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Abstract In response to various stresses including viral

infection, nutrient deprivation, and stress to the endoplas-

mic reticulum, eukaryotic translation initiation factor 2

alpha (eIF2a) is phosphorylated to cope with stress induced

apoptosis. Although bone cells are sensitive to environ-

mental stresses that alter the phosphorylation level of

eIF2a, little is known about the role of eIF2a mediated

signaling during the development of bone-resorbing

osteoclasts. Using two chemical agents (salubrinal and

guanabenz) that selectively inhibit de-phosphorylation of

eIF2a, we evaluated the effects of phosphorylation of

eIF2a on osteoclastogenesis of RAW264.7 pre-osteoclasts

as well as development of MC3T3 E1 osteoblast-like cells.

The result showed that salubrinal and guanabenz stimu-

lated matrix deposition of osteoblasts through upregulation

of activating transcription factor 4 (ATF4). The result also

revealed that these agents reduced expression of the

nuclear factor of activated T cells c1 (NFATc1) and

inhibited differentiation of RAW264.7 cells to multi-

nucleated osteoclasts. Partial silencing of eIF2a with RNA

interference reduced suppression of salubrinal/guanabenz-

driven downregulation of NFATc1. Collectively, we

demonstrated that the elevated phosphorylation level of

eIF2a not only stimulates osteoblastogenesis but also

inhibit osteoclastogenesis through regulation of ATF4 and

NFATc1. The results suggest that eIF2a-mediated signal-

ing might provide a novel therapeutic target for preventing

bone loss in osteoporosis.
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Introduction

Osteoblasts and osteoclasts are the two major types of bone

cells in bone remodeling. Osteoblasts are bone-forming

cells originated from mesenchymal stem cells, while

osteoclasts are bone-resorbing cells derived from hemato-

poietic stem cells. These two types of cells orchestrate a

complex remodeling process, in which mineralized bone

matrix is degraded by osteoclasts and newly formed by

osteoblasts [1, 2]. In order to maintain proper bone mass,

exercise and calcium rich diets are recommended. How-

ever, a failure of the coordinated action such as in osteo-

porosis, which is a common form of bone loss prevailing

among postmenopausal women, increases risk of bone

fracture [3]. In order to develop therapeutic drugs for

treatment of osteoporosis, an understanding of signaling

pathways that govern osteoclastogenesis—development of

pre-osteoclasts (monocyte/macrophage) to multi-nucleated

osteoclasts—is required. In this paper, we examined a

signaling pathway for osteoclastogenesis that is mediated

by eukaryotic translation initiation factor 2 alpha (eIF2a).

A protein complex, eIF2, is a heterotrimer essential for

protein synthesis, and eIF2a is one of its major components

together with eIF2b and eIF2c [4]. In response to various

stresses such as oxidation, radiation, and stress to the
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endoplasmic reticulum that potentially lead to cellular

apoptosis, a serine residue of eIF2a is phosphorylated. This

action would initiate a pro-survival program by lowering

general translation efficiency except for a group of genes

that includes activating transcription factor 4 (ATF4) [5].

The ATF4 is a transcription factor critical for osteoblas-

togenesis and bone formation [6]. In osteoblasts elevation

of phosphorylated eIF2a (p-eIF2a) is reported to stimulate

the expression of ATF4 [7, 8]. Little is known, however,

about potential effects of p-eIF2a on development of

osteoclasts.

Herein we addressed a question: Does elevation of

p-eIF2a alter cellular fates of pre-osteoclasts? Osteoblasts

and osteoclasts extensively interact through molecular

pathways including RANK (receptor activator of nuclear

factor kappa-B)/RANKL (RANK ligand)/OPG (osteopro-

tegerin) signaling [9, 10] and Wnt signaling [11]. There-

fore, osteoclastogenesis is potentially regulated by

signaling molecules that also affect osteoblastogenesis.

Furthermore, osteoclastogenesis is influenced by various

stresses such as estrogen deficiency and disuse or unload-

ing [12]. Since elevation of p-eIF2a can provide stress-

relieving effects on osteoblasts, we hypothesized that ele-

vation of p-eIF2a suppresses differentiation of pre-osteo-

clasts to multi-nucleated osteoclasts.

In this study, we employed two chemical agents (sa-

lubrinal and guanabenz) and examined the effects of ele-

vated p-eIF2a on osteoclastogenesis. These two agents

selectively inhibit de-phosphorylation of p-eIF2a by

interacting with protein phosphatase 1, PP1 [13, 14]. The

signaling pathway, mediated by eIF2a, is not directly

linked to known agents for osteoclastogenesis such as

calcium binding agents and RANKL. Currently, the most

common medications, prescribed for preventing bone loss

in patients with osteoporosis, are bisphosphonates. Bis-

phosphonates preferentially bind to calcium in bone and

induce apoptosis of osteoclasts [15]. Other medications

using neutralizing antibodies targeted to RANKL would

block osteoclastogenesis by mimicking OPG’s binding to

RANKL [16]. The RANKL is a cytokine belonging to the

tumor necrosis factor family, and is involved in T cell-

dependent immune responses as well as differentiation and

activation of osteoclasts [9, 10]. To our knowledge, no

therapeutic agents for osteoporosis have been targeted to

eIF2a-mediated signaling.

We employed MC3T3 E1 osteoblast-like cells [17] and

RAW264.7 cells [18] to evaluate osteoblastogenesis and

osteoclastogenesis, respectively. In the presence and

absence of salubrinal and guanabenz, MC3T3 E1 cells

were cultured in an osteogenic medium for evaluation of

matrix deposition, while RAW264.7 cells were cultured in

an osteoclast differentiation medium for evaluation of

multi-nucleation. Alizarin Red S staining was performed to

evaluate osteoblast mineralization for MC3T3 E1 cells, and

TRAP staining was conducted to determine multi-nucle-

ated osteoclasts proliferation for RAW264.7 cells. To

analyze molecular signaling pathways, quantitative real-

time PCR and Western blot analysis were conducted. The

mRNA levels of ATF4, osteocalcin, c-Fos [19], tartrate-

resistant acid phosphatase (TRAP) [20], and osteoclast-

associated receptor (OSCAR) [21] were determined. The

protein expression levels of eIF2a, ATF4, and nuclear

factor of activated T cells c1 (NFATc1) [22] were also

determined. The NFATc1 is a transcription factor, which is

critically important for development and activation of

osteoclasts in response to RANKL. The RNA interference

using siRNA specific to ATF4 and eIF2a was conducted to

evaluate the role of ATF4 in osteoblastogenesis and eIF2a
in osteoclastogenesis.

Materials and methods

Cell culture

The MC3T3 E1 mouse osteoblast-like cells (clone 14—

MC3T3 E1-14; and no clonal cells in supplementary fig-

ures), and RAW264.7 mouse pre-osteoclast (monocyte/

macrophage) cells were cultured in aMEM containing

10 % fetal bovine serum and antibiotics (50 U/ml peni-

cillin, and 50 lg/ml streptomycin; Life Technologies,

Grand Island, NY, USA). Cells were maintained at 37 �C

and 5 % CO2 in a humidified incubator. Cell mortality and

live cell numbers were determined 24 h after the treatment

with 20 ng/ml RANKL (PeproTech, Rocky Hills, NC,

USA) in response to 0.1–20 lM salubrinal or 1–20 lM

guanabenz acetate (Tocris Bioscience, Ellisville, MO,

USA). Cells were stained with trypan blue and the num-

bers of live and dead cells were counted using a

hemacytometer.

Quantitative real-time PCR

Total RNA was extracted using an RNeasy Plus mini kit

(Qiagen, Germantown, MD, USA). Reverse transcription

was conducted with high capacity cDNA reverse tran-

scription kits (Applied Biosystems, Carlsbad, CA, USA),

and quantitative real-time PCR was performed using ABI

7500 with Power SYBR green PCR master mix kits

(Applied Biosystems). We evaluated mRNA levels of

ATF4, Osteocalcin (OCN), NFATc1, c-Fos, tartrate-

resistant acid phosphatase (TRAP), and osteoclast-

associated receptor (OSCAR) with the PCR primers listed

in Table 1. The GAPDH was used for internal control. The

relative mRNA abundance for the selected genes with

respect to the level of GAPDH mRNA was expressed as a
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ratio of Streated/Scontrol, where Streated is the mRNA level for

the cells treated with chemical agents, and Scontrol is the

mRNA level for control cells [23].

Western immunoblotting

Cells were lysed in a radioimmunoprecipitation assay

(RIPA) buffer containing protease inhibitors (Santa Cruz

Biotechnology, Santa Cruz, CA, USA) and phosphatase

inhibitors (Calbiochem, Billerica, MA, USA). Isolated

proteins were fractionated using 10–15 % SDS gels and

electro-transferred to Immobilon-P membranes (Millipore,

Billerica, MA, USA). The membrane was incubated for 1 h

with primary antibodies followed by 45 min incubation

with goat anti-rabbit or anti-mouse IgG conjugated with

horseradish peroxidase (Cell Signaling, Danvers, MA,

USA). We used antibodies against ATF4, NFATc1 (Santa

Cruz), p-eIF2a (Thermo Scientific, Waltham, MA, USA),

eIF2a, caspase 3, cleaved caspase 3, p38 and p-p38 mito-

gen activated protein kinase (MAPK), extracellular signal-

regulated kinase (ERK) and p-ERK, nuclear factor kappa B

(NFjB) p65 and p-NFjB p65 (Cell Signaling), and b-actin

(Sigma). Protein levels were assayed using a SuperSignal

west femto maximum sensitivity substrate (Thermo Sci-

entific), and signal intensities were quantified with a

luminescent image analyzer (LAS-3000, Fuji Film, Tokyo,

Japan).

Knockdown of ATF4 and eIF2a by siRNA

Cells were treated with siRNA specific to ATF4 and eIF2a
(Life Technologies). Selected target sequences for knock-

down of ATF4 and eIF2a were: ATF4, 50-GCU GCU UAC

AUU ACU CUA A-30; and eIF2a, 50-CGG UCA AAA

UUC GAG CAG A-30. As a nonspecific control, a negative

siRNA (Silencer Select #1, Life Technologies) was used.

Cells were transiently transfected with siRNA for ATF4,

eIF2a or control in Opti-MEM I medium with Lipofect-

amine RNAiMAX (Life Technologies). Six hours later, the

medium was replaced by regular culture medium. The

efficiency of silencing was assessed with immunoblotting

or quantitative PCR 48 h after transfection.

Mineralization assay

Mineralization of extracellular matrix was assayed by

Alizarin Red S staining. The MC3T3-E1 cells were plated in

6-well plates. When cells were confluent, 50 lg/ml of

ascorbic acid (Wako Chemicals, Richmond, VA, USA) and

5 mM b-glycerophosphate (Sigma) were added. The med-

ium was changed every other day, and staining was con-

ducted after 3 weeks. Cells were washed with PBS twice and

fixed with 60 % isopropanol for 1 min at room temperature,

followed by rehydration with distilled water for 3 min at

room temperature. They were stained with 1 % Alizarin red

S (Sigma) for 3 min and washed with distilled water.

Osteoclastogenesis in vitro and TRAP (Tartrate-

resistant acid phosphatase) staining

The RAW264.7 cells were plated at a density of 5 9 103/

cm2 into a 12-well or a 60 mm dish, and cultured with

20 ng/ml RANKL in the presence and absence of salubri-

nal or guanabenz. The culture medium was replaced every

2 days. After 5 days of culture, the cells were stained for

TRAP staining using an acid phosphatase leukocyte kit

(Sigma). The number of TRAP-positive cells containing

three or more nuclei was determined.

Statistical analysis

Three or four-independent experiments were conducted and

data were expressed as mean ± SD. For comparison among

multiple samples, ANOVA followed by post hoc tests was

conducted. Statistical significance was evaluated at

p \ 0.05. The single and double asterisks and daggers

indicate p \ 0.05 and p \ 0.01. To determine intensities in

immunoblotting and areas of Alizarin red S staining, images

were scanned with Adobe Photoshop CS2 (Adobe Systems,

San Jose, CA, USA) and quantified using Image J.

Table 1 Real-time PCR

primers used in this study
Target Forward primer Backward primer

ATF4 50-TGGCGAGTGTAAGGAGCTAGAAA-30 50-TCTTCCCCCTTGCCTTACG-30

OCN 50-CCGGGAGCAGTGTGAGCTTA-30 50-AGGCGGTCTTCAAGCCATACT-30

NFATc1 50-GGTGCTGTCTGGCCATAACT-30 50-GCGGAAAGGTGGTATCTCAA-30

c-Fos 50-AGGCCCAGTGGCTCAGAGA-30 50-CCAGTCTGCTGCATAGAAGGAA-30

TRAP 50-TCCTGGCTCAAAAAGCAGTT-30 50-ACATAGCCCACACCGTTCTC-30

OSCAR 50-ACACACACACCTGGCACCTA-30 50-GAGACCATCAAAGGCAGAGC-30

GAPDH 50-TGCACCACCAACTGCTTAG-30 50-GGATGCAGGGATGATGTTC-30
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Results

Enhanced mineralization of MC3T3 E1-14 cells

by salubrinal

Prior to examining the effects of salubrinal on osteo-

clastogenesis, we tested its effects on the development of

osteoblasts focusing on cell viability, phosphorylation of

eIF2a (p-eIF2a), expression of ATF4 and osteocalcin, and

matrix mineralization. Administration of 5–20 lM salubr-

inal to MC3T3 E1-14 cells did not increase cell mortality

or inhibit cell proliferation (Fig. 1a). Unlike application of

10 nM thapsigargin, which is a stress inducer to the

endoplasmic reticulum that elevates p-eIF2a, incubation

with 10 lM salubrinal for 24 h did not elevate the

expression level of cleaved caspase 3 (Fig. 1b). After

3-week incubation in an osteogenic medium, Alizarin red S

staining area showed that salubrinal enhanced mineraliza-

tion of MC3T3 E1-14 cells in a dose dependent manner

(Fig. 1c). The enhanced mineralization was also observed

in non-clonal MC3T3 E1 cells (Supplementary Fig. S1).

ATF4-mediated elevation of osteocalcin mRNA

in MC3T3 E1-14 cells

Salubrinal is an inhibitor of de-phosphorylation of eIF2a.

Administration of 5 lM salubrinal to MC3T3 E1-14 cells

elevated phosphorylation of eIF2a, followed by an increase

in ATF4 expression (Fig. 2a). Furthermore, the level of

osteocalcin mRNA was increased 3.3 ± 0.5 fold (24 h)

and 3.3 ± 0.3 fold (32 h) (Fig. 2b). When expression of

ATF4 was significantly reduced by RNA interference

(Fig. 2c, d), however, salubrinal-driven elevation of the

osteocalcin mRNA level was suppressed (Fig. 2e). Non-

clonal MC3T3 E1 cells also presented elevation of p-eIF2a
and ATF4, together with an increase in the mRNA levels of

ATF4 and osteocalcin (Supplementary Fig. S2). In addi-

tion, administration of guanabenz to MC3T3 E1-14 ele-

vated the mRNA level of osteocalcin in a dose dependent

manner, consistent with an increase in p-eIF2a and ATF4

(Supplementary Fig. S3).
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Inhibition of osteoclastogenesis of RAW264.7 cells

by salubrinal

The primary aim of this study is to evaluate the effects of

salubrinal on osteoclastogenesis. In response to 0.1–20 lM

salubrinal for 24 h, we examined cell mortality and live

cell numbers of RAW264.7 pre-osteoclasts. Cell mortality

ratio did not present statistically significant differences in

the presence and absence of RANKL (Fig. 3a). The num-

ber of live cells was increased by *50 % by incubation

with RANKL, and administration of 10–20 lM salubrinal

reduced the numbers approximately by 10 % (Fig. 3b).

Consistent with the stimulatory role of RANKL, the

number of TRAP-positive multi-nucleated cells was sub-

stantially increased by the addition of RANKL. However,

administration of 0.5–20 lM salubrinal reduced the num-

ber of TRAP-positive cells in a dose dependent manner

(Fig. 3c, d).

Downregulation of NFATc1 in RAW264.7 cells

by salubrinal

The NFATc1 is a transcription factor critical for acti-

vating osteoclastogenesis. Addition of RANKL to the

culture medium significantly induced NFATc1 expression

at day 2 and maintained its elevated level on day 4

(Fig. 4). The RANKL-induced expression of NFATc1

was reduced by administration of 5–20 lM salubrinal on

both days, and the effect of salubrinal was dose depen-

dent (Fig. 4).
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Partial suppression of mRNA levels of NFATc1, c-Fos,

TRAP, and OSCAR by salubrinal

Addition of RANKL increased the mRNA levels of

NFATc1, c-Fos, TRAP, and OSCAR, and administration of

20 lM salubrinal significantly reduced their mRNA levels.

On day 2, for instance, the RANKL-driven increase was

9.4 ± 0.5 fold (NFATc1), 1.9 ± 0.1 fold (c-fos),

165 ± 4.2 fold (TRAP), and 467 ± 22 fold (OSCAR). The

reduction by 20 lM salubrinal was 46 % (NFATc1), 32 %

(c-fos), 35 % (TRAP), and 21 % (OSCAR) (Fig. 5a).

Consistent with the observed dose response, administration

of salubrinal at 0.1–1 lM did not contribute to significant

reduction in these mRNA levels except for NFATc1 and

c-fos on day 4 (Fig. 5b).

Temporal profile of p-eIF2a and NFATc1

The temporal expression profile revealed that addition of

RANKL transiently reduced the phosphorylation level of

eIF2a (2–8 h) and elevated NFATc1 by 13.4 ± 3.2 fold

(24 h) (Fig. 6). This induction of NFATc1 was partially

suppressed by salubrinal with an increase in the level of

p-eIF2a. In the early period (2–4 h), administration of

20 lM salubrinal increased the level of p-eIF2a but did not

alter the level of NFATc1. In the later period (8–24 h),

however, the level of NFATc1 was significantly reduced by

48 % (8 h) and 44 % (24 h). Administration of 20 lM

salubrinal did not significantly alter the phosphorylation

level of ERK, p38 MAPK, and NFjB (Fig. 6). Note that

the normalized level of ‘‘1’’ in Fig. 6c was defined as the

level for the cells that were not treated with RANKL

without administration of guanabenz.

Inhibitory effects of guanabenz on osteoclastogenesis

of RAW264.7 cells

To further examine a potential involvement of p-eIF2a in

regulation of osteoclastogenesis, we employed guanabenz

that also acts as an inhibitor of de-phosphorylation of

eIF2a. Administration of 1 and 5 lM guanabenz did not

alter cell mortality and the number of live cells, although

its administration at 10 and 20 lM reduced the number of

live cells in 24 h (Fig. 7a, b). Consistent with salubrinal’s

inhibitory action, guanabenz also attenuated osteoclasto-

genesis of RAW264.7 cells in a dose dependent manner

(Fig. 7c, d). Compared to the number of TRAP-positive

multi-nucleated cells of 377 ± 39 (RANKL only), guana-

benz reduced the number of differentiated osteoclasts to

364 ± 38 (1 lM), 288 ± 51 (5 lM), 189 ± 25 (10 lM),

and 73 ± 16 (20 lM).

Reduction of RANKL-induced NFATc1, c-Fos, TRAP,

and OSCAR by guanabenz

The induction of NFATc1 by RANKL was suppressed by

guanabenz in a dose dependent manner (Fig. 8a). The

mRNA levels of NFATc1, c-Fos, TRAP, and OSCAR were

also reduced by administration of 20 lM guanabenz.

Lower concentrations of guanabenz, 5 and 10 lM, were

effective in reducing the levels of TRAP and OSCAR

mRNA (Fig. 8b). The temporal expression profile of

p-eIF2a and NFATc1 in response to 20 lM guanabenz

revealed that p-eIF2a was upregulated in 2 h and NFATc1

was partially suppressed in 8 h (Fig. 9). The normalized

level of ‘‘1’’ was defined as the level for the cells that were

not treated with RANKL without administration of

guanabenz. In the absence of RANKL administration,

however, either salubrinal or guanabenz did not signifi-

cantly alter cell mortality and expression of NFATc1 and

TRAP (Supplementary Fig. S4).

Reduction in salubrinal/guanabenz-driven suppression

of NFATc1 expression by RNA interference for eIF2a

To evaluate the effects of eIF2a on the expression level of

NFATc1, we employed RNA interference specific for

eIF2a together with a non-specific control (NC) (Fig. 10).

In response to 20 lM salubrinal, RAW264.7 cells trans-

fected with the control siRNA demonstrated a reduction of

NFATc1 by 56 %. However, the expression of NFATc1

was reduced only by 20 % in the cells transfected with

eIF2a siRNA. Furthermore, 20 lM guanabenz decreased

the level of NFATc1 by 43 % in the cells transfected with
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Fig. 4 Reduction of RANKL-induced NFATc1 expression by sa-

lubrinal. Sal salubrinal. The relative intensity of NFATc1 to b-actin is

shown. a Expression of NFATc1 (2 days after RANKL administra-

tion). b Expression of NFATc1 (4 days after RANKL administration)
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the control siRNA but the transfection of eIF2a siRNA

abolished the suppressive effect of guanabenz. The phos-

phorylation level of NFjB was not significantly altered by

transfection with eIF2a siRNA.

Discussion

In this study we demonstrate that differentiation of

RAW264.7 pre-osteoclasts to multi-nucleated osteoclasts is

inhibited by administration of salubrinal and guanabenz,

which block de-phosphorylation of eIF2a and elevate the

level of p-eIF2a. The growth area covered by multi-

nucleated cells is significantly reduced by salubrinal and

guanabenz in a dose dependent manner. Partially silencing

eIF2a using RNA interference significantly suppressed

salubrinal/guanabenz-driven reduction of NFATc1

expression. Together with the stimulated development of

MC3T3 E1 osteoblasts by an increase in ATF4 expression,

the results herein suggest that eIF2a mediated signaling

may play a physiological role in osteoclastogenesis and

osteoblastogenesis.

Both salubrinal and guanabenz interact with PP1 and

inhibit its activity of de-phosphorylating p-eIF2a. Guana-

benz is reported to bind to PP1R15A subunit [14], while

the exact binding site of salubrinal is not known. Guana-

benz is also known as an a2-adrenergic receptor agonist

and used to treat hypertension [24]. The observed
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stimulation of osteoblastogenesis as well as attenuation of

osteoclastogenesis by both agents strongly indicates that

eIF2a-mediated signaling is central to regulation of ATF4

and NFATc1. This result is also supported by the salubri-

nal-driven alterations in the mRNA levels of osteocalcin

and TRAP, which are representative in development of

osteoblasts and osteoclasts, respectively. Osteocalcin is

synthesized solely by osteoblasts for matrix mineralization

and calcium homeostasis [25], while TRAP is highly

expressed in osteoclasts and its overexpression has been

observed to cause bone loss in transgenic mice [26].

The elevation of p-eIF2a is reported to enhance the

development of osteoblasts and mineralization of extra-

cellular matrix. In response to various stresses such as

oxidation, radiation, and stress to the endoplasmic reticu-

lum, cells undergo either survival or an apoptotic pathway

[27]. As part of a pro-survival program, the level of

p-eIF2a is raised followed by diminished translational

efficiency to all proteins except for a limited group

including ATF4 [5]. Salubrinal’s action mimics the

induction of a pro-survival program without imposing

damaging stresses, which result in the upregulation of

ATF4 without inducing apoptosis. Since ATF4 is a tran-

scription factor critical for osteoblastogenesis and bone

formation, we examined the effects of the administration of
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salubrinal and guanabenz on the mRNA level of osteo-

calcin as well as the mineralization of the extracellular

matrix. Silencing ATF4 using RNA interference signifi-

cantly suppressed salubrinal-driven upregulation of osteo-

calcin expression. Thus, the result here is consistent with

the previously reported role of salubrinal that stimulates

new bone formation in the healing of bone wound [8].

A schematic diagram illustrating the proposed pathway

of eIF2a-mediated signaling in osteoblastogenesis and

osteoclastogenesis is presented (Fig. 11). Through inhibi-

tion of de-phosphorylation of eIF2a, salubrinal and

guanabenz are capable of enhancing bone formation by

activating ATF4, as well as reducing bone resorption by

down-regulating NFATc1. Osteoclastogenesis is a complex

developmental process, in which active interactions take

place between osteoblasts and osteoclasts. In the RANK/

RANKL/OPG signaling pathway, for instance, osteoblasts

provide RANKL that stimulates osteoclastogenesis. Since

binding of RANKL to RANK is known to activate MAPKs

and NFjB [28, 29], we evaluated a potential role of ERK,

p38, and NFjB in the eIF2a-mediated signaling. In

response to administration of 20 lM salubrinal, we

examined the levels of p-ERK, p-p38 MAPK, and p-NFjB

together with p-eIF2a. However, no detectable changes in

the levels of their phosphorylated form were observed. It is

possible that salubrinal may activate transcription factors

such as MafB (V-maf musculoaponeurotic fibrosarcoma

oncogene homolog B), IRF8 (interferon regulatory factor

8), and Bcl6 (B cell lymphoma 6), which are known to be

inhibitors of NFATc1 [30–32]. Alternatively, microRNA

and epigenetic changes such as histone modification reg-

ulate expression of NFATc1 might be involved [33, 34].

For instance, H3K27 demethylase is reported to demethy-

late the site of H3K27me3 of NFATc1 and stimulate

RANKL-induced osteoclastogenesis [34]. The results

herein require further analysis on a regulatory mechanism

that links elevation of p-eIF2a to the suppression of

NFATc1.

A recent study independently reported that salubrinal

alters the fate of osteoclasts and bone resorption through

eIF2a-mediated translational regulation [35]. Herein, we

further examined the regulatory mechanism using not only

salubrinal but also guanabenz, which are the inhibitors of

PP1. The results revealed that these agents can also regu-

late expression of NFATc1 at a transcriptional level. A

separate in vivo study as well as in vitro studies using
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primary bone marrow derived cells support salubrinal’s

efficacy on inhibition of bone resorption. In summary, we

demonstrate that elevation of p-eIF2a stimulates osteocal-

cin expression through upregulation of ATF4 in osteoblasts

and inhibits TRAP expression via downregulation of

NFATc1 in pre-osteoclasts. Silencing eIF2a with RNA

interference reduced suppression of salubrinal/guanabenz-

driven downregulation of NFATc1. The results in this

study support the possibility of regulating bone remodeling

through eIF2a-mediated signaling for combatting bone loss

in osteoporosis.
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