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spinal osteoarthritis in postmenopausal Japanese women

Abstract The Wnt-β-catenin signaling pathway that regu-
lates bone density is also involved in cartilage development 
and homeostasis in vivo. Here, we assumed that genetic 
variation in Wnt-β-catenin signaling genes can affect the 
pathogenesis of cartilage related diseases, such as osteoar-
thritis. Wnt-1-induced secreted protein 1 (WISP1) is a target 
of the Wnt pathway and directly regulated by β-catenin. In 
the present study, we analyzed the association of a single 
nucleotide polymorphism (SNP) in the WISP1 3′-UTR 
region with the development of radiographically observable 
osteoarthritis of the spine. For this purpose, we evaluated 
the presence of osteophytes, endplate sclerosis, and narrow-
ing of disc spaces in 304 postmenopausal Japanese women. 
We compared those who carried the G allele (GG or GA, 
n = 184) with those who did not (AA, n = 120). We found 
that the subjects without the G allele (AA) were signifi -
cantly over-represented in the subjects having higher end-
plate sclerosis score (P = 0.0069; odds ratio, 2.91; 95% 
confi dence interval, 1.34–6.30 by logistic regression analy-
sis). On the other hand, the occurrence of disc narrowing 

and osteophyte formation did not signifi cantly differ 
between those with and without at least one G allele. Thus, 
we suggest that a genetic variation in the WISP1 gene locus 
is associated with spinal osteoarthritis, in line with the 
involvement of the Wnt-β-catenin-regulated gene in bone 
and cartilage metabolism.

Key words single nucleotide polymorphism (SNP) · Wnt-
β-catenin signaling · WISP1 · osteoarthritis · endplate 
sclerosis

Introduction

Spinal osteoarthritis is a highly prevalent musculoskeletal 
disorder and a major cause of back symptoms [1]. Vertebral 
osteophytes, endplate sclerosis, and intervertebral disc nar-
rowing are recognized as characteristic features of spinal 
degeneration. Recent studies indicate that the appearance 
of these radiographic features is infl uenced by physical 
loading and other environmental factors [2,3]. Moreover, 
spinal osteoarthritis has been shown to have a familial 
component and in some studies to be infl uenced by specifi c 
genetic risk factors, mainly by investigating genes encoding 
structural proteins of the extracellular matrix of cartilage 
(e.g., collagen type II α1, cartilage matrix protein, and 
aminoguanidine) or genes playing a role in the regulation 
of bone density and mass (e.g., vitamin D receptor, insulin-
like growth factor-I, and estrogen receptor-α) [4,5].

The Wnt (wingless-type MMTV integration site family) 
represents a large group of secreted signaling proteins that 
are involved in cell proliferation, differentiation, and mor-
phogenesis [6]. The name ‘Wnt’ is derived from wingless 
gene in Drosophila melanogaster [7] and murine int-1 onco-
gene identifi ed in tumors induced by mouse mammary 
tumor virus [8]. It is also known that Wnt and bone mor-
phogenetic protein (BMP) signals control apical ectodermal 
ridge (AER) formation and dorsoventral patterning during 
limb development [9,10]. Wnt proteins activate signal 
transduction through Frizzled, which act as receptors for 
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Wnt proteins [11] and induce stabilization of cytoplasmic 
β-catenin protein, which also regulates target gene 
ex pression as a transcriptional coactivator. The physiologi-
cal role of the Wnt in the regulation of osteoblastogenesis 
has been studied in experimental models. Mice expressing 
Wnt10b transgene in bone marrow have shown high bone 
mass by simulating osteoblastogenesis [12]. It is also shown 
that activated β-catenin stimulates osteoblast differentia-
tion [13]. Further, low-density lipoprotein (LDL)-receptor-
related protein 5 and 6 (LRP5/6) were also found to be 
required for Wnt coreceptors [14,15]. Recent reports dem-
onstrated that the Wnt/β-catenin signaling pathway regu-
lates bone mineral density (BMD) through LRP5 [16–19]. 
Moreover, we and several groups reported that single 
nucleotide polymorphisms (SNPs) in the LRP5 gene pre-
dicted bone mass [20–23]. These fi ndings indicate that the 
Wnt-β-catenin signaling pathway plays important roles in 
skeletal biology.

In addition to the regulation of limb development and 
bone metabolism, Wnt/β-catenin signaling may be involved 
in the maintenance and pathophysiology of cartilage. This 
possibility is indirectly supported by the observation that 
several Wnt proteins and Frizzled receptors are expressed 
in the synovial tissue of arthritic cartilage [24]. In addition, 
a secreted Frizzled-related protein (FrzB-2) that act as an 
antagonist for Frizzled receptor is strongly expressed in 
osteoarthritic cartilage and may regulate chondrocyte apop-
tosis [25]. It is also shown that chondrocytes express β-
catenin at a low level and that an accumulation of β-catenin 
is suffi cient to cause dedifferentiation of chondrocytes, sug-
gesting that Wnt signaling is involved in cartilage metabo-
lism [26].

Wnt-1-induced secreted protein 1 (WISP1) is a member 
of the CCN family growth factors, which includes connec-
tive tissue growth factor (CTGF), cysteine-rich 61 (Cyr61), 
nephroblastoma overexpressed (NOV), WISP2, and WISP3 
[27–30]. WISP1 is a target of the Wnt/β-catenin pathway, 
and its expression is regulated by β-catenin [30,31]. WISP1 
activity and availability are modulated by its interaction 
with decorin and biglycan, two extracellular matrix-
associated proteoglycans found abundantly in bone and 
cartilage [32]. In mouse chondrocytic cell lines, WISP1 
increased proliferation and saturation density but repressed 
chondrocytic representation [33]. These data suggest that 
WISP1 could play an important regulatory role in bone and 
cartilage homeostasis. In the present study, we examined an 
association between a polymorphism in the WISP1 gene 
and radiographic features of spinal osteoarthritis including 
osteophyte formation, endplate sclerosis, and disc space 
narrowing to investigate a possible contribution of WISP1 
to human bone and cartilage metabolism.

Materials and methods

Subjects

Genotypes were analyzed in DNA samples obtained from 
304 healthy postmenopausal Japanese women (mean age ± 

SD, 66.3 ± 9.0) living in the central area of Japan. Exclusion 
criteria included endocrine disorders such as hyperthyroid-
ism, hyperparathyroidism, diabetes mellitus, liver disease, 
renal disease, use of medications known to affect the bone 
metabolism (e.g., corticosteroids, anticonvulsants, heparin 
sodium), or unusual gynecological history. Patients with 
severe hip and knee arthritis were excluded from the present 
study. The eligibility of subjects was determined by taking 
the history and physical examination. All were nonrelated 
volunteers and provided informed consent before this study. 
Ethical approval for the study was obtained from appro-
priate ethics committees.

Radiographic grading of spinal osteoarthritis

Conventional thoracic and lumbar spinal plain roentgeno-
grams in lateral and anteroposterior projection were 
obtained from all participants. The severities of spinal 
degeneration including osteophyte formation, endplate 
sclerosis, and disc space narrowing were assessed semiquan-
titatively from T4–T5 to L4–L5 disc level or from T4 to L5 
vertebrae by using the grading scale of Genant [34]. Briefl y, 
osteophyte formation at a given disc was graded 0–3 degrees, 
endplate sclerosis at given vertebra was graded 0–2 degrees, 
and disc space narrowing was graded 0–1 degrees. Then, we 
defi ned the sum of each degree from T4–T5 to L4–L5 disc 
level for osteophyte formation on anteroposterior radio-
graphs as a score of osteophyte formation. We also defi ned 
the sum of each degree from T4 to L4 vertebra for endplate 
sclerosis and that from T4–T5 to L4–L5 disc level for disc 
space narrowing on lateral radiographs as a score of end-
plate sclerosis and disc narrowing, respectively. These semi-
quantitaive gradings on radiographics were performed by 
two expert medical doctors.

Determination of a SNP in the WISP1 gene

We extracted a polymorphic variation in the WISP1 gene 
exon 5 3′-untrans lated region (UTR) from the Assays-
on-Demand SNP Genotyping Products database (Applied 
Biosystems, Foster City, CA, USA) and, according to its 
localization on the gene, denoted it 2364A/G. We deter-
mined the 2364A/G polymorphism of the WISP1 gene using 
the TaqMan (Applied Biosystems) polymerase chain reac-
tion (PCR) method [35]. To determine the WISP1 SNP, 
we used Assays-on-Demand SNP, Genotyping Products 
C_9086661_10 (Applied BioSystems) (rs2929970), which 
contains sequence-specifi c forward and reverse primers and 
two TaqMan MGB probes for detecting alleles. During the 
PCR cycle, two TaqMan probes competitively hybridize to 
a specifi c sequence of the target DNA and the reporter dye 
is separated from the quencher dye, resulting in an increase 
in fl uorescence of the reporter dye. The fl uorescence levels 
of the PCR products were measured with the ABI PRISM 
7000, resulting in clear identifi cation of three genotypes of 
the SNP.
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Statistical analysis

Age, height, body weight, body mass index (BMI), and 
osteoarthritis parameters (number of osteophytes, endo-
plate sclerosis, and disc narrowing) in the groups of subjects 
classifi ed by the WISP1 SNP genotypes were compared by 
analysis of variance (ANOVA) and Kruskal–Wallis test. 
Stepwise regression analysis was carried out to assess the 
independent effect of four variables (age, height, body 
weight, WISP 1 SNP genotypes) on endplate sclerosis score. 
We also divided subjects into those having one or two 
allele(s) of the minor G allele (AG + GG) and those with 
only the major A allele (AA) encoded at the same locus. 
Multivariate logistic regression was used to estimate odds 
ratios and 95% confi dence intervals (95% CIs) for these 
two groups and the risk of endplate sclerosis. Analyses for 
the association of WISP1 2364A/G genotypes and radio-
graphic spinal endplate sclerosis were performed with 
adjustment for age. P values less than 0.05 were considered 
signifi cant. Analysis was performed using StatView-J 4.5 
software (SAS Institute, Cary, NC, USA).

Results

We analyzed the genotypes for the SNP of WISP1 gene at 
the 3′-UTR region (2364 A > G) in 304 subjects, using the 
TaqMan method. Among these postmenopausal Japanese 
women, 120 were AA homozygotes, 149 were AG hetero-
zygotes, and 35 were GG homozygotes (Table 1). The allelic 
frequencies of this SNP in the present study were in Hardy–
Weinberg equilibrium.

The background data (age, height, body weight, BMI) 
were not statistically different among these groups (Table 
1). On ANOVA analysis, we found signifi cant associations 
between WISP1 2364A/G genotype and endplate sclerosis 
score (Table 1; P = 0.0062). On Kruskal–Wallis analysis, we 
also found signifi cant associations between WISP1 2364A/
G genotype and endplate sclerosis score (Table 1; P = 
0.024). Women with the AA allele had a signifi cantly higher 
endplate sclerosis score than did subjects bearing at least 
one G allele (AG + GG). On the other hand, the occurrence 
of disc narrowing and osteophytes did not signifi cantly 
differ among those SNP genotypes (see Table 1).

Recent studies have shown that the physical and consti-
tutional factors contribute to spinal osteoarthritis. There-
fore, we carried out stepwise regression analysis to assess 
the independent effect of age, height, body weight, and 
WISP1 SNP genotypes on endplate sclerosis score. Among 
these factors, only age and WISP1 SNP genotypes corre-
lated signifi cantly with spinal endplate sclerosis score (Table 
2). The standard regression coeffi cients were 0.261 for age 
and −0.166 for WISP1 SNP genotypes.

Last, we analyzed the association between the alleic 
frequency of WISP1 SNP genotypes and endplate sclerosis 
score after stratifi cation by age. In these analyses, we divided 
subjects into two groups, those who carried the G allele 
(GG or GA, n = 184) and with those who did not (AA, n = 
120). We found that the subjects without the G allele (AA) 
were signifi cantly overrepresented in the subjects having a 
one or more endplate sclerosis score compared in the sub-
jects having no endplate sclerosis after being age-adjusted 
(Table 3; P = 0.044; odds ratio 1.78; 95% confi dence interval 
1.01–3.13 by logistic regression analysis). We also found 
that the subjects with the genotype AA were signifi cantly 

Table 1. Comparison of background and clinical characteristics among subjects with single nucleotide polymorphism (SNP) genotypes (AA 
genotype, AG genotype and GG genotype) in the WISP1 gene 3′-UTR region (2364A/G)

Items Genotype (mean ± SD)   P value P value

 AA AG GG 
(ANOVA) (Kruskal–Wallis)

Number of subjects 120 149 35
Age (years)  66.1 ± 9.2  66.3 ± 8.5  67.1 ± 10.6 NS NS
Height (cm) 150.7 ± 5.6 150.2 ± 6.8 150.0 ± 5.0 NS NS
Body weight (kg)  50.3 ± 7.6  50.2 ± 8.3  48.0 ± 5.4 NS NS
BMI  22.1 ± 2.9  22.2 ± 2.9  21.3 ± 3.3 NS NS
Endplate sclerosis  0.58 ± 1.09  0.34 ± 0.74  0.09 ± 0.28 0.0062 0.024
Osteophyte  5.89 ± 3.93  5.72 ± 3.40  5.57 ± 4.08 NS NS
Disk narrowing  2.21 ± 1.79  2.09 ± 2.00  2.03 ± 1.86 NS NS

BMI, body mass index; NS, not signifi cant

Table 2. Results of stepwise regression analysis of four factors for endplate sclerosis score

Factors F value   r.c. s.r.c.

 Step 0 Step 1 Step 2 Step 2 (R2 = 0.094)

Intercept 63.7 12.8  9.4 −1.106 −1.106
WISP1 SNP genotypes (AA = 0, AG, GG = 1)    9.1 −0.297 −0.166
Age (years)  21.5 22.7  0.025  0.261
Weight (kg)   Not selected
Height (cm)   Not selected

r.c., regression coeffi cient; s.r.c., standard regression coeffi cient
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over-represented in the subjects having a higher (two or 
more) endplate sclerosis score compared in the subjects 
having lower (one or no) endplate sclerosis score after 
being age-adjusted (Table 3; P = 0.0069; odds ratio 2.91; 
95% confi dence interval 1.34–6.30 by logistic regression 
analysis). Thus, we suggest that a genetic variation at the 
WISP1 gene locus is associated with spinal osteoarthritis, 
especially with endplate sclerosis, independently with back-
ground parameters.

Discussion

The present study is the fi rst report that shows the infl uence 
of a SNP of the WISP1 gene on spinal osteoarthritis. The 
WISP1 is an osteogenic potentiating factor promoting mes-
enchymal cell proliferation and osteoblastic differentiation 
while repressing chondrocytic differentiation [33]. We 
demonstrated that Japanese postmenopausal women who 
had the AA genotype at the WISP1 2364A/G SNP showed 
a signifi cantly higher endplate sclerosis score of the spine. 
Our fi ndings might also be supported by genetic linkage 
scan for early-onset osteoarthritis and chondrocalcinosis 
susceptibility loci that showed a linkage to chromosome 8q 
[36], which includes the WISP1 gene locus on 8q24.

It has been recently shown that haplotype analysis in 
LRP5 gene revealed that there was a common haplotype 
that provided a 1.6-fold-increased risk of knee osteoarthritis 
[37]. We have revealed that a SNP (Q89R) in the LRP5 
gene is associated with spinal osteoarthritis [38]. It is also 
reported that there was a signifi cant association of a func-
tional genetic variant of secreted frizzled-related protein 3 
(sFRP3), which antagonizes Wnt signaling, with hip osteo-
arthritis in women [39]. Taken together, our results and the 
recent evidence suggest that the Wnt-β-catenin signaling 
pathway including WISP1 is important in the pathogenesis 
of skeletal abnormality including osteoarthritis.

WISP1 is a member of the CCN family of connective 
tissue growth factors, which also includes WISP2 and 
WISP3. Members of the CCN family have been implicated 
in developmental processes such as chondrogenesis, osteo-
genesis, and angiogenesis [27–29]. Specifi cally, mutations of 
WISP3 cause the rare skeletal syndrome, progressive pseu-
dorheumatoid dysplasia (PPD) [40]. In affected individuals, 
symptoms develop between the age of 3 years and 8 years 
and consist of stiffness and swelling of multiple joints, motor 
weakness, and joint contractures. It has been also reported 

that WISP3 polymorphisms were associated with suscepti-
bility to juvenile idiopathic arthritis [41]. Moreover, the 
WISP3 was shown to be expressed in chondrocytes derived 
from human cartilage and be able to regulate type II colla-
gen and aggrecan expression [42]. On the other hand, the 
expression of the WISP2 was preferentially detected in 
rheumatoid arthritis synovium [43]. These data suggest that 
CCN family members play a critical role in cartilage homeo-
stasis. In the present study, we investigated a possible con-
tribution of WISP1 polymorphism to spinal osteoarthritis in 
Japanese women. Taken together, the CCN family gene 
polymorphisms may affect the pathogenesis of cartilage 
disease.

In the present study, we excluded subjects with severe 
hip or knee arthritis, because these joint diseases them-
selves may induce spinal deformity or malalignment. There-
fore, we could not assess such joint arthritis here. Recent 
studies have shown that some SNPs in the sFRP3 and LRP5 
genes, involved in Wnt signaling, were associated with hip 
and knee osteoarthritis, respectively [37,39]. Moreover, 
WISP3 polymorphisms are associated with juvenile idio-
pathic arthritis that affects multiple joints [41]. In this 
regard, it may be important to examine the association of 
the SNPs in the WISP1 gene with hip and knee arthritis in 
the future. Meanwhile, it would be better if we had also 
evaluated the facet joint, because spinal osteoarthritis is 
represented not only by the anterior elements such as disc 
narrowing, osteophytosis, or endplate sclerosis but also 
by the posterior elements, especially a facet joint lesion. 
However, we here evaluated only the anterior elements of 
thoracolumbar vertebral bodies, because a reproducible 
semiquantitative assessment for facet joint using anteropos-
terior (A-P) and lateral X-ray radiographs has not been well 
established.

In conclusion, we have shown an association of the poly-
morphism in the WISP1 gene with a radiographic feauture 
of spinal endplate sclerosis in postmenopausal Japanese 
women. The women with AA genotypes had signifi cantly 
higher endplate sclerosis scores. WISP1 genotyping may be 
benefi cal in the prevention and management of spinal 
osteoarthritis. Thus, the WISP1 would be a useful molecu-
lar target for the development of new diagnostic markers 
as well as therapeutic options in osteoarthritis.
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Table 3. Association of WISP1 SNP genotype (2364A/G) in subjects with spinal endplate scle-
rosis after stratifying age

Group compared AA vs. AG + GG

 OR P value 95% CI

Endplate sclerosis (�1) (n = 235) 1.78 0.044 1.01–3.13
 versus no endplate sclerosis (=0) (n = 69)
Higher endplate sclerosis (�2) (n = 271) 2.91 0.0069 1.34–6.30
 versus lower endplate sclerosis (�0) (n = 33)

OR, odds ratio; 95% CI, 95% confi dence interval
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