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of small phospholipid membrane-enclosed entities released 
by a wide spectrum of cell types and present in various body 
fluids [2]. Based on their size, EVs are generally categorized 
into three classes: small vesicles (10–100 nm) [3, 4], larger 
vesicles (100–1000 nm) [3, 5], and large vesicles (1–4 μm) 
[3, 6]. The small vesicles, also known as exosomes, are 
released through exocytosis and contain specific proteins and 
nucleic acid. Larger vesicles are formed by budding from the 
plasma membrane and include microvesicles, shed vesicles, 
and matrix vesicles that play a role in bone formation. Large 
vesicles are released by dying cells and are called apoptotic 
bodies [3].

Among the EVs, exosomes and exosome-like vesicles 
may act on target cells directly via receptor-mediated inter-
actions and transfer their content (cargo) from the host cells 
to the recipient cells [7]. Exosomes are characterized by 
the presence of proteins, including the tumor susceptibility 
gene (TSG) 101 protein, flotillin (Flot)1, heat shock pro-
teins (HSPs), integrins, CD63, CD81, and CD82 [8]. An 
increasing number of studies have indicated that exosome 
cargos are also full of nucleic acids, such as messenger RNA 
(mRNA), microRNA (miRNA), circular RNA (circRNA), 
and long non-coding RNA (lncRNA) [9, 10]. In some cases, 
the exosomes carry more specific miRNA than the host cells 
from which they derive. It is still not clear how exosomes 
sort and carry nucleic acids, but research has suggested 
that Y-box protein 1 is required in the process of exosome 
miRNA sorting [11]. MicroRNAs are small endogenous 
non-coding RNAs, containing approximately 22 nucleotides. 
They are well-known as post-transcriptional regulators of 
mRNA expression [12]. LncRNAs are newly recognized 
regulators that can affect transcription patterns by targeting 
proteins to specific genomic loci, modulating the activity of 
protein-binding partners, or playing a role as precursors for 
small RNAs [13]. As non-coding RNA-enriched spherical 

Abstract  Extracellular vesicles (EVs) are phospholipid 
membrane-enclosed entities containing specific proteins, 
RNA, miRNA, and lncRNA. EVs are released by various 
cells and play a vital role in cell communication by transfer-
ring their contents from the host cells to the recipient cells. 
The role of EVs has been characterized in a wide range of 
physiological and pathophysiological processes. In this con-
text, we highlight recent advances in our understanding of 
the regulatory effects of EVs, with a focus on bone metabo-
lism and the bone microenvironment. The roles of EVs in 
cell communication among bone-related cells, stem cells, 
tumor cells, and other cells under physiological or patho-
logical conditions are also discussed. In addition, promising 
applications for EVs in treating bone-related diseases are 
proposed.
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Introduction

In multicellular organisms, there exist complex communica-
tion networks that are involved in regulating biological activ-
ity. Cells exchange information and interact with one another 
through the secretion of factors (cytokines, chemokines, 
hormones, nucleic acids, etc.) either directly or via vehicles 
known as extracellular vesicles (EVs) [1]. EVs are a series 
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bilayered proteolipids, exosomes play a vital role in cell 
communication, and of all the EVs, they have attracted the 
most attention from researchers.

Bone forms from a complex microenvironment that hosts 
a great diversity of tissues and cells, including osteocytes, 
osteoblasts (OBs), osteoclasts (OCs), hematopoietic stem 
cells (HSCs), mesenchymal stem cells (MSCs), fat cells, 
endothelial cells, cartilage, and nerves. These bone-related 
cells and tissues communicate with others through the secre-
tion of regulatory factors [14] or via direct physical interac-
tions [15]. A recent study has indicated that these members 
of the bone microenvironment all secrete exosomes [16]. It is 
conceivable that EVs play paracrine/endocrine roles within 
the bone microenvironment. The role of EVs (exosomes) 
has been studied comprehensively in many important fields, 
including tumorigenesis in the tumor microenvironment 
[17–19], crosstalk among cells [20–23], tissue repair and 
regeneration [24, 25], regulation of chronic inflammatory 
and immune processes [26] and angiogenesis [27], early 
diagnosis of disease [28, 29], and drug delivery [30]. Until 
recently, however, studies on EVs (exosomes) in bone 
metabolism and the bone microenvironment have been lim-
ited. In this context, we highlight the most recent develop-
ments regarding the regulatory effects of EVs (exosomes) in 
bone metabolism and the bone microenvironment. As there 
are still conflicts in the definition and characterization of 
different vesicles, in most cases it is unclear what types of 
vesicles have been investigated; therefore, we will use the 
term as described in the original work.

There is a specific EV type, known as matrix vesicles 
(30–300 nm), which are secreted by OBs and primarily 
involved in mineralization of newly forming bone matrix via 
hydroxyapatite deposition [31]. Some studies have indicated 
that matrix vesicles contain signaling proteins and growth 
factors, which are suggested to play a role in intercellular 
communication [32]. The intercellular communication 
capacity, rather than the mineralization capacity, of matrix 
vesicles will also be discussed here.

Extracellular vesicles in osteoblasts or osteoclasts 
are related to regulation in bone metabolism

Bone is a metabolically active tissue that is continuously 
remodelled via resorption of mineralized bone by osteo-
clasts (OCs) and the synthesis of bone matrix by osteoblasts 
(OBs). OBs of mesenchymal origin are the bone cells that 
contribute to the strength of the skeletal system through 
bone matrix production and mineralization. OBs also regu-
late bone homeostasis via paracrine secretion [33]. Studies 
have demonstrated that OBs can establish a feedback sys-
tem in bone growth via secretion of EVs and matrix vesi-
cles (MVs). As well-known OB-derived vehicles, MVs are 

very important for bone formation and mineralization. A 
recent study reported that in addition to transport of miner-
als, MVs also contain signaling proteins and growth factors, 
including bone morphogenetic proteins (BMP)1–7, vascular 
endothelial growth factor (VEGF), bone sialoprotein (BSP), 
osteopontin (OPN), osteocalcin (OC), and osteonectin (ON), 
and they may play a role in the regulation between bone 
cells [32]. In an MC3T3 cell model, Min et al. analyzed 
the content of exosomes derived from mouse OBs. In total, 
1069 proteins were found, and many of them, including the 
EIF family, PP1C, PABP, and Rho GTPases, are involved in 
regulating osteogenesis and osteogenic differentiation [34]. 
After OB mineralization, which is affected by osteoblast 
nucleoside triphosphate pyrophosphatase (NPP1), together 
with calcium, OBs are embedded into bone matrix and 
become osteocytes [35]. OBs may play additional regula-
tory roles in this stage. Exosomes derived from mineralizing 
OBs (mineralizing pre-osteoblast MC3T3-E1 cells) exert a 
significant influence on miRNA profiles in bone marrow 
stromal cells (ST2) and promote their differentiation into 
OBs. This process is related to activation of the Wnt signal-
ing pathway and is mediated by inhibiting Axin1 expression 
and increasing β-catenin expression in recipient cells [36].

Morhayim et al. compared and characterized the EVs 
secreted by human mineralizing (MOB) and non-mineral-
izing (NMOB) osteoblasts (SV-HFO cell line). Proteomic 
analysis showed that 97% of the proteins were shared among 
the OBs derived from EVs under different mineralization 
conditions, and 30% were novel osteoblast-specific EV pro-
teins. Alkaline phosphatase and RNA binding proteins are at 
least five times as abundant in EVs from mineralizing osteo-
blasts as in EVs from non-mineralizing osteoblasts, which 
are primarily enriched in adhesion proteins [37]. Another 
study of these groups indicated that human OB-derived EVs 
contained a high abundance of miRNAs, including critical 
regulators of hematopoietic proliferation (miR-29a). OB-
derived EVs enhanced proliferation of human umbilical cord 
blood-derived CD34(+) cells. These EV-expanded CD34(+) 
cells retained their differentiation capacity in vitro and suc-
cessfully engrafted in vivo. These results indicate that EV-
miRNAs should be considered essential for the development 
of expansion strategies for treating hematological disorders 
[38]. Similar findings have shown that EVs isolated from 
pre-osteoblasts are rich in miRNAs (e.g. miR-122-5p, miR-
451a, miR-183-5p, miR-144-3p, and miR-142-5p), and they 
are able to deliver these miRNAs to undifferentiated embry-
onic stem cells (ESCs), and influence ESC differentiation by 
effecting persistence of pluripotent gene levels and increas-
ing neuroectoderm differentiation [39]. All these data clar-
ify the regulatory function of OBs in relation to other cells 
through release of EVs into the bone microenvironment.

OCs are multinucleated bone-resorbing cells formed by 
cytoplasmic fusion of their mononuclear precursors. The 
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formation and differentiation of OCs is regulated primar-
ily by the receptor activator of nuclear factor κB-ligand 
(RANKL), its receptor, receptor activator of nuclear fac-
tor κB (RANK), and the competitive inhibitor, osteopro-
tegerin (OPG) regulatory system. Researchers have found 
that mature OCs are able to express RANK and continue to 
require RANKL stimulation for bone resorption [40]. The 
study reported by Deng et al. confirmed that OB-derived 
MVs contained RANKL [16]. In co-culture, these MVs 
interacted with and stimulated the differentiation of osteo-
clast precursors into OCs [16]. In response to particular sig-
nals, such as 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or 
mechanical stress, OBs express RANKL on their surface, 
which binds to RANK expressed on the surface of mono-
cytes and triggers monocyte differentiate into OCs. OCs 
and their precursors also regulate themselves via paracrine 
signaling mediated by EVs [41]. Research has shown that 
the EVs derived from OCs and their precursors are enriched 
in RANK and may be functional by competitively inhibit-
ing the stimulation of RANK on OC surfaces by RANKL. 
This is similar to osteoprotegerin, which was found to inhibit 
1,25(OH)2D3-dependent OC formation in mouse marrow 
cultures [41].

MicroRNA has been demonstrated to be a critical regula-
tor in bone metabolism (reviewed by Shapior et al. [42]) and 
has been found in OC-derived EVs. In a study by Kagiya 
et al., miRNAs including let-7e, miR-21, miR-155, miR-210, 
miR-223, and miR-378 were found in OC (M-CSF stimu-
lated murine bone marrow cell)-derived EVs, with miR-210 
and miR-223 expressed at high levels [43]. Among these 
miRNAs, miR-378 can promote cell survival and participate 
in blood vessel formation, and plays an important role in 
osteoclastogenesis during OC differentiation [44, 45]. miR-
210 is related to the regulation of various genes involved 
in cell cycle, differentiation, development, membrane traf-
ficking, and migration/adhesion [46, 47]. miR-223 plays a 
key role in osteoclastogenesis, and the overexpression of 
miR-223 blocks osteoclast differentiation [48]. The murine 
let-7 family is composed of at least 12 members, expressed 
from eight genomic loci (let-7a-1, let-7a-2, let-7b, let-7c-1, 
let-7c-2, let-7d, let-7e, let-7f-1, let-7f-2, let-7 g, let-7i, and 
miR-98), and together with miR-140, they are involved in 
endochondral bone development. Deficiencies in both let-7 
and miR-140 were found to cause a dramatic growth defect, 
synergistically reducing the mass of proliferating chondro-
cytes [49]. miR-214-3p is a specific miRNA precursor; it 
has a crucial role in skeletal disorders and suppresses bone 
formation. By targeting Osterix, miR-214-3p suppressed 
osteogenic differentiation of C2C12 myoblast cells [50], 
and it also interacted with ATF4, an important osteogenic 
transcriptional factor, to suppress bone formation [51]. Fur-
thermore, miR-214-3p promotes osteoclastogenesis through 
the PI3K/Akt pathway by targeting phosphatase and tensin 

homologue (PTEN) [52]. In vitro and in vivo studies by 
Li et al. demonstrated that an increased osteoclastic miR-
214-3p level was associated with both an elevated serum 
exosomal miR-214-3p level and reduced bone formation. 
The miR-214-3p in OCs was released in exosome-encap-
sulated form, and this exosomal miR-214-3p was able to 
be transferred to osteoblasts, inhibiting osteoblastic bone 
formation and promoting OC differentiation [53]. A study 
by Sun et al. also showed that miR-214 and ephrinA2 protein 
were enriched in OC-derived exosomes. These exosomes can 
specifically recognize OBs through the interaction between 
ephrinA2 and EphA2 and can transfer miR-214 into OBs to 
inhibit their function. Circulating miR-214 can be detected 
in exosomes from the serum of osteoporotic patients, indi-
cating that it represents a biomarker for bone loss [54] 
(Fig. 1).

Extracellular vesicles are related to stem cell 
regulation in bone metabolism

Stem cells (SCs) are undifferentiated and multipotent cells 
with self-renewal ability and are often used in clinical tri-
als to repair specific tissues [55, 56]. There are many types 
of SCs. They include mesenchymal stem cells (MSCs), 
hematopoietic stem cells (HSCs), induced pluripotent 
stem cells (iPSCs), embryonic stem cells (ESCs), neural 
stem cells (NSCs), endothelial progenitor cells (EPCs), 
and cardiac progenitor cells (CPCs). SCs can differentiate 
into tissue-specific cell types with specialized functions 
and release a variety of products, such as growth factors, 
cytokines, and EVs, which help to achieve their relevant 
effects [57, 58]. Recent studies have indicated that the tis-
sue repair capacity of SCs is related to their paracrine 
activity rather than direct differentiation into specialized 
cells in the injured tissue [59], indicating the importance 
of EVs in this process. In the bone system, OBs derive 
from MSCs while OCs derive from HSCs, which indicates 
the close relationship between SCs and bone cells and the 
possibility that SC-derived EVs are involved in the regu-
lation of bone metabolism. Among the SCs, MSCs are 
the most efficient producer of secreted EVs [60]. Because 
of their ability to differentiate into OBs, chondrocytes, 
and adipocytes [56, 61], and because they can be easily 
acquired from a patient’s own fat or bone marrow tissue, 
MSCs are often used clinically for treating bone and car-
tilage disorders [62, 63]. A study by Perrine et al. showed 
that RNAs could be transferred between human MSC-
derived adipocytes and OBs via EVs. EVs isolated from 
human MSCs (hMSCs) at different stages of adipocyte 
differentiation contain PPAR-γ, leptin, adiponectin, and 
adipogenic RNAs. Co-culturing with these EVs can cause 
a decrease in osteocalcin and osteopontin expression in 
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hMSC-derived OBs, which indicates that EVs could be a 
target component for regulating competition between OBs 
and adipocytes in the prevention or treatment of osteopo-
rosis [64]. A study by Zhao et al. used human marrow stro-
mal cell (HMSC)-derived exosomes to induce osteogenic 
differentiation of undifferentiated HMSCs. The exosomes 
isolated from normal HMSCs triggered and increased 
the expression of the growth factors bone morphoge-
netic protein 9 (BMP9) and transforming growth factor 
β1 (TGFβ1)—two effective inducers of osteogenic differ-
entiation of HMSCs [65]. Moreover, the exosomes from 
osteogenic-activated HMSCs generated a better response 
in inducing osteogenic differentiation of undifferentiated 
HMSCs. These results show that exosomes derived from 
HMSCs can be easily endocytosed by recipient cells, 
bind to extracellular matrix (ECM) proteins such as type I 

collagen and fibronectin, and trigger lineage-specific dif-
ferentiation of undifferentiated HMSCs both in vitro and 
in vivo [66].

An increasing number of studies have suggested that car-
gos such as miRNA [67], tRNA [68], and proteins [69] in 
human bone marrow stromal/stem cell (hBMSC)-secreted 
EVs include differentiation cues for osteogenic induction 
[70]. Using miRNA arrays probes, Xu et al. analyzed the 
miRNA in EVs isolated from bone marrow-derived mes-
enchymal stem cells (BMSCs). A total of 79 miRNAs were 
detected in BMSC EVs. Among these, nine EV-related 
miRNAs were up-regulated and four miRNAs were down-
regulated significantly in BMSCs cultured at different time 
points. Five miRNAs (miR-199b, miR-218, miR-148a, miR-
135b, and miR-221) were further validated and differentially 
expressed in the individual EV samples. Bioinformatic 

Fig. 1   Known inclusions of bone-related EVs
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analysis demonstrated that the pathways related to RNA 
degradation, mRNA surveillance, Wnt signaling, and RNA 
transport were the most prominent pathways related to osteo-
genic differentiation, suggesting that miRNAs in BMSC-
derived EVs are important regulators of OB differentiation 
[70]. A study by Qin et al. further demonstrated that BMSC-
derived EVs can positively regulate osteogenic genes and 
osteoblastic differentiation in human OBs (hFOB 1.19). The 
BMSC-derived EVs promoted bone formation in critical-
size calvarial bone defects in Sprague–Dawley (SD) rats, and 
the miRNA (miR-196a) in these EVs were found to play an 
essential role in the regulation of osteoblastic differentiation 
and the expression of osteogenic genes in this model [71].

The use of MSCs and miRNA in bone and cartilage tissue 
engineering has been well studied (reviewed by Mardones 
et al. [72]); if the miRNAs with a positive regulatory func-
tion in bone metastasis can be packaged into SC-derived 
EVs and be used in treating bone disorders, actually this 
strategy has been used. Shi et al. transferred miR-140-5p 
to synovial mesenchymal stem cells (SMSC-140s) and col-
lected the miR-140-5p-overexpressing SMSC-140-derived 
exosomes to treat osteoarthritis (OA). They found that these 
miR-140-5p-enriched exosomes enhanced the proliferation 
and migration of articular chondrocytes by activating YAP 
via alternative Wnt signaling, without damaging extracel-
lular matrix (ECM) secretion in vitro. In addition, these 
exosomes were successful in preventing OA in a rat model 
[73]. This study shows the broad potential for the modifica-
tion of SC-derived EVs as a targeted therapeutic strategy for 
treating bone metabolism disorders in the future.

In addition to influencing the function of recipient cells, 
SCs regulate their own functions via EV-mediated paracrine 
signaling. Liu et al. found that Fas deficiency caused failure 
in miR-29b release, thereby elevating intracellular miR-29b 
levels, and down-regulated the expression of DNA meth-
yltransferase 1 (Dnmt1) in MRL/lpr bone marrow MSCs. 
The decrease in Dnmt1 caused Notch1 promoter hypometh-
ylation and activated Notch signaling, in turn leading to 
impaired osteogenic differentiation. The authors also dem-
onstrated via MSC transplantation that EVs could transfer 
Fas to recipient MRL/lpr bone marrow MSCs and reduce 
intracellular levels of miR-29b, resulting in the recovery of 
Dnmt1-mediated Notch1 promoter hypomethylation and 
thereby improving MRL/lpr bone marrow MSC function 
[74]. A study by Martins et al. validated the osteoinductive 
potential of hBMSC-derived EVs. Under osteogenic stimu-
lus (standard chemical cocktail or RUNX2 cationic lipid 
transfection), hBMSC-derived EVs were used to stimulate 
homotypic uncommitted cells, inducing an osteogenic phe-
notype characterized by marked early induction of BMP2, 
SP7, SPP1, BGLAP/IBSP, and alkaline phosphatase. These 
data showed that naturally secreted EVs could guide the 
osteogenic commitment of hBMSCs in the absence of other 

chemical or genetic osteoinductors [75]. A similar study 
investigated the effects of secreted factors from umbili-
cal cord-derived mesenchymal stem cells (hUCMSCs) on 
osteogenic differentiation of MSCs. The results indicated 
that secreted hUCMSC factors could initiate osteogenic dif-
ferentiation and increase the amount of calcium deposited in 
BMSCs. Moreover, the expression of osteogenesis-related 
genes, including ALP, BMP2, OCN, Osterix, Col1α, and 
RUNX2, was significantly up-regulated in the recipient cells. 
The study also found that factors secreted by hUCMSCs 
together with hBMSCs promoted ectopic bone formation in 
nude mice. Although the authors did not indicate whether 
these hUCMSC factors derived from EVs, it is likely that 
they are delivered via EVs and may be potential sources for 
promoting bone regeneration [76].

Regulation between cells in the intercellular microenvi-
ronment is a bidirectional process. SCs can also be affected 
by other cell-derived EVs. The monocyte/macrophage sys-
tem plays a central role in host defense, immune regulation, 
and wound healing, and closely interacts with bone cells. 
The recruitment of MSCs and their osteogenic differentia-
tion is a crucial step for bone formation at the bone–bio-
material interface. Monocytes/macrophages and/or their 
products play a very important role in regulating the recruit-
ment and differentiation of MSCs. Research on the role of 
EVs in the interaction between monocytes and bone cells is 
still needed, but some studies have used conditioned media 
(CM) to explore these interactions. A study by Omar et al. 
demonstrated that monocytes isolated from human blood 
activated by LPS or IL-4 could influence the osteogenic gene 
expression of hMSCs via the production of cytokines and 
possibly other soluble factors. After treatment of hMSCs 
with monocyte CM, bone morphogenetic protein-2 (BMP-2) 
and runt-related transcription factor 2 (RUNX2) genes were 
significantly up-regulated in hMSCs. However, whether this 
regulatory effect of activated monocytes on hMSCs is medi-
ated by EVs requires further investigation [77]. A study by 
Ekstrom et al. showed that under given experimental con-
ditions, exosomes isolated from LPS-stimulated human 
monocytes were positive for CD9, CD63, CD81, TSG101, 
and Hsp70, and contained a wide size distribution of RNA. 
These exosomes interacted with MSCs and caused increased 
expression of the osteogenic markers RUNX2 and BMP-2 
in MSCs [78]. Wang et al. found that DC-derived exosomes 
expressed surface molecules specific for DCs (CD83, CD86, 
CD80, and HLA-DR). These exosomes caused high expres-
sion of RUNX2 and increased the ALP activity in MSCs, 
indicating that DC-derived exosomes can induce MSCs to 
differentiate into OBs [79]. To sum up, the above data sug-
gest that exosomes constitute an additional mode of cell–cell 
signaling interaction, with an effect on MSC differentiation 
during the transition from injury and inflammation to bone 
regeneration.
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Extracellular vesicles mediate regulation of bone 
metabolism under disease conditions

Bone resorption and remodeling is in an ideal balance under 
normal conditions. However, under some pathological con-
ditions, this balance is perturbed, which causes osteolytic 
lesions, bone pain, hypercalcemia and renal failure. The 
role of EVs in various bone-related pathological processes 
has been gradually revealed. To explore the mechanism of 
abnormal bone metabolism caused by multiple myeloma 
(MM), Raimondi et al. investigated the effect of MM cell-
derived exosomes on OC differentiation. MM cell (U266, 
MM1S, and OPM2 cell lines)-derived exosomes induced the 
expression of OC markers including cathepsin K (CTSK), 
matrix metalloproteinase 9 (MMP-9), and tartrate-resistant 
acid phosphatase (TRAP) in RAW 264.7 cells and human 
primary OCs. By increasing CXCR4 expression and trigger-
ing a survival pathway, MM exosomes positively modulated 
the migration of these pre-OCs [80]. Similar results were 
obtained with exosomes derived from MM patient sera [80].

Osteoarthritis (OA) is a highly prevalent joint disease that 
involves progressive degradation of articular cartilage, syno-
vial hyperplasia, bone remodeling, and angiogenesis in vari-
ous joint tissues [81]. An early study found that the articular 
cartilage of the knees and hips from OA patients contained 
more MVs (50–250 nm) than normal. These OA-derived 
MVs exhibited high alkaline phosphatase (ALP) enzymatic 
activity and originated from the surface membranes of artic-
ular chondrocytes [82]. However, it was still not clear what 
role those MVs played in OA. Kato et al. examined the com-
munication function of exosomes among joint tissue cells. 
The exosomes isolated from human synovial fibroblasts 
(SFBs) and interleukin-1β (IL-1β)-stimulated SFBs were 
analyzed and used to treat normal articular chondrocytes. 
NanoString analysis showed that 50 miRNAs were differ-
entially expressed in exosomes from IL-1β-stimulated SFBs 
compared to non-stimulated SFBs. Compared with the non-
stimulated SFB-derived exosomes, exosomes isolated from 
IL-1β-stimulated SFBs significantly up-regulated MMP-13 
and ADAMTS-5 expression and down-regulated COL2A1 
and ACAN in articular chondrocytes. These exosomes also 
significantly promoted migration and tube formation activity 
in human umbilical vein endothelial cells (HUVECs) and 
enhanced the release of proteoglycan from cartilage explants 
[83].

Tumor-derived EVs have been characterized as playing 
a pivotal role in cancer growth, development, and metasta-
sis. Some specific tumor cells, including prostate, lung, and 
breast cancer cells, are prone to bone metastasis and have 
substantial crosstalk with bone cells in the bone microen-
vironment. Whether tumor-derived exosomes are involved 
in tumor and bone cell interactions is an attractive research 
problem. Karlsson et al. explored the inhibitory effect of 

prostate tumor-derived exosomes on OCs. Exosomes iso-
lated from the murine prostate cancer cell line TRAMP-C1 
dramatically reduced fusion and differentiation of mono-
cytic osteoclast precursors into mature, multinucleated 
osteoclasts. They also reduced the expression of established 
markers, including DC-STAMP, TRAP, cathepsin K, and 
MMP-9, for OC fusion and differentiation [84]. Another 
study indicated that the EVs derived from PC3 cells (an 
advanced prostate cancer cell line) could be internalized 
by OC precursor RAW264.7 cells and primary human OBs 
(hOBs), stimulating osteoclastogenesis and hOB prolifera-
tion [85]. Reciprocally, OB-derived EVs can also be taken 
up by prostate cancer cells (PC3) and stimulate their growth 
by regulating the expression of related genes in vitro [37]. 
Osteosarcoma is another type of tumor that causes severe 
bone destruction, reducing overall bone quality and bone 
strength. Rama et al. found that extracellular membrane 
vesicles (EMVs) isolated from human osteosarcoma cells 
(143B and HOS) contained bioactive pro-osteoclastic cargo, 
including matrix metalloproteinase-1 and metalloprotein-
ase-13 (MMP-1, MMP-13), transforming growth factor-β 
(TGF-β), CD-9, and RANKL, indicating that they play 
important roles in stimulating osteoclastogenesis and the 
activation of MMPs [86]. Studies regarding the role of EVs 
in other bone metastasis-prone tumors are still limited, but 
it is conceivable that tumor-derived EVs may be involved 
in the bone metastasis process and could be detected as a 
marker of bone metastasis in the future. In addition, the pos-
sible regulation of tumors by bone cells  via secretion of 
EVs in the tumor-bone microenvironment is an attractive 
and promising area of study.

The effect of other EVs on bone metabolism

Milk has been considered to promote bone growth and den-
sity because it is rich in calcium and contains components 
that enhance intestinal calcium uptake or directly affect bone 
metabolism. Oliveira et al. examined the effect of bovine-
derived milk 100,000-g pellet (P100), which contained 
nanoparticles (<220 nm) including EVs, on OC differentia-
tion and bone resorption. The results showed that milk P100 
increased the formation of small OCs with increased expres-
sion of TRAP, NFATc1, and c-Fos. P100 also increased the 
number of OCs in a mouse model, but it did not lead to 
greater bone resorption, likely due to reduced acid secretion 
[87]. Another study by the same group showed that milk-
derived EVs increased the number of OCs and markedly 
increased brittle woven bone tissue. These EVs also up-reg-
ulated many osteogenic genes but decreased the production 
of type I collagen. To conclude, milk-derived EVs accelerate 
osteoblastogenesis but impair bone matrix formation, which 
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indicates that milk-derived EVs may have negative effects 
on bone formation [88] (Fig. 2).

Discussion

After more than 30 years of research, the production, secre-
tory pathway, and function of EVs are being increasingly 
revealed. EVs are derived from the late endosomal system; 
their predecessors are endosomes. Portions of the endo-
some membrane bud off into the lumen to form intralumi-
nal vesicles. These late endosomes are called multivesicular 
bodies (MVBs). On one hand, MVBs fuse with lysosomes 
to degrade their intraluminal cargo, and on the other hand, 
MVBs can also fuse with the plasma membrane to release 
their intraluminal vesicles as EVs into the extracellular space 
[89, 90]. Thus far, the process by which cellular proteins and 
RNAs are targeted to endosomes and subsequently uploaded 
into EVs has not been elucidated. Some proteins have been 
shown to be targeted to exosomes in an ESCRT (endoso-
mal sorting complex required for transport)-independent 
manner via higher-order oligomerization or a ceramide-
dependent process [91–93]. Nevertheless, it is obvious that 
the biogenesis of EVs requires cellular expenditure of energy 

and resources, implying a functional importance for these 
vesicles rather than simply the discharge of waste. Using a 
specific fluorescent dye (PKH-26) as a label, Carrie et al. 
demonstrated that the uptake of exosomes was an active and 
specific process, and overnight storage at 4 or −20 °C did not 
impact exosome uptake. However, the uptake of exosomes 
by recipient cells can be partially blocked by heparin treat-
ment [94].

As specific communication carriers between cells, there 
are two possible ways that EVs act on recipient cells. They 
may act as signaling complexes and stimulate recipient 
cells directly, or by transferring receptors between cells and 
delivering proteins and genetic information to the recipient 
cells (reviewed by Camussi et al. [7]). This indicates that 
EVs interact with specific target cells rather than random 
cells in the intercellular microenvironment. EVs are natural 
liposomes, which are non-toxic and have a long half-life, 
and they can escape immune surveillance and be taken up 
efficiently by recipient cells [8]. EVs also represent a popu-
lation of membrane vesicles that can protect miRNAs from 
RNase-induced degradation [95]. As such, EVs represent 
the most promising drug carriers for use in future research. 
Many studies have attempted to remold EVs derived mainly 
from SCs or other cells, including by inducing expression 

Fig. 2   Modified EV carriers in 
bone-related disease therapy



8	 J Bone Miner Metab (2018) 36:1–11

1 3

of specific receptors to enhance the ability of EVs to bind to 
target recipient cells, in order to transfer anti-tumor drugs, 
anti-inflammatory drugs, and miRNA with therapeutic 
action, and then use the modified EVs for treating various 
diseases. Current methods used to upload drugs into EVs 
include chemical transfection of the host cells with the drugs 
(compounds, proteins, nucleic acids, etc.), and subsequent 
host cell secretion of EVs containing the drugs; isolation of 
EVs and co-incubation with the drugs; or increasing elec-
troporation steps to upload more drugs into EVs. Moreover, 
as EVs contain special proteins or nucleic acids from the 
host cells, their use as excellent molecular biomarkers for 
diagnosis and prognosis of clinical diseases is very promis-
ing. For example, the detection of EVs has been experimen-
tally used for tumor diagnosis (reviewed by Schorey et al. 
and Oltra et al. [96, 97].

In the field of bone microenvironment research, further 
exploration of the role of EVs is very important for eluci-
dating the process of bone metabolism under physiological 
and pathological conditions, and clarifying the pathogenesis 
of certain bone-related diseases. It will also be helpful for 
revealing other biological processes related to the bone sys-
tem. The use of EVs as disease biomarkers or tailored drug 
delivery vehicles in bone-related diseases can be expected. 
For example, OB-derived MVs are the natural vehicle for 
the transfer of hydroxyapatite and calcium to the growth 
interface of bone. It is easy to envision the use of these nat-
ural carriers for calcium supplementation, enhanced bone 
matrix formation, or treatment of bone metabolic diseases 
by appropriately transforming EVs and uploading the rel-
evant drugs. At the present time, however, the manufacture 
of EVs, including purification, isolation, and cloning, is still 
expensive. Because of their nanoscale size, the detection and 
classification of EVs is also challenging [98], and thus the 
development of relevant separation, tracing, and detection 
techniques is critical. Moreover, before EVs can be applied 
in clinical therapies, the difference between in vitro and 
in vivo experimental systems should be carefully considered.
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