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for proper bone development and for skeletal integrity [3]. 
Hypophosphatemia leads to bone abnormalities such as 
rickets/osteomalacia, whereas hyperphosphatemia contrib-
utes to vascular calcification in patients with chronic kid-
ney disease (CKD) and hemodialysis and is independently 
associated with cardiac mortality [1, 2, 4]. The kidney is 
the major regulator of Pi homeostasis. Physiological and 
pathophysiological regulation of renal epithelial transport 
of Pi occurs through alterations in the levels of type II 
sodium-dependent Pi (Na/Pi) cotransporters (SLC34 fam-
ily). Recent studies demonstrated that Pi reabsorption is 
regulated through orchestration of the kidney–organ axis, 
including the bone, intestine, parathyroid, and liver. The 
factors that regulate renal Na/Pi transporters are dietary Pi, 
parathyroid hormone (PTH), calcitriol, or 1,25-dihydroxy-
vitamin D3 (the active form of vitamin D, 1,25(OH)2D3), 
fibroblast growth factor 23 (FGF23), and pyridine nucleo-
tides [2, 5–8]. In this review, we focus on the regulation of 
renal NaPi-II transporters by inter-organ communication.

Renal Pi reabsorption

A major regulator of Pi homeostasis is the kidney, and its 
Pi re-absorptive capacity can be increased or decreased to 
accommodate the requirements for Pi. Na+-dependent Pi 
(Na/Pi) transport systems in the brush-border membrane 
(BBM) mediate the rate-limiting step in the overall Pi re-
absorptive process [1, 8]. Pi ions influx from the tubular 
lumen across the apical BBM and efflux at the basolateral 
membrane [1, 8]. Na+-dependent transport maintained by 
basolateral membrane-associated Na+, K+-ATPase drives 
the Na+-gradient process. Na/Pi cotransport across the 
BBM is the target for physiologic/pathophysiologic regula-
tion [8].

Abstract  In this review, we focus on the interconnection 
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Introduction

Inorganic phosphate (Pi) is essential for several biologic 
functions, such as intracellular signal transduction, energy 
exchange, production and function of cell membranes, and 
the composition of hydroxyapatite in the bones and teeth 
[1, 2]. Serum Pi levels are maintained within the normal 
range by a number of regulatory hormones. These modu-
late the intestinal uptake of Pi, its mobilization from bone, 
and renal excretion. Maintaining serum Pi levels is critical 
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Three types of Na/Pi cotransporters (types I–III) are 
located in the apical membrane of renal proximal tubular 
cells [1, 8]. Type I Na/Pi (SLC17A1/NPT1/NaPi-I/OATv1) 
is expressed in the liver and the kidney [1]. NPT1 was iden-
tified in an expression cloning study using Xenopus lae-
vis oocytes based on the Na/Pi transport, and it was also 
localized to the apical side of the proximal tubules [1]. 
Following in vitro studies indicated that this transporter is 
involved in the proximal tubule transport of organic ani-
ons rather than Pi. Recently, Iharada et  al. demonstrated 
that NPT1 mediates urate export into urine [9]. The role of 
NPT1 in Pi reabsorption remains unclear [1].

The SLC34 family, SLC34A1 (NaPi-IIa), and SLC34A3 
(NaPi-IIc), are major functional transporters in the proxi-
mal tubular cells [1, 8]. While the overall molecular struc-
ture is predicted to be very similar, there are important dif-
ferences between the two Na/Pi cotransporters. NaPi-IIa 
is electrogenic, coupling Pi transport (at physiologic pH 
mainly HPO42−) with the transport of three Na+ ions. In 
contrast, NaPi-IIc is electroneutral, only transporting two 
Na+ ions for every Pi. In addition, type III transporters (the 
SLC20A20 family, PiT2) are localized at the BBM of the 
proximal tubule cells [10–12].

Little is known about the molecules involved in Pi 
translocation across the cell membrane and the efflux of 
Pi across the basolateral membrane. The Pi exporter, xeno-
tropic and polytropic retrovirus receptor 1 (XPR1), was 
recently identified [13–16]. XPR1 is a highly conserved 
multi-pass transmembrane protein originally identified 
as a receptor for xenotropic and polytropic murine retro-
viruses [13, 14]. Recent studies indicate that XPR1 has a 
specific role as a Pi exporter in the differentiation of tissue 
macrophages [15, 16]. XPR1 mutants show impaired bone 
remodeling that is indicative of osteoclast defects [14]. We 
previously reported that osteoclasts have a unique Pi efflux 
system [17] that is involved in the continuous release of 
Pi at the basolateral membrane to prevent the accumula-
tion of intracellular Pi [17]. Giovannini et al. demonstrated 
that XPR1 mediates Pi export in cultured mammalian cells 
[18].

XPR1 mutations are reported to cause primary familial 
brain calcification [19]. These mutations alter phosphate 
export, implicating XPR1 in primary familial brain calci-
fication [19]. Thus, XPR1 might be involved in the export 
of Pi from mammalian cells, but the role of this exporter in 
renal epithelial cells remains unknown.

A role for type II Na/Pi transporters (NaPi-IIa and NaPi-
IIc or Npt2a and Npt2c) on renal Pi reabsorption is reported 
in rodents and humans [1]. In rodents, NaPi-IIa is impor-
tant for renal Pi cotransport activity and Npt2a (NaPi-IIa)-
knockout (Npt2a−/−) mice have hypophosphatemia and 
hyperphosphaturia [20]. Serum 1,25(OH)2D concentrations 
and serum and urine Ca2+ concentrations are significantly 

increased in Npt2a−/− mice [1, 20, 21]. Npt2a−/− mice 
exhibit increased urinary Pi excretion, ~70  % decrease 
in renal BBM vesicle Na/Pi cotransport, and hypophos-
phatemia [20]. Npt2a−/− mice also over-express Npt2c, 
which may support the residual renal Pi reabsorption func-
tion. These observations indicate that Npt2a has a major 
role in Pi reabsorption in mice.

In humans, several NaPi-IIa mutations have been 
reported. Prie et  al. reported two patients with NaPi-IIa 
mutations (A48F and V147M) exhibiting urolithiasis or 
bone demineralization and persistent idiopathic hypophos-
phatemia with lower maximal renal Pi reabsorption [22]. 
Virkki et al., however, demonstrated that reduced Pi trans-
port activity by the NaPi-IIa mutations cannot fully explain 
the massive phosphaturia observed [23]. In addition, muta-
tion of human NaPi-IIa causes autosomal recessive Fanconi 
syndrome with hypophosphatemic rickets [24]. This muta-
tion of NaPi-IIa is a homozygous in-frame duplication. 
Functional studies indicate a complete loss-of-function of 
mutant NaPi-IIa [24]. Accumulation of mutant NaPi-IIa 
protein in the cells may have toxic effects leading to Fan-
coni syndrome. Genetic analysis detected a homozygous 
in-frame duplication, leading to the insertion of seven addi-
tional amino acids [24, 25]. Heterozygous carriers of the 
mutation are clinically normal, suggesting that the mutation 
does not have a dominant negative effect [24, 25]. Fanconi 
syndrome is detected in the human carriers of the mutation, 
but not in Npt2a−/− mice. Thus, the disruption of human 
NaPi-IIa impairs overall renal Pi reabsorption, providing 
evidence for the critical role of NaPi-IIa in human renal 
Pi handling. The precise role of the NaPi-IIa transporter in 
humans, however, remains unknown.

In contrast, NaPi-IIc (Npt2c) may be a major functional 
Na/Pi cotransporter in the human kidney because the NaPi-
IIc mutation causes hereditary hypophosphatemic rick-
ets with hypercalciuria (HHRH) [26–29]. Clinical studies 
suggest that HHRH is a primary renal Pi wasting disorder, 
resulting in increased serum 1,25(OH)2D concentrations 
with associated intestinal Ca2+ hyperabsorption, hyper-
calciuria, and rickets/osteomalacia [1, 30]. Functional 
studies suggest that homozygous or compound heterozy-
gous mutations of NaPi-IIc significantly decrease Na/Pi 
transport activity in Xenopus oocytes and OK cells [31]. 
In rodents, NaPi-IIc (Npt2c) is important for Pi reabsorp-
tion in weanling animals [32], but mediates a very small 
percentage of Pi reabsorption in adult animals [32]. Npt2c 
knockout mice (Npt2c−/−) mice exhibit hypercalciuria and 
higher levels of serum 1,25(OH)2D concentrations, but 
not hypophosphatemia, rickets, or nephrocalcinosis [33]. 
Furthermore, only Npt2a/Npt2c double-KO mice exhibit 
a physiology similar to that of patients with HHRH [34]. 
NaPi-IIc (Npt2c) has a minor role in Pi reabsorption in 
mice [1, 21, 33]. More recently, Myakala et al. showed that 
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renal-specific and inducible depletion of NaPi-IIc in mice 
does not affect Pi or Ca homeostasis [35]. Neither Npt2a−/− 
nor Npt2c−/− mice exhibit bone abnormalities such as rick-
ets/osteomalacia [20, 33]. Based on these findings, we sug-
gest that human NaPi-IIc is more important than mouse 
NaPi-IIc for Pi homeostasis.

Finally, the marked differences in the phenotypes of 
Npt2a−/− and Npt2c−/− mice may be due to differential 
dominance of the transporters for Pi homeostasis [1, 33]. 
The role of NaPi-IIa (Npt2a) and NaPi-IIc (Npt2c) in renal 
Pi reabsorption differs between rodents and human. It 
remains unclear, however, why regulation of NaPi-IIa does 
not compensate for the loss-of-function mutation of NaPi-
IIc in HHRH as it does in the absence of NaPi-IIc, such as 
in null mice.

Intestinal Pi absorption

The mechanisms and regulation of intestinal Pi absorption 
remain poorly defined. Intestinal absorption of Pi is char-
acterized in several mammalian and avian species [36–40]. 
In intestinal Pi absorption, both saturated and unsaturated 
systems have been described. Unsaturated systems depend 
on the paracellular route via tight junctions. Saturated com-
ponents are Na+-dependent and Na+-independent Pi trans-
port systems in the apical membrane of intestinal epithelial 
cells [41]. Marks et al. demonstrated that Pi concentrations 
in the intestinal lumen are typically in the low millimolar 
range, and under these conditions Na+-independent trans-
port is likely to be the predominant pathway for Pi absorp-
tion in vivo [42, 43]. Based on studies using BBM vesicles 
of the small intestine, both Na+-dependent and Na+-inde-
pendent components are present, with similar characteris-
tics and pH dependence [44]. Candeal et al. characterized 
Na+-independent components in the human intestinal cell 
line Caco2BBE [45]. Na+-independent components are 
dependent on de novo RNA and protein synthesis [45]. The 
molecules involved in Na+-independent Pi transport, how-
ever, remain unknown.

Na/Pi absorption is mediated primarily via the type 
IIb sodium-phosphate transporter (NaPi-IIb, Npt2b) [41, 
46–52]. Numerous studies revealed that the regional pro-
file for intestinal phosphate absorption differs between rats 
and mice. In rats, the highest rates of transport occur in the 
duodenum and jejunum, while in mice maximal absorp-
tion occurs in the ileum. During fasting and low dietary 
phosphate intake, Pi absorption may be mediated by NaPi-
IIb, but when Pi levels are elevated post-prandially, trans-
port could also occur via a Na+-independent transcellular 
or paracellular pathway. The type III Na/Pi cotransporter 
PiT-1 is expressed in the apical membrane of enterocytes. 
The role of PiT-1 in Na/Pi cotransport remains unknown.

Mutation of human NaPi-IIb causes pulmonary alveolar 
microlithiasis [53]. Deposition of Ca/Pi microliths through-
out the lungs is observed in patients with pulmonary alve-
olar microlithiasis. NaPi-IIb is specifically expressed in 
type II alveolar cells, and NaPi-IIb mutations abolish nor-
mal gene function. Homozygous NaPi-IIb KO mice are 
embryonic lethal. Based on several studies of heterozygous 
NaPi-IIb KO (Npt2b+/−) mice and conditional KO mice [1, 
54–58], NaPi-IIb is the most important transcellular Na/Pi 
transporter. The roles Pi transporters in the small intestine, 
however, remain unknown. Particularly, Na+-independent 
Pi transporters require further characterization. The role of 
intestinal NaPi-IIb in Pi homeostasis is clearly more impor-
tant than previously realized in mice.

Regulation of renal NaPi‑IIa and NaPi‑IIc 
by inter‑organ communication

Parathyroid glands secrete PTH into the blood. PTH 
induces phosphaturia by decreasing Pi reabsorption in the 
kidney [5, 59]. 1,25(OH)2D3, which is synthesized in the 
kidney, acts in the gut to increase the absorption of dietary 
Pi and calcium, and in the bone to promote mobilization of 
these ions. As a result, blood levels of both Pi and calcium 
tend to increase. In addition to PTH and 1,25(OH)2D3, 
recent studies identified a novel regulator of Pi levels: 
fibroblast growth factor (FGF23) [2, 6]. This bone-derived 
hormone is currently considered to be the principal regu-
lator of phosphaturia. FGF23 induces Pi excretion and 
inhibits vitamin D synthesis in the kidney, thus maintain-
ing systemic Pi homeostasis [2, 6]. The parathyroid–kidney 
and bone–kidney axis are involved in two known phospha-
turic factors, PTH and FGF23. In addition, recent studies 
demonstrated that the intestine and liver also contribute to 
systemic Pi homeostasis [2, 6]. For example, the control 
of renal Pi excretion by dietary Pi may involve the intes-
tine–kidney axis. Nicotinamide is controlled by systemic 
Pi homeostasis. The liver–kidney axis is involved in nico-
tinamide metabolism. Below we describe the kidney–organ 
axis in Pi homeostasis (Fig. 1).

Bone–kidney axis

FGF23 is a hormone that promotes renal Pi excretion by 
decreasing its reabsorption in the proximal tubules while 
concurrently reducing serum 1,25(OH)2D3 by decreas-
ing its biosynthesis and increasing its metabolism [60]. 
FGF23 requires an additional cofactor, klotho, to bind 
with high affinity and signal efficiently through its cog-
nate FGF receptor. Klotho and FGF receptor 1 (IIIc) form 
a heterodimeric receptor for FGF23 [61, 62]. We previ-
ously reported that administration of FGF23 containing the 
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R179Q mutation (FGF23M) decreased the levels of Na/
Pi transport activity and NaPi-IIa and NaPi-IIc expression 
[63, 64]. FGFR1 is the predominant receptor mediating the 
hypophosphatemic actions of FGF23 by decreasing BBM 
levels of NaPi-IIa and NaPi-IIc expression with FGFR4, 
which has an additional but relatively minor role [65]. 
FGF23 regulates proximal tubular 1,25(OH)2D3 biosyn-
thesis by a different receptor than that for the inhibition of 
Pi transport reuptake in the proximal tubule [66–68]. The 
mechanisms of FGF23 downregulation of NaPi-IIa are well 
studied include MAPK-dependent NHERF1 phosphoryla-
tion and endocytosis into cellular compartments [69–71].

The downregulation of NaPi-IIa by FGF23 is depend-
ent on the presence of klotho, which is mainly expressed in 
the distal tubules. In the distal tubule-specific depletion of 
klotho–conditional KO mice, downregulation of NaPi-IIa is 
not observed after injection of FGF23. These findings sug-
gest that complex FGF23/klotho/FGFR in the distal tubules 
is essential for the reduction of NaPi-IIa transporters [72].

We previously reported that administration of FGF23 
containing the R179Q mutation (FGF23M) decreased the 
levels of Na/Pi transport activity and NaPi-IIc expression 
in Npt2a−/− [73]. We used Npt2a−/− mice and analyzed the 
localization and protein levels of Npt2c [73]. As described 
previously, the levels of Npt2c protein are increased in 
the proximal tubules in Npt2a−/− mice [73]. In Npt2a−/− 
mice, FGF23 treatment led to a reduction of renal BBM 
Na/Pi cotransport activities at 3 and 12  h after injection 
(H. Segawa et al., unpublished data). Urinary Pi excretion 

was significantly increased at 3 and 12  h. After FGF23 
treatment, at 3 h, the amounts of NaPi-IIc protein were not 
changed when compared with non-injected controls. The 
effect of FGF23 on the rapid reduction of Na/Pi cotrans-
port activity may be mediated by the phosphorylation-
dependent inactivation of NaPi-IIc protein, but not NaPi-IIc 
protein levels. These data suggest that FGF23-dependent 
phosphaturic actions in Npt2a−/− mice are associated with 
NaPi-IIc inactivation in the apical membrane. Finally, the 
difference in the PTH regulation between NaPi-IIa and 
NaPi-IIc could affect the time scale of the downregulation 
by PTH. The downregulation of NaPi-IIa by PTH occurs 
within 1 h, while NaPi-IIc regulation takes up to four times 
longer (H. Segawa et al., unpublished data).

Parathyroid–kidney axis

PTH decreases the levels of NaPi-IIa and NaPi-IIc protein 
in the BBM [2, 6, 36, 74]. In response to PTH, NaPi-IIa 
undergoes clathrin-dependent endocytosis and is targeted 
to lysosomes [75]. Thus, PTH inhibits Pi transport by pro-
moting Npt2a endocytosis and lysosomal degradation [5, 
6, 74–76]. PTH receptors are expressed on both the apical 
and basolateral surfaces of the renal proximal tubular cells. 
The apical PTH1 receptor is signaled via a protein kinase 
C (PKC) pathway while the basolateral PTH1 receptor is 
signaled via a protein kinase A (PKA) pathway [77]. Pre-
vious studies suggest that PTH increases the phosphoryla-
tion of Na+/H+ exchanger regulatory factor-1 (NHERF-1) 

Fig. 1   Regulation of renal 
reabsorption by the inter-organ 
communication. a Bone–kid-
ney axis: FGF23-dependent 
downregulation of NaPi-IIa is 
associated with MAPK-depend-
ent NHERF1 phosphorylation 
and endocytosis into cellular 
compartments. b Parathyroid–
kidney axis: PTH-dependent 
activation of either PKC or PKA 
in the renal proximal tubule 
cells inhibits Na+-dependent Pi 
transport activity. c Intestine–
kidney axis: Intestinal phos-
phatonin secretion induced by 
a high Pi diet may be involved 
in the downregulation of renal 
NaPi-IIa, NaPi-IIc transport-
ers. d Liver–kidney axis: Liver 
phosphatonin secretion induced 
by hepatectomy activates renal 
Nampt function and down-
regulates NaPi-IIa, NaPi-IIc 
transporters
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[59, 78–80]. Weinman et  al. demonstrated that biochemi-
cal modification of the serine77 of NHERF-1 decreases its 
binding affinity to NaPi-IIa, resulting in dissociation of the 
NaPi-IIa/NHERF-1 complex, and that this modification 
is required for PTH-dependent inhibition of Na/Pi trans-
port [59, 79, 80]. They also indicated an important role for 
threonine 95 of the PDZ1 domain of NHERF-1 [80]. These 
data suggest that the phosphorylation of threonine 95 and 
the phosphorylation of serine 77 of NHERF-1 are essential 
for PTH-mediated inhibition of Pi transport [80]. In addi-
tion, NHERF1-KO mice exhibit PTH-resistant urinary 
Pi wasting, nephrocalcinosis, and osteopenia [81]. Thus, 
NHERF-1 is involved in the PTH regulation of NaPi-IIa 
endocytosis.

By contrast, in the regulation of PTH, NaPi-IIc is down-
regulated through a microtubule-dependent pathway that 
does not involve lysosomal degradation [74, 82]. After 
administration of PTH, the intensity of immunoreac-
tive signals in apical and subapical type IIc transporters 
decrease in the renal proximal tubular cells in thyroparathy-
roidectomized rats [82]. Colchicine completely blocks the 
internalization of NaPi-IIc transporters [82]. In addition, 
leupeptin prevents PTH-mediated degradation of the NaPi-
IIa transporter in lysosomes, but has no effect on PTH-
mediated degradation of the lysosomal NaPi-IIc transport-
ers [82]. The precise pathway for the decrease in the apical 
membrane expression of NaPi-IIc has not been determined, 
but recent evidence suggests that the protein is shifted to 
the base of the microvillar compartment where it under-
goes in  situ dissolution. Villa-Bellosta et  al. reported that 
NaPi-IIc interacts with NHERF-3 in the apical membrane 
in OK cells and proximal tubules [83]. In NHERF-3-KO 
mice, NaPi-IIc translocation into the apical membrane is 
impaired after stimulation by a low Pi diet [84]. NaPi-IIc 
may bind indirectly to ezrin. The PDZ domain-containing 
protein NHERF-3, as an intermediate linking NaPi-IIc to 
ezrin, is necessary for many aspects of NaPi-IIc regulation. 
In addition, internalization of NaPi-IIc might be involved 
in Rab11-dependent recycling endosomes in the proximal 
tubular cells (H. Segawa et al., data not shown).

Intestine–kidney axis

Dietary Pi is the most important factor in body Pi homeo-
stasis. Dietary Pi levels control active vitamin D synthe-
sis, PTH secretion, and renal Pi reabsorption [36–40, 85]. 
Renal Pi reabsorption is a key determinant of serum Pi 
levels in the body [36]. A low-Pi diet can lead to almost 
100 % renal reabsorption of filtered Pi, whereas a high-Pi 
diet leads to decreased proximal tubular Pi reabsorption. 
The factors controlling the dietary adaptive system are not 
known, but do not include PTH, vitamin D, growth hor-
mone, thyroid hormone, calcitonin, or FGF23 [36, 85]. 

Several reports indicate that intestinal mucosal cells sense 
the dietary Pi content and secrete intestinal phosphatonin 
(a putative phosphaturic factor) [36]. Intestinal phospha-
turic factors might be involved in the rapid regulation of 
renal type II transporters by the intestinal–kidney axis [86]. 
Burnts et al. showed that intraduodenal infusion of 1.2 M 
sodium phosphate, but not sodium chloride, increases Pi 
excretion within 20  min [86]. The response is not due to 
altered serum levels of Pi, PTH, FGF23, secreted frizzled-
related protein 4; an increase in glomerular filtration rate; 
or the result of a neural reflex [86]. Burnts et al. concluded 
that an intestinal Pi sensor triggers the release of a phos-
phaturic factor from the duodenal mucosa [86]. Marks 
et  al. demonstrated that matrix extracellular phosphogly-
coprotein might be the intestinal phosphatonin proposed 
by Berndt et al. [87]. To date, however, there is no further 
published information on the mechanisms underlying this 
proposed entero-renal reflex or the identity of the puta-
tive phosphatonin [86, 88]. An intestinal Pi sensor may be 
involved in the secretion of FGF23 from the bone and also 
the regulation of the 1,25(OH)2D3 levels.

We also characterized Pi homeostasis in Npt2b+/− mice. 
Npt2b+/− mice have significantly reduced intestinal Na/
Pi cotransport activity in their BBMVs [56]. At 4  weeks 
of age, the Npt2b+/− mice showed hypophosphatemia and 
low urinary Pi excretion [56]. Serum FGF23 levels were 
significantly reduced and 1,25(OH)2D3 levels were sig-
nificantly increased in the Npt2b+/− mice compared with 
those in the Npt2b+/+ mice, and their Npt2b mRNA levels 
were reduced to 50 % that in the Npt2b+/+ mice [56]. In 
contrast, renal Npt2a and Npt2c transporter protein levels 
were significantly increased in the Npt2b+/− mice [56]. At 
20 weeks of age, the Npt2b+/− mice showed hypophospha-
turia and reduced Na/Pi cotransport activity in the distal 
intestine [56]. Recent reports revealed the importance of 
Npt2b in both acute and chronic adaptation of intestinal 
Pi transport, and FGF23 secretion [89]. It is possible that 
Npt2b is involved in the secretion of an intestinal phospha-
tonin mediated by dietary Pi. Further studies are needed to 
clarify the regulation of renal Pi excretion by the intestinal–
kidney axis.

Liver–kidney axis

The number of patients receiving liver transplantation has 
steadily increased, and thus the incidence of partial hepa-
tectomy (PH) has also increased [90]. Hypophosphatemia 
frequently occurs after liver resection [91–93]. Acute 
hypophosphatemia causes septicemia and is associated with 
a poor prognosis [93, 94]. The phenomenon is highly clini-
cally relevant because numerous patients develop signifi-
cant hypophosphatemia after hepatectomy requiring large 
doses of Pi replacement to maintain metabolic homeostasis 
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[91–93]. In many patients, urinary Pi excretion is mark-
edly increased [95]. Post-hepatectomy hypophosphatemia 
is associated with hyperphosphaturia [96]. For a long time, 
the increased metabolic demands by the regenerating liver 
were viewed as the underlying pathologic mechanism of 
hypophosphatemia [93]. The magnitude of Pi uptake by 
the recovering liver, however, cannot explain the severity of 
hypophosphatemia. Post-hepatectomy hypophosphatemia 
is associated with increased FePi unrelated to intact FGF23, 
FGF7, or secreted frizzled-related protein 4 as phosphaturic 
factors [97]. Therefore, other factors must have a role in 
the pathogenesis of hypophosphatemia. These observations 
suggest that unknown factors are involved in the control of 
renal Pi in the liver–kidney axis.

Nicotinamide (an amide derivative of the water-solu-
ble vitamin B3) is a potentially interesting alternative to 
phosphate binders. In vitro and in vivo data show that nic-
otinamide reduces hyperphosphatemia by inhibiting Na/
Pi cotransport in the renal proximal tubules and the intes-
tine [98–100]. Several recent clinical studies explored the 
potential value of nicotinamide in Pi control (as well as its 
effects on lipid) [101, 102]. How nicotinamide regulates 
systemic Pi homeostasis, however, remains unknown. We 
investigated the mechanisms for the reduction of NaPi-II 
(Npt2a, Npt2b, Npt2c) protein caused by abnormal cel-
lular NAD metabolism. Nicotinamide phosphoribosyl-
transferase (Nampt) is a rate-limiting enzyme for NAD+ 
synthesis from nicotinamide [103–105]. Elevation of 
Nampt protein is a candidate cause of hyperphosphaturia 
in PH animals [106]. Abnormal NAD metabolism is also 
a candidate cause of hyperphosphaturia with PH [106]. 
Nicotinamide inhibits intestinal and renal Na/Pi trans-
port activity in normal rats [99]. Injections of pharmaco-
logically relevant doses of nicotinamide increase NAD 
in inverse proportion to Na/Pi transport [98]. Indeed, we 
demonstrated that NaPi-IIa, IIb, and IIc protein levels in 
the kidney and small intestine are markedly decreased in 
PH animals, suggesting that the reduction of the trans-
porters in PH animals is similar to that in nicotinamide-
treated animals [106]. Thus, we demonstrated the possi-
bility that hypophosphatemia and hyperphosphaturia are 
observed after 70  % hepatectomy due to abnormality of 
NAD/nicotinamide metabolism in the liver and kidney 
[106]. In addition, the Nampt inhibitor FK866 influences 
Pi metabolism in normal mice [106]. The expression of 
NaPi-IIa (Npt2a) and NaPi-IIc (Npt2c) is increased in the 
proximal tubules by FK866 treatment. Thus, the mecha-
nism for the increase in Nampt following hepatectomy 
remains unknown, but nicotinamide may be metabolized 
in the liver–kidney axis and may be involved in the regu-
lation of Nampt protein in the proximal tubules [106]. A 
putative phosphatonin in the liver may be involved in reg-
ulation of the renal Nampt activity and NAD metabolism 

in the mitochondria of proximal tubular cells (S. Tatsumi 
et al., data not shown).

CKD and inter‑organ communication

Pi retention is a major harmful complication of CKD [107–
109], leading to secondary hyperparathyroidism, uremic 
bone disease, and progression to end-stage renal disease. 
Hyperphosphatemia remains a risk factor for arterial cal-
cification contributing to high cardiovascular mortality in 
patients with CKD [110, 111]. Tubular reabsorption of Pi 
decreases in proportion to the severity of CKD. As glomeru-
lar filtration rate diminishes, the degree of Pi excretion per 
nephron increases, and at a very low filtration rate levels 
tubular reabsorption of Pi is 10 to 20 %, or 80 to 90 % of 
the filtered load of Pi is excreted into the urine. In the early 
stages of CKD, the serum Pi concentration is maintained 
within the normal range by increases in the serum concentra-
tion of PTH and FGF23 [112–114], which serve to increase 
the urinary excretion of Pi, and decrease serum 1,25(OH)2D3 
concentrations, leading to decreased Pi absorption from the 
gastrointestinal tract. In more advanced stages of kidney dis-
ease, changes in the PTH, FGF23, and 1,25(OH)2D3 levels 
are no longer sufficient to prevent hyperphosphatemia [115]. 
In CKD, increased PTH and FGF23 production enhances the 
excretion of Pi per nephron, thereby restoring normophos-
phatemia [116]. In CKD patients, however, FGF23 reduces 
1,25(OH)2D3 levels, contributing to an increase in PTH 
secretion, which occurs after FGF23 levels increase [116]. 
This process disrupts the bone–kidney–parathyroid endo-
crine axis and eventually fails to prevent the development of 
hyperphosphatemia as CKD progresses.

In addition, Nampt is a proinflammatory cytokine that has 
gained considerable attention in recent years with respect to 
induction of cardiovascular disease [117]. The Nampt path-
way (liver–kidney axis) is also activated in CKD and dia-
betic nephropathy animals [96, 97]. These observations sug-
gest that the bone–parathyroid–kidney and the liver–kidney 
axes may be activated to maintain Pi homeostasis in CKD. 
A new pathway of Pi metabolism in the liver–kidney axis 
may elucidate the abnormal Pi metabolism in CKD.
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