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maximal load and stiffness were decreased in the HFD 
group. In addition, bone volume had a tendency to be 
higher in the SD group than in the HFD group. Compared 
with rats receiving an SD, growing rats receiving an HFD 
for 5  weeks had similar bone mineral density but altered 
mechanical properties at the osteotomy defect site.

Keywords  High-fat diet · Tibia · Bone healing · Bone 
strength · Histology

Introduction

Despite advances in bone studies, normal bone healing is a 
challenge in approximately 10% of fractures [1]. The pro-
cess of bone remodeling involves local and systemic regu-
lation, and is affected by various factors, such as age, pre-
vious disease, smoking, pharmacological agents, diabetes 
mellitus, and diet [2, 3].

Fat cells can undergo hypertrophy, with accumulation 
of fat in the body as a result of a high-fat diet (HFD) [4]. 
Foods rich in fat are increasingly common in the Western 
world, and some of its effects on bone healing have been 
studied [5, 6]. Dietary fat has been reported to negatively 
affect bone quality [7], specifically concerning calcium 
excretion, mechanical properties, mineral content, and 
osteoblast formation in adults, including elderly adults [8]. 
The relationship between body fat and bone is mediated 
by adipokines, which modulate bone remodeling and adi-
pogenesis [9]. In addition, homeostatic feedback between 
bone and fat plays an important role in this association. The 
accumulation of body fat also increases the risk of develop-
ing insulin resistance, leading to type 2 diabetes, which can 
be related to delayed bone healing [10, 11].

Abstract  A high-fat diet (HFD) can have a negative effect 
on bone quality in young and old people. Although bone 
healing in children is normally efficient, there is no evi-
dence that children who have a diet rich in fat have com-
promised bone fracture regeneration compared with chil-
dren with recommended dietary fat levels. The purpose of 
the present study was to evaluate the effects of an HFD on 
bone healing in growing female rats. Twenty-six postwean-
ing female Wistar rats were divided into two groups (13 
animals per group): a standard diet (SD) group and an HFD 
(with 60% of energy from fat) group. The rats received the 
assigned diets for 5 weeks, and in the third week they were 
submitted to an osteotomy procedure of the left tibia. Body 
mass and feed intake were recorded during the experiment. 
One day before euthanasia, an insulin tolerance test was 
performed. After euthanasia, the tibiae were removed and 
analyzed by densitometry, mechanical testing, histomor-
phometry, stereology and immunohistochemistry. An HFD 
caused an adaptive response to maintain energetic balance 
by decreasing feed intake and causing insulin insensitiv-
ity. There was no change in bone mineral density, colla-
gen amount and immunostaining for bone formation, but 
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Bone healing in children is efficient in general. How-
ever, body fat accumulation influences bone formation dur-
ing childhood [12]. Moreover, child obesity is a risk factor 
for fractures [13, 14]. This relationship might be explained 
by the extra weight that bones of obese children have to 
endure [15] and by their higher risk of falling [13, 14]. 
The World Health Organization [16] reported that less than 
one quarter of children aged between 6 and 23 months old 
meet the nutritional recommendation for their age. Proper 
nutrition, obtained by a diet with a diversity of nutrients, is 
necessary for the healthy maintenance of the organism, and 
represents a protective measure against age-related osteo-
metabolic disorders [17].

However, there is no evidence that children with HFDs 
have a worse bone healing response compared with chil-
dren whose dietary fat levels are within the recommenda-
tions. Therefore, the purpose of the present study was to 
evaluate the effects of an HFD on bone healing in an exper-
imental model of young female rats. With this study design 
we hope to contribute to knowledge on potential alterna-
tive measures to prevent future bone metabolic problems in 
women, who are at increased risk of developing osteopo-
rosis and obesity. We hypothesized that consumption of an 
HFD impairs bone healing.

Materials and methods

This experimental study was performed according to the 
National Institutes of Health guidelines for the use of 
experimental animals, and was approved by the local Eth-
ics Committee for Animal Experimentation, under process 
number 15/2015.

Twenty-six female postweaning Wistar rats aged 21 days 
were used. They were maintained under standard labora-
tory conditions at a temperature of 22 ± 2 °C and humidity 
of (55 ± 5)% with a 12-h light and dark cycle and with free 
access to water and food.

The rats were equally assigned to two groups (n =  13 
in each): an HFD group and a standard diet (SD) group. 
The SD was produced according to recommendations by 
the American Institute of Nutrition (AIN-93G) [18], and 
the HFD was a modified AIN-93G diet containing 60% of 
the caloric content from saturated fat. The body weight of 
the rats and the feed intake of each group were measured 
weekly.

Surgical procedure

After 3 weeks on their assigned diets, the groups were sub-
mitted to an osteotomy procedure. For standardization pur-
poses and to avoid impaired healing and stabilization, an 
osteotomy model was adopted in which a surgical partial 

transection was performed in the left midshaft tibia as 
described by Paiva et al. [19] and Sartori et al. [20].

The rats were anesthetized with an intramuscular injec-
tion of xylazine (10 mg/kg) and ketamine (50 mg/kg) and 
positioned with an external rotation of the hip and tri-
ple flexion. A skin and muscle incision was made in the 
medial aspect of the left lower leg, exposing the tibia. With 
a 2-cm diameter disc coupled to an electric motor for oral 
implants (Strong 210/105L micro motor, Saeshin Korea), 
set to 3000 rpm, an approximately 1-mm-deep cut was pro-
duced in the left midshaft tibia under saline irrigation. The 
cut depth was controlled and measured with a periodontal 
probe. Subsequently, the tissues were sutured, and the bone 
defect was confirmed by radiography.

At 14 days after surgery the rats were euthanized with 
an overdose of anesthetic (xylazine at 30 mg/kg and keta-
mine at 150  mg/kg), and their left tibiae were removed 
and cleaned of soft tissue. Thirteen tibiae per group were 
obtained, of which eight were stored at −20 °C and later 
used for densitometry and mechanical analyses, and five 
were prepared for histological analysis.

Insulin tolerance test

One day before euthanasia, a 1  mL/kg solution of insu-
lin (1 U/kg, Novolin) was administered by intraperitoneal 
injection. Blood samples were collected via small tail inci-
sions at 0, 20, 40, 60, 100, 120, and 150 min after insulin 
injection. Glucose levels were measured by a glucometer 
(Abbott Optium mini). The area under the glycemic curve 
was assessed to compare insulin sensitivity between the 
groups.

Geometry analysis

Tibiae were individually weighed with a precision balance 
(AC-2000, Marte) with 0.01-g precision. Tibial length was 
measured with a digital caliper with 0.01-mm precision 
(Mitutoyo).

Bone mineral density analysis

Eight tibiae were placed in a plastic vessel containing 
saline at a depth of 2.0  cm and scanned by dual-energy 
X-ray absorptiometry with a DPX-IQ densitometer (Lunar, 
USA). The region of interest (4 mm2) was selected manu-
ally in the midshaft tibia, on the basis of a constant area 
around the surgery site, by a specific protocol using radio-
logic images. The osteotomy site was measured on radio-
graphic images, and the same site was assessed on densi-
tometry images. DPX (version 4.7E, Lunar, USA) designed 
for small animals set at high resolution was used to deter-
mine bone mineral density (BMD) (g/cm2).
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Biomechanical analysis

After densitometry analysis the tibiae were tested by the 
three-point bending test with a universal testing machine 
(DL10000, Emic, São José dos Pinhais, Brazil) coupled 
to a load cell with 500-N capacity. The tibiae were placed 
in supports 25  mm apart, and a force was applied at a 
speed of 1.0  mm/min in the posterior–anterior direction 
of the tibia to generate a tension load on the osteotomy 
site. The software program Tesc (version 13.0, Emic, 
Brazil) created a load versus deformation graph, provid-
ing maximal load (N) and stiffness (N/mm) data.

Histological protocol

Five tibiae were fixed in 4% formaldehyde for 24  h, 
decalcified in 10% ethylenediaminetetraacetic acid, 
dehydrated in an ascending series of alcohols, and dia-
phonized in xylene. Sequentially, the tibiae were embed-
ded in paraffin. Serial 5-µm-thick sagittal sections were 
obtained from the defect region with use of an RM 2165 
microtome (Leica, Houston, USA). Twenty-four of these 
sections were stained with trichrome by the Masson 
method, 12 were stained with the picrosirius red method, 
and four were submitted to immunohistochemistry.

Stereology analysis

The volume of newly formed bone at the osteotomy site was 
estimated in the sections stained with Masson’s trichrome 
with use of an Axio Imager Z2 optical microscope (Zeiss, 
Göttingen, Germany) at ×100 magnification and stereologi-
cal Stereo Investigator software (MBF Bioscience, USA). 
The bone volume to total volume (BV/TV) ratio [21] of the 
defect site was calculated by the Cavalieri method, by our 
counting the points of a grid applied over the newly formed 
bone, on the basis of the known thickness (5 µm).

Histomorphometry analysis

The collagen area at the osteotomy site was evaluated on 
the sections stained with picrosirius red. Analysis was 
performed with polarized light and birefringence, which 
allows the observation of collagen fibers. The percentage 
of collagen area in total area evaluated was measured with 
use of an Axio Imager Z2 optical microscope (Zeiss, Göt-
tingen, Germany) at ×100 magnification and an Axiovision 
4.8 software grid system (Zeiss, Göttingen, Germany).

Immunohistochemistry analysis

The sections were deparaffinized in xylene and hydrated 
in a descending ethanol series. Antigen retrieval was 
performed in Diva Decloaker buffer (Biocare Medical, 
Pacheco, CA, USA) in a pressurized decloaking cham-
ber (Biocare Medical, CA, Pacheco, USA) at 95  °C for 
10  min. Phosphate-buffered saline (PBS) was used to 
wash the sections. Sequentially, the endogenous perox-
idase was blocked by immersion of the sections in 3% 
hydrogen peroxide for 1  h. Then sections were treated 
in 3% bovine albumin serum for 12  h. The incubation 
with primary antibodies was done with anti-osteocalcin 
(Santa Cruz Biotechnology, Santa Cruz CA, USA) and 
anti-osteopontin (Millipore, Temecula, CA, USA). A 
streptavidin–biotin kit (Dako Laboratories, Burlington, 
CA, USA) was used in the subsequent steps. The sec-
tions were incubated in biotinylated secondary antibody 
for 2 h, washed, and treated with streptavidin conjugated 
with horseradish peroxidase for 1 h. After three washes 
in PBS plus 0.1% Triton X-100, the sections were devel-
oped with use of the chromogen 3.3′-diaminobenzidine 
tetrahydrochloride (DAB chromogen kit, Dako Laborato-
ries, Burlington, CA, USA) and washed again with PBS. 
The sections were stained with Harris hematoxylin. As 
a negative control, the specimens were submitted to the 
procedures described above but without use of primary 
antibodies.

Immunolabeling analysis

Positive immunolabeling (osteocalcin-positive and oste-
opontin-positive) areas had a brownish appearance. The 
areas restricted to osteotomy sites were assessed with an 
Axio Imager Z2 optical microscope (Zeiss, Göttingen, 
Germany) at ×100 magnification. With use of AxioVision 
4.8 (Zeiss), these areas were recognized by the color and 
quantified. The ratio of positive immunolabeling areas to 
the total area of interest was evaluated.

Statistical analysis

Statistical analyses were performed with IBM SPSS Sta-
tistics 20 (IBM, Amonk, NY, USA). Comparisons among 
the groups were statistically assessed by Student’s t test 
and the Mann–Whitney test according to data distribu-
tion. ANOVA was performed with application of a Bon-
ferroni adjustment for multiple comparisons for feed 
intake and body weight data. The level of statistical sig-
nificance was set at p ≤ 0.05.
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Results

Body weight and feed intake

Figure  1 show the rats’ body weight and the weekly 
feed intake. The body weight of the groups was simi-
lar at the beginning of the experiment (p =  0.755). All 
rats showed weight gain over the weeks (p < 0.001). The 
HFD group was slightly heavier at the fifth week than 
the SD group; however, this difference was not statisti-
cally significant (p = 0.204).

Feed intake increased over the weeks, except in week 
4, in which the surgical procedure was performed and a 
decrease in feed intake was observed (Fig. 1b). The HFD 
group had a lower feed intake than the SD group in the 
fifth week (p = 0.034).

Insulin tolerance test

The area under the curve analysis showed an elevated 
blood glucose level in the HFD group when compared 
with the SD group (p =  0.01), implying that the HFD 
rats developed insensitivity to insulin (Fig. 2).

Geometry properties

The weight (p =  0.804) and length (p =  0.091) of the 
tibiae were similar between the groups; the results are 
shown in Table 1.

Bone mineral density

The HFD did not affect BMD at the osteotomy site. 
Comparison between the groups showed no significant 
difference (p = 0.302); the results are shown in Table 1.

Biomechanical properties

The three-point bending test showed that HFD rats had 
compromised healing when compared with SD rats. 
Lower maximal load (p  =  0.040) and bending stiffness 
(p = 0.020) were observed in tibiae of HFD rats (Fig. 3).

Histological analysis

Newly formed bone was statistically similar between the 
groups. However, the BV/TV ratio showed a decreasing 

Fig. 1   a Comparison between standard diet (SD) and high-fat diet 
(HFD) groups with similar body weight at the beginning of the 
experiment (p =  0.755). At the fifth week the HFD group became 
slightly heavier than the SD group, without a significant differ-

ence (p = 0.204). b Feed intake increased for the first 3 weeks and 
decreased in the fourth week in both groups. The HFD group showed 
lower feed intake than the SD group in the fifth week (p = 0.034)

Fig. 2   Elevated blood glucose level was found in the high-fat diet 
(HFD) group (p = 0.01) compared with the standard diet (SD) group
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trend in the defect site of the HFD group (p  =  0.054). 
The amount of collagen at the osteotomy site was similar 
between the groups (p = 0.293) (Table 1). Representative 
Masson and picrosirius red stained sections are shown in 
Fig. 4.

Immunohistochemistry analysis

No significant difference was observed in osteocalcin 
(p = 0.496) and osteopontin (p = 0.743) immunolabeling 
at the osteotomy site between the groups (Table 1, Fig. 5).

Discussion

This study compared the effects of an HFD and an SD on 
bone healing in growing rats, and no difference in BMD 
was observed between the groups. However, an HFD 
caused a lower bone maximal load and stiffness, and a 
trend to decreased BV/TV. Expression of osteocalcin and 
osteopontin, as molecules related to bone mineralization 
and consequently to BMD, was unaltered. The same was 
found for the amount of collagen.

HFDs have been associated with obesity development 
[6, 22]. Previously, it was believed that obesity was ben-
eficial to bone [23] because of the increase in mechanical 
load, which stimulates bone formation [24]. This hypoth-
esis had been supported by the argument that bone adapts 
to maintain the optimal size and properties to support a par-
ticular load [25]. However, recent reports indicate that body 
weight increase could be negatively related to bone mass 

because of the possible competitive effect between adipo-
cyte differentiation and osteoblast differentiation, as they 
share a common progenitor [26–28]. Cao and Gregoire [29] 
observed that increased body weight from an HFD did not 
mitigate bone loss. Although external load is considered a 
positive stimulus for bone formation [30], fat accumulation 
is not protective against bone loss. Adipose tissue is not an 
inert organ with a sole function of storing energy; it has 
metabolic functions, secreting proteins that are involved 
in bone metabolism [12, 30, 31]. Indeed, an HFD has a 
greater impact on bone metabolism by endocrine stimulus 
than by mechanical stimulus, regardless of weight.

There is evidence that an HFD can cause negative altera-
tions in bone structure of growing mice [32], and the effect 
of an HFD on bone healing has been investigated by dif-
ferent methods [5, 6]. Histing et al. [6] used the traumatic 
fracture method, and found no effect of an HFD on the 
bone healing process in femur. Brown et  al. [5] used the 
osteotomy procedure, but their experiment was performed 
in adult male mice. To study the effects on growing rats 
we opted to perform an osteotomy [5, 19], which consists 
of a cut on the bone surface, creating a clean defect. This 
model does not match real lesion conditions but confers 
high standardization in biology studies [33]. Moreover, as 
the rats receiving the HFD could have bone fragility, the 
traumatic fractures could yield different bone fragmenta-
tion between groups.

In our study, an HFD, because of bone and body fat 
interplay, delayed restoration of bone resistance after an 
injury indicated by the decreased strength and stiffness. 
The lower maximal load showed that tibiae of the HFD 

Table 1   Weight (g) and length (mm) of total tibia, bone mineral den-
sity (BMD), bone volume per total volume (BV/TV), collagen area 
per total area (Col.Ar/Tt.Ar), osteocalcin area per total area (OC.

Ar/Tt.Ar), and osteopontin area per total area (OPN.Ar/Tt.Ar) at the 
osteotomy site in the high-fat diet (HFD) group and the standard diet 
(SD) group

The mean is given, with the standard deviation in parentheses.

Group Bone geometry and properties

Tibia weight (g) Tibia length (mm) BMD (g/cm2) BV/TV (%) Col.Ar/Tt.Ar (%) OC.Ar/Tt.Ar (%) OPN.Ar/Tt.Ar (%)

HFD 0.72 (0.05) 36.33 (0.60) 30.22 (3.63) 85.11 (7.00) 20.00 (8.7) 0.49 (0.45) 0.87 (0.38)

SD 0.71 (0.07) 35.69 (0.80) 38.65 (9.90) 92.81 (3.08) 23.00 (6.0) 0.54 (0.37) 0.81 (0.46)

Fig. 3   Higher bone maximal 
load (a) and higher stiffness (b) 
were found in the standard diet 
(SD) group compared with the 
high-fat diet (HFD) group
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rats when compared with those of SD rats had compro-
mised biomechanical integrity. Imbalanced remodeling can 
affect bone structure, mass, and strength [34], and there-
fore a morphologic study complemented with a bending 
test allows a broader view of bone quality aspects and its 
capacity to resist fractures [35].

An HFD increases bone quantity and the mineral con-
tent but decreases bone quality related to biomechanical 
properties [25]. This evidence indicates that bone quan-
tity and bone quality play important compensatory roles 
in determining fracture risk. Brown et  al. [5] observed 
that adult mice receiving a HFD had significantly weaker 
healed fractures, which was similar to our results in grow-
ing rats. Although some authors have described a change 
in BMD in animals receiving an HFD [35, 36], this was 
not found in our study, corroborating the results of Macedo 
et al. [37]. Lower maximal load with no alteration in BMD 
has been reported in bone of rats fed with an HFD [38]. 
In a study with postmenopausal women with low-trauma 
fractures, Premaor et al. [39] found that the women had a 
normal BMD score. Therefore, these results confirm that 
BMD alone cannot determine the quality of bone repair, 
although it is considered the gold standard in bone fragility 
evaluation.

A trend for a reduced BV/TV ratio was observed at 
the osteotomy site of our HFD rats. This corroborates the 
results obtained by Cao and Gregoire [29], who assessed 
tibia proximal microstructure of HFD mice and found no 
significant difference in the BV/TV ratio but a 13% reduc-
tion trend in comparison with the control group. In the 
study by Brown et al. [5], the HFD group had lower bone 
callus volume at the 21st day, and the percentage of newly 
formed bone area was lower only at the 28th day. However, 
no differences were found at the 7th and 14th days, which 
is similar to the differences in the present study in new 
bone volume, for which a decreasing trend was observed 
only by the 14th day. In addition, HFD animals can develop 
a larger adipocyte area and a smaller osteoblast area on 
the bone callus when compared with control animals [5]. 
This confirms that adipogenesis and osteoblastogenesis 
are interrelated and that an HFD can cause changes in the 
microenvironment, affecting their balance [40].

Collagen is one of the main bone matrix compounds, 
especially in the early stages of bone regeneration, and 
is important for maintaining bone resistance [41], and 
thus it was evaluated in our study, as described by other 
authors [42]. No difference was observed in collagen 
amount between the groups. In addition, the expression 

Fig. 4   Histological photomi-
crographs of trabecular bone 
and collagen from the defect 
site in the experimental groups. 
The volume of newly formed 
bone at sections stained with 
Masson stain was slightly lower 
in the high-fat diet (HFD) 
group (a) than in the standard 
diet (SD) group (b). Collagen 
fibers observed under polarized 
light in sections stained with 
picrosirius red showed similar 
appearance in the HFD group 
(c) and the SD group (d). Mag-
nification ×100
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of osteocalcin and osteopontin, which are bone formation 
markers [40, 41], showed no difference between the HFD 
group and the SD group, which suggests that an HFD does 
not affect cell adhesion in bone matrix and mineralization. 
These results contrast with the BMD results on the bone 
defect region, which were similar between the groups. As 
cell adhesion and mineralization are inherent stages in bone 
tissue formation and consequently bone repair, these results 
suggest that the effects of an HFD may be involved in the 
osteoblast differentiation stage but do not affect matrix 
formation.

In the present study, HFD rats showed no difference in 
body mass at the end of the experiment, but a lower feed 
intake was observed. Postweaning rats receiving an HFD 
may develop obesity resistance [43], and body weight 
gain results from an imbalance between energy intake and 
energy expenditure [44]. Furthermore, studies have found 
elevated levels of the satiety hormone leptin [12] in the ani-
mals receiving an HFD [6, 43], which might be related to 
the lower feed intake of the HFD group. In addition, both 
groups in our study had a decrease of feed intake in the 
third week, without body weight being affected. Overall, 
despite not causing an increase in body weight, the HFD 
caused a negative effect on bone, confirming that feeding 

with a fat-rich diet can lead to metabolic disorders even in 
the absence of obesity [45, 46].

We found insulin insensitivity the HFD rats in com-
parison with SD rats. It is well known that lipids accumu-
lated in tissues and used as an energy substrate can cause a 
reduction of glucose optimization, and consequent insulin 
resistance [4, 47]. An experimental study showed that HFD 
mice have an increased risk of developing insulin resistance 
[45], corroborating the results of this study. At the same 
time, insulin resistance has been described as a risk factor 
for bone fractures and a negative influence in bone healing 
[10]. Insulin insensitivity might be a possible mechanism 
by which the tibiae of HFD rats had a weaker healing bone.

In this experiment, an HFD with 60% of its energy from 
saturated fat was used. Food rich in saturated fat is common 
in daily diets and can have an adverse effect on bone qual-
ity [48]. Contrarily, improved microstructure parameters 
were found by other authors with use of an HFD composed 
of monounsaturated and unsaturated fat [36, 49]. Therefore, 
it can be inferred that bone is differently affected according 
to the fat type present in the diet.

In conclusion, growing rats receiving an HFD for 
5  weeks had impaired bone healing after an osteotomy 
defect, on the basis of mechanical parameters. Healthy 

Fig. 5   Photomicrographs show-
ing the immunolabeling pattern 
at the osteotomy site for osteoc-
alcin in the high-fat diet (HFD) 
group (a) and the standard diet 
(SD) group (b), and osteopontin 
in the HFD group (c) and the 
SD group (d). Magnification 
×100
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habits during childhood can prevent age-related health 
problems and can contribute to better repair of bone 
lesions. However, the relationship between an HFD and 
bone healing needs more detailed understanding. Further 
studies on metabolic and cellular mechanisms should help 
to clarify the complex relationship between osteoblastogen-
esis and osteogenesis and its impact on bone healing.
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