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Bone structure and mineralization demonstrated using synchrotron
radiation computed tomography (SR-CT) in animal models:
preliminary findings
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suggested by Grodzins [1]. Unlike a conventional X-ray
tube, SR offers a continuous energy spectrum with a
high photon flux. The optimum energy for a given
sample can be selected from the SR white beam with a
low-energy bandwidth (0.1%–0.01%) using a crystal
monochromator, at the same time keeping the photon
flux rate high enough for efficient imaging. The mono-
chromaticity of the beam is the key point because this is
a basic requirement for tomographic reconstruction.
This condition is not fulfilled with conventional poly-
chromatic X-ray sources because beam-hardening
artifacts in the reconstructed images are caused by the
stronger attenuation of soft X-rays in the sample.
Monochromaticity of the beam is thus absolutely neces-
sary to perform accurate density measurements.

The high photon flux from synchrotron X-ray sources
and the small angular source size with negligible geo-
metrical blur make it possible to obtain images with
high spatial resolution and a high signal-to-noise ratio.
Because of the characteristics of the SR white beam, it
can provide different densities according to mineraliza-
tion or demonstrate bone structure precisely. The SR
computed tomography (SR-CT) system has been ap-
plied to analyze bone microstructure for in vivo [2] and
in vitro [3–8] animal studies.

We scanned several bone samples by synchrotron
radiation to reveal the two-dimensional (2D) and three-
dimensional (3D) trabecular and cortical microstruc-
ture. To confirm the ability of SR-CT to demonstrate
details of trabecular surfaces and bone mineralization,
the histological and microradiographic findings were
compared with the SR-CT images. The aims of this
study were (1) to evaluate the ability of SR-CT to detect
the details of the trabecular surfaces and (2) to evaluate
the ability of SR-CT to detect different degrees of
mineralization or cortical porosity.

Abstract We investigated the ability of synchrotron radia-
tion computed tomography (SR-CT) to demonstrate trabe-
cular microstructure, detail of trabecular surfaces, and
mineralization of bones. Eight rat vertebrae, six rat tibiae,
and eight minipig vertebrae were scanned using SR-CT at
the synchrotron radiation facility Super Photon ring-8GeV
(SPring-8). Images obtained using conventional micro-CT,
scanning electron microscopy (SEM), and contact micro-
radiography (CMR) were compared with the SR-CT images.
SR-CT showed high image quality without visible partial
volume effect. Three-dimensional SR-CT revealed shallow
concavities in the bone surface, which were considered to
correspond to osteoclastic resorption areas, as well as the
connectivity, anisotropy, and shape (rod- or platelike) of tra-
beculae. Two-dimensional SR-CT showed different density
along the surface of the trabecular bone, indicating the degree
of bone mineralization. In conclusion, SR-CT seems to be a
useful tool for delineating trabecular surfaces, evaluating
bone mineralization, and revealing precise trabecular
structure.
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Introduction

Synchrotron radiation (SR) provides an intense, laser-
like collimated light in the range from infrared to hard
X-rays. The use of SR as an X-ray source for high-
resolution microtomography of small samples was first
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Materials and methods

Synchrotron institute

The CT system was set up at the beamline BL20B2 [9]
in the synchrotron radiation facility Super Photon ring-
8GeV (SPring-8; Harima, Hyogo, Japan), which is one
of three so-called third-generation hard X-ray synchro-
tron radiation facilities in the world [10]. The bending-
magnet beamline is allocated to medical applications
and various imaging techniques in the energy range of
5–100 keV. The main optics is the standard SPring-8
bending-magnet system, which contains a fixed-exit
double crystal monochromator. The double crystal
monochromatometer, set to diffract in the symmetrical
Bragg refraction geometry, selects the appropriate
energy from the white SR beam emerging from the
storage ring. The X-ray beam produced by the bending
magnet passes out of the experimental hall (Fig. 1A)
surrounding the storage ring. The experimental hutch
(4m long and 2.8 m wide) is located 42m from the
source point in the experimental hall. The monochro-
matized X-rays come out into the atmosphere by pass-
ing through a Kapton window.

Experimental table

Each experimental hutch consists of a flexible experi-
mental table with long working distance X–Y transla-
tion stages (Fig. 1B,C). The experimental table is
2m long and 1m wide. Multiple-axis high-precision
diffractometers are placed on the X–Y translation
stages. These instruments are used to evaluate and de-

velop various kinds of optical elements for novel imag-
ing techniques. The high-precision stages are used for
3D microtomography.

Imaging detector

High-spatial-resolution 2D image detectors are pre-
pared for radiographic imaging. The detectors are a
fluorescent screen lens-coupling system. X-rays passing
through the object are transformed into a visible image
by the fluorescent screen. Images on the screen are read
by a cooled charge-coupled device (CCD) camera with
a high numerical aperture lens. The 2D detector is a
Beam Monitor 2 (Hamamatsu Photonics, Hamamatsu,
Japan), with a Gd2O2S:phosphor and a cooled CCD
camera (Hamamatsu C4880-14A, 1000 � 1018 pixels)
[11,12]. The high-spatial-resolution CCD image detec-
tors take images of biological specimens by using
techniques of microtomography. Digitized images with
14-bit resolution are captured and stored into a personal
computer.

Sample scanning

The sample is mounted on a goniometer including high-
resolution translations and rotations to position the
sample and to rotate it in the beam [13]. The samples
were scanned with synchrotron radiation at 22keV, pro-
viding data for 750 � 750 � 750 voxel images with an
isometric voxel size of 6µm. For each bone sample,
360 radiographic images were acquired over an angular
range of 180° with angular step of 0.2°. Reconstruction

Fig. 1. Synchrotron radiation
computed tomography (SR-CT)
system at the beamline BL20B2
in SPring-8. A Beamline in ex-
perimental hall. B Experimental
hutch (4 m long and 2.8 m wide)
and experimental table. C CT
system. The goniometer is a table
to mount and scan samples. D
Upper part of CT system has the
camera system
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was made with a filtered backward projection algo-
rithm. Scanning time was approximately 2 h for each
sample. 3D images were reconstructed from a set of 2D
projections under different angles of view [14], with
volume rendering using AVS software (Advanced
Visual Systems, Waltham, MA, USA) running on Win-
dows (Microsoft, Bellevue, WA, USA).

Materials

Materials included the following:

1. Six tibiae from 8-week-old female Lewis rats that
had undergone unilateral sciatic neurectomy (NX;
n � 4) or its sham operation (n � 2).

2. Eight vertebrae from 10-month-old Wister–
Imamichi female rats that had undergone ovariec-
tomy (OVX; n � 6) or its sham operation (n � 2). At
16 months of age, the rats were killed and the fourth
lumbar vertebrae were sampled.

3. Eight vertebrae from 8-month-old Gottingen
minipigs that were administered subcutaneously with
predonisolone 0.5 mg/kg (n � 4) or distilled water
0.5 mg/kg (n � 4). Twenty-six weeks after adminis-
tration, the minipigs were killed and the fourth lum-
bar vertebrae were sampled.

Before scanning, the samples were soaked in 70%
ethanol solution.

These animal studies were carried out in accordance
with Chugai Pharmaceutical’s ethical guidelines for
animal care, and the experimental protocols were ap-
proved by the animal care committee of the Institution.

Microcomputed tomography (CT)

We used a µCT20 and its analyzing application from
SCANCO Medical (Basserdorf, Switzerland) as a con-
ventional micro-CT scanner [15]. This instrument has a

micro-X-ray source (10µm, 25keV), and the trans-
mitted X-ray beam is recorded by a linear detector
(CCD array; 1024 elements) after being quantitatively
absorbed by apatite crystals contained in the bone. The
apparatus was controlled by a DEC α-station (Digital
Equipment, Marseilles, France), and an OpenVMS
(virtual memory system) in cluster configuration to per-
form the 3D analysis [16].

Scanning electron microscopy

Specimens were treated with 10% sodium hypochlorite
solution and dehydrated, critical point-dried, sputter-
coated with gold, and observed by a scanning electron
microscope (SEM) (S-570; Hitachi, Tokyo, Japan) un-
der an accelerating voltage of 20kV.

Contact microradiography

Specimens were dehydrated and embedded in methyl
methacrylate resin (Wako, Osaka, Japan), and ground
to obtain 100-µm-thick sections for contact micro-
radiography (CMR). The section was mounted on a
high-resolution film (Pelicula SO-343; Kodak, Roches-
ter, NY, USA) and CMR was taken using a soft X-ray
unit (SRO-405; Sofron, Tokyo, Japan) at 15.5 kVp,
3mA, and an exposure time of 14min. To compare the
images, the imaging regions of micro-CT, SEM, and
CMR were defined to be, as much as possible, from the
same regions where SR-CT images were obtained, using
the distance from the field marks in the bone.

Results

2D and 3D images of the rat vertebrae

Figure 2 presents the 2D and 3D microstructure of a 10-
month-old sham-operated female rat vertebra. The 2D

A B

Fig. 2. Two-dimensional (2D)
and three-dimensional (3D) tra-
becular microstructure SR-CT
images of rat vertebra. A 2D im-
age shows the sharp border of the
trabeculae without visible partial
volume effect. B 3D image shows
shallow concavities in the trabe-
cular surfaces (arrows)
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image showed the sharp border of the trabeculae with-
out visible partial volume effect, and the 3D image
showed the network of trabeculae and cortical bone and
also revealed shallow concavities in the trabecular
surfaces.

2D images of the diaphysis of the tibiae

Figure 3 shows the axial section of the rat tibial dia-
physis. The image on the left was from the control rat
(sham); the image on the right was from the rat after
neurectomy (NX). The NX rat showed dilatation of the
vessel canals.

Comparison of 2D SR-CT images with
2D micro-CT images

Figure 4 shows the vertebra of a minipig. The SR-CT
image of the trabecular network was clear without vis-
ible partial volume effects, whereas the micro-CT image
revealed a blurred trabecular border as a result of its
lower spatial resolution in comparison with SR-CT.

Comparison of SR-CT image with SEM image

In Fig. 5, on the left are SR-CT images of the vertebra of
minipig showing the irregularity of the trabecular sur-
face. Multiple resorption cavities were demonstrated
using SEM in the same region.

Comparison of SR-CT image with CMR image

Figure 6A shows a vertebral cortical bone of the minipig
using CMR. The different densities that were detected
in the surface of the trabeculae were also seen by SR-
CT (Fig. 4B, C).

Discussion

Bone microstructure is conventionally quantified in
vitro by a 2D histomorphometric approach with thin-
slice histological sections. The 2D analysis has the
limitation that it cannot demonstrate geometrical trabe-
cular structure, such as direction of the trabeculae and
characterizations of trabecular shape and surfaces.
The 3D surface structure can be analyzed in vitro using
SEM, which requires sophisticated sample preparation
as well as histomorphometric study.

Micro-CT has recently been developed to demon-
strate 3D trabecular microstructure without destruction
of bone samples. The principle of micro-CT consists
of reconstruction of the linear attenuation coefficient
within an object based on measurements of the attenu-
ation of an X-ray beam passing through the object from
different viewing angles [15–17]. Recent micro-CT pro-
vides 3D information on microstructure by the recon-
struction of multiple 2D images with almost 10-µm
resolution, and with the development of 3D structural

Fig. 3. 2D axial SR-CT images of rat tibial diaphysis. Neurectomy (NX) rat (B)
shows dilatation of vessel canals in comparison with the sham-operated rat (A).
Etidronate (EHDP) 10 mg/kg (C) prevented this change
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Fig. 4. 2D SR-CT (A, upper panels)
and conventional micro-CT images
(B, lower panels) of a minipig verte-
bra. The SR-CT image (A) of the
trabecular network is clear without
visible partial volume effects, and
the micro-CT image (B) reveals the
blurred border of the trabeculae. A
shows an abrupt disconnection of
trabeculae (see the magnified image
to the right). SR-CT also shows the
different density in the edge of the
trabeculae (open arrow)

A

B

Fig. 5. 3D SR-CT and scanning
electron microscopy (SEM) im-
ages of trabecular surface of
minipig vertebra. SR-CT image
(A) shows irregularity of trabecu-
lar surface (magnified in B). Mul-
tiple resorption cavities can be
demonstrated using SEM in the
same region (C; magnified in D).
SEM images are with 8-bit resolu-
tion in gray scale

A

B

C

D



292 M. Ito et al.: Bone imaging using synchrotron radiation CT

Fig. 6. 2D SR-CT and CMR images of vertebral bone in the
minipig. Different densities can be detected in the surface of
the trabeculae by SR-CT (B,C) as well as by contact microra-
diography (CMR) (A)

A

B C

parameters the change of microstructure can be
quantified for various pathophysiological effects and
antiosteoporotic agents.

Furthermore, finite element analysis (FEA) can be
performed using 3D data derived from micro-CT
[18,19], enabling us to calculate the bone strength and
stress distribution of the spongiosa and cortex. How-
ever, because of the limited resolution and the charac-
teristic spectrum of the conventional X-ray beam,
neither resorption cavities on the trabecular surfaces
nor differences in mineralization can be demonstrated
using conventional micro-CT.

The present study shows that details of the trabecular
surface and different bone densitics can be demon-
strated using SR-CT. Owing to the monochromaticity
and high photon flux, images of trabecular structure and
cortex with high spatial resolution and high signal-to-
noise ratio are obtained. The spatial resolution was 6µm
in the present study. The previous study concluded that
14 µm gave a reasonably good parameterization of
trabecular bone. Also, the 2-µm level images revealed
interesting features of the irregularities and rupture
of trabecular surface and of remodeling zones [20].
Quantification of degree of mineralization of bone
(DMB) using SR-CT was recently reported. The
method used was to calibrate the various dipotassium

hydrogen phosphate (K2HPO4) concentrations [21]. Al-
though quantification of bone mineralization was not
done in the present study, our research group has devel-
oped a new method to absolutely quantify calcium den-
sity in bone components using SR-CT in a subsequent
study that will be reported in the future.

Comparison of trabecular surface characteristics and
the degree of mineralization between SR-CT images
and SEM or CMR demonstrates the usefulness of SR-
CT in evaluation of bone quality. The resorption cavity
reveals the metabolic situation and the degree of miner-
alization reflects the ratio of mineral to matrix content,
i.e., less mineralized bone versus highly mineralized
bone. It is obvious that SEM or CMR more clearly
reveals resorption cavities or different bone density
than does SR-CT. However, SR-CT has two advantages
over SEM or CMR. First, SR-CT shows the real 3D
structure, which can be observed from any direction,
and second, the structure can be repeatedly observed
without destruction of the bone samples.

The usefulness of SR-CT in the evaluation of bone is
summarized as follows:

1. A 2D SR-CT image has no visible partial volume
effect and produces a high-quality image in compari-
son with commercially available micro-CT images.

2. A 3D SR-CT image of the trabecular structure re-
veals shallow concavities in the bone surface, which
may correspond to osteoclastic resorption areas, as
well as the connectivity, anisotropy, and shape (rod-
or platelike) of trabeculae.

3. A 2D image can reveal a region along the surface of
the trabecular bone with a density different to that of
other parts, indicating a different degree of mine-
ralization. A 2D image can also reveal small vessel
canals in the cortex.

In conclusion, SR-CT seems to be a useful tool for the
assessment of bone quality and the determination of
precise trabecular structure, particularly for the delin-
eation of trabecular surfaces and mineralization.
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