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Abstract In 50 premenarcheal girls selected from the lowest
and highest end of the calcium-intake distribution of a large
population sample, we evaluated bone mineral density
(BMD), together with the following hormonal-metabolic pa-
rameters: androstenedione (ASD), dehydroepiandrosterone
(DHEA), dehydroepiandrosterone sulfate (DHEAS), test-
osterone (T), estradiol (E2), the apparent free fractions of T
(AFTC) and E2 (AFEC), osteocalcin (OC), parathyroid hor-
mone (PTH), and 25-hydroxyvitamin D. Dietary calcium was
assessed by 3-day food records, and BMD was measured at
ultradistal (ud) and proximal (pr) radial sites, using dual-
energy X-ray absorptiometry. Calcium intake, which was
below the recommended levels set for the Italian popula-
tion and below the recommended daily allowance (RDA)
in both subgroups of girls, did not show any apparent
relationship with ud- and pr- BMD. However, despite the
similar chronological age of the two premenarcheal groups,
in the low-calcium consumers, we found lower bone age,
delayed pubertal development, and lower circulating adre-
nal androgens. Of interest, in girls who had a low calcium
intake, PTH levels were significantly higher. In all premen-
archeals, we observed that DHEA, T, and AFTC were
positively correlated with bone age and with bone density
at both radial sites. Even though bone density at the two
radial sites did not show any apparent relationship to cal-
cium consumption, the increased mean PTH in the girls
with low calcium intake seems to underscore the hormonal
attempt in maintaining calcium homeostasis. In conclusion,
low calcium intake and reduced levels of adrenal andro-
gens, leading to decreased bone age and delayed pubertal
development, indicate a link between calcium intake, the
hormonal milieu, and skeletal maturation.
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Introduction

During adolescence, calcium intake is generally
known to affect the genetically determined attainment of
peak bone mass [1,2]. The acquisition of bone mass in
girls parallels body growth, showing the greatest increase
throughout pubertal development, when the sharp rise
of estrogens with the onset of menarche strongly contri-
butes to skeletal maturation, acting in siynergy with
other hormones and growth factors [3-7].

The pivotal role of estrogens in increasing and main-
taining bone mass is now generally accepted [8], al-
though some studies report a lack of correlation of
estrogen with the risk of bone fracture in elderly women
[9]. However, the determination of total estrogen circu-
lating levels without measuring the estrogen free frac-
tion (bioavailable) can be misleading [10]. In the
presence of relatively low total serum estradiol levels,
estrogen deficiency could be amplified by a concomitant
enhancement of sex hormone-binding globulin levels,
resulting in reduced hormonal bioavailability to the tar-
get tissues [11].

Our understanding of the role of androgens in bone
tissue was recently reviewed [12]. The suggestion is that
androgens are mainly involved in stimulating periosteal
bone growth and enhancing cortical bone remodelling
[12,13].

In the context of a European multicenter investiga-
tion of bone density and dietary calcium, anthropomet-
ric characteristics, puberty, and lifestyle factors [14], we
studied the role of adrenal and gonadal steroids,
together with osteocalcin and parathyroid hormone
(PTH), in modulating bone turnover in 50 premenar-
cheal girls. In particular, androgens, a potential source
of estradiol via the aromatization process, were also
evaluated, in relation to skeletal accrual, during the
crucial period of bone maturation.
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Subjects and methods

All girls (n = 1079; age range, 11-14 years) attending
secondary schools in the town of Rende (Cosenza,
southern Italy) were invited to participate in the present
study.

Subjects were excluded for the following reasons:
non-Caucasian origin, chronic systemic disease, use of
corticosteroids, vigorous sports activity (more than 7h
per week), and vegetarianism or adherence to any pre-
scribed diet (except for an energy-restricted diet). Sub-
sequently, 722 girls filled out a 20-item food frequency
questionnaire (FFQ), adapted for Italian adolescents, in
order to select our population sample from the lowest
(100 adolescents) and highest (100 adolescents) end of
the calcium-intake distribution. All premenarcheals
(n = 50) at both the low (n = 22) and high (n = 28) end
of the calcium-intake distribution were enrolled in this
study.

The definitive values of calcium consumption were
re-evaluated in the selected population (n = 50) using a
3-day food-record method. Therefore, subjects were in-
vited to record everything they consumed during a con-
secutive Wednesday, Thursday, and Friday, the week
before their visit to the Institute. Food and quantity,
and recipes for composite dishes were recorded, and, if
necessary, the parent responsible for meal preparation
was invited to assist in checking and compiling the
food diaries. Mean daily consumption of food products
was converted into calcium intake (mg/day), using the
National Food Composition Tables [15].

The local Medics-Ethics Committee approved our
study protocol, and parents of all participants gave their
written consent.

Morning serum samples were drawn from each sub-
ject (after an overnight fast) by arm venipuncture to
measure serum levels of hormones. After centrifuga-
tion, the serum samples were frozen at —70°C in indi-
vidual aliquots for later assay in duplicate.

Radioimmunoassays (RIA) were used to determine
total testosterone (T; ICN Pharmaceuticals, Costa
Mesa, CA, USA; intra- and interassay coefficients of
variation [CVs], 10.5% and 8.2%, respectively), total
estradiol (E2; Immunotech, Marseille, France; intra-
and interassay CVs, 5.6% and 6.7 %, respectively), total
androstenedione (ASD; Diagnostic Systems Laborato-
ries, Webster, TX, USA; intra- and interassay CVs,
2.8% and 7.0%, respectively), total dehydroepian-
drosterone (DHEA; ICN Pharmaceuticals; intra- and
interassay CVs, 7.3% and 7.0%, respectively), and total
dehydroepiandrosterone  sulfate (DHEAS; ICN
Biomedicals; intra- and interassay CVs, 8.5% and 7.6%,
respectively). Apparent free fractions of T (AFTC) and
E2 (AFEC) were measured using the technique of di-
alysis described by Vermeulen et al. [16]. Briefly, dialy-

sis tubes, 1cm in diameter and 15cm long (Viskase,
Chicago, 1L, USA) were washed and left overnight in
distilled water. The tubes were filled with 1 ml of plasma
and were sealed at each end with a double knot, bent
into a U-shape, and placed in 20-ml scintillation vials
with 10ml of phosphate buffer (pH 7.4) containing
about 10000 cpm *H-T (specific activity 79 Ci/mmol, ob-
tained from Amersham Life Science, Milan, Italy). Esti-
mation of free steroid fractions was derived after
shaking tubes in a water bath at 37°C for 24 h when the
equilibrium of dialysis was determined in the closed
system, as previously described [16].

Immunoradiometric assays (IRMA) were used to
quantify serum osteocalcin (OC; (Diagnostic Systems
Laboratories; intra- and interassay CVs, 2.9% and
4.7%, respectively), serum PTH (ICN Pharmaceuticals;
intra- and interassay CVs, 3% and 5.2%, respectively),
and serum sex hormone binding globulin (SHBG) lev-
els (Diagnostic Systems Laboratories) after 100-fold
sample dilution prior to assay (intra- and interassay
CVs, 2.8% and 8.8%, respectively). Serum levels of 25-
hydroxyvitamin D (25-OH-D) were determined, after
extraction with acetonitrile, with an RIA kit (Incstar,
Stillwater, MN, USA (intra- and interassay CVs, 7.6%
and 8.2%, respectively).

One investigator measured height and weight and
assigned pubertal stages to the girls according to Tanner
[17].

Bone mineral content (BMC) and bone area were
evaluated, by dual-energy X-ray absorptiometry (DXA;
Osteoscan; Nederburg, Bunschoten, Netherlands), in
the nondominant arm at the ultradistal (ud) and proxi-
mal (pr) radius (one-third distal point between the sty-
loid process and the tip of the olecranon of the elbow)
representing the trabecular and cortical bone compo-
nents, respectively [18]. DXA, a rapid, accurate, and
reproducible method of assessment of different bone
components, with a very low radiation exposure (0.02—
0.03mSV per scan) was used to calculate bone mineral
density (BMD; g/cm?), by dividing the BMC value (ex-
pressed in grams) by the projected area of bone. Two
technicians collected all densitometric data, calibrating
the Osteoscan every day against a reference phantom.
The CVs for ten measurements of the same subject
(with repositioning) were 2.15% for ud-BMD and
1.75% for pr-BMD.

Left-hand and wrist X-rays were performed in girls
to estabilish bone age, by the Tanner-Whitehouse
(TW2) method [19].

Statistics

Data values for all variables were presented as means
with standard error. Comparisons of means were made
using unpaired Student’s f-test. Pearson’s correlation,
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and linear and multiple regression analyses were
performed using SIMSTAT 3.5 (Provalis Research,
Montreal, Canada). Because variations of BMD could
be due to differences in bone size between individuals,
we included height, weight, and bone area as covari-
ables on multiple regressions, with BMD as a depen-
dent variable. P values of less than 0.05 were considered
significant.

Results

Table 1 shows anthropometric characteristics, radial
BMD, and calcium intake of girls selected according to
the criteria indicated in the “Methods” section. It is
worth noting that the dietary calcium consumption was
below the recommended levels set for the Italian popu-
lation, and below the recommended daily allowance
(RDA) [20], even in the girls with high calcium intake
(Table 1).

No relationship was observed between calcium intake
and radial BMD adjusted for height, weight, and bone
area, while calcium intake was related to bone age in all
girls (r = 0.34; P = 0.018).

Despite the similar chronological age of the two sub-
groups, low-calcium consumers exhibited markedly de-
layed pubertal stage, well fitting with the decreased
bone age (Table 1).

It is important to note that, in low-calcium consum-
ers, a decrease in all aromatizable adrenal androgens
(DHEA, DHEAS, and ASD) predicted a lower periph-
eral action of estrogens (Table 2). Furthermore, in the
same subgroup, the enhanced SHBG reduced the
amount of biologically active estradiol, resulting in a
significant lowering of AFEC concentrations in these
subjects (Table 2).

It is worth remarking that, in the subjects who had a
low calcium intake, PTH levels appearred to be signifi-
cantly enhanced, while serum levels of OC and 25-OH-
D were similar in the two subgroups (Table 3).

Table 1. Anthropometric characteristics, dietary calcium, and ultradistal/proximal-
bone mineral density (ud/pr-BMD; X + SE and P values) in premenarcheal girls with

low and high calcium intake (Ca I)

Premenarcheals (n = 50)

Low Ca I High Ca I P
Subjects (n) 22
Age (years) 12.01 = 0.10 12.33 £ 0.18 NS
Bone age (years) 11.96 = 0.30 12.89 * 0.14 <0.01
Tanner stage (n) 3.50 £0.21 410 = 0.11 <0.01
Height (cm) 150.68 * 1.76 152.59 = 1.18 NS
Weight (kg) 46.06 + 2.46 45.16 = 1.49 NS
Body mass index (kg/m?) 20.22 * 0.85 19.87 = 0.52 NS
Dietary calcium (mg/day) 420 = 12.38 839 + 20.01 <0.001
ud-BMD (g/cm?) 0.29 = 0.01 0.30 = 0.01 NS
pr-BMD (g/cm?) 0.61 = 0.01 0.60 = 0.01 NS

NS, not significant

Table 2. Levels of testosterone (T), estradiol (E2), androstenedione (ASD),
dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), sex
hormone binding globulin (SHBG), and apparent free fractions of T (AFTC) and E2
(AFEC) (X £ SE and P values) in premenarcheal girls with low and high calcium

intake (Ca I)

Premenarcheals

Low Cal (n = 22) High Ca I (n = 28) P
T (nM) 0.92 = 0.07 0.88 += 0.06 NS
E2 (pM) 136.67 = 15.94 171.72 = 12.75 NS
ASD (nM) 3.56 * 0.25 5.38 = 0.44 <0.01
DHEA (nM) 21.87 = 1.97 2778 = 1.74 <0.05
DHEAS (uM) 1.67 = 0.20 2.32 = 0.19 <0.05
SHBG (nM) 175.72 = 15.38 119.60 = 8.45 <0.01
AFTC (pM) 14.90 = 2.01 14.60 = 1.01 NS
AFEC (pM) 2.05 + 0.08 241 = 0.10 <0.01
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Of interest, in all premenarcheals, DHEA, T, and its
free fraction (AFTC) were positively related to bone
age (Fig. 1); moreover DHEA, T, and AFTC were posi-
tively related to both radial BMD values (Figs. 2, 3,
and 4).

Table 3. Serum osteocalcin (OC), parathyroid hormone
(PTH), and 25-hydroxyvitamin D (25-OH-D) levels (X * SE
and P values) in premenarcheal girls with low and high cal-
cium intake (Ca I)

Premenarcheals

Low Cal High Cal

(n=122) (n = 28) P
OC (nM) 1.36 = 0.08 1.44 = 0.09 NS
PTH (pM) 348 = 0.44 2.39 = 0.22 <0.05
25-OH-D (nM) 50.82 + 6.01 49.67 = 4.47 NS
A B

357 =041 167 =0.33
P=0.012 P=0.024
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Discussion

In our investigation, the average dietary calcium intake
was below the RDA [20] in premenarcheal girls in the
presence of normal body mass index (BMI) and body
weight. Even though bone density at both radial sites
measured did not show any substantial difference be-
tween the two groups of girls, lower calcium intake was
associated with lower mean bone age and delayed pu-
bertal development. However, in this regard, we would
point out how the bone density detected at the two
radial sites may be not adequately representative of the
systemic influence of the low calcium intake on bone
maturation. Such effects, indeed, appear to be evalu-
ated in a more reliable way by bone age determination,
which was positively related to calcium intake in all
girls. In low-calcium consumers, a reduction in circulat-
ing adrenal androgens suggests that, along with other
nutritional factors [21 and references therein], calcium
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Fig. 3. Correlations between total

testosterone (7 tot) and ultradistal/
I proximal bone mineral density (ud/
pr-BMD A/B) in premenarcheal
girls
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may influence enzymatic adrenal steroidogenesis. On
the other hand, there is increasing evidence that ana-
bolic changes are involved in the enhanced bioactivity
of insulin and/or insulin-like growth factor-I (IGF-I)
[22,23]. As the adrenal cortex expresses insulin and
IGF-I receptors [24], and both mitogenic peptides en-
hance adrenal secretion in human adrenocortical cells
[24-26], it becomes plausible to regard nutritional status
as an important regulator of adrenarche.

In our premenarcheal girls, both adrenal and gonadal
androgens were positively related to bone density.
These data fit with the results of previous studies show-
ing that AFTC and DHEA were the androgens more
consistently correlated with bone density [27-29]. In the
same vein, we observed in the present study that
DHEA, T, and AFTC were positively related to bone
age, even though the relationship between AFTC and
bone age was much more significant than DHEA or T
and bone age. For instance, testosterone, the major
gonadal androgen, circulates largely bound to albumin
and SHBG, while AFTC represents the hormone that is

Fig. 4. Correlations between appar-
ent free fraction of testosterone

I (AFTC) and ultradistal/proximal
0.8 bone mineral density (ud/pr-BMD
A/B) in premenarcheal girls

1
0.7 )
pr-BMD (g/cm )

bioavailable to the target tissue. DHEA and ASD are
the major circulating adrenal androgens in both women
and men [30]. DHEA is metabolized to DHEAS, which
has little androgenic activity, and thus, a direct stimula-
tory effect of DHEAS on bone, although possible, is
unlikely. In this regard, we would point out that
DHEAS may serve, rather, as a surrogate marker for
the effect of DHEA, which can directly stimulate both
osteoblast proliferation and differentiation (similar to
testosterone and dihydrotestosterone [DHT]) [31] or
for the effect of ASD [6].The detection of functional
androgen receptors (ARs) in various bone cells [32-35]
has implicated bone as a target tissue for androgen ac-
tion and has fuelled an increase in further investigations
of the direct and indirect effects of androgens on bone
cells in vitro, as well as on bone metabolism in vivo. In
addition, the presence of the enzymes aromatase, 17-f3-
hydroxysteroid-dehydrogenase,  3-f-hydroxysteroid-
dehydrogenase, and S-a-reductase, detected in
osteoblastic cells [36-41], indicates the ability of the
bone microenvironment to locally form biologically
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potent estrogens and androgens from weak circulating
sex steroid hormones such as DHEA, DHEAS, and
ASD. Thus, the biological effects of these compounds
may result from activation of the ER or AR, as demon-
strated in several in vitro and in vivo studies [12 and
references therein]. For instance, ERs have been gener-
ally demonstrated in cultured bone cells of the osteo-
blast lineage [42,43]. Besides, there is a large mass of
data demonstrating that estrogens decrease bone re-
sorption, promoting the apoptosis of osteoclasts, and
that they also increase skeletal mass, reducing apoptosis
in osteoblasts and osteocytes [44,45]. Indeed, during
skeletal growth and maturation, estrogens, in combina-
tion with other hormones, induce major beneficial
effects on skeletal development consistent with a com-
bination of increases in bone height, bone diameter,
cortical bone width, and cancellous bone mass [6,8].
Moreover, estrogens have indirect actions that affect
bone metabolism, which include promoting the intesti-
nal absorption of calcium and decreasing the renal ex-
cretion of calcium. In the present study, the increase of
SHBG observed in low-calcium consumers produced a
significant lowering of AFEC, which may negatively
influence bone maturation, as previously evidenced
[8,46].

Moreover, in low-calcium consumers, we found an
enhancement of PTH, a major osteotropic factor which
plays a critical role in calcium homeostasis and in regu-
lating the rate of bone turnover.

In conclusion, our observations support the notion
that low dietary calcium consumption in premenarcheal
girls is associated with a lower adrenal androgen secre-
tion. Both a low calcium intake and reduced levels of
adrenal androgens appear to cooperate in decreasing
bone age and in delaying pubertal development in girls
with low calcium intake. Testosterone and DHEA may
also act through an intracrine conversion into estrogens,
to contribute to bone mass acquisition during this im-
portant period of skeletal maturation.
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