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Abstract
Introduction Existing osteoporosis models in sheep exhibit some disadvantages, e.g., challenging surgical procedures, seri-
ous ethical concerns, failure of reliable induction of substantial bone loss, or lack of comparability to the human condition. 
This study aimed to compare bone morphological and mechanical properties of old and young sheep, and to evaluate the 
suitability of the old sheep as a model for senile osteopenia.
Materials and methods The lumbar vertebral body L3 of female merino sheep with two age ranges, i.e., old animals 
(6–10 years; n = 41) and young animals (2–4 years; n = 40), was analyzed concerning its morphological and mechanical 
properties by bone densitometry, quantitative histomorphometry, and biomechanical testing of the corticalis and/or central 
spongious region.
Results In comparison with young sheep, old animals showed only marginally diminished bone mineral density of the 
vertebral bodies, but significantly decreased structural (bone volume, − 15.1%; ventral cortical thickness, − 11.8%; lateral 
cortical thickness, − 12.2%) and bone formation parameters (osteoid volume, osteoid surface, osteoid thickness, osteoblast 
surface, all − 100.0%), as well as significantly increased bone erosion (eroded surface, osteoclast surface). This resulted in 
numerically decreased biomechanical properties (compressive strength; − 6.4%).
Conclusion Old sheep may represent a suitable model of senile osteopenia with markedly diminished bone structure and 
formation, and substantially augmented bone erosion. The underlying physiological aging concept reduces challenging 
surgical procedures and ethical concerns and, due to complex alteration of different facets of bone turnover, may be well 
representative of the human condition.

Keywords Senile osteopenia · Senile osteoporosis · Large animal model · Old sheep

Introduction

Osteoporosis is characterized by progressive, systemic bone 
loss, and micro-architectural changes. The criteria of the 
World Health Organization for osteoporosis are based on the 
reference for bone mineral density (BMD) in young adults 
(age 20–29). While osteoporosis is defined as a BMD ≥ 2.5 
SD below this reference, a BMD value more than 1 but less 
than 2.5 SD below this value is referred to as osteopenia [1, 
2]. Additional more recent references recommend to include 
postmenopausal women and men over the age of 50 years 
in the diagnosis of osteoporosis, who have a BMD < 2.5 
SD below the mean BMD in young adults, but have either 
experienced a low-trauma hip fracture or a low-trauma ver-
tebral, proximal humerus, pelvis or distal forearm fracture 
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in combination with an osteopenia diagnosis by diminished 
BMD (> 1 SD and < 2.5 SD [1]).

The development of new drugs or implant devices in the 
context of osteoporosis requires suitable animal models. The 
United States Food and Drug Administration (FDA) recom-
mends that new therapeutic agents should undergo testing in 
the ovariectomized (OVX) rat and in a second, non-rodent, 
large animal model with intracortical bone remodeling [3, 
4]. Beside other animals, e.g. dogs, goats or primates, many 
studies have used sheep for this purpose because of their 
large size and bone structure, which is comparable to the 
human situation [5–8]. In addition, sheep are easily avail-
able and well affordable concerning purchase and housing. 
However, BMD and bone mineral content are significantly 
higher in sheep than in humans. These differences also result 
in increased mechanical properties of ovine compared to 
human bone [9, 10]. In addition, ruminants such as sheep 
differ from humans in their diet and food uptake and, subse-
quently, the size, digesta flow speed, and microbiota of their 
digestive compartment [11]; also, in sheep the curvature of 
the lumbar spine is slightly kyphotic rather than lordotic 
[12, 13].

As most other mammalians, sheep do not undergo spon-
taneous menopause. Therefore, accelerated bone loss due to 
estrogen deficiency, the major reason for post-menopausal 
osteoporosis, is not observed in sheep. As a consequence, 
ovariectomy (OVX) is frequently used to induce a BMD 
reduction in these animals (Table 1 [14–20]). MacLeay et al. 
[16], for example, reported a decreased BMD in the last four 
lumbar vertebrae bodies 6 months after OVX. In contrast, 
some authors did not find evidence of an induced bone loss 
by OVX alone in the lumbar spine [17, 21], possibly due 
to a compensation of the increased bone resorption by a 
simultaneously increased bone formation [21]. Thus, ewes 
treated with isolated OVX may be of only limited suitability 
as a model for osteoporosis.

In contrast, glucocorticoid therapy in sheep, either alone 
or in combination with OVX, results in a remarkable bone 
loss of up to 50% [22] and a substantial decrease in bone 
mechanical properties (Table 1 [23]). However, ethical con-
cerns due to severe side-effects (e.g., massive infections and 
hair loss) limit the suitability of this model [9, 22, 23].

Calcium and vitamin D restriction, again either as 
an isolated model or together with OVX and/or steroid 
therapy, are also used to induce bone loss [22, 24, 25]. 
Unfortunately, strict dietary regimes require housing of 
the sheep in cages or ‘in-house’, limiting the well-being 
of the animals and increasing the costs. Other approaches 
address the central regulation of the bone metabolism, 
e.g. by intracerebroventricular application of leptin [21, 
26], surgical disconnection of the hypothaloma-pituitary 
axis [19, 27, 28] or melatonin deficiency caused by sur-
gical pinealectomy (Table 1 [29]). These models induce 

significant and reliable bone loss, but are very complex, 
only partially comparable to human post-menopausal or 
senile osteoporosis, and require challenging and ethically 
problematic surgical procedures.

The aim of the present study was therefore to compare 
the morphological parameters and mechanical properties of 
the bone in lumbar vertebral bodies of young and old sheep 
and to evaluate the suitability of the old sheep as a model for 
senile osteoporosis/osteopenia.

Materials and methods

Animals, surgical procedure, and test specimen

Female merino sheep of two different age ranges were used 
(young animals: 2–4 years, n = 40; old animals: 6–10 years, 
n = 41). “Sample size determination for diagnostic accuracy 
studies involving binormal ROC curve indices” [30, 31] for 
the bone structure parameters bone volume/total volume (BV/
TV) and osteoid thickness (O.Th), as well as the bone erosion 
parameter eroded surface/bone surface (ES/BS) confirmed that 
sample sizes between 8 and 33 animals per group were suf-
ficient to detect differences with an alpha error probability of 
0.05, a power (1-β error probability) of 0.80, and a small to 
medium effect size.

The sheep were fed standard animal chow. To avoid sea-
sonal effects on bone structure, formation, and erosion, the 
animals were sacrificed with a balanced distribution in the 
four seasons spring, summer, autumn, and winter by intra-
venous injection of overdosed barbiturate (Pentobarbital™, 
Essex Pharma GmbH, Munich, Germany) and subsequent 
application of magnesium sulfate  (MgSO4).The lumbar 
spine was removed using an oscillating bone saw and kept 
frozen until further use. The lumbar vertebral body L3 was 
used for characterization. Exclusively animals/vertebral 
bodies serving as negative controls (untouched vertebral 
body L3) from unpublished studies concerning the therapy 
of experimental lumbar osteopenia or osteochondral repair 
were used to obtain the present comparative data.

Permission was obtained from the governmental com-
mission for animal protection, Free State of Thuringia, 
Germany (registration number 02-029/14). All experiments 
were conducted in accordance with the National Institutes 
of Health (NIH) Guidelines for the Care and Use of Labora-
tory Animals.

Digital osteodensitometric investigations

Osteodensitometry was conducted using a software-guided 
digital bone density measuring instrument (DEXA QDR 
4500 Elite™; Hologic, Waltham, USA). To allow an 
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artifact-free osteodensitometry, the lumbar spine was sawn 
into individual vertebrae and the spinous and transverse pro-
cesses, as well as the covering and base plates were removed 
(final height in each case 15 mm). Osteodensitometric meas-
urements were therefore limited to the central, spongious area 
of the vertebral body. A rectangular region of interest with a 
defined size of 9 × 11  mm2 served as a measuring field.

Histological/histomorphometrical investigations

After cutting the lumbar vertebral bodies into two parts in 
the lower third of the vertebral body, the analyses were car-
ried out using two different types of histological sections: (1) 
decalcified paraffin sections stained by hematoxylin–eosin 
[32]; or (2) plastic-embedded sections obtained by fixation 
in acetone and dehydration in ascending alcohol series with-
out demineralization. Static histomorphometry of the lumbar 
vertebral body L3 was performed according to published 
procedures [33–35]. For this purpose, the samples were 
embedded in Technovit 9100 following the instructions of 
the supplier (Heraeus Kulzer, Wehrheim, Germany [36]). 
Sections were then cut to a thickness of approx. 7 μm. For 
static histomorphometry, the sections were stained with tri-
chrome stain according to Masson-Goldner [37].

Static quantitative histomorphometry of each individual 
vertebral body was performed using a standard micro-
scope (Axiovert 200 M, Carl Zeiss Microimaging GmbH, 
Oberkochen, Germany) with a 200-fold magnification, and 
a Merz counting reticule [35].

The following nine parameters were calculated accord-
ing to the recommendations of the International Committee 
of the American Society for Bone and Mineral Research 
(ASBMR) [33, 34]: Bone volume/total volume (BV/TV), 
trabecular thickness (Tb.Th), trabecular number (Tb.N), 
osteoid volume (OV/BV), osteoid surface (OS/BS), osteoid 
thickness (O.Th), osteoblast surface (Ob.S/BS), osteoclast 
surface (Oc.S/BS), and eroded surface (ES/BS). Detailed 
information on the calculation of the parameters can be 
found in the supplementary data (including Fig. S1). In 
addition, the cortical thickness was measured in the ventral 
and lateral region of each vertebral body. Due to the lack 
of 3D-data of the samples such as micro-CT images or 3D 
serial sections, the parameter trabecular perforation could 
not be reliably determined [38, 39].

Biomechanical testing

Biomechanical compressive strength measurements were 
conducted using a universal material testing machine 
(Kögel, Leipzig, Germany) and the corresponding software 
FRK Quicktest 2004.01 (Kögel).

For biomechanical testing, frozen cancellous bone cylin-
ders (10 mm diameter × 15 mm height) were obtained from 

the central part of the vertebral bodies using a surgical dia-
mond hollow milling cutter (10 mm diameter). After a defined 
thawing time of exactly 30 min, samples were semiconfined 
in two semilunar clamps (minimal inner diameter of 10.1 mm 
and length of 9.8 mm) and then compressed along their lon-
gitudinal axis until fracturing. This axis was chosen because 
it represents the main loading axis in humans and is therefore 
of major interest for future clinical application.

The applied load was recorded in a stress–strain curve 
until failure and the resulting force was then divided by 
the surface area of the specimen to obtain the compressive 
strength in MPa.

The Young´s modulus was calculated from the lin-
ear region of the stress–strain curve in which the cancel-
lous bone material follows Hooke’s law using the formula 
E =

Δ�

Δ�
 , where Δσ is the delta of the stress σ and Δε the delta 

of the strain ε.

Statistics

Data were expressed as means ± standard errors of the 
mean. Differences between groups were analyzed using the 
Mann–Whitney U test (level of significance p ≤ 0.05). All 
statistical tests were performed using the Sigmaplot software 
release 13.0 (Systat Software Inc., Chicago, USA). “Sample 
size determination for diagnostic accuracy studies involving 
binormal ROC curve indices” [30, 31] was used to determine 
the required sample sizes to detect differences with an alpha 
error probability of 0.05 and a power (1−β error probability) 
of 0.80.

Fig. 1  Bone mineral density of the spongious area in the lumbar ver-
tebral body L3 of young (2–4 years) and old (6–10 years) sheep; n.s. 
not significantly different vs. young sheep
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Results

Bone mineral density

The BMD of the central, spongious area of the vertebral 
bodies in old sheep (6–10 years) was only marginally lower 
than that in young sheep (2–4 years; decrease of only 3.7%; 
Fig. 1).

Trabecular bone structural parameters

In contrast, the BV/TV in the lumbar vertebrae of old 
sheep (Fig. 2b, d, f) was clearly diminished in compari-
son to that in young sheep (Fig. 2a, c, e). This was con-
firmed by quantitative histomorphometry, resulting in a 

highly significant decrease of the BV/TV ratio in old sheep 
(− 15.1%; p ≤ 0.001; Fig. 3a).

The Tb.Th was also numerically decreased in old sheep 
(− 5.4%; Fig. 3b), while the Tb.N was significantly higher 
in old sheep (+ 13.4%; p ≤ 0.01; Fig. 3c).

Cortical bone structural parameters

In parallel to the highly significant decrease of the BV/TV 
in the spongious area (compare with Fig. 3a), the lumbar 
vertebrae in old sheep also showed a significant decrease 
of the thickness of the ventral corticalis (− 11.8%; p ≤ 0.05; 
Fig. 4a–c) and the lateral corticalis (− 12.2% p ≤ 0.05; 
Fig. 4b–d).

Fig. 2  Representative hema-
toxylin eosin staining of the 
spongious area in the paraffin-
embedded lumbar vertebral 
body L3 of young (2–4 years; a, 
c, e) and old sheep (6–10 years; 
b, d, f)



625Journal of Bone and Mineral Metabolism (2020) 38:620–630 

1 3

Trabecular bone formation parameters

Old sheep showed highly significant decreases of the trabec-
ular bone formation parameters OV/BV (p ≤ 0.01; Fig. 5a), 
OS/BS (p ≤ 0.001; Fig. 5b), O.Th (p ≤ 0.001; Fig. 5c), and 
Ob.S/BS (p ≤ 0.001; Fig. 5d; all parameters − 100%).

Trabecular bone erosion parameters

In addition, old sheep displayed substantial and significant 
increases of the trabecular bone erosion parameters ES/BS 
(p ≤ 0.01; Fig. 6a) and Oc.S/BS (p ≤ 0.05; Fig. 6b).

Biomechanical testing

As a possible consequence of the significantly diminished 
structural and bone formation parameters (see Figs. 3, 4, 5), 
as well as the increased bone erosion parameters (Fig. 6), 
old sheep showed a numerically decreased compressive 
strength and Young´s modulus of the spongious bone cylin-
ders (− 6.4% and − 2.0%, respectively; Fig. 7a, b).

Discussion

Compared to adult young sheep (2–4 years of age), old 
sheep (6–10 years) showed decreased bone structure and 
formation (including both trabeculae and corticalis), and 
increased bone erosion, resulting in a somewhat decreased 
compressive strength. Physiologically aged sheep may thus 
qualify as a convenient and suitable model of senile osteo-
penia with less complex surgical (e.g. ovariectomy), logistic, 
and ethical challenges than other models. Post-menopausal 
alterations did not contribute to the changes observed in 
aged female sheep, since the ewes showed functional ova-
ries and were all actively cycling, resulting in a model of 
almost exclusive senile osteopenia free of any interference 
from the endocrine-metabolic environment of the skeleton 
(data not shown). Likewise, the presence of ‘laminar’ bone 
did not influence the results, since neither the young female 
adult nor the old female sheep analyzed in the present study 
showed any such laminar bone in histology, but rather exclu-
sively fully developed osteons characteristic of adult bone 
(compare with Fig. 4 [40, 41]).

In histology, the structural bone parameters in old sheep 
were moderately, but significantly diminished (decrease of 
the BV/TV by 15.1% for the spongious area; 11.8–12.2% 
for the cortical thickness), suggesting a deterioration of the 
microarchitecture of the lumbar vertebrae in old sheep. On 
the other hand, the BMD was only marginally decreased 
in old sheep, possibly due to the limited sensitivity of the 
technique and the generally higher BMD and bone mineral 
content in sheep compared to those in humans [9, 10]. The 

Fig. 3  Structural bone parameters of the spongious area in the lumbar 
vertebral body L3 of young (2–4 years) and old sheep (6–10 years); 
a bone volume/tissue volume (BV/TV); b trabecular thickness (Tb.
Th); c trabecular number (Tb.N); **p ≤ 0.01, ***p ≤ 0.001 vs. young 
sheep; n.s. not significantly different vs. young sheep
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value of the BV/TV in old sheep was approx. 1.4 standard 
deviations below that in young sheep, in line with the radio-
logical definition of osteopenia in humans on the basis of 
the BMD (− 2.5 SD < T score < − 1.4 SD [1, 2]) according 
to the diagnostic criteria of the World Health Organization 
(WHO [42]). Despite a more limited decrease of the struc-
tural bone parameters in the present physiological aging 
model than in other, more substantial models of osteopenia/
osteoporosis in sheep (decrease of up to 82%; Table 1), the 
similarity with human osteopenia may render the current 
model very attractive for future studies on the pre-clinical 
therapy of bone pathology. In addition, the model showed 
a reduced bone structure in both spongiosa and corticalis 
of the vertebrae, thus fulfilling the recommendations of the 
FDA for non-rodent, large animal models with intracortical 
bone remodeling for the testing of new therapeutic agents in 
bone (patho) physiology [3].

The present sheep osteopenia model was based on sub-
stantial, age-dependent changes in both trabecular bone 

formation (− 100% for all parameters; possibly a strength 
of the current model) and bone erosion (significant increase 
for ES/BS and Oc.S/BS), suggesting complex alterations of 
different facets of bone turnover, as previously described in 
other more extensive models of sheep osteopenia/osteopo-
rosis (Table 1). The degree of alterations was in the range 
or even above the changes in other experimental models 
(Table 1) and the simultaneous alteration of bone formation 
and erosion underlines the similarity of the current model 
with the human condition [1, 2].

Compression testing of lumbar vertebrae is recommended 
for the evaluation of the mechanical properties of cancellous 
bone [43]. The results of the present study showed a mild to 
moderate, but merely numerical reduction of compressive 
strength and Young´s modulus in the vertebral bodies of old 
sheep, indicating that aging in sheep may to some degree 
reduce bone strength and/or increase bone fragility. This is 
in line with previous studies demonstrating the sheep’s use-
fulness for osteoporosis research and bone healing due to 

Fig. 4  Representative hematoxylin eosin staining of the corticalis in 
the paraffin-embedded lumbar vertebral body L3 of young (2–4 years; 
a) and old sheep (6–10 years; b); cortical thickness of young and old 

sheep in the ventral (a–c) and lateral cortical region (b–d); *p ≤ 0.05 
vs. young sheep
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their similarity to humans concerning estrus cycle, hormone 
profiles, and Harversian bone remodeling [44], as well as the 
biomechanical properties of the spine ([45] and references 
therein [46]).

The old sheep has been already successfully used in 
different published studies as a model for vertebral aug-
mentation with polymethylmethacrylate (PMMA) [47] or 
with resorbable and osteoconductive calcium phosphate 
cement (CPC) in minimally invasive lumbar vertebroplasty 

[13, 48–51]. The results deriving from the studies with 
CPC not only validate the old sheep as a valuable model 
for lumbar osteopenia, but also confirm the potential suit-
ability of such a material to replace the bioinert, non-
resorbable and supraphysiologically stiff PMMA currently 
used in the clinic.

Limitations of the present study include the more lim-
ited degree of bone loss during their adult life in sheep 
(3–10 years) than in humans [10] and the slightly higher 

Fig. 5  Bone formation param-
eters of the spongious area in 
the lumbar vertebral body L3 of 
young (2–4 years) and old sheep 
(6–10 years); a osteoid volume/
tissue volume (OV/TV); b oste-
oid surface/bone surface (OS/
BS); c osteoid thickness (O.Th); 
d osteoblast surface/bone 
surface (Ob.S/BS); **p ≤ 0.01, 
***p ≤ 0.001 vs. young sheep

Fig. 6  Bone erosion param-
eters of the spongious area in 
the lumbar vertebral body L3 
of young (2–4 years) and old 
sheep (6–10 years); a eroded 
surface/bone surface (ES/
BS); b Osteoclast surface/bone 
surface (Oc.S/BS); *p ≤ 0.05, 
**p ≤ 0.01 vs. young sheep
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bone density in sheep due to the higher axial compression 
stresses derived from the quadrupedal locomotion [52]. 
Another limitation is the lack of an age-matched, ‘healthy’ 
control population, for example due to the absence of a phys-
iological menopause in sheep, and thus a limited compara-
bility to manifest human osteoporosis. This includes the fact 
that the ‘compromised bone strength predisposing a person 
to an increased risk of fracture’, which is part of the cur-
rent NIH ‘definition of osteoporosis’ [53, 54], in the present 
study does not reach statistical significance when comparing 
aged and young sheep.

Finally, whereas the simultaneous decrease of both BV/
TV and Tb.Th in the present model is in good agreement 
with the findings in human osteoporosis, the concurrent 
increase of the Tb.N is not observed in the human dis-
ease [11, 12]. On the other hand, this inverse relation-
ship of Tb.Th and Tb.N has been observed previously in 
aged, ovariectomized sheep [9, 21] and in own studies 
concerning the augmentation of the bone formation by 
an injectable CPC through the addition of different BMPs 
[13, 48–51] and may thus represent a specific feature of 
bone metabolism in aged sheep.

In comparison to existing sheep osteoporosis models 
with design, logistic or ethical disadvantages, physiologi-
cally aged sheep (6–10 years of age) may provide a suita-
ble model of non-menopausal, senile osteopenia with mod-
erately reduced bone structure, considerably diminished 
bone formation, and substantially augmented bone erosion.

Despite some limitations concerning the only moder-
ate reduction of the bone structure and the lack of an age-
matched ‘healthy’ control population, the model fulfils FDA 
recommendations for a non-rodent, large animal model with 
intracortical bone remodeling, and may thus provide a good 
basis for further mechanistic, diagnostic, and therapeutic 
studies in bone pathophysiology [3].
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