mouse bone marrow cells in the presence of RANKL and M-CSF.
Conclusions  Bone mass loss depends on the RANK–RANKL–OPG system, which is a major regulatory system of osteoclast 
differentiation induction, activation, and survival.
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Introduction

Bone is continuously destroyed by osteoclasts and reformed 
by osteoblasts to maintain bone volume and calcium home-
ostasis throughout the life span of vertebrates [1]. Osteo-
clasts are multinucleated cells that derive from monocyte/
macrophage-lineage cells and resorb bone [2]. In contrast, 
osteoblasts mediate osteoclastogenesis [3] by producing 
macrophage colony-stimulating factor (M-CSF), which is 
essential for osteoclast differentiation [4]. Receptor activa-
tor of nuclear factor-kappa B (NF-κB) ligand (RANKL) is 
another cytokine that is essential for osteoclastogenesis, 
and it is expressed by osteoblasts as a membrane-associ-
ated cytokine [5]. Osteoclast precursors express RANK 
(a RANKL receptor), recognize RANKL expressed by 
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osteoblasts via cell–cell interaction, and differentiate into 
osteoclasts in the presence of M-CSF [6]. Osteoprotegerin 
(OPG) is a soluble RANKL decoy receptor that is predomi-
nantly produced by osteoblasts [7, 8], which prevents osteo-
clast formation and osteoclastic bone resorption by inhib-
iting the RANKL–RANK interaction. In contrast, bone 
resorption-stimulating hormones and cytokines enhance 
RANKL expression in osteoblasts. Mature osteoclasts also 
express RANK and RANKL both support osteoclast survival 
and stimulate osteoclast bone-resorbing activity.

Inhibition of RANKL–RANK signaling in bone can 
increase bone mass by preventing osteoclastic bone resorp-
tion. RANKL- and RANK-deficient mice have been shown 
to exhibit severe osteopetrosis, accompanying lack of osteo-
clast differentiation [9, 10]. In contrast, OPG-deficient mice 
exhibit severe osteoporosis arising from enhanced adult-
stage osteoclastogenesis [11, 12]. Accordingly, OPG and 
soluble RANK have been investigated as potential thera-
peutic targets, and an anti-human RANKL-antibody called 
denosumab has been employed in the clinical setting for the 
treatment of osteoporosis and cancer-related bone disorders 
[13].

Although bone formation is generally thought to be 
dynamically coupled to bone resorption, the mechanism(s) 
underlying this process have not been determined systemati-
cally in vivo or in vitro. Mice deficient in OPG have been 
shown to exhibit a high bone turnover rate [12, 14]. We 
reported that daily injection of OPG-deficient osteoporo-
tic mice with bisphosphonate induced a sharp decrease in 
various bone formation-related parameters, indicative of 

suppressed osteoclastic bone resorption; however, the high 
serum RANKL concentration in these mice was unchanged 
[15]. The same study showed that although bone morpho-
genic protein 2 (BMP-2) implantation induced a high rate 
of bone turnover, it did not increase the rate of ectopic bone 
formation [16]. Together, these results suggested that osteo-
clastic bone resorption directly activates osteoblast function; 
however, serum RANKL levels appeared not to correlate 
with the coupling of these processes.

The classical mechanism of bone remodeling is that oste-
oclasts activate transforming growth factor-beta (TGF-β) in 
the bone matrix and activate osteoblasts. This TGF-β story 
is still being modified and evolving [17]. On the other hand, 
it has been reported that various molecules such as sphin-
gosine-1-phosphate (S1P) [18], ephrinA2 [19], ephrinB2 
[20], semaphorin 4D [21], platelet-derived growth factor 
(PDGF)-BB [22], Wnt10b [23], collagen triple-helix repeat-
containing 1 (Cthrc1) [24], C3a [25], and cathepsin K [26] 
that are expressed and produced by osteoclasts are important 
in the bone coupling mechanism (Fig. 1). The importance 
of osteoblast-derived osteoclast differentiation suppressor 
semaphorin 3a [27] and OPG [14] in bone remodeling has 
been reported. In addition, the reverse signaling hypothesis 
that the osteoclast differentiation factor RANKL signal 
promotes osteoblastic bone formation has been proposed 
[28, 29] (Fig. 1). Analyzing the molecular mechanism of 
mechanical stress is very important in considering the mech-
anism of bone remodeling [30]. The relationship between 
the expression control mechanism of sclerostin produced 
by osteocytes and bone remodeling is also a future subject.
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Fig. 1   Reverse signaling from osteoclast to osteoblast activation. 
TGF-β released from the bone matrix acts directly on osteoclasts, 
promoting Wnt1 secretion, and acts on osteoblasts to promote bone 
formation. Osteoclasts produce various factors and act to promote 
osteogenesis in osteoblasts. Mature osteoclasts secrete exosomes 

that express RANK on the surface, bind to RANKL in osteoblasts 
(reverse signal), and activate the PI3K–Akt pathway, thereby increas-
ing osteoblast activity. OPG produced by osteoblasts blocks excessive 
enhancement of bone resorption by binding to RANKL expressed by 
itself
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In this review, we would like to summarize our experi-
mental results on signal transduction that regulates the 
expression of RANKL and OPG.

Bone formation is coupled to resorption 
via suppression of sclerostin expression 
by osteoclasts

Sclerostin (encoded by the Sost gene), an antagonist of 
Wnt/β-catenin signaling, is secreted from osteocytes and 
inhibits bone formation [31, 32]. Sost-deficient mice 
exhibited increased bone mass [33]. The administra-
tion of an anti-sclerostin-neutralizing antibody has been 
shown to increase bone mass with increased bone forma-
tion [34]. The expression of sclerostin was reportedly 
suppressed by mechanical stimulation [35], parathyroid 
hormone [36], prostaglandin E2 (PGE2) [37], and IL-6 
family members, such as oncostatin M (OSM) [38], leu-
kemia inhibitory factor (LIF) [39], and cardiotrophin-1 
(CT-1) [40]. OSM, LIF, and osteoclast-derived CT-1 
promoted bone formation in vitro and in vivo [38–41]. 
Thus, it has been proposed that osteoclast-derived CT-1 
as a coupling factor suppresses sclerostin expression in 
osteocytes to promote transitions from bone resorption to 
formation [42]. Furthermore, several studies in humans 
and mice demonstrated that the expression of sclerostin 
was decreased in conditions that enhanced bone resorption 
such as osteoporosis. TGF-β induced the expression of 
LIF in osteoclasts [43]. However, it remains to be clarified 
how bone resorption regulates the expression of sclerostin 
during bone remodeling. Here, we found that osteoclast-
secreted factors, including LIF, suppress the expression 
of sclerostin, thereby promoting bone formation. Thus, 
osteoclast-derived LIF as well as CT-1 suppresses the 
expression of sclerostin to regulate bone remodeling.

Using OPG-deficient mice, in which bone formation is 
clearly coupled to bone resorption, we found that osteoclasts 
suppress the expression of sclerostin, a Wnt antagonist, 
thereby promoting bone formation [44]. Wnt/β-catenin sig-
nals were higher in OPG-deficient and RANKL-transgenic 
mice with a low level of sclerostin. Conditioned medium 
from osteoclast cultures suppressed sclerostin expression in 
UMR106 cells and osteocyte cultures [44]. In vitro experi-
ments revealed that osteoclasts secreted LIF and inhibited 
sclerostin expression. Anti-RANKL antibodies, antire-
sorptive agents, suppressed LIF expression, and increased 
sclerostin expression, thereby reducing bone formation in 
OPG-deficient mice. Taken together, osteoclast-derived 
LIF regulates bone turnover through sclerostin expression 
(Fig. 2). Thus, LIF represents a target for improving the 
prolonged suppression of bone turnover by antiresorptive 
agents.

The W9 peptide directly stimulates osteoblast 
differentiation via RANKL signaling

We reported previously that OPG-deficient mouse-derived 
osteoblasts strongly support osteoclast formation when co-
cultured with OPG-deficient bone-marrow hemopoietic 
cells, even in the absence of bone-resorbing factors [45]. In 
contrast, when OPG-deficient osteoblasts and hemopoietic 
cells were co-cultured, but direct contact between them was 
prevented, no osteoclasts were observed to form, even in 
the presence of 1α,25(OH)2D3 but not in the presence of 
sRANKL and M-CSF [45]. These findings suggested that 
OPG produced by osteoblasts is a physiologically impor-
tant regulator of osteoclast differentiation. RANKL-deficient 
osteoblasts failed to induce osteoclast differentiation when 
co-cultured with wild-type (WT) bone-marrow hemopoi-
etic cells, even in the presence of 1α,25(OH)2D3. Thus, it is 
likely that RANKL expressed by osteoblasts functions in a 
membrane-associated form during osteoclastogenesis [8].

W9 is a peptide that was designed to be structurally simi-
lar to one of the cysteine-rich TNF-receptor-type-I domains, 
and was demonstrated to bind to TNFα and block its activity 
[46]. W9 also binds RANKL and inhibits RANKL-induced 
osteoclast differentiation and function both in vitro and 
in vivo [47]. We examined the effects of treating mouse 
bone-marrow cell cultures, including osteoblastic stromal 
cells and osteoclast progenitors, with the W9 peptide in 
the presence of sRANKL and/or M-CSF. The results of the 
analysis showed that multinucleated osteoclasts formed in 
violet-stained tartrate-resistant acid phosphatase (TRAP)-
positive cultures (Fig. 3a). Addition of W9 peptide to the 
bone-marrow culture simultaneously inhibited osteoclast 
differentiation, and stimulated purple-stained alkaline phos-
phatase (ALP)-positive osteoblastic cell proliferation, in a 
dose-dependent manner [28, 48]. Treatment of the cultures 
with a high concentration (200 μM) of W9 was found to 
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Fig. 2   Bone metabolic coupling by osteoclasts and osteocytes. Oste-
oclast-derived LIF reduces the expression of sclerostin in osteocytes 
and promotes osteoblastic bone formation
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stimulate the formation of typical osteoblastic-calcified nod-
ules (Fig. 3) [28, 48].

We used RANKL-deficient mouse-derived osteoblasts to 
evaluate whether osteoblastic differentiation is mediated by 
RANKL signaling in vitro. We found that RANKL-deficient 
osteoblasts exhibited weak ALP activity compared with WT 
osteoblasts, even in the presence of W9, parathyroid hor-
mone, and/or BMP-2 [48]. In addition, RANKL-deficient 
osteoblasts displayed no supporting TRAP-positive osteo-
clast formation activity when co-cultured with WT bone-
marrow hematopoietic cells in the presence of bone-resorb-
ing factors [48]. Together, these results suggest that the 
RANKL–RANK signaling in osteoblasts may be essential 
for the dynamic regulation of bone formation and resorption.

In this experiment, we used primary cultured cells derived 
from newborn mouse calvaria. Notably, this type of culture 
contains mesenchymal cells other than osteoblasts. There-
fore, it is not possible to exclude the possibility that W9 pep-
tide may stimulate the differentiation of mesenchymal cells 
other than osteoblasts, resulting in the secretion of BMP-like 
soluble factors that may induce osteoblast differentiation via 

paracrine signaling. Therefore, further study is necessary to 
elucidate and verify the mechanism by which the W9 pep-
tide stimulates osteoblast differentiation.

Osteoclasts and dendritic cells are derived from common 
progenitors, such as bone-marrow-derived macrophages. 
W9 strongly inhibited multinucleated osteoclast forma-
tion in human peripheral blood mononuclear cell cultures 
in the presence of RANKL and M-CSF (Fig. 3b). In con-
trast, W9 have no effect on dendritic cell differentiation in 
human peripheral blood mononuclear cell cultures in the 
presence of GM-CSF and IL-4. These results indicate that 
W9 inhibit human osteoclast formation but not dendritic cell 
differentiation.

Sialic acid‑binding immunoglobulin‑like 
lectin 15 plays important roles 
in the induction of both bone‑resorbing 
activity of osteoclasts and osteoblast 
differentiation

Analysis of RANKL-inducible genes revealed that NFATc1, 
a molecule belonging to the NFAT family, is a transcription 
factor whose expression is strongly induced by RANKL in 
osteoclasts [49, 50]. The NFAT family has been thought to 
be a transcription factor that plays an important role in acti-
vated T cells, but NFATc1 has been demonstrated to be a 
co-stimulatory signal essential for osteoclast differentiation 
at the biological level [51, 52]. Although calcium signal-
ing is essential for osteoclast differentiation, RANK can-
not directly activate calcium signaling. On the other hand, 
a study focusing on a molecule with a sequence called an 
immunoreceptor tyrosine-based activation motif (ITAM) 
that induces a calcium signal in immune system cells iden-
tified DNAX-activating protein 12 (DAP12) and Fc receptor 
common γ subunit (FcRγ). It was reported that osteoclast 
differentiation was impaired in double-deficient mice, result-
ing in severe osteopetrosis [53, 54]. This finding indicated 
that signals mediated by immunoglobulin-like receptors that 
associate with DAP12 and FcRγ are essential for osteoclast 
differentiation. That is, the existence of immunoglobulin-
like receptors as new essential receptors in osteoclast dif-
ferentiation was revealed through analysis of c-Fms, which 
is a receptor for M-CSF, and RANK, which is a receptor for 
RANKL (Figs. 4, 5).

We and other groups reported sialic acid-binding immu-
noglobulin-like lectin 15 (Siglec-15) as a protein that regu-
lates differentiation of osteoclasts [55–59]. The expression 
of Siglec-15 was increased with osteoclast formation in 
mouse bone-marrow cultures [55]. In Siglec-15-deficient 
mice, bone resorption marker was suppressed, but bone 
formation marker was unchanged or moderately increased, 
leading to increase in bone mass [58]. From the results of 

A ALP.TRAP double-staining

RANKL + M-CSF

RANKL + M-CSF

RANKL + M-CSF+ W9 (100μM)

RANKL + M-CSF+ W9 (100μM)
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Fig. 3   Effects of W9 on the differentiation of osteoclasts and osteo-
blasts in mouse bone-marrow cultures and human peripheral blood 
mononuclear cell cultures. A Bone marrow cells were cultured in 
α-minimum essential medium supplemented with 10% fetal bovine 
serum, in the presence of sRANKL (100 ng/ml) and M-CSF (50 ng/
ml), without or with W9 peptide (200  μM). After 7  days, the cells 
were fixed and then stained for TRAP and ALP as described. B 
Human peripheral blood mononuclear cell cultured in α-minimum 
essential medium supplemented with 10% fetal bovine serum, in the 
presence of sRANKL (100  ng/ml) and M-CSF (50  ng/ml), without 
or with W9 peptide (100 μM). After 14 days, the cells were fixed and 
then stained for TRAP
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histology, it was indicated that osteoblast activity was sig-
nificantly increased in anti-Siglec-15 Ab-treated mice [59]. 
These results suggested that bone formation is maintained 
when the function of Siglec-15 is suppressed.

Treatment of bone-marrow cell cultures with anti-
Siglec-15 antibody (Siglec-15 Ab) inhibited TRAP-posi-
tive multinucleated cell formation induced by RANKL and 
M-CSF [55, 60]. However, anti-Siglec-15 Ab failed to sup-
press TRAP-positive mononuclear cell (mononuclear osteo-
clast) differentiation. In contrast, anti-Siglec-15 Ab treat-
ment stimulated the appearance of ALP-positive osteoblasts 
in those cultures in the presence of RANKL and M-CSF. 

We then examined the effects of anti-Siglec-15 Ab on the 
appearance of osteoclast precursors, which expressed RANK 
and c-Fms but not TRAP, in mouse co-cultures of osteo-
blasts and bone-marrow cells. Anti-Siglec-15 Ab showed no 
effects on the appearance of osteoclast precursors in the co-
culture. Osteoclasts prepared from mouse co-cultures were 
further cultured on dentin slices in the presence or absence 
of anti-Siglec-15 Ab. Pit-forming activity of osteoclasts 
was inhibited by anti-Siglec-15 Ab [60]. The actin rings in 
osteoclasts on dentin slices completely disappeared within 
8 h in the presence of anti-Siglec-15 Ab. In contrast, treat-
ment with alendronate for 1 h completely disrupted actin 
rings in mature osteoclasts. Treatment with anti-Siglec-15 
Ab for 24 h decreased the number of multinucleated osteo-
clasts, but alendronate treatment did not. We next examined 
the effects of anti-Siglec-15 Ab on sclerostin expression in 
UMR106 rat osteosarcoma cells. Sclerostin is secreted from 
osteocytes and inhibits bone formation. We reported that 
conditioned medium from osteoclast cultures suppressed 
sclerostin expression in UMR106 cells. In vitro experi-
ments revealed that osteoclasts secreted LIF, which in turn 
inhibited sclerostin expression. Both conditioned medium 
from osteoclasts treated with anti-Siglec 15Ab for 48 h and 
that not treated with anti-Siglec-15 Ab similarly inhibited 
sclerostin expression in UMR106 cells. Anti-Siglec-15 Ab 
did not inhibit LIF expression in osteoclasts (unpublished 
data). These results indicated the possibility that mainte-
nance of LIF expression may be involved in promoting bone 
formation in osteoclasts treated with anti-Siglec-15 Ab. We 
showed previously that osteoblasts derived from Wnt5a-defi-
cient mice had decreased ALP activity, and Wnt5a produced 
by osteoclasts acted on osteoblasts leading to the promotion 
of their differentiation. In this study, Wnt5a expression was 
increased in osteoclasts by treatment with anti-Siglec-15 
Ab (unpublished data), suggesting that Wnt5a induced by 
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anti-Siglec-15 Ab is involved in osteoblast differentiation. 
Our findings suggested that Siglec-15 plays important roles 
in the induction of both bone-resorbing activity of osteo-
clasts and osteoblast differentiation.

Experimental results have been reported on increasing 
bone density by administering anti-Siglec-15 Ab to normal 
mice [59]. In a preclinical pharmacological study using 
ovariectomized rats and cynomolgus monkeys, the effect of 
improving bone density, bone quality, and bone strength has 
been confirmed [61, 62]. Furthermore, as a characteristic of 
the efficacy of the anti-Siglec-15 Ab, an ideal efficacy profile 
similar to that of cathepsin K inhibitor, that is, suppression 
of bone resorption and maintenance of bone formation, was 
also confirmed in preclinical studies and a Phase 1 study 
[63].

Conclusions

Bone mass loss depends on the RANK–RANKL–OPG sys-
tem, which is a major regulatory system of osteoclast differ-
entiation induction, activation, and survival. In this complex 
system, we expect further developments in future studies on 
the importance of the bone coupling mechanism by osteo-
clasts, osteoblasts, and osteocytes.
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